
Equality versus identity

Bobby Woolf
10
What exactly makes
two objects equal is often

very subjective.
O trickier concepts in Smalltalk is the dis-
tinction between object equality and object identi-
ty. Any experienced Smalltalk programmer knows

the difference: If two objects are equal, “=” (equal) returns
true; if they’re identical, “==” (double-equal) returns true
as well. But what does that difference actually mean in a
logical programming sense? Should you design your code
so that objects that are equal have to be identical? When
should your code test with equal ver-
sus double-equal? The difference
between equality and identity seems
to be like fine art: You can’t say what
it is exactly but you know it when you
see it. Even though you know what
it is, it’s very difficult to explain to
someone else who doesn’t know. Yet
understanding this difference is important if you want to
use Smalltalk well.

A METAPHORICAL EXAMPLE
This little story illustrates the difference. (I can’t take
credit for this story; it’s been floating around my compa-
ny for years.) A person sits down at a restaurant table
and notices the customer at the next table eating a deli-
cious plate of lasagna. When the waiter arrives, the per-
son points at the lasagna on the next table and says, “I
want that.” How should the waiter fulfill this request? He
could get another plate of lasagna just like it and serve it.
Or he could take the plate of lasagna away from the cus-
tomer at the next table and serve it to this person.

If the waiter brought a second serving,
the second plate of lasagna would be Listing 1.
equivalent to the first one. If the waiter
took the serving off the next table, the sec-
ond plate of lasagna would be identical to
the first one. In this context, equality
means that the two plates have the same
properties but are not the same plate.
Identity means that the two plates are real-
ly the same plate. The most practical dif-
ference is that two equal plates contain
two servings of lasagna; two identical
plates contain a total of one serving.
http://www
SIGNIFICANCE IN SMALLTALK
When two seemingly separate objects have the same iden-
tity, that means they’re really just two different handles on
the same object. A handle is a variable or literal you use to
access an object. The variable does not really contain the
object, it just containsa pointerto the object.It is oftensaid
that everything in Smalltalk is an object. It could also be
said that everything in Smalltalk is a pointer to an object.

You can never actually work with the
objects directly, you just work with
the pointers to objects. Because
everything is a pointer, there is never
a need to distinguish between a
pointer and the value itself.

POINTERS ARE SIMPLER
This explains some of the conventions that make
Smalltalk code different (and simpler) than other lan-
guages. In C/C++, for example, a variable yourPhone might
contain a PhoneNumber. If you copy yourPhone into
myPhone (myPhone = yourPhone), whether the variables
copy the value or share the same one depends on how the
variables are declared, as shown in Listing 1.

C/C++ allows/forces you to manipulate the pointers
specifically. Thus a programmer has to be careful to use
them properly; a mistake can cause serious, often subtle
bugs.

(By the way, you would not believe how much trouble
I had writing that C++ example. I spoke to a couple of
friends of mine who know C++ and told them the dilemma
PhoneNumber myPhone, yourPhone; // declares two instances of
PhoneNumber

myPhone = yourPhone; // copies the PhoneNumber

PhoneNumber *myPhone, *yourPhone // declares two pointers,
// each points to a PhoneNumber

yourPhone = new PhoneNumber; // initialization
myPhone = yourPhone; // shares the PhoneNumber
*myPhone = *yourPhone; // copies the PhoneNumber
.sigs.com The Smalltalk Report

I was trying to illustrate. Our conversation then got
very complicated as they explained all the different
things that the programmer would have to consider.
Just trying to find a simple example that shows two
variables that share a single object versus copies of
the object was very difficult. Somehow I think that
the difficulty I had preparing this example does
more than the example itself to illustrate how com-
plex C/C++ can be!)

In Pascal, the programmer can declare a subroutine
parameter to receive a variable either by value or by refer-
ence. If the variable is passed by value, it is copied, which
is expensive for variables that contain a large amount of
data. However, since the subroutine has its own local copy
of the data, the subroutine can make all kinds of changes
to the copy. It knows that those changes won’t affect the
rest of the program outside the subroutine. If a variable is
passed by reference, the subroutine gets a pointer to the
same data that the rest of the program is using. This
pointer is inexpensive to create. However, the subroutine
has to be more careful about the changes it makes to the
parameter since those changes affect the original vari-
able’s data. Thus programmers that nonchalantly change
a parameter’s contents have to learn to be a lot more care-
ful whenever that parameter is passed by reference.

Smalltalk programmers do not need to make these dis-
tinctions between a value and a pointer to the value. Any
variable is just a pointer (see Listing 2).

So any Smalltalk variable declaration is equivalent to a
C/C++ pointer variable declaration. Whereas Pascal para-
meters can be passed by reference (pointer) or value
(copy), Smalltalk method parameters are always passed
by reference. If you want to copy a variable’s value in
Smalltalk, you need to explicitly send it a message like
copy. This makes Smalltalk’s syntax simpler, its intent
more explicit, and its code more consistent.

GARBAGE COLLECTION
Everything being a pointer helps explain how garbage col-
lection works: When nobody’s pointing to an object any-
more, it gets garbage collected. Every variable is a pointer
to a value. Code uses a variable as a handle to that object.
As long as an object has a pointer to it, some code has a
handle to access it, so it should not be garbage collected.
But once there are no more pointers to an object, no one
has a handle on it, so no one could access that object even
if they wanted to. Since no one can access the object, it
can safely be garbage collected and no one will miss it.

DISTINGUISHING OBJECTS
So how do you tell when two objects are actually the same
object? You use the messages “=” (equal) and “==” (equal-
equal or double-equal). Equal tells you whether two
objects are equivalent, meaning that they represent two
values where one is as good as the other. Double-equal
tells you whether two objects are identical, which is to say
that they are the same object. Equal tests for equality
whereas double-equal tests for identity.

| m
you

r
myP
myP

Listing 2
May 1996 http://ww
Double-equal is easy to design and implement. The
double-equal method is defined in Object and cannot be
overridden in subclasses. (Technically, double-equal can
be implemented in subclasses, but the compiler ignores
those implementors so they are never executed.) The
implementation simply follows the two pointers to see if
they point to the same address in memory. Even if two
objects are alike in every possible way, if they’re two dif-
ferent objects, they’ll occupy two different locations in
memory. Thus, they’re copies: Changes to one are not
reflected in the other. Yet it can be very difficult to tell
them apart without changing them. The way to do this is
to test if they’re double-equal: Do they occupy the same
location in memory?

Why is it important to know whether two handles point
to the same object? Here’s a simple example:

| set1 set2 |
set1 := Set withAll: #(a b c).
set2 := set1.
set2 add: #d.

Transcript cr; show: set1 printString.
Transcript cr; show: set2 printString.

When the Sets are displayed, set2 obviously contains #d,
but does set1? Most new Smalltalkers would say that set1
does not contain #d because it was not sent “add: #d” like
set2 was. The surprise is that set1 does contain #d just like
set2 does because set1 and set2 are really two separate
pointers to the same object. This code proves it:

| set1 set2 |
set1 := Set withAll: #(a b c).
set2 := set1.
Transcript cr; show: (set1 == set2) printString.

The result, true, shows that the two variables are really the
same object. This is why when you change one of them,
the other changes as well.

VisualWorks will actually show
you an object’s address, sort of, if you send it the message
identityHash (previously called asOop). This returns a num-
ber that is unique for every object in the image. Thus two
objectswiththe sameaddressarereallythesameobjectand
have the same identity-hash.This is helpfulwhen you have
two objects in two separate inspectors and you want to
compare them to see if they’re the same object. You can’t
verywellusedouble-equal;whichinspectorwouldyou run
it in?But you cansend identityHash to each object and visu-
ally compare the results.

yPhone yourPhone |
rPhone := PhoneNumber
eadFromString: ’212-555-1010’. ”initialization”
hone := yourPhone. ”shares the PhoneNumber”
hone := yourPhone copy. ”copies the PhoneNumber”

.

11w.sigs.com

12

EQUALITY VERSUS IDENTITY
When it comes to equal,
the obvious answer is not

necessarily so obvious once
you think about it.
WHAT IS EQUAL?
Although double-equal’s implementation is clear and
simple, equal’s is anything but. Surprisingly, many de-
velopers do not seem to recognize this dilemma. Even
for fairly oddball classes, programmers often think that
implementing equal is perfectly straightforward. In one
case, an experienced developer told me that if two views
have the same model, they’re equal (in his opinion).
Since these two views might be two different kinds of
widgets in two different windows, I had a hard time
thinking of them as equivalent. Thus I find that what
exactly makes two objects equal is often very subjective.

In VisualWorks, the most straightforward implemen-
tors of equal are in the
ArithmeticValue hierarchy. Es-
sentially, two ArithmeticValues (think
of them as Numbers) are equal if the
difference between them is zero.
Similarly, if Dates or Times represent
the same offset, they’re equal. So the
Magnitude hierarchy in general is
pretty clear-cut.

Then again, Characters are
Magnitudes, but what does it mean for them to be equal?
ParcPlace says that the two characters must be the exact
same one. However, couldn’t it be said that “A” is, in a
sense, equal to “a”? Maybe, maybe not (which helps
explain Character>> same As:). The point is not that
ParcPlace is wrong, but that when it comes to equal, the
obvious answer is not necessarily so obvious once you
think about it.

Consider the Collection hierarchy, the second-most fer-
tile source of implementors of equal. For two Collections to
be equal, they have to contain the same number of ele-
ments and the two elements in each position have to be
equal. This seems reasonable. However, this eliminates Sets
because they are unordered; two equal elements being in
the same position in the two Sets is just coincidence. It also
means that #(a b c) does not equal #(c b a); although the
elements are the same, the positions are different. Is it obvi-
ous that equal should work this way? Maybe, maybe not.

Most other classes that implement equal—and there
aren’t a whole lot of them—do so pretty unimaginatively.
They verify that both objects are of the same class/species
and that their instance variables have the same values.
Thus a BlockClosure is only equal to another BlockClosure
that has the same method, outer Context, and copiedValues.
Does that really happen a lot?

EQUALITY AND TYPE
For two objects to be equal, they have to be of the same
type. Objects which are not of the same type are not com-
parable, so they cannot be equal.

However, what constitutes a type in Smalltalk is un-
clear. For the purposes of determining equality, there are
four main ways of determining if two objects are the same
type:

• Are they instances of the same class? BlockClosure>>=
http://www
(in VisualWorks) first checks that both objects are
instances of the same class.

• Are they instances of the same species? Sequenceable
Collection>>= first verifies that the species of the two ob-
jects is the same.

• Are they instances from the same hierarchy? Interval>>=
first confirms that the second object isKindOf: Interval.

• Do they claim to be the same type? String>>= initially
confirms that the argument isString.

In each of these cases, equal makes sure that the two ob-
jects are of the same type by verifying that their classes are
equivalent. This check is the first one made; if it fails, all
other comparison is skipped.

Verifying that two objects are of the
same type before making any other
checks has an important benefit:
equal can be used to compare any
two objects and will not fail. If the
argument is not of the right type, it
will probably not understand the
messages equal sends to it. This
would cause a message-not-under-
stood or similar error. Thus every

implementor of equal should first verify that the receiver
and argument are instances of comparable classes.

EQUAL AVOIDS DUPLICATES
If you want to know whether two objects should be equal,
here’s the question to ask yourself: Should I be able to
store both objects in a Set, or should the second be con-
sidered a duplicate of the first? A Set is a collection that
eliminates duplicates. So what constitutes a duplicate? If
the object being added is equal to an object that is already
in the collection, the Set does not add the new object. This
eliminates duplicates.

If two objects are equal, they cannot be stored in a Set
together. If they’re unequal, a Set will not eliminate either
as being a duplicate of the other. So you can forget defin-
ing equal through logical semantics and theoretical dis-
sertations; the simplest answer is: Do you want to be able
to store them both in a Set? Of course now programmers
will argue the semantics of whether both objects should
be able to live in the same Set.

This also explains what an IdentitySet is. Whereas a Set
eliminates duplicate elements, an IdentitySet eliminates
identical elements. Thus a Set tests for duplication using
equal; an IdentitySet uses double-equal.

An IdentitySet is slightly more efficient than a Set
because double-equal is faster than equal. However,
using an IdentitySet to eliminate duplicates is dangerous.
The IdentitySet will eliminate duplicates as long as equal
and double-equal work the same for the objects in the
collection. Yet this will fail if another developer imple-
ments equal for these objects so that it works differently
than double-equal. Thus it’s safest to eliminate duplicates
using a Set. Use an IdentitySet to eliminate identical
objects, or to store objects where duplicates are guaran-
teed to be identical objects (such as Symbols).
The Smalltalk Report.sigs.com

EQUAL IS DOUBLE-EQUAL
Because it is often not obvious what makes two objects
equal, the default implementor of equal is

Object>>= anObject
^self == anObject

Thus for most objects, they’re equal if (and only if) they’re
double-equal. If they don’t have the same identity, they
definitely don’t have equality. Which is to say that equali-
ty doesn’t make much sense for most objects. Identity
always makes sense, which is why it’s quite easy to design
and implement. Equality, on the other hand, just doesn’t
make much sense for most types of objects.

You should avoid implementing equal arbitrarily. A
standard protocol like equal is not very useful if its imple-
mentation is subjective and privy to the whim of the last
person to implement it. If the user of your class can’t tell
what equal does without looking at your implementation,
that method is not going to help him very much. In fact, it
will hurt him if he’s depending on all of the implementors
in a hierarchy working polymorphically.

HASH
There is an easily overlooked but significant comment in
VisualWorks’ default implementor of equal:

Object>>= anObject
“... If = is redefined in any subclass, consider also
redefining the message hash.”

This subtle suggestion is the only warning you get that
equal and hash go hand-in-hand. This is because the chief
user of hash (besides other implementors of hash) is
findElementOrNil:. This is the method Set classes use to put
an element in (add:) and find it again (includes: and
remove:). For example, the implementor in Set contains
these two lines:

Set>>findElementOrNil: anObject
...
index := self initialIndexFor: anObject hash

boundedBy: length.
[(probe := self basicAt: index) == nil or: [probe =
anObject]] whileFalse: ”keep looking”
...

Notice that anObject is being compared in two ways, hash
May 1996 http://www.
and equal. This means that if two objects are equal, they
need to hash to the same value. Otherwise, you could
store an item and its equivalent together in the same Set.

For example, let’s say you store “4.0” and “4” in a Set.
Since they have the same hash value, the Set looks in 4.0’s
position, sees that it’s equal to 4, and so doesn’t store 4. If
their hash values weren’t equal, the Set would look in
some other position, not find the 4.0, and store the 4 in
the first empty slot it comes to. Similarly, if 4.0 is in a Set
and you look for 4, you probably won’t find it unless they
have the same hash value.

By the way, the opposite is not true: two objects which
hash to the same value do not need to be equal. A Set will
avoid collisions more efficiently if unequal values have
different hash values. Yet even if they do have the same
hash value, the Set will handle the collision correctly be-
cause it realizes that they are not equal.

So whenever you implement equal, you should imple-
ment hash as well. If the implementor of hash is the same
as its super-implementor, you don’t need the new one,
but it’s important that you at least thought about it.

CONCLUSIONS
Here are the eight main points in this article:

• A handle is a pointer to an object. A variable is a handle.
• Everything is Smalltalk is a pointer to an object.
• Identity means that two handles hold the same object.
• Equality means that two handles hold equivalent

objects, but equivalency is fairly subjective.
• For two objects to be equal, they have to at least be of

the same type. Each implementor of equal should first
check that both objects are of the same type.

• A Set considers two objects duplicates if they are equal.
Duplicates in an IdentitySet are identical.

• Equality doesn’t make sense for most types of objects,
in which case equality is the same as identity.

• Two objects which are equal need to have the same
hash value.

In my next article, I’ll talk about three different types of
instance variables. One of these types is instrumental in
determining object equality.

Bobby Woolf is a Senior Member of Technical Staff at Knowledge
Systems Corp. in Cary, NC. He mentors Smalltalk developers in the
use of VisualWorks, ENVY, and Design Patterns. He welcomes your
comments at woolf@acm.org or at http://www.ksccary.com.

`

`

13sigs.com

