
Implementing mixins
in Smalltalk

Terry Montlick
14
Multiple inheritance raises
a host of issues, such as
repeated inheritance.
G B a mixin as:

“A class that embodies a single, focused behavior, used
to augment the behavior of some other class via inher-
itance; the behavior of a mixin is usually orthogonal to
the behavior of the classes with which it is combined.”1

There are always situations in which “mixing in” another
class is the most straightforward thing to do. But mixins
are generally thought of as requiring multiple inheri-
tance,2 which is the mechanism by which languages like
CLOS supply them. Smalltalk, however, does not have
multiple inheritance. Furthermore,
multiple inheritance raises a host of
issues, such as repeated inheri-
tance—where the same superclass
can be reached via more than route
through the parent hierarchy.

Instead, I’m going to take a sim-
pler, more pragmatic approach. In
this implementation, mixins are
provided to a class by adding a mes-
sage, mixins, which replies with a collection of mixin
objects. If an object which uses mixins does not under-
stand a particular message, then each object in the mix-
ins collection is tried, in order. Technically, this is not true
multiple inheritance because it provides only “interface
inheritance” and not “class inheritance.”

In order for this to work, the Object class must be mod-
ified.* Ordinarily, I am loath to do this, but this change is
very simple and foolproof. Honest.

First, change the name of the existing doesNot-
Understand: method in the Object class to originalDoesNot-
Understand:. Then, add the following method:

doesNotUnderstand: aMessage
“If the object has mixins, see if one responds to
aMessage.”

(self class canUnderstand: #mixins) ifTrue: [

* You could alternatively create a class that overrides the doesNot-
Understand: message selector of the Object class, and always sub-
classfrom this. However, thisrestrictsthe utilityof mixins, sinceyou
would not then be able to “mixin” to an existing class hierarchy.
http://www
self mixins do: [:mixin |
(mixin class canUnderstand: aMessage selector)
ifTrue: [

^mixin perform: aMessage selector
withArguments:

aMessage arguments
].

].
].
“was not handled by mixin, so pass to original

doesNotUnderstand handler”
^self originalDoesNotUnderstand:
aMessage

The operation of this method is very
simple. If the class of the object that
generated the doesNotUnderstand:
message selector understands the
mixins message, then this message
is sent to it. The reply is some kind of
Collection, which is sent the do: mes-

sage selector with a block argument. This block argument
tests to see if an element of the Collection understands the
message selector that the original object did not under-
stand. As soon as such an element is found, it is sent the
message selector, along with the original arguments.

The mixins may be put in any type of collection. A sim-
ple OrderedCollection may be used as the mixins object. A
dictionary might also be used to gain named access to the
individual mixin objects.

Here is a simply and highly artificial, but illustrative,
example of using mixins. A class, MixinTest, has a single
instance variable called mixins. It has the following
accessor:

mixins
^mixins

and the following initialize method:

initialize
mixins := OrderedCollection new.
mixins add: (Date today).
The Smalltalk Report.sigs.com

The initialize method sets the mixins instance variable as
an OrderedCollection with a single element, a Date, which is
today’s. This initialize method is sent by the instance cre-
ation method:

new
^super new initialize

Inspecting the following statement causes the current day
of the month to be displayed:

MixinTest new dayOfMonth

Additional levels of mixins can be added. Consider a class
Mixin2Test, which is a subclass of MixinTest. This class also
has the instance creation method:

new
^super new initialize

but the initialize method is

initialize
super initialize.
mixins add: (Point x: 100 y: 50)

By calling super initialize, the MixinTest object creates the
mixins instance variable and adds a Date object to it. The
Mixin2Test initialize method then adds a Point object to
mixins.

A Mixin2Test object now understands messages for two
mixin objects. For example:

Mixin2Test new dayOfMonth
Mixin2Test new x

An object of any class may act as a mixin. However, an
abstract mixin class is particularly powerful. An abstract
mixin is a class that cannot be instantiated in isolation,
because it requires another object or objects to provide
methods for it.

I’ll call the object that a mixin is added to the root
object. A class for subclassing abstract mixin classes is
called AbstractMixin. It has a single instance variable called
root, which has the accessors:

root
^root

root: anObject
root := anObject

It also has the class-side instance creation method:

root: anObject
^self new root: anObject

Subclasses of AbstractMixin must declare their root object
when they create a new instance. The root object is im-
plicitly referred to by sending messages of the form:

self root <some message for root object>

Every AbstractMixin subclass should clearly document
what methods it requires its root object to provide.

As an example of abstract mixins, I’ll use one given by
July–August 1996 http://www
Seidewitz.3 The abstract mixin class InterestMixin is a
subclass of AbstractMixin and provides the incremental
functionality of earning interest. It has a single-instance,
variable, rate, with the usual accessors, plus a method
for computing interest earned:

interestEarned: dt
“root must provide a ‘balance’ method”
^root balance * rate * dt

An instance creation method sets both the rate and the
root object:

rate: aNumber root: anObject
^(self root: anObject) rate: aNumber

Another mixin class, this time a concrete mixin called
AccountMixin with an instance variable called balance,
provides basic account functionality:

deposit: aNumber
balance := balance + aNumber

withdraw: aNumber
balance := balance - aNumber

An instance creation method sets the current balance:

balance: aNumber
^(self new) balance: aNumber

Now, I’ll put these together in a new class called Savings-
AccountImplementation, which has an instance variable
mixins with an accessor of the same name. All that is nec-
essary is add the instance initialization method:

balance: aBalance rate: aRate
mixins := OrderedCollection new.
mixins add: (AccountMixin balance: aBalance).
mixins add: (InterestMixin rate: aRate root: self).

and the following class-side instance creation method,

balance: aBalance rate: aRate
^self new balance: aBalance rate: aRate

That’s all there is to it! The AccountMixin object provides
the implementation of the balance method, which is
required by the InterestMixin. SavingsAccountImplemen-
tation does not have to supply anything.

References
1. Booch, G. Object-Oriented Analysis and Design with

Applications, 2nd ed. Benjamin/Cummings, Menlo Park, CA,
1994, p. 515.

2. Gamma, E., et al. Design Patterns. Addison-Wesley, Reading, MA,
1995, p 16.

3. Seidewitz, E. “Controlling Inheritance,” Journal of Object-
Oriented Programming 8(8), Jan. 1996.

Terry Montlick is the founder of Software Design Consultants,
which specializes in state-of-the-art Smalltalk projects. He can
be reached by email at 75260.2606@compuserve.com or at
http://www.softdesign.com/softinfo/sdc.html.

`
`

15.sigs.com

