
Srnalltalk,,,..
PROVIDINGSOLUTIONSTO THE 5MALLTALHCOMMUNITY-

Editors
John Pughand PaulWhite
CariefonUniwrsify& 7heObjectPeople

51GSPublications Advisory Board
Tom Mwa@bjsrtlkrign
FranfoisBancilhon,O,Techno/agy

GradyElooch,Mona/
GeorgeBosworth,PorcP/are-Digitolk
JesseMichaelChontdes,to4/medhfariAr,4CC
Stuart FmzSEMTJhwwe
Adele GoldberqParTP/are-Digiti/k
ThomasKeffer,krgue Wave50Awore
F1.JordanKriendler,MM (onrrrltirrgGroup
ThomasLove,(arrdtont
Bertrand Meyer,/5f
Meilh Page-Jones,Waylarrd$ysterm
CliffFfeeves,/BM
Bjame Stmusm@r&r8e//lab~
OaveThomas,Objertkrhnologyhrerrrti”onal

The Smalltalk Report
Editorial Board

Jim Anderson,ParcP/ace-Drjita/k
Adek Goldberg,PtrrcPlare-Digrtalk
ReedPhiihps
MikeTaylar,Pom%ce-Digifa/k
DaveThomaf, Objectkchndcgyhrternationol

Columnists
JayAlmarode,Gemhe$ysternrlrrc.
Kent Becl@stC/a~r50ftwore
Juanita Ewing,PorcP/ar&Digita/k
Bob Hhtkle,Corrrrrltmrt
TimHowa~H/FTotoco/,/rrc
RidphE.Johnmn,Uniwsifyof///inais
Alan Knight,?JreObjerfPeapAe
MarkLorenz,Afatfems50fhvoreInc.
Jan5teinman,Bpmithr
RebeccaWirfs-Brock,PorrPhzce-Digits/k
BarbaraYates,@smAhs

51GSPublications Group, lnc
Richardt!Frtedman,Fnunder,President and CEO
HalAvery,GmupPublisher

Editortal/Production
KristinaJoukhadar, EdiiorialOhector
Elks Varian,ProdtrclionManager
AndreaCammarata,Art Oirector
Eliiabeth A.Upp,AssociateManaging Ed-mr
Maqaret Cmrti,AdvertisingProductionCoordinator
Shannon5mith,Editorial ProductionAssistant

Circulation
Bruce5hriver,Jr.CircsrlationManager
IawrenceE.HoffeLMadretingManager

Kdvertlsing/Marketing
GaryPortie,AdveRi5ingManager,EastCoast/karada/Eumpe
MichaelW.Pedr,AdvenisingRepresentative
KristineVikmins,WesttoastEsldbit$alm
5anh Olszewdri,EastCnast EshibfiSales

212.242.7447(v),212142.7574 (f)
OianeFuller&Associaks,5alesRepresentatke,W~t Coast

408.255.2991(v),408.255.2992(f)
WendyOhrbokowitz,PromotionsMansgerforMagazines

kdminlstration
Margherii R.Mon~GeneralManager
OavidChatterpaul,5eniorAccountingManager
EfihBudhram,AccountsPayable

~SIGS
IIUBLICATIONS

~ublishers of JouRNAL OF OBrECT-ORIENTEO
%OGRA.?WMING, OBlS17r wG&?2 NE, c++ REF13RT,THE

;MAI.LTALK W“OFIT, THE X JOURNfi, RSPOtITON”
)BIECTAMLYSIS&DESIGN,OBIECTEXPERT(UK),
md Omrcr SPEKrRUM (GERMANY)

November-December 1995

November-December 1995

Feature

Understanding inter-layer
with the SASE pattern
Kyle Brown

Vol 5 N03

communication

Srnalltalk applications are best written in layers to encourage reuse and ease of
maintenance, but this architecture raises some questions regarding communication
between layers. The SASE pattern provides a solution.

Columns

❑
❑

Project Practicalities
A methodology mix
by Mark Lorenz
Combining a number of methodologies and utilizing the best elements
of each is often the best approach to object-oriented projects.

Smalltalk Idioms
Variables of the world
Kent Beck
Instance variables are harder to pin down than tempory variables,
but some clarification of the three styles—private, publi~ and
acquaintance—and their use is offered.

Getting Real
Object security
Jay A/fnarode
As a client implementation technology, single-user Smalltalk provides
enough security for most applications. For server implementation, you
will need to provide much more security.

Departments

Editors’Comer

Book Review

ProductReview

Recruitment

9

12

15

2

%JALLTALK wrfH SmE 18
reviewed by JanStehman and BarbaraYates

CF/ST-A Smalltalkframeworkfor graphical objects 21
reviewed by Jim Haungs

28

The Smalltalk Report [15SN#105&7976) is pubfkhed 9 times a year, monthly encept in Mar-Apr,July-Aug and Nov-Oec. Pubfkhed by
51GSPublications Inc., 71 West 23rd St. 3rd Floor, New York NY 10010. @ Copyright 1995 by SIGS Publications All rights resewed.
Frepmduction of this material by electronic transmksion, Xerox or any other method will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited. Material may be reproduced with express permission from the publisher.Second ClassPostage
Pending at NY NY and additional Maifing ofhces.Canada Post International Publications Mail Product SalesAgreement No. 2903S6.

Individual Subscription rates 1 year (9 ismesk domestic $69; MeMiCO and Canada $114, Foreign $129; Institutional/Library rates
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editorr at SS5
Meadowlands Orive #509,0ttawa,0ntario ftZC3N2,Canada,orvia Internet to strepor@objectpeople. on.ca.Preferred rbrmats for figures
are Mac or 00S EPS,TfF,or GIF formats.Ahvayssend a paper mpy of your manuscript, including ramemready copies of your figures (laser
output is fine].

POSTMA5TEFt5end domestic address changes and subscription orders taThe Smalltalk Report P.O.Box 5050, BrentwoadTN 37024-
5050. For service on current domestic subscriptions call 1.AOO.361.1279orfan615.3704S45. Em.ailsubscriptions%igs.com. Forforeign
subscription orders and inquiries phone +44(0]1 B5A435302. PSUNTEOIN THE UNfrEO STATES.

1

John Pugh Paul White
L

So, umT wwm is the proper way to test Smalltalk
systems? This is a question we get asked often,
and indeed are still trying to formulate an answer

to it after all our years of building systems using
Smalltalk. Of course, there won’t be any one answer,
since the potential schemes are as diverse as the types
of systems being developed, And, for the most part,
the issues aren’t that different for Smalltalk systems
than any other type of systems. But nonetheless, test-
ing Smalltalk applications should not be as “hit or
miss” as it has proven to be. And even those of you
whose organizations have succeeded at fully testing
Smalltalk applications in a systematic way are often
using home-grown, customized systems that cannot
be adapted to test other similar systems. This is not to
say an excellent job of testing isn’t being done, it’s just
that as an industry, software engineering needs to find
more reusable solutions to proper testing, If tools
such as browsers and window constructors can be
created to work across multiple applications, then
why can’t testing tools be created as well?

At 00PSLA this year, we had the opportunity to
query a number of “experts” on their strategies for
testing, There are some obvious things one can do. For
example, it seems clear that we need to develop a test
suite that will exercise each individual method
defined for a class, This is really the old style unit test,
only with Smalltalk the methods being tested tend to
be much finer grained than traditional systems, since
methods are generally simpler than traditional style
functions. And there have been some notable new
tools brought to the market recently that address this
type of testing (as well as other types).

Beyond individual methods, how does one define
test suites? The first thought is to next test the behavior
of a class. But how realistic is this type of test? Tilis is
certainly feasible if the class performs some well-
defined function, and is well decoupled from other
classes. But typically a given class relies heavily on at
least a small subset of related classes, and therefore
must be tested with those other classes as a single unit.
his can often prove difficult because of the different
behaviors that might be exhibited by the instances of a
given class. Moreover, when we start introducing
inheritance into the picture, this approach of testing a
class becomes even more difllcult.

In fact, a more significant testis probably not of the
class per se, but rather of objects. If the goal is to build
well-defined components, then it should be possible
to define test suites for objects independent of the
class to which they belong. This might help us avoid
some of the issues introduced by inheritance, although
not entirely,

The other style often employed when developing
test suites is to generate all our test cases as code. While
on the surface this seems reasonable, and is certainly
the fastest method to test, it does seem to have some
serious shortcomings. In an object-oriented world, it
seems obvious that we shouId be developing “testing
objects” rather than representing our tests through
code, What responsibilities/behavior does a testing
object have? It should probably, as a minimum, keep
track of the tests it is to perform, the objects on which it
is performing these tests, and the expected results.
There are a number of different ways to implement
such a test object, but it should be possible to build a
standard protocol for all tester objects. Once this is
done, and a widely accepted protocol gets adopted in
the industry, we will be able to begin simply testing our
code without having to build all the infi-ash-ucture for it,
as is the case for most of us, Also, it would be nice if a
series of “testing patterns” could be generated by those
who have the experience to make life simpler for the
rest of us who are struggling with this problem.

Like many of the outstanding issues in software
development, there is a great deal of effort being
expended on trying to address this issue. At 00 PSL4,
there was a full-day workshop dealing with this very
topic. We will try to have someone who attended the
workshop write an article to bring us all up to speed
on the current state of the technology.

Meanwhile, we wish to draw your attention to the
review by Jan Steinman and Barbara Yates in this
month’s issue. They review the new book SMALLTALK
WITHSTYLE(Skublics, Klimas, and Thomas), and we
concur with them that titles such as this are long over-
due, As pointed out in the review, this book should not
be used as “the Bible” for style in development, but
should certainly be used as a foundation for develop-
ing your own style guidelines, The importance of a
consistent style across a project is often overlooked by
development groups. It is no different than architects
using a standard notation with their diagrams or
accountants using standard accounting principles.
Properly utilized, a standard style will help streamline
the software development process within your teams,
and to this end we highly recommend that you for-
malize your own style guidelines (along with guide-
lines for design principles, testing principles, etc.),

Enjoy the issue.
The Smalltalk Reporl

Rids Gut Palette

\

Auto-Gen Farm Layout
t%m data &fsrdtion

Widget Tree

Links Smatltalk code
to Events

GUt Styl

Event
List

Links to
database

Works like Wsual Basic withthe Object Power of Smalltak

Makes Smalltalk Easier

Vmtal TriO is a comprehensive tool suite add-
onto Vtual Ssmdltalk. Its streamlined work-
bench, automated database access artd GUI
support helps veterans deliver applications
faster and novices get started quicker.

● Powerful Form Designer visually creates
advanced GUI

● Class Explorer visually links Smrdltalk code
with GUI events

● Vlsllal Subclrtssing
● Controls Library facilitates reuse of custom

controls
● Utility to manage global name space
● Incremental loading of classes into the

Smalltalk image
● Incremental save of design work outside of

the Smalltslk image
● Packaging utility aids application deployment
● Tutoring tool takes you step by step from

simple GUI to advanced database and 00UI
applications

+ Team Suppcnt Visual check-in/check-out
via interfaces to Intersolv’s PVCS

Automates Database Access

VIsua.1TiiO’s data-smart and SQLsmart
Form Designer help you create the visual
parts of your application in the context C#
the data you work on:

● Links GUI controls to database fields via
point and click

● Visual TriO generates SQL, manages the
unit-of-work, concurrent access, commits
and rollbacks across multiple tables

c Auto-generates GUI layouts from database
● Built-in ODBC or native data wrappers for

popular databases:

Access, FoxPm, dBase, Paradox,
SQL Server, Sybase, Oracle, DB2/2,
DB2 family via DDCS/2

● Embedded Btrieve SQL engine facilitates
rapid pmtotypirtg (except Windows NT)

● Extendible to more complex data structtnes
via master/detrtil, visurd joining of tables,
user defined data attributes and DDE

To order call 1-800-463-8998
73532.456@ compuaesve,c0m

❑ -m ———--

ing

!Tthinkthatth exciting
%ngaboutVhMlTnOis
thatyou can knverlhe ertt7y
barrier to$ndtalk”
BmImm,
--
Gsnimsambhsgeles Smalhlk UW”EA;”

Creates Advanced GUI

Vkurd TriO gives you all the basic controls
plus many more:

Custom Subpane, Status Bar, Table,
Toolbar with Tip, Notebook, Business
Graph, ‘llmer, Hot Point, Gauge, Dial,
Hiet-amhicrd Lkt, Spin Button, Context
Menu, Picture (ICO, BMP, GIF, TIFF,
PCX, W, JPEG, EPS, IMG, WPG,
DIB and Targa)

Creates Enticing 00UI

WithVkual TriO, it’s easy to visuzdly
program 00UI effects like: drag-and-drop,
context menus, and conditional icons.

Give your end-users the same expressive
flexibility and fteedom-of-action as the
Windows 95 or 0W2 Warp 00UI desktops!

TechBridgeTschssologyCosp.
SW YongeStrset,Suits1301,NorthYosk,Ontario,CsnsdsM2N6P6

“ 30 DaysMoneyBackGuarantee

Phom (416)222-8998 FaK(416)222-0168 “ RoyaltyFreeRuntime

01SS5TechBIMgsTs5mc4mayIMP. M tilts rawmed.TechEdd WA TM nndIbmk Pmgmrnminwe regisle$edtimarks andltMMsualTIIOkg.
!?md lh TcchS+idg.T~rrnkm CLIQ.lk@ areimde~ d Tech ndw Tsch~~M~cmft:&lcwmmdthsMrdma Icgoareregislered

SystemRcquiremcnh Visual Smalltilk v3.n. 1 from

id- cdMIUUSLUI~lbn. AHosharcmnfmleaandP*CI nammm= [ordmmTcabnpnpmnsody,amlmw beImdwnarksd
ParcPlti-Oigitalk / Windows 3.1,3.11, m0S/22. 1, Warp .3/

their-w cmmem 4S6 33 MHz or higher with 12M RAM and 12M disk sp~ce.

Understanding inter-layer
communication with
the SASE pattern

Kyle Brown
I
NAPREVIOUSARTICLE,lI described how Smalltalk applica-
tions are best built in layers, with each layer having a
well-defined interface and well-defined communica-

tion paths to the layer beneath it. A layered architecture
promotes

● looser coupling between objects
● better factoring of responsibility

both of which encourage reuse and ease maintenance.
However, once you have chosen a layered architecture

how do you setup the communication paths between the
layers? Specifically how do you decouple a view from any
specific model? To discover how this communication
occurs in modern Smalltalk systems, let’s take a look back
at the old days of Smalltalk and the MVC model.

h the good old days of “classic” MVC, models, views,
and controllers came in a triad. When you developed a
view, it was generally hardwired to work with a specific

class of
d this
specify
by the v
back of
sent dire
in its “m

In pa
the Obs
change
Observer
to know
the reve
even thi

Each
these p
VisualW

a CalendarPane an ApplicationCoordinator

1: buttonl Down:

P
2: tri erEvent:

P
3: setSelection:

b

-..
hgure 1. #setSelecUon message flow.

S
t
d
A

T
t
a
i
e

4

model. Later, the notion of “pluggability” mitigate-
hardwiring by allowing the creator of a view to
the selectors of the messages that would be sent
iew to the model. However, this still had the draw-
restricting that all messages from a view must be
ctly to the instance of a model that the view held
odel” instance variable.
rt, this was due to the assumptions implicit in
erverz pattern that was used (in the form of
/update) in most Smalltalk implementations.

assumes that it is okay for an observer (a view)
a litie bit about the subject (a model), but that

rse is not true. To gain real flexibility, however,
s assumption had to be relaxed.
of the major Smalltalk vendors have addressed
articular problems in their recent releases.

orks 2,0, Visual Smalltalk 3.0 (VST 3.0), and IBM
malltalk 2.o share the same general solution to
his problem. This common solution can be
escribed by a new design pattern I call Self-
ddressed Stamped Envelope (SASE).

Problem: How do you define a context-free way
to notify an object of the occurrence of an
event? In particular, how does a view noti~ an
object somewhere in the application layer that
an event (e.g., a button press or a selection
change) has occurred without specifically
needing to have knowledge of what object to
notify and what message to send?

Solution Define a mapping in advance from an
event to a set of receivers and messages to be
sent to these receivers. Use Smalltalk’s #perfomr
facility to send that message when the event
occurs at the “sender.”

he pattern is called SASE because of the analogy
o sending a self-addressed, stamped envelope to

recipient with the understanding that the recip-
ent will send back the envelope whenever an
vent occurs. For example, you may want to send
The Smalltalk Report

Now ifs Easyto BuildInteractiveDiagrams
Quickly create advanced interfaces that convey

information better than lists... with DDF

DDW is an easy-to-use tool that

dramatically reduces the time

needed to build interfaces:

●

●

9

9

■

9

makes building diagrams simple

provides a new VisualWorks widget

pre-configured for immediate use

written completely in Smalltalk

refineable and extendable

includes ARS’S Parcels & Structured
Graphics for building “dynamic” nodes

Example interface built with the Dynamic Diagram Framework

With DDFM you can quickly and easily ...
c create customized node icons with shapes 8

● add and remove nodes from a diagram ●

● connect and disconnect nodes within a diagram ●

● customize lines and line decorations ●

select and move nodes

format diagrams and hide nodes

print and store diagrams

dynamically update diagrams

‘1 --

Parcels & Structured Graphics (P&SGw)
“ high precision 2-d object-oriented graphics for VisualWorks

“ structured graphic shape objects

“ drag-and-drop with parcels

“ shapes recognize “hot-spots”

& 8

%1111●

J\@= ● provides 2 new VisualWorks widgets Shapes can be rotatad, translated, scaled
NG/ and combined to tbrm new shapes.

Call (800) 260-2772 today to order or e-mail info@ arscorp.com
for more information. Ask for a free copy of the white-paper

“Building Diagram-Based Applications with DDF”

Also AvWWe: Ml - Multiple Inheritance

Applied Reasoning Systems Corporation (AHS) is an innovative developer of high
quality Smallfalk development tools, application frameworks, intelligent sorlware
systems, and related sewices that provide advanced solutions to complex problems.

Smalltalk Products ■ Consulting ● Education ● Mantoring

Phone (91 9) 781-7997 ● E-mail: info@ arscorp.com

Reduce Development Time

To increase productivity, Small talk developers must take advantage of
existing class libraries. That’s where Synopsisfor Srnalltalk helps.

Synopsis is an automatic documentation tool that produces summaries

for all classes of interest to you. Synopsis accelerates understanding of
classes because you see each clam in its entire~, rather than as a
collection of individual methods.

Solve Your Documentation Problems

Everyone on your team benefits from documentation. Don’t make
documentation a chore --- make it automatic with Synopsis!

For distribution of documentation, Synopsis supports the following:
word processor files, Windows and 0S/2 Help files, and HTML files.

Make Quality Assurance Easier Too

Quality Assurance groups work with class summaries --- not code!

Products
- Synopsis for IBM Smalltalk $295 Team $395
- Synopsis for Visual Smalltalk $295
- Synopsis for ENVY/Developer for SmalltallaV $395

SynCfassDocumentor
A SynClassDmumenlor nbjcct is u.wd m ~encrate
dccumenlnlicmh a class and all of its mmhnds. All text that
goes into a class wmrnmy is &rived hnm i“romaim on lhe
class already mmikihle in lhc Smnlltnlk mvimnmem. This
includm infurmalion on superclasses,wbclms-ss. and IIKXI
imptam nf all, the documentationwrings rm rnelhcds.

The slruclure of the clnm mmrnary is determimd by a CIaM
dommentalin. ternplwe, which holds a mllwlion d objecls
representing[he dirferem seclims oflhe classwmmm-y. Each
.scpanuc documentation section objet t is responsible for
writing its pmlion of the class summary, (Refer to
SynClasrnOncTemplak and SynDmumc”tationS~ tion for
more information).

A SynClas.Dncumenlor writes its outpul mm a nmv khd of
stream, a w,ord pmces.smshea-n (we SyriWPStrmm), l%is
stream supportsformmi”g lhe text into paragraphs, bold and
iwl ic text, elc,

Superrlas.w.r:

SynDocProducer SynObject Object

Stlbcld.we.f:

SynCfassDmumentutiyn SynCIamDIJCumeIItOrV
SynCafeDOcumenlOr SynSummaryDtmnnentor

Imtance Methods:

ad&umentatinnFor oClms

Add ww for a WImmary or ocl,ws m the LIuLpuIStremn“f
[k receiver. ?he stmcture of lhe CIW summary is
determined by the docum-mlmion template(s) of the
mccivcr. llw tempk~le is determined by .sendi”E the
#templaieFoKlms: message10 the rewiv.r,

Sample Output from Synopsis
an SASE to contest promoters with the understanding
they will return it (with a list of the winners) when the
contest is over,

As an example, let’s look at the Event interface from
Visual Smalltalk 3.0. InVST 3.0, each class can define a set
of “events” that it can trigger. While all objects have this
capability, it is used most often in the SubPane hierarchy
whose subclasses define events like:

● #clicked
● #needsContents
s #textChanged

When a particular object is interested in receiving notil3-
cations about an event from a SubPane (something an
ApplicationCoordinatormight do) it registers itself with that
SubPane using the #when: sendto:with: method.

MyAppCoordnator(class) >> buildView forModek

...
aPane when: #clicked send: #setSeleclion:

to: aModel with: aPane.

Now, at some point in the future, the SubPane will (in
response to a mouse action) send itself the #lriggerEvent:
message, with #clicked as the argument. This will result in
the message #setSelection: being sent to the Application-
6

Coordinator, with the SubPane being the argument. This
message flow is shown in Figure 1.

As you can see from the previous example, this imple-
mentation gives us several properties we were looking fo~

● Because the “to” argument can be any arbitra~ object
(and not just the View’s model) we can send a message
to any object in the ApplicationModellayer,

● Because the “send” argument can be any message, we
are not forced to make the receiver of the message
conform to any particular protocol. We can instead
use whatever message is appropriate.

● This method more loosely couples the view and the
application layer objects, since the view does not
hard-code any methods that it sends to these objects.

The same pattern is used in IBM Smalltalk and
VisualAge in a slightly different implementation, but for
the same purpose. In IBM SmaJltalk, a CwWidget (the
closest equivalent to aVST 3.0 SubPane) implements two
messages

● #addCaUbaclcreceiverxelecto~clientData:
● #callCaUbacks:calU)ata:

The first method is equivalent to the #when: send:to:with:
method in VST 3.0, in that it specifies an event (a Callback
Constant), the receiver of a message, the message, and the
arguments to the message to be sent when the event
The Smalltalk Report

Smalltalk and Lotus NotesTM Integration

objects for Notes
Smalltalk Obiects to access Lotus Notes

available for

lBM@and Visual SmalltalkTM
0S/2@ and WindowsTM

-McroDoc Cornputersysteme GmbH, Sternstrat3e 21, D-80538 Munchen, Germany
..,:

,.?:-,:.,j , Tel: +49-89-29085171, Fax: +49-89-2228 67, CIS 100015,3007-=,.-...,.~,-.-
~;i:;””;+,:“ ‘--~>,:-E,; ~s @dL&IS& meregistered md~marlts of latus Dwelopm@ Corporation, IBM and 0S/2 are registered trademarks of Internoiional
‘“;*’~v~,U’~ ~~i~s~bhine Corporation, Whdows is a trademark of hticroeoh Carporotion, Visual %nalhalk is ❑ trademark 01 ParcPloce_Digitalk Inc.:?;::2“+ ,~, ,..= .“:.-

Ifyou’re not objective
about metricsanalysis,

then yoursystemmay not
measure up.

Are you managingyourprojectteams effectively?
ObjectMetricswsimplifiesthe processof gatheringand

analyzingmetricsso thatyoucan ensuremaximum
productivityfromyourdevelopmentefforts.

To order cdl 1.SOO.OSJECT.1ot tor more Intormalton
visit htlp//www.obJeetspace. eom. Alaa available ~ram

The Smalltalk Stare tek 415.S54.5535

•b&spac~

PRODUCTS . TRAINING . CCINSULTING . MENTORING . FRAMEWORKS
1=1 ~. W Z& 403,~lX Z+?.IO,& hb@lcL@iqam.m ku214.~.Wf3, U 214W,24W
3 -ridl CbWSmCS, Inc.1995.AllmsrmsandMmnarks am uw prw-ariy.1 UWIrresgetim rwnem.
occurs. A CwWidget“tiggers events” by sending itself the
#callCallbacks: callData message.

In addition, IBM Smalltalk utilizes an almost identical
set of methods for communication between objects with-
in the view layer. CwWidgets respond to the method
#addEventHandler:receiverxelecto~ clientData:, which adds
an “event handler” to a CwWidgetthat is called when an
event (a mouse movement, expose, or keyboard event)
comes in from the underlying window system.
Commonly one of the last things that happens in an Event
Handler is to send a callback to notify an application layer
object that, say, a mouse click has been interpreted as a
list selection,

Coming back full circle to VisualWorks, which
descended from the original Smalltalk-80 that gave us
change/update, we see that SASE is used here too, but in
a slightly different way. In VisualWorks, instances of
ValueHolder understand the message #onChangeSend:to:.
For example, in an ApplicationModelyou might see,

MyApplicationModel>>postBuildWith:alluilder
,..
listSeletionHolder onChangeSend: #changedSelection

to: self
. . .

Whenever a ValueHolderreceives a #changed: message, it
will (actually a DependencyTransformerwill) send the mes-
sage selector specified in the #onChangeSendto: message to
8

the object specified in the message. This implementation
differs slightly from that of VisualSmalltalk and IBM
Smalltalk in that it does not also specify an “event” or “caU-
back” symbol that specifies under what specific circum-
stances the message is to be sent. Instead, in WsualWorks
several ValueHolders are used, one for each particular cir-
cumstance. For instance, if a VlsualWorks ApplicationModel
wanted to know when the contents of a ListViewchanged,
and when the user changed the selection, the Application-
Model would have to register with two different
ValueHolders-one representing the state of the selection,
and another representing the state of the list itself,

Now, one benefit that this pattern gives you is the abil-
ity to decouple objects in different layers that need notifi-
cations of changes, but that may have varying protocols.
For instance, let’s consider the common case in which a
change to one object will affect many objects in a differ-
ent layer. As an example, consider a class LoginMonitor
whose responsibility it is to know if a user is logged in to
the system. Let’s say a requirement exists that if a user
does not use the system for a fixed period of time (say 10
minutes) then the LoginMonitorwould have to notify each
of the open windows in the system to log themselves out,
and would have to log out of any open databases or main-
frame connections.

Using the SASE pattern, each interested object (be it an
application layer object or an infrastructure object) could
register itself on the LoginMonitor (which would probably
be a singleton)? Whenever the LoginMonitor “went off it
would then automatically notify each registered object in
the specific way that each requested at registration time.
The Laginllonitor is unaware of either the existence of its
registrants or their protocol, keeping the system very
loosely coupled. The registrants ordy need to know

● that the LoginMonitorexists
● that it complies with the standard SASE protocol for

registration
● the name of the event/callback or message that

returns the proper ValueHolder
So, you can see that SASE can permit a system to be even
more loosely coupled than the Observer pattern, and that
implementations of this pattern are extremely similar in
each of the major dialects. Seeing the commonalities
allows you to think in more abstract terms than the spe-
cific implementation, and also allows you to think about
cross-dialect portability from design time,

References
1. Brown, K. Remembrance of things pas~ LayeredArchitectures

for SmrdltaUcapplications, THE SMALLTAIX REPORT4(9] :4-7, 1995.
2. Gamma, E. et.al. DIHGN PATITRNS:ELEMSNTSOF REUSABLE

OBJECT-ORIENTEDSOFIWASE,Addison-Wesley, Reading, MA, 1995.

Kyle Brown is a Senior Member of Technical Staff at Knowledge
Systems Corp. and a frequent contributor to THE SMALLTALKREPORT.
He has over six years’ experience working with SmalltalL He can
be reached at kbrown@ksccary,com.
lhe Smalltalk Reporl

F
OR mn’ OF YOu THAT H,4W WORKED on many object-
oriented projects, it has been obvious for some time
that the best methodology is a mixture of methodolo-

gies.Virtually all the commercial O-O projects I have been
involved with over the last few years have used multiple
methodologies to develop their O-O systems. In fact,
IBM has standardized on a methodology called Visual
Modeling Technique (vMT), that combines the best of
Responsibility Driven Design (RDD), the Object Modeling
Technique (OMT), and Object Oriented Software Engi-
neering (OOSE). This is essentially the same methodology
we use at Hatteras and the methodology we will focus on
in this article,

A METHODOLOGY OVERVIEW

The basic steps to the methodology are shown in Figure 1
and briefly discussed in the following sections. Of course,
this is not a monolithic waterfall approach, but rather a
systematic process that results in requirement traceabili-
ty using techniques that are natural and easy to learn.

Write use casesfrom requirements
There should be a use case written for each public service
required of the system. The use cases focus on what is to
be provided (see Fig 2), This is the first step in the devel-
opment threads that trace back to the system require-
ments, as shown in Figure 3. These use cases have the
added benefit of being good inputs for test cases.

Write scenario scripts from use cases
Each use case will typically need multiple scenario scripts
to support it. Scripts focus on how the object model under
development will support the use case. They are composed
of time-ordered sequences of public message sends, docu-
mented in steps detailing the initiutor, action, and partici-
pant. h example partial script is shown in Figure 4.

Fill in the object model from scenario steps

The scripts focus on the basic concepts in the business

Mark Lorenz is Founder and President of Hatteras Software Inc.,
which offers education, modeling, mentoring, and products to
help other companies successfully use object technology, as evi-
denced by commercial products such as IBM’s StorePlace and
Hatteras’ 00 Metric. He welcomes questions and comments via
email at mark@ hatteras.com or phonemail at 919.319.3816.
November-December 1995
Jac&ron

Gibson

‘L--J
rl--+Scenario

sCriDk

I 00A OOD

Wlrn-ismck

Runrbaugh

Figure 1. Methodology mix overview.

domain, resulting in classes and their relationships. As
these efforts are taking place, class clustering into subsys-
tems occurs based on coupling due to high-level services
provided. This results in details required to satisfy the use
cases being added to the object model under construc-
tion, as shown in Figure 5.

Selling products

The salesperson answers the phone and asks the customer
for her phone number. The customer’s information appears
on the screen and the salesperson verifies the name and
address.

The salesperson asks the customer for an item number. The
salesperson seesthe item information and verifies the type
ofproduct being requested. The salesperson asks for a
quality and enters it. The salesperson asks for more item
numbers until the customer is done ordering

The salesperson verifies the last credit card used or gets
new credit card information. The salesperson tells the cus-
tomer the total amount and when to expect the shipment.

The inventory is updated once the order is commi~ed by
the customer. The invoice and picking slip are printed in the
warehouse. The picker collects the items and puts them in a
box for the shipment. He includes the picking slip in the box
and puts the invoice on the outside as a shipping /abeL
Once the shipment iscompletely sutisfred,the order is
archived, until then, the order is outstanding, The picker
takes the shipment to the shipping dock for pickup.

Figure 2. Example use case.
9

Help Designer
for VkiualWorksr’

Help De~”gneris not just a programmer’s tool - now any team
member can create high quality on-line help. This powerful
development Iool is rich in features, provides flexible sel of tools,
and facilitates the reuse of components within your applications.
Hera is what you get

~ ~

● Help Editor ● Context-sensitive help
~ Help Viewer ● Inline and outline help

● Image Editor ● Tag Help
+ Word Processor ● Hypertexf links and
Help Manager references
● Control Panel ● Popup definitions
G Help Custom Controls ● Keyword search

● Rich Text Format support ● History and hierarchy views
● Macro definitions

FREE DEMO AVAILABLE ! ● Access to font, paragraph,
and color attributes

TO ORDER CALL 212-7656982
● Embedded objects
● Run-time editing mode

FAX REQUEST 212-765+920
● Platform independent help

files
● Full source code

Gp GreenPoint, Inc.
77 West 55 Street,Suite 1lG
New York,NY 10019

EMail:75070.3353 @CompuServe.com

Vi6uafWnrks= is a tmdemark of Pm’cPlaceSystims
industry we will hopefully see s

Basic sale

-This script details our phone order-taking procedures from customers
OrderWindow requests customerFor: a PhoneNumber from Company

Company asks hasPhoneNumber:aPhoneNumber from Person
script: New Customer
scn-pt:Customer information updates
branch: Bad credit record

OrderWindow sends for: aPerson to OrderTransaction
-Itemte across the following steps for each product the customer orders.
OrderWindow requests productNumbered: aNumber from /nventory

inventory asks isProductNumber: aNumber for each Product
script Product not found
script: Product search

OrderWindow asks name, description, and price from Product
OrderWindow sends sellQuantity: aNumber ok aProduct to OrderTransaction

OrderTransaction sends sellQuantity: aNumber ok aProduct to Line/tern
tineltem sends deplete: aNumber to Product

OrderWindow asks total from OrderTransaction
-End of line item sale.
OrderWindow asks creditCard from Person
OrderWindow asks number, exp/rationDate from CreditCard
script New credit card
script: Out-of-stock Iineitems
script: Order cancelled
-We’re now in the Warehouse
OrderWindow requests submit to OrderTransaction

OrderTransaction requests printFor: self to Invoice

-.–– .-– —,–—–A.–,––––.––. –.
mgure 4. txample parual scenario scrlpI
10
Figure 3. Requirement traceability.

Develop collaborations from scenario steps

Similarly the scripts focus on the public behaviors exhib-
ited by the identified classes to service the requirements.
Groups of related public services called contracts are cre-

ated, both for the classes and subsystems. Figure 6 shows
an example diagram, with an indication of the amount of
detail needed to capture the key relationships and behav-
iors in the business model under development.

TOOLS TO SUPPORT A METHODOLOGY MIX

Using a mixture of methodologies may require the use of
multiple CASE tools, but there are also tools that handle
the mixture, Paradigm Plus supports a number of meth-
odologies, but it doesn’t make mixing techniques across
methodologies easy, It also doesn’t support RDD as well as
I’d like to see. HOMSuite supports a mixture like we’ve
been discussing and has been used on successful com-
mercial product development, such as IBM’s StorePlace.

As methodologies evolve and people move around the
ome convergence toward
an effective mix. For
example, Booths changes
in techniques in the last
year has moved him clos-
er to the mix I propose in
this article.

A PROJECT

ARCHITECTURE

I have previously written
about the essential com-
ponents of an architecture
for your O-O systems and
how to grow your teams
around this architecture.
This architecture revolves
around the grouping of
classes into subsystems
and identifying and con-
trolling public interface
contracts between those
subsystems. This method-
ology leads directly to the
development of this archi-
tecture, which is essential
for your project’s success.
The Smalltalk Report

Need to create 3-tieq enterprise-
wide applications and integrate
other languages with your
Smalltalk application?

With HP distributed Smalltalk 5.0, you
can move beyond simple clientiserver to
true distributed, enterprise-wide applica-
tions. That’s because you get tools for dis-
tributed development and debugging, a
CORBA 2,0 object request broker, and
related object services that make it easy to
create business objects and distribute
them wherever you like on your network.
Control your business objects with the
Transaction CORBAservice in HP DST.
Integrate them with other C++ objects
when you use HP DST and another
CORBA 2,0 object request broker.

HP Distributed Smalltalk is an extension
of the ParcPlace VisualWorks environ-
ment. Put together, your programming
team gets a faster, easier way to develop
and deploy distributed applications on any
combination of supported UNIX and PC
platforms.

Send us your name, address, and phone #
and we’ll send you free white papers titled
“Manager’s Guide to Distributed Objects”
and “HP DST Technical Information.”

Phone: (408) 447-4722
FU: (970) 229-2180

Attention- HP DST White Papem

e-mail: dst@sde. hp. com

E?aHEWLETT@
PACKARD

O 1096 Hewldb%kard Company
gure 5. Filling in model details from scripts.

SUMMARY
We have examined the steps used in a methodology that
is composed of important elements of multiple other
methodologies. This mix optimizes the development of
an object model and architecture. It has been effective in
numerous O-O commercial projects and is the method-
ology most commonly found on the O-O projects I’ve
been involved with over the last few years. The tech-
niques are relatively easy to learn and provide good
requirements traceability.

Terminology

architecture The subsystems and their contractual
interfaces for an O-O system.

collaboration A graphical view of an O-O system

diagram design that shows subsystem group-
ings, classes, and contractual usages.

contract A logical grouping of related public
responsibilities.

object diagram A static model of an O-O system
design that shows classes, methods,
state data, and relationships between
classes,

script A time-ordered sequence of messages
between public ;nterfaces of key

continued on page 20

Figure 6. Object model and collaboration diagram example.
11

I
N THE LAST ISSUE, I PRESENTED the fO1.UWays telTIPOIWJJ

variables are commonly used. This time, I’ll talk about
how instance variables are used. The results for

instance variables are nowhere near as tidy as those for
temps. I’ll speculate as to why after I’ve presented the
information.

SOAPBOX
But first, I’d like to whine and complain a little. Here’s the
essence of my beef—it’s getting harder, not easier, to write
Smalltalk applications. This is not what I expected.
Smalltalk had rdready raised the level of programming so
much from what I was used to that I figured the trend
would continue. Today’s clich6s would become tomor-
row’s abstractions and the day after that we would forget
we ever had to program that stuff. Onward and upwrud.

Instead, I see my clients programming the same stuff
time after time. Here are some examples:

● Unit valuea-If I want an object representing five
days, I shouldn’t have to create “January 5, 1900” or
fall back on plain old “5.” Five days ought to be five
days. Decent unit values would catch lots of nasty
semantic errors and eliminate code that is currently
scattered through lots of domain models.

● Time and date interval%’’Every Thursday this
month,”” 1AM every night,” “every month this year.”
Each of these expressions, used in almost all
calculations, should be represented by an object.

. Multi-currency calculation%There is no reason
Smrrlltalk applications should have to flinch at dealing
with multiple currencies. Application developers
should use a Moneyobject to represent monetary
values. Once the application knows it is dealing with
money, supporting multiple currencies is a snap.

● Drawing edMora-Interfaces where the connections
between things are as important as the things
themselves aren’t effectively represented as lists, text,
tables, or notebooks. A good framework for dhect
manipulation interfaces would go a long way toward
distinguishing Smalltalk applications.

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektroniz Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O.Box 226, Boulder Cree4CA 95006-0226,408.338.4649
(voice)AOB.338.3666 (t%), or bv email at 70761,1216 (CompuServe)..
12
. Active objectr+Time marches on, but not if you look
at most of the Smalltrdk library. I can’t count how
many times I’ve written an object that keeps hold of a
Process and answers messages like “start” and “stop.”.
Doing a completely preemptive thread safe library is a
lot of work. That’s overkill for most applications. A
little help writing and debugging active objects would
go a long way.

One interesting question is why such obvious objects
aren’t part of the shared language of Smalltalkers. The
boring answer is that buyers don’t have these objects on
their check lists, so the vendors don’t produce them.

The more interesting answer is that the Smrdltalk cul-
ture has shifted from producers of abstractions to con-
sumers of abstractions. We have in our hands the best
tool I’ve ever seen for creating reusable stuff, but we’re all
so busy writing apps that as a community we don’t step
back and make things that everyone can use.

Of course there is an economic rejoinder to this-it
isn’t possible to make money making reusable software.
So what! Good abstractions are the product of experience
and inspiration, not economics.

We need to change our culture. Application developers
need to demand higher and higher levels of abstraction
from their vendors. Framework developers need to create
and publish abstractions, even if they don’t make any
money at first. Vendors need to aggressively search for,
incorporate, and educate about the best new abstrac-
tions. h-Ishort, we have to start acting like a community,
putting aside some short-term gain for the greater good.

I’m putting my time where my mouth is by putting my
unit testing framework in the public domain. I’m also
preparing my multi-currency framework for public con-
sumption (it’ll be a few months, but I’ll get there).

INSTANCEVARIABLES
The temporary variables boiled down to a simple set of
patterns. You can use a temp to:

● cache a value for performance
● hold a value of a side-effecting expression
● explain a complex expression
● collect results from a complex enumeration

I discovered these uses by looking at every method in the
system that uses temporary variables and classifying
them. Pretty soon the first three classifications became
clear. After awhile I had to add a fourth.
The Smalltalk Report

Hera’s Your Chance’-’””
To @g@overWhat A

Small* Consulting
Fkm Can Really Do.

Object/nteW@q@cem
5.

Helping Clients BuW
Enterprise Applications

● ParcPlace
VlsualWorksm

. IBM VisualAgem

● ~lkl~lsual.

Consulting &
Development Services

●

●

●

●

●

call

Hourly Smalltalk ~
Conhcting

On-She Smalltalk
Development &
Project Management

OODBMS Development:
Gemstone”, Versantm&
ObjectS4wam

On-Site Ukfhing &
Training

ObJect Modellng,
Analysis & Design

800.789.6595w
e-dk info@objectint,com

Object/ntel/igeme
~ RldgelleldDdve, Suii 240
llalelgh, K 27609
I&i& 919.s7s.m FaxM9.s7s.6w5
When I tried to do the same thing for instance variables
all I got was a muddle. I came up with nine uses. Where
temps were clear, however, these nine uses are not. You
can classi& one variable as two or three at once. I also
invented three (mostly orthogonal) styles of usage of
instance variables,

Ward Cunningham and I tried to figure out why
instance variables are so much harder to pin down than
temps. I wasn’t satisfied with our answer, but here it is:
Temporary variables are tactical. They are created to
resolve a set of constraints that only exist within the scope
of a single method. Instance variables ae often created to
solve much bigger problems, problems that may span
many objects.

In the process of writing a handbook for software engi-
neering, we’ve been much more successful at canonizing
coding practice than design or analysis practice. The deci-
sion to create an instance variable goes back to design or
even analysis. It shouldn’t be surprising that the result
isn’t crystal clear.

Styles
Having successfully lowered your expectations, here are
the three styles I’ve found so far:

1. Private
Z. Public
3. Acquaintance

Private. These are instance variables that are a simple
part of an object. They are used almost exclusively by the
object itself within its own methods. A good example is
the Visual Smalltalk version of OrderedColletion. It has
variables startPosition, stopPosition, and contents. No
object outside of the OrderedCollectionhas any need for the
values of these variables.

Public. These are instance variables that are more com-
plex parts of an object. They are often made available to
the outside world for further processing. Frequently, they
hold objects that are complex in their own right. However,
if the referring object didn’t exist, the object referred to by
the variable wouldn’t need to exist. Panes in Visual
Smalltalk have an instance variable “pen” which holds a
Pen. If you want to draw on a Pane, you need its pen. You
can often improve your design by shifting responsibility
into an object and making some of its public instance
variables private.

Acquaintance. These are variables that are there for con-
venience, but don’t imply the sort of ownership of a pri-
vate or public instance variable. Stieam’s instance variable
“colletion” is an acquaintance. If you have an Array you
need to stream over, you could send it along with every
message to the Stream (nextPut:on:, nextProm:). The proto-
col would be much u~ler and there would be a greater
chance of errors if you used different collections at differ-
ent times. Thus, Streams get acquainted with one and only
one collection.
November-December 1995 13

-Crafted Smalltalk-
presents

Smalltalk Professional Debug Package
for Visualworks’M

–The debug features you have been waiting for–

Breakpoints *Watchpoints*
(No change to the source code or log file!)

-Debugger temporary breakpoints
-Debugger skip-to-caret into and out of blocks
-Synchronized browser and debugger code views
-Inspector copy, paste, and compare objects

and more –
For OWST 4.1, V& 1.0, VW 2.0 and VW 2.5

Single user price: $89.00 + S&H

To order call: 401.846.6573
Visa, Mastercard or check accepted

For more information write or email:
Crafted Smalltalk
19 Tilley Ave.
Newport, RI 02840

htemet: traymond@pcix.com
Cmnpuserve: 71520,3707

continued on page 20
Uses
Here are the nine uses I’ve found so far:

1. Parent
2. Child
3. Name
4. Properties
5. Map
6. Current state/stiategy
7. Pluggable selector/block
8. Cache
9, Flag

Parent. Sometimes an owned object needs to acquaint
itself with its owner. The owner provides context for
calculations, VisualWorks’ VisualPart has an instance
variable “container” that points to the containing
VisualComponent. You can improve your designs by
passing more context into the owned object and elimi-
nating parent variables. This allows one object to be
“owned” by several others.

Child. In tree structures, intenor nodes need a variable to
hold a collection of children. VisualWorks’ CompositePart
has a variable “components” that contains an Ordered-
Colletion of VisualComponents.

Name. If everyone who refers to an object must use the
same key to identify it, the object needs a variable (prob-
14
ably public) to hold the key. You wouldn’t want two clients
to access the same Account with different numbers.
Sometimes you can improve a design by replacing name
variables with a Map(see below) in the owning object.

Properties. Every instance of a class has the same vari-
ables. What happens when every instance needs differ-
ent variables? Visual Smalltalk Panes, for example, have a
host of optional values that can be (but don’t need to be)
set. Such an object needs a variable to hold a Dictionary
mapping names to values. Unlike a Map (see below), a
Proper@ Dicbonary’s values are heterogeneous. You can
often improve a design by figuring out what the invari-
ant state is, or finding distinct clusters of properties that
can form their own objects (the pattern Whole Value
addresses this issue).

Map. Objects hold all the state associated with them. That
is, if the system has a number connected with a particular
object, that object generally has an instance variable to
hold the number. However, when an object is added to
the system and it needs to associate new information with
an existing object, adding a variable to the existing object
would clutter it up. For example, Visual Smalltalk’s
ObjectFiler andVisualWorks’ BOSSassociate fde offsets with
objects. It wouldn’t make sense to add a “fileOffset”
instance variable to Object. Instead, each ObjectFiler keeps
an Identi@Dictiona~ mapping objects to file offsets.
Unlike Properties, Maps have homogeneous values. Some-
times you can improve designs by moving state out of an
object and into a Map,or vice versa.

Current state/strategy. When you use the State Object or
Strategy Object pattern, you need a place to put the cur-
rent state or strategy. VisualWorks’ UIBuilder has an
instance variable “policy” that holds an object that will
create user interface widgets.

Ffug. When you have simple variable behavior where an
object can be in one of two states, the object needs a
variable to hold a Boolean to signify the state.
VisualWorks’ ParagraphEditor has a flag called
“textHasChanged.” It is true if the text has been edited. If
you have lots of flags, or if a flag shows up in lots of meth-
ods, you can improve your designs by introducing a State
Object or Strategy (see above).

Pluggable selectorlblock. Every instance of a class has
the same behavior but different state. Sometimes you
need a little variable in behavior, but not enough to war-
rant creating a whole new class. Objects with slightly
variable behavior need an instance variable to hold
either a Symbol to be performed or a Block to be evaluat-
ed. Visual Smalltalk’s ListPane has an optional
printSelector that is performed on the objects in the list to
get the strings to display.
The Smalltalk Report

Objectsecurity JayAlmarode
I
N snwl.r+usrm SMAmrALXSYSTEMS, the entire image of
objects is available to read and write. You can think of
tbe image as your private universe of objects, and as

long as you can get a reference to an object, you can send
it any message, even one revealing internal state or caus-
ing unintended side-effects. As a client implementation
technology, single-user Smalltalk provides enough secu-
rity for most applications, since any object that is mani-
fested in the client is inherently not secure in the first
place. As a tool for server implementation, however,
multi-user Smalltalk must provide much more security. A
server Smalltalk must handle requests from many users
running a variety of applications that require different
accessibility of objects. This column describes different
kinds of object security and examples of how to utilize
these security mechanisms.

There are many different ways to achieve object secu-
rity. The first defense is to prevent unauthorized users
from entering the system in the first place, This is usually
achieved by requiring users to log into the server supply-
ing a user name and password. The popular press is full of
horror stones about hackers and password-guessing pro-
grams, but this mechanism is fairly effective in preventing
casual intrusion into a system. To prevent intrusion by
hardcore thieves, other barriers must be erected.

In GemStone Smalltalk, a user is represented by an
instance of class UserProfile, Among other things, a
UserProfile contains the user’s unique username, pass-
word (encrypted, of course), privileges (that specify
which system operations the user is allowed to exe-
cute), default segment (to be discussed later), and
groups (a set of symbols indicating to which named
groups the user belongs). The set of all UserProfiles is
maintained in a global set called “AllUsers”.One way for
an administrator to add a new user to the system is to
execute the following

AllUsers addNewUserWithId:#Userl
password: ‘pass5698word’

Usirm Smalltalk since 1986, Jav Almarode has built CA5E tools.
inte;aces to relational databa~es, multi-user classes, and query
sub-systems. He is currently a Senior Software Engineer at
GemStone Systems Inc., and can be reached at almarode@slc,com,
November-December 1995
This operation can only be invoked by an existing user
who has the explicit privilege to add new users (more on
privileged operations later). In a vanilla GemStone sys-
tem, there are three pre-existing users: SystemUser,
DataCurator, and GcUser. SystemUser is omnipotent and
can touch any object without restriction; this user
account should only be used for system upgrades.
DataCurator is the account used for general system
administration functions, such as adding new users or
performing a full backup of object memory. The GcUser
account is used to control a background process that
garbage collects objects during a recent series of trans-
actions. Once a user has logged into GemStone, the user
can access his/her UserProfile object by sending the mes-
sage “System myUserProfile”. This can be useful as a pro-
grammatic way to determine who is the current user.
The class UserProfile defines a number of useful meth-
ods including ones to change the user password, add or
remove a group name from the set of groups, and list the
user’s privileges.

Mhough a user can log into the system, it is still nec-
essary to be able to restrict users from reading or writing
particular objects, In GemStone, every object is assigned
an instance of class Segment. A segment is an object used
to specify authorizations for objects assigned to that seg-
ment. The ordy users who may read or write a particular
object are those who are granted authorization to do so
by the segment to which the object belongs. A segment
has nothing to do with the physical layout or location of
an objec~ it provides a way to group similar objects for
security purposes.

A segment provides the means to exercise authoriza-
tion control over all objects that reference that segment.
A segment has an ownev typically the user who created
the segment. The segment’s owner can change the
authorizations that the segment grants. There are three
levels of authorization: #read, #write, and #none. As you
might expect, #read authorization means that the objects
that reference that segment may only be read, #write
authorization means that the objects may be read or
written, and #none means that the objects cannot be
read or written.

A segment can grant authorizations to three designa-
tions of users: the owner of the segment, named groups of
15

B 4

Database Solution
~~<= for Smalltalk
ODBTidk ACM library for ODBC

Database Access

● ODBC 2.x support for 5O+databases
I Visual development components for database access
I Native ODBC data type support
I Online documentation, source included, no runtime fees
I programming examples and sample application
I 00 to RDBMS mapping flarnework, based on types &

brokers, ideal for complex client-sewer applications
I compatible with OTI’s ENVY/Developer, Object Share’s

WindowBuilderPro
I SLL and Team/V packaging support

Jersions Available for Windows, Windows-NT
0S/2, and for IBM, Digitalk, and ParcPlace

Newfor ParcPfuce VisualWorks

~w g;~ggi&3

@compu&ve.com
Check out LPC’S Inkmel World Wide Web home page:

IIUp://www. rwi.com/smalltalk/producCa/vendors/lpe/lpchome.htrnl
4

users, and all users (commonly called the world). Thus, a
segment could be created that grants read and write
authorization to the owner, read authorization to a group
named #friends, read and write authorization to a group
named #trustedFziends, and no authorization to the rest of
the world. The following code illustrates how to create a
segment with these characteristics:

I newSegment I
“create the segment”
new%grnent:= Segment newIzWpository SystemRepository.
“bydefault, the owner of the new segment is the user
who created it”

newsegment ownerAuthorization: #write.
newsegment group: #friends authorization: #read.
newSegment group: #hustedFziends authorization #write.

newfiegment worldAuthorization: #none.

“put the segment in a global variable for later use”
UserGlobalsat: #hustedFriendsSegment puk newSegment.

In this example, the group names must exist in the global
set of named groups called AllGroups.AllGroupsis a set of
symbols that resides in a segment owned by DataCurator;
16
thus, only DataCuratorand SystemUser may add or remove
named groups.

To assign the segment of an object, simply send the
message “assignToSegmertk aSegment” to the object. For
this operation to succeed, the user must have write
authorization for the object’s current segment and the
new segment. This operation only affects the receiver of
the message, not any nested subobjects. To change the
segment of the receiver and any logical subobjects, send
the message “changeToSegment: aSegment.” Any new
classes you implement should follow this same conven-
tion and reimplement “changeToSegmenti” if necessary. In
general, you should use “changeToSegmenti” to assign a
new segment for an object.

When you create new objects, the system automatical-
ly assigns them to the system’s current default segment.
When you initially log in, this is the same as the default
segment maintained in your UserProfile. You can change
the system’s current segment by executing “System
currentSegmenk aSegment.” Any new objects that you cre-
ate will be placed in the new segment. If given the privi-
lege to do so by your system administrator, you can
change your default segment by executing “System
myUserProfile defaultiegmenti aSegment.” This does not
take effect until you commit your transaction, log out,
and log back in again.

Segments are a flexible way to prevent unauthorized
users from accessing specific objects. Support for autho-
rization enforcement must be implemented in the
SmaUtalk virtual machine for two reasons: It must be
implemented at the lowest level of basic object access to
prevent users from circumventing the authorization
checking, and it must be implemented as efficiently as
possible for performance reasons. After all, authorization
checking wifl occur the first time each object is accessed
in a transaction.

In some cases, a developer wants to prevent certain
objects horn being accessed in other cases, a developer

Table 1. Method access accorded by privileges in GemStone.

TypeofPrivilege

SystemControl

5e$sionAccess

U5erPassword

DefaultSegment

OtherPassword

$egmentCreation

SegmentPmtection

Statistics

FileContml

GarbageCollection

PrivilegedMethods

5ystemIshutDown,5topOtherSessions,wspendl.ogins,

rewmeLogins

5yrtemI currentSessions,current5essionNames,

stopOther$essions,descriptionOfSession:

UserPmfileIoldPassword:newPassword:

UserPmtileI defaultSegment

UserPmlileI password:

SegmentI newlnllepository

SegmentI group:authorization:,ownerAuthorization,

worldAuthonzation:

“methodsto gathersystem-widestatistics”

“methodsto backupobjectmemory,replicateobject

memory,createadditionalfile extents,etc.”

“methodsto initiateandcontrolgarbagecollection”
lhe Smalltalk Report

VisualKit
Professional Interface Development for VisualWorksm

VisualKi[TMis a set extensions to the VisrralWorks
environment that will allow developersto build polished
GUISwithoutadditionaltools 10learn. VisualKit’s
afldiliomd Mums include:

Drag and drop ●

franwworkfor lisl
boxes, containers,
templatesand folders ●

Micmsd MIX
hmework operatingon
all pkitfonns ●

Accelerator Key ●

hrnework on ●

propertiesSh@Xs ●

File navigationand

Acc&rutor Bultons,
Check Boxes, Rwlio
Buttons andLabels
Completeand simple
interface for dragand
drop
Spin Boxes
ProgressBars
VisrudComboBoxes
CompleteVisualWorks
integrationandmore...

dialogs

+dlEIFbjectsdt
47 West Division #l 36
Clklgo, IL 60610
Email: objsof@webeom. corn.

Completeinformationincludingcolor screen capturesis
mailable on our Web site a~

SIGS Books is seeking authors for its new
book series, llf~ SIGS REFERENCE

LIBRARY. Titles in the series include THE

DIRECTORY OF OBJECT TECHNOLOGY and
THE DICTIONARY OF OBJECT

TECHNOLOGY.

To discuss or submit a

proposal on writing white papers,
handbooks, etc., please contact:

Don Firesmith, Editor-in-Chief
4001 Weston Parkway

Cary, NC 27513
919481-4000 (V)

919-677-0063 (f)
dfiresmith@ksccary.com

mSIGS
BOOKS
wants to prevent certain behavior from being executed by
specific users. This is easily implemented, either program-
maticrdly or by using segments. To implement this capabil-
ity programmatically, you can explicitly check for a specific
user or group of users in the method you wish to restrict.
For example, the foflowing method only allows members of
the group WustedFriends to execute the given method

method: Person
driveMyCar

“determine if the current user belongs to the group of
trusted friends”
(System myUserProfile groups includesValue:
#bustedFriends)

ifPalse: [self errorNotAUowedToDriveMyCar].

‘perfomr the act of driving the receiver’s car”

This technique has the advantage of being visibly explicit
in the source code, and you can compose a specific error
message when the error condition occurs.

The other technique is to use segments to restict
behavior execution. Since a CompiledMethodmust be read
before its bytecodes can be executed, placing the
CompiledMethod in a restrictive segment can prevent
unauthorized users from executing the behavior. The fol-
lowing code shows how to do this.

(Person compiledMethodAk #driveMyCar)
changeToSegmenk trustedFriendsSegment

This technique has the advantage of better performance
and cannot be circumvented by interrupting program
execution and executing internal code by hand.

Previously I mentioned that each UserProfile main-
tains the privileges for the user. The privileges for a user
determine whether the user is allowed to execute cer-
tain system functions typically performed by the system
administrator. Privileges are more powerful than seg-
ment authorization because a user with the appropriate
privilege can always change the segment authorization
scheme by sending a privileged message. Table 1 lists
the types of privileges in GemStone and some of the
specific methods that can be invoked when the privi-
lege is granted.

To achieve object security in production systems, the
system must support authorization control at the lowest
levels. Segments with underlying virtual machine support
provide one flexible way to exercise control over access to
objects. In a client/server environment, this is one com-
ponent in overall system security In addition to exercis-
ing authorization control (enforcing a policy of user
access), a server also must reliably identify principals
attempting to use a system resource. This is called
authentication. A server Smalltalk can support authenti-
cation by utifizing existing schemes, such as kerberos.
Together, authentication and authorization are necessary
components to building truly secure systems.
November-December 1995 17

SMALLTALKWITHSTYLE

reviewed by Jan Steinman & Barbara Yates
SMALITALXWITHSTYLE
Skublics, S., E.J. Klirnas, and DA. Thomas
Prentice Hall Inc., Englewood Cliffs, NJ
ISBN 0-13-165549-3

I
N OUR JUNE 1gg5 COLUMN(Managing project docu-
ments) we mentioned the importance of having a style
guide within your organization, but we weren’t able to

suggest any that you could walk into a bookstore and take
home. Until now, we have pointed our clients to a 1986
00PSLA poster paper by Roxie Rochat and an internal
Allen-Bradley Smalltalk style guide by Ed Klimas as start-
ing points. This book fills the gap, and is long overdue. It
belongs with every Smalltalk project team.

Smurrmcm STYLEis not an “intro to Smalltalk” book.
The authors provide references to several other texts for
the novice to read to become acquainted with Smalltalk
dialects, but this book is mostly dialect-independent,
which deserves special applause.

HOW TO USETHE BOOK
The 126 guidelines are grouped into five chapters by
topic naming (guidelines 1–34), comments (guidelines
3548), formatting (guidelines 49-69), reuse (guidelines
7k90), and tips (guidelines 91–126). A glossary includes
basic terms, and the Preface includes some good stuff that
should not be skipped,

This book should be read cover to cover the first time,
rather than used strictly as a reference book with random
access to guidelines via the index, because the prose lead-
ing up to the numbered guidelines is essential to grasping
the authors’ full meaning for the guideline. The examples
following most guidelines are required reading too!
Finally there are boxed notes or “tips” sprinkled through-
out the chapters that contain very helpful information.

A recent thread in comp.lang.smalltalk about
SmaUtalk code formatting shows how religious an issue
such a topic is; the same is true about a lot of the guide-
lines in this book. You’ll find experienced Smalltalkers
have strong opinions both favoring and opposing some
of these guidelines. This book’s value is not in dictating a
standard to be followed, but in collecting in one place
the combined wisdom of many Smalltalk programmers
18
who have been writing and reading Smalhalk code for
over a decade,

Some guidelines may appear deceptively obvious. You
may ask yourself “who would think of doing such a
thing?” when reading some of the bad examples. Even
simple guidelines that experienced SmalltaIkers take for
granted may be novel ideas to brand-new Smrdltalkers,
and our experience in helping organizations adopt
Smalltalk shows that not a single guideline in this book is
too obvious.

Some of the guidelines will be misapplied by novices
without careful attention to their accompanying exam-
ples. One such case is the recommendation to use paren-
theses to improve readability. Some novices will use this
as an excuse to avoid learning the simple Smalltalk prece-
dence rules, but the examples clearly show use and abuse
of parentheses. Don’t expect this to be a Smalltalk pro-
gramming instructional manual-it isn’t intended to be.

DIPLOMACY VS. DOGMATISM
The writers are not overly dogmatic, recognizing that cer-
tain issues are largely a matter of individual taste. For
example, on p. 41 they state “There is no absolute way to
indent and align Smalltalk code. It is more important to
be consistent within your code and, when changing
someone else’s cede, to be consistent with their code.”

One unfortunate effect of this diplomacy is that in
places the book appears to bend over backwards to avoid
stating a preferenc-there are eight code fragments to
illustrate the alignment of brackets for Guideline 61,
which then states “Choose one way to align brackets in
blocks and use it consistently.” This statement of a guide-
line backed up by alternate ways to apply it illustrates one
of the points made in the introduction: “This book should
be used as the first draft for your own guide to good

Smalltalk style.. .The best guidelines are those that people
want to follow because they appreciate the benefit. Blind
enforcement of a matter that is of personal taste is not in
the interest of the project as a whole,”

Although the book is dialect-independent for the most
part, we did notice guidelines that are unnecessary in
many Smalltalk development environments. For exam-
ple, a line length limit for source code is suggested, but is
The Smalltalk Reporl

a nuisance in the majority of Smalltalk environments that
have resizeable, auto-wrapping code windows. Rather
than attempting complete dialect neutrality, it would
have been nice if the authors had pointed out the dialect
implications of such guidelines.

This suggests the need for additional style rules in
your organization that are dialect and toolset depen-
dent, for example, specific naming conventions for
ENVY applications and version names. Keep in mind (as
the authors point out), that this book is a starting place
for your organization, not a coding style bible to be
adopted as is.

For us, the most enjoyable section of the book is
chapter 5: “Tips, Tricks, and Traps.” Unlike the guidelines
in the preceding sections, which are open to argument
and sometimes controversial, these guidelines are most-
ly universally accepted and of particular importance to
beginning Smalltalkers. Some are meant to help you
avoid “classic Smalltalk bugs” such as modifying a col-
lection while iterating over it, or forgetting to send
#yourself after a succession of cascaded #add: messages
to a new collection.

Regrettably some guidelines in this section cover
important topics such as testing in a superficial way.
Perhaps it is more important that something be said on
these topics, albeit very little, with further guidelines in
these areas left up to the readers to develop. Once again,
this book is a template for you to complete, not an aU-
inclusive tome,

IMPROVEMENTS
Although we unreservedly recommend this book, we have
some wishes for a second edition. It could benefit from
the eye of a professional book designer-the layout is a bit
unapproachable and difficult to scan, with numerous
widows and orphans and a fussy indentation scheme.
(Contrast this to an absolutely gorgeous book that is sim-
ilar in concepc 201 PRINCIPI.ESOF SOFTWAREDEWOPMENT,
A.M. Davis, McGraw-Hill, 1995, which should be on
everyone’s shelf.)

There were also a very few outright inaccuracies, such
as the glossary definition of a class instance variable.
(Class instance variables are not shared by instances of
the class,)

Also strangely lacking (given two of the authors are at
OTI, makers of ENVY) are guidelines regarding the tem-
poral aspects of development, which is in many ways
unique to SmaJltalk. Certainly more could be said on this
topic than “Guideline 120 Avoid modifying the existing
behavior of base system classes,” without turning into an
ENVY ad!

Many of the guidelines lack context and background.
This is probably necessary to keep it from ballooning into
a general-purpose SmaUtaJk how-to book, but the lack of
“why” behind some guidelines may cause unnecessa~
resistance to following them.

It should be taken as a tribute to this book that our crit-
icism can be largely boiled down to “more, please!”
November-December 1995
EXCERPTS
To give you an idea of what the book is like, here are some
of our favorite guidelines, and some that we found most
controversial.

● Guideline 26 Do not use the same temporary
variable name within a scope for more than one
purpose. This is one of those “motherhood guidelines
that should be obvious, but we see it violated every
day particularly by new converts to Smalltalk from C
or FORTRAN.

s Guideline 40: Maintain the method comments with
as much care as the source code and keep them
synchronized. Amen! This is the “constant accuracy”
principle of documentation we describe in our June
1995 column.

● Guideline 104: Test classes as they are developed and
Guideline 105: Test components as they are
integrated. Testing is one of the great lies like “The
check is in the mail,” and “It’s done (except for
testingl .“ Expect testing to take on renewed
importance as many large, first-generation Smalltalk
projects enter their second generation.

More controversial is the example under guideline 59
shown as a “bad choice” because “although the Blue
Book,. uses this style, most programmers [keep the left
bracket on the line with while’hue:]”:

[number c= 100] while’hue:
[“more code here
and here”].

This is an example of the hidden dialect bias we would have
preferred was explicit. The built-in VisualWorks formatter
makes your code look similar to this “bad example, and
“most programmers” with a VisualWorks, ObjectWorks, or
Smalltalk-80 background are likely to code in the “bad
style-it should not be discouraged in such shops.

We also find many of the bracketing and indenting
styles would be alien (or go missing) to someone whose
only SmaJltalk exposure was a Smalltalk-80-family image.
For example, an important missing SmalltaJk-80 guideline
is to not lineup columns of text with tabs, since the use of
different fonts will obliterate the horizontal spacing.

“ Guideline 64 Separate cascaded long keyword
messages with a blank line or further indent
subsequent keywords after the first if the message has
multiple keywords. Example [complies with guideline]:

anOrderedCollection
replaceFrom: 2
to: 3
with: #(a bcdefg)
startingAt: 3;

replaceFrom: 7
to: 8
with: #(a bcdefg)
startingAt: 5.

Vertical white space is usually a precious resource, and we
19

I BOOKREVIEW

PROJECTPRACTICALITIES
continuedfiom page 11

SMALLTALKIDIOMS
continuedfiom page 14
objects that describe how the model
wiJl service the requirements specified
in a use case,

subsystem A group of relatively tightly coupled
classes that provide some end user
functionality, as documented in its
contracts.

use case An English language description of
what the system is required to do upon
receipt of one type of user request.

Suggested reading
1.

2.

3.

4.

5.

6.

7.

8.

Business Object Modeling course materirds, Hatteras Software,
1995.
Gibson, E. Objects: Born and bred, BYTE MAGAZINE,October,
245-54, 1990.
Jacobson, I. et al. OBJECT-OFUENTEDSOFTWAREENGINEERINGA
USE CASEDrUVENAPPROACH,Addison-Wesley Reading, MA,
1992.
Lorenz, M. Architecting large projects, THE SMALLTALKREPORT,
4(5):28-29, 1995.
Lorenz, M, OBJECT-ORIENTEDSOFTWAREDEVELOPMEN~A
PRACTICALGUIDE,Prentice Hall, EngJewood Cliffs,NJ, 1993.
Lorerrz, M. RAPIDSOFI’WAREDEVELOPMENTWITHSIWLLTALK,SIGS
Books, New York, 1995.
Rumbaugh, J. et rd. OBJECWORIENTEDMODELINGANDDESIGN,
Prentice Hall, EngJewood Cliffs, NJ, 1991.
Wmfs-Brock, R., B. Wdkerson, and L. Wiener. DESIGNINGOBJECT-
ORIENTEDSOIWWARE,Prentice Hall, Englewood Cliffs, NJ, 1990.
20
Cuche. Sometimes an object returns the same answer
over and over in response to a message. If computing the
answer is expensive, you can improve the performance of
the system by adding an instance variable to the object to
hold the value of the expression. You will have to make
sure the value is recomputed if the value of the expression
ever changes, and you should only add a cache if a per-
formance profde of the object running under realistic
conditions shows that the expression is expensive. The
variable “name” in Visual Smalltalk’s Behavior (Visual-
Works’ ClassDescription) is an example. The message
“name” could be implemented as:

Behavior>>name

‘SmaUtalk keyAtValue: self

But because it happens so often, the value of the expres-
sion is cached in an instance variable.

CONCLUSION
That’s it so far. Looking back at the list, it’s obvious that
there’s still a lot of ground to cover. For example, some-
times variables have their values set when the instance
is created and never change. If you’ve got a favorite trick
with instance variables that isn’t covered above, drop
me a line.
prefer guidelines that conserve it over guidelines that ● What kind of beha
tend to make you scroll. This example also shows the class side?
“narrow, non-wrapping window” dialect bias, and a ● How do I decide w
Smalltalk-80 programmer would probably keep each my application—an
message on the same Jine, with no extra whitespace. something else?

Guideline 119 regarding lazy ini-
—

tialization does not address its real
value: providing state sequence we look forward to reading
independence. Better would have
been a brief discussion of base and the “revised and enlarged”
derived state and a guideline to
“eagerly” initialize base state, while

edition that will surely
“lazily” initializing derived state, come in the future.
but this once again treads the fine
line between a style guide and a
design guide,

CONCLUSION
Before looking at the book, we asked ourselves some
questions that we’ve heard from novices. Happily, this
book answered all that strictly concerned style, but
missed some that sit on the line between style and design:

● Should I always write instance methods and create a
single instance of a class, rather than treat the class as
a global and write only class methods?

d

the “revised and enla
in the future.

At least one copy
Smalltalk project team

Jan Steinman and Bar
“Managing Objects” c
cofounders of Bytesmith
helping companies ado
they have over 20 years’
at Barbara. Bytesmiths@a
vior normally belongs on the

hich type of collection to use in
Array, anOrderedCollection,

Admittedly these are not really
style questions, but this book does
cross the line from style to pro-
gramming and process guidelines
at various times,

We don’t envy the authors the
task of choosing what to put in and
what to leave out. All in all they did
an admirable job, and it is with plea-
sure that we look forward to reading
rged edition that will surely come

of this book belongs with every
!

bara Yates took a month off from their
olumn to write this review. They are
s, a consulting company that has been
pt Smalltalk since 1987. Between them,
Smalkalk experience.They can be reached
cm.org or Jan.Bytesmiths@acm.org.
lhe Smalltalk Reporl

GF/ST-ASmalltalkframework
forgraphicalobjects

Jim Haungs
A
s SMALLTALKBECOMESMOREMAINSTW and com-
petes with products like Visual Basic and Delphi, it’s
nice to see an important product that couldn’t possi-

blybe implemented in anything but Smalltallc GF/ST horn
Polymorphic Software is such a product. It is designed to
solve one of the hardest programming problems: desi@ng
and implementing intuitive graphical user interfaces
(GUIS) with graphics technology. Menus, toolbars, and
common controls notwithstanding, what to do with the
client area of your application window is often frumated
by the complexity of the OS platform’s graphics primitives.
GF/ST is an excellent graphics toolkit that demonstrates
the extreme power of Smalltalk in the right hands.

INTENDED AUDIENCE
This product is intended for Smalltalk programmers
who wish to add real graphics to their applications. Real
graphics go beyond menus and listboxes, Real graphics
represent application objects as manipulable graphical
objects that support drag-and-drop, and are perceived
by the end user as visually representative of the applica-
tion domain.

BACKGROUND
Manipulating graphics is hard work. Normally drawing in
a coordinate space just leaves a trail of dots, Creating
meaningful figures and animating them is a nontrivial
task. It is rendered (pun intended) even harder by the
wildly differing graphics systems available in modern
operating systems. Coordinate systems differ. Graphics
primitives are neither standard nor universal. Scrolling
and printing are nightmares to implement correctly, Even
though all the major operating systems provide general-
ized driver-based printing, not one of the major Smalltalk
platforms implement any kind of native printing support.

Not all platforms use the same coordinate system. For
example, Windows considers the origin (0,0) to be the
top left corner of the display while 0S/2 considers (0,0)
to be at the lower left. In Windows, X increases to the
right, andY increases down, while in 0S/2, X increases to
the right, andY increases up. Digitalk exposes these plat-
form differences, implementing generic methods such
as rightAndDown:, which are implemented differently on
November-December 1995
the two platforms. ParcPlace and IBM, on the other
hand, completely hide the platform’s graphical system
by imposing a single, uniform layer of abstraction: SPIM
for ParcPlace, and Motif for Vkuah%ge, With so many
divergent approaches, source code compatibility across
platforms is nearly impossible.

GF/ST addresses the coordinate problem by imposing
a lightweight coordinate system over the existing
Smalltalk implementation. You are free to use or ignore
this system depending on whether portability or platform
compliance is more important to you, But much more
importantly, GF/ST assists portability by eliminating
most of the difficult drawing code, moving it instead into
the framework itself.

PRODUCT DESCRIPTION
GF/ST is a framework. It supplies mechanisms for crea-
ting drawing spaces for graphical objects. The drawing
spaces properly support scrolling and printing muhi-
page printing of large drawings is also supported. GF/ST
is intended to make graphical representations of domain
objects as easy as using a ListBox or a TextPane.

The Graphical Object (GO) is the basic behavioral unit
in GF/ST, GOs are displayed in a drawing space, which

Figure 1.The Visual Inspector depicting a cell GO.
21

I PRODU(X REVIEW
presents an abstract interface to the pro-
grammer. This interface disguises most of the
underlying platform’s graphics primitives,
and standardizes the coordinate system
across platforms and across Smalltalk prod-
ucts, Through the creation of GOS, you only
need to code specialized renderings of your
objects; you don’t need to manage thek dis-
play in the drawing, nor their interaction with
the platform graphics primitives.

GF/ST supplies many ready-made GO
classes: text, lines, ellipses, rectangles, paths,
splines, and bezier curves. Lines and polylines
can have arrowheads on either or both ends,
and paths can be drawn as orthogonal (right-

Figure 2.A BrailleCellGO object.

angles only) or straight lines. Group and composite GOS
keep track of several objects at once. A group is treated as a
single object, while a composite allows separate mardpula-
tion of the subobjects and of the composite as a whole.
Host widget GOs allow the creation, display and manipula-
tion of host widgets; use of these constrains the portability
of your application, but are invaluable when the widgets
are necessary and portability is not a consideration.

A GO can keep track of a single metaobject, which is
usually the domain object represented by the GO.
Because it is simple to detect and traverse the selected
object(s) in a drawing, the metaobject makes it simple to
access the corresponding domain object (s).

Because GF/ST is a direct manipulation framework, a
large number of classes are supplied to enable direct
interaction with graphical objects. The most important
notion is the “handle.” The GFHandle class abstracts the
general behavior of object handles. Subclasses provide
more specialized behavior, such as selecting objects,
moving them, changing their size and colors, and con-
necting objects to each other,

One-of ~e nicest things about the GF/ST fi-amework is

6raille

now is the time

mmmmmmmm
for all good

Mmm NIB Mmmm
Per sonsto come

EmmmmmmmmMmmm
EmEmiliii mm
their country

mmmmm Mmmmmmm

Figure 3. Output from the BrailleEditor.

it
m
m
fr
ob
ti
fa
st
un
on
G
ob
re
a
(D

be explicitly loa
recommends th
After creating th
out of bitmap
image without
image using fina

GF/ST makes
capabilities of S
a kind of Messag
GFGraphicObjec
‘locator” which
[GFLocatoron: se
ed, it sends the
the point at the
find centers or e
between objects
moved or intera
of code that es
example, a Posit
outside an estab
keep objects an
synch when con

The drawing
the user through
gestures into ob
objects in a draw
sent messages i
translating and
objects. Drag/d
the creation an
interconnecdng
actions can also

An important
internal represe
Determining w
in a drawing i
storage and di
search is not s
representationz
for an object
search in progre
giving an O(log
even to thousan
22
s built-in support for undoing graphical
anipulation operations. GF/ST imple-
ents a completely generic Memento
ameworkl for remembering previous
ject states without breaking encapsula-

on. It also supplies a BoundedStack class that
cilitates creation of a limited-size Undo
ack new elements are pushed on the stack
ti the bound is exceeded, then the oldest
es we discarded as new ones are added.

F/ST also makes use of the platform’s
ject finalization mechanism for properly

leasing bitmaps and other resources when
GO becomes garbage. On some platforms
igitalk), the 6nalization mechanism must

ded into the image. Polymorphic strongly
e use of Iinakation, and I agree with them,
e sample application for this article, I ran

handles, and I could no longer save the
causing a walkback. After recreating the
lization, I had no further trouble,

extensive use of the dynamic messaging
malltalk. For example, a GFLocatorobject is
e that, when evaluated, yields a point. The

tclass implements a default method called
returns a locator on the center of the object:
lf at #center], When the locator is evaluat-

#center message to the receiver, and returns
center of the object. Locators are used to
dges of objects, establish connecting lines

, and evaluate constraints when objects are
ct with one another. Constraints are blocks
tablish limits on or between objects. For
ion constraint keeps an object from moving
lished boundary Connection constraints

d their connecting lines connected and in
nected objects are moved.
framework manages the interaction with

a set of input “tools” that tmnslate input
ject manipulations, For example, selecting
ing is done with a GFSelecbonTool.Tools are

n response to input events, and respond by
forwarding messages to the selected

rop is handled simply and elegantly, and
d drawing of shapes and the moving and
of objects could not be simpler. User inter-
be disabled for output-only applications.

aspect of the drawing interface is the
ntation of the objects in the drawing.
hich of hundreds or thousands of objects
s under the cursor requires an efficient
splay list traversal mechanism; a linear
ufllcient. GF/ST maintains a quad-tree
of the display list coordinates; searching

under the cursor is basically a binary
ssively smaller quadrants of the display,

n) search time, which scales up nicely
ds of objects, An additional efllciency
The Smalltalk Report

ARBOR INTELLIGENT SYSTEMS, INC.

VisualWorksmakesyouproductive.

Arbor Help System ● Arbor UtilitiessArbor Inspector
makeyouevenmoreproductive!

At Arbor,we’vebeenbuilding Smalltalkapplicationsfor overfiveyears.
Duringthat time we’velearnedquite a bit aboutwhat developersneedto be productive.
Nowwe’vetakensomeof that knowledgeand packagedit for your team.

ArborUtilities-Ovv 50enhancementsandadditionsto theVisualWorkenvironment.

Arbor Inspector-An enhancedversionof thestandardVis~alWcrksinspectorthateliminatesthe
need:0openmultiplewirdowswhileinspectog—no morecluttelno morefuss.

Arbor Help System3.O—Thebestjus;gotbetrer... Forovertwo yearsAHShasbeentheeasiest,
mostpowerfulwayto addend-userhelpto yourapplication:[ontext sensitive,widget basedhelp

that doesn’tneeda developerto author. A powerful,nyperlinkedon-line documentationbrowser

. support for multiple Iarguagesand easyintegrationinto objectdatabases. . . it’sall still there.

Wth version3.0,we’vezddednumerousfeaturesandenhancementsto makeAHSmore’helpful’

and easierto usefor developers,authorsandend-usersalike.Alsoavailablefor Argos.

Findout whysomarrycmpaflie5 aremmg io Arborforhelp

[all today, be moreproductivetomorrow. Site licensing is available.

(313) 996-4238” jax (313)996-4241 o info@aisy$.com
consideration is the use of double-buffering to repaint a
damaged window and eliminate flash and flicker when
moving objects around. Objects know their Z-order, and
can even be moved behind other objects without flicker.
GF/ST supplies the source code for all these traditional-
ly difficult but necessary display mechanisms, and
makes them transparently available to your application.

SAMPLE APPLICATION
While visiting friends in Oregon, an interesting application
emerged from discussions with my friends’ 12-year old
son, Nicholas. He had a small metal Braille slate he used to
write letters to a blind fi-iend. It has three rows of blank
Braille cells and a meta3 stylus, You put a piece of paper over
the celh, and poke the stylus into the paper over the cells to
make indentations. Although this is incredibly tedious, (for
any serious writing, you’d use a Braille typewriter) it suf-
ficed for quick notes.what made it more difiicuh was work-
ing right to left, and having to look up each letter.

We imagined a little application that would display a
complete Braille sentence in a window. We figured that
drawing cells was easy a little like dominoes, and if GF/ST
lived up to its promise, displaying the cells should be sim-
ple. As it turned out, this was exactly the case. We defined
a BrailleCeM30class with an instance variable “char,” and a
class variable “Alphabet,” which contained a dictionary
whose keys were letters of the a3phabet and whose values
were bit patterns representing the letters,

A cell consists of the letter, an enclosing rectangle, and
six circles representing the cell pattern. A group GO is used
to keep the subobjects together, simplifying tracking the
composite object’s bounding box As each object is added
to the group, the new boundaries are automatically updat-
ed. In real Braille, of course, the letter itself is superfluous,
but it facilitates learning as you read the screen, and it looks
nice, The following code creates a group GO with abound-
ing rectangle, six circles, and the text of the character

cell
I rectGOh v textGO gos I

h:= 18.

V:= 26.

textGO := GF1’extGOteti char,
textGO ~anslateBy: (h// 2)@ (O - h).

rectGO:= GFRectangleGOrectangle: (O@O extent h@v).

rectGO

fiHColor: Color white;

CO1OKCo[or black.

gos := OrderedColletion new 8,
gos

add: textGO;
addAILself celllattern;
add: rectGO.

AGFGroupGOgraphicObjects: gos.
November-December 1995
The six circles are drawn from the mask in the alphabet
dictionary. The mask contains 6 booleans: true for black
and false for white. The circles in the cell are numbered in
columns top to bottom, from 1 at the top left to 6 at the
bottom right. The cellpattern method loops through each
circle, determines its required fill color and position with-
in the rectangle, and creates an Ellipse GO of the appro-
priate shape, color, size and position. Note that the size
and position are relative to the GO, and that the size and
position constants are somewhat arbitrary. GF/ST pro-
vides a number of usetld units of measurement: twips,
inches, rniUirneters, and pixels; the default value is pixels.
These numbers gave a nice display on both VGA and
SVGA displays,

celLPattem

I patterns circleGOmask fill circle position I

circles:= #((OO) (O8)
(O 16)(8 O)

(88) (8 16)

).

patterns:= OrderedCollecdon new.
mask:= self alphabet at: char.
23

IPRODUCT REVIEW
1 to: circles size do: [:each I

(mask at: each)
ifl’rue: [fill:= Colorblack]
ifFalse: [fiU:= Colorwhite].

circleGO := GFEllipseGOnew
width: O
CO1OCColorblack
fillColor: ill.

position:= circles ak each.
circleGO

setELlipse: (O@O extent: 5@5);
translateBy (2+ position first) @

(3+ position last),

patterns add: circleGO.

1-

“pattems

The only other interesting method we had to invent was
the layout algorithm for the cells. When the window is
resized, we wanted the cells to word-wrap in the usual fash-
ion. Fortunately the drawing interface knows the size of its
visible area, so this simple loop worked right the first time.

addText: message

“Adda sentence to the display.”

I word stream cursor cellExtent ceUGOleft right I
cellhtent:= self cellktent.
cursor := interface visibleRectangle origin.
left:= cursor x.
right:= interface visibleRectangle extent x.

stream := ReadSheam on message.
[stream atEnd] whileFalse: [

word := stream nextWord.

“WiUthis wordfit on the same line?”
(word size ● ceUExtent x + cursor x > right)

ifhue: [cursor:= left@
(cursor y+ ceUExtent y)].

word do: [:char I
ceUGO:= GFBraiUeCeUGOfor

(Sting with: char).
ceUGO

disableInterafion;
origin: cursor.

interface addGO:ceUGO.
cursor:= cursor right: cellExtent x.

1.

cursor:= cursor right: ceUExtent x.
1-

24
EXTENSIBILITY
Adding a new kind of GO to the system was simple and
natural. Once added, it participated fully in the overall
framework, and behaved as expected. I imagine that more
complex additions would take correspondingly longer,
but there doesn’t seem to be anything closed-ended about
the system, as long as you stay within the confines of its
design. Multimedia applications or 3-D rendering are
probably beyond the scope of the product, Simple anima-
tions are possible, however, given that double-buffering is
already done for you the source code for several demon-
strations of this technique are supplied with the toolkit,

ADDITIONAL TOOLS
Shipping with the system are some excellent free tools,
built entirely from the GF/ST framework itself,

The Visual Inspector is similar to Kent Becks Object
Explorer, It displays graphical views of objects. Each
object has instance slots, and when a slot is selected the
object it points to is displayed with a line connecting back
to the parent object. This tool is excellent for visualizing
complex object structures, and for teaching the basics of
object relationships,

The Drawing Tool is both a simple object painting
tool, and a testbed for experimenting with your own
Graphic Objects. It lets you add GOS to the interface,
manipulate them, and exercise their handles and con-
nection mechanisms. It also demonstrates the use of the
Tool and Palette classes for creating drawing environ-
ments. Unfortunately you can’t save or restore drawings
in the tool, so its use is limited to testing and demonstra-
tions of the framework, but it probably wouldn’t be diffl-
cuh to store the GOS in a file if you really needed to save
and restore your drawings.

The 3D Figure Tool demonstrates manipulation of 3-D
objects, You can add a cube, pyramid, or tensegrity (sort of
a Buckeyball thing) to the drawing area, By manipulating
one set of handles, you can conhol their x Y, and Z dimen-
sions, and by manipulating the center handle, you can con-
trol the pitch and yaw of the objects, causing them to spin
around in interesting ways. This tool aptly demonstrates
the value of the double-buffering technique, as the move-

Figure 4. The 3-D figure demo.
The Smalltalk Reporl

SMA1lTAIK

March 4-7
1996
NT Mmrlott Marquis, New York, WY

Where all the talk is

Smalltalk
Ara YouWell Versad in Smalltalk?

“Final~, a Smalltalk-onZy

conference... Good varie~, good
speakers. It was refreshing to
attend sessions that were not

vendor sales pitches.”

JILL SEINOM,kmim ANALYST,CARGILL,INC

@MALLXWll sOLUTlONS~ A— EE)

&It Mtln’ahaeglstefeallflu’ul!

SmaUtalk Solutions ‘%, the largest vendor-
independent SmalltsJkamference and exhibition,
provides the comprehensive training needed to
keep up with this expanding language. Learn
how Smalltalk is being put to more uses, in
more companies, in more industries, than any
other object-oriented programming language
in use today.

Harness the full potential of the SrnaUtaJk
programming language at tbi9 annual gathering
of Smautalkprofessionals. over 1,000 smaJltalk
professionals attended last year’s premiere in
NewYork. This year’s teehnieal program has
been expanded and enhaneed, with over 30
in-depth &es, panel diseuasions, bands-on
workshops and mae studies, taught by %ldkdk%

leaders and innovators. Classes focused in 5
educational tracks, SJlowing you to easily
customize your schedule to your apeeific
areas of interest.

A full array of activities includes keynote pre-
senters Adele Goldberg and Glesm Reid; an
exhibition baJl featuring products and services
for SmaUtalkin alJ its dialeets; and more. Don’t
miss this chance to demo the latest produets
and see %nalltalk in action!

SPONSCMUDm PRESENTEDm

Srnalltalk,,- ~$~EGs

1
1
1
I
1

:
1
1

i
1
1
1
I
1

:
1

:
1
1
1
1
1

:
1
I
I

:
1
1
1
n
1
1
1

:
1
1
1
1
1

:
1
1
1
1
1

:
I
1
I
1
1

PbBtimm~an

Smalltalk Solutions ’96

Nme

me

company

Addmal

Citymate

Zip/F’mulme

Cvlmmy

Plmne

I

I

I

!

I

I

I

1

I PRODUCTREVIEW

51G5Publications, Inc., 71 West 23rd Street, 3rd Floor,
New York, NY 1001O;212.242.7447; Fax 212.242,7574

To submit articles for publication, please contacv
John Pugh & Paul White, Editors,
885 Meadowlands Dr#509,0ttawa,0ntario, K2C3N2 Canada;
email: streport@objectpeopIe.on.ca

To submit product reviews or product announcements,
please contact the Editors at the address above.

Forcustomerservice in the US,please contact PO Box
5050, Brentwood,TN 37024-5050; 800.361.127% Fax
615.370.4845; in the UK, please contact Subscriptions
Departrnent,Tower Publishing Services,Tower House,
Sovereign Park,Market Harborough, Leicestershire, LE16
9EF,UK +44.(0)1 858.435302; Fax:+44.(0)1858.434958

For information on any SIGSbook contacR Don Jackson,
Director of Books,SIGSBooks, Inc., 71 West 23rd Street,
New York NY 1001CL212.242.7447; Fax 212.242.7574
emaik donaldjackson@sigs.com

For information on all SIGSConferences, please contacb
SIGSConferences,71 West 23rd Street, 3rd Floor, New
York, NY 1001O;212.242.7515; Fax 21 2.242.7578; email:
info@sigs,com

To order back issues,please contact Back Issue Order
Department, SIGS Publications, 71 West 23rd Street, 3rd
Floor, New York NY 10010; 212.242.7447; Fax
212.242.7574

For information on ordering reprints, please contact
Reprint Management Services, 505 East Airport Road,
Box 5363, Lancaster, PA 17601; 71 7.560.2001; Fax
717,560.2063

For advertising information, please contact: Advertising
Department SIGS Publications, 21 2,242,7447; Fax
212.242.7574

To access the SIGS Home Page on the
World Wide Web http//www.sigs.com.
ment of the objects is smooth and completely without
flicker, even on a relatively slow computer.

SUPPORTED PLATFORMS
GF/ST is currently shipping on Visual Smalltalk for Win32
support for the Visual Smalltalk 0S/2 product is planned
The product is in Beta for VisualWorks and Vk-mlAge
given that these products each use a common graphic{
model across their respective platforms, the release fol
these products should support all supported platforms
GF/ST also integrates nicely with other products, In partic.
ular, you can build your application interface witl
WindowBuilder, Parts, VisualAge, or VisualWorks widgets
then simply connect a drawing interface to a graphics pam
and you’re on your way.

SUMMARY
The GF/ST framework is a robust implementation and fac-
toring of common graphical display techniques. It sup-
plies excellent support for simple 2-D drawings and object
manipulation, It is not a CAD framework, nor does it give
much support for 3-D graphics or multimedia, However, it
goes a long way toward simplifying the representation of
dynamic systems as manipulable graphical objects,

The pervasive use of events in GF/ST makes finding
bugs and figuring out the flow of control a whole new chal-
lenge; tools, locators, and graphical objects send events all
over the place, and magic happens, The usual technique of
looking for senders does not work, because the events use
stored selectors. Perhaps a dynamic graphical browser of
the event model would make a nice addition to the tool set.

Supplying the source code to the system makes it easy to
extend the framework, and it makes excellent code available
for the graphics newcomer to study. In particular, it’s nice to
be able to read and understand the diflicult and platform-
dependent process of double-buffering the display.

CONCLUSIONS
If you do any kind of graphics in Smalltalk, you need this
toolkit. It’s priced reasonably, and if you’ve ever used
Tensegrity, you know Polymorphic’s reputation for high-
quality products. Even if it doesn’t do everything you
need, it is easily extensible, and even Smalltalk old-timers
could learn a thing or two from the techniques it uses.

Product information
GF/ST is available from Polyrno~hic Software,
1091 Industrial Rd., Ste. 220, San Carlos, CA 94070;
V.415.592.6301; fi 415.592.6302; 75010 .3017@compuserve. corn.

References
1. Gamma, E. et al. DESIGN PATTERNS, Addison-Wesley Reading,

MA, 1995, p 2B3.
2. IGruth, D. THE ARTOF COMPUTSRPROGRAMMING,VOL 3-SOHTING

AND SF.ARCHING,Addkon-Wesley Reading, MA, 1975, p. 555.

Jim Haungs is the founder of TeamTools Inc. He specializes in
Smalltalk consulting, training, project management, and software
development. He has a BSCS from RIT, and an MSE degree from
Wang Institute. Jim lives in Boston, and can be reached at
jhaungs@teamtools,com.
26 The Smalltalk Report

New Gtiide ‘

3The$malltalkDeveloper’r
Guideto VisualWorks

BY TIM HOW-

Foveword by AdeLe Goldber~

THE SMALLTALKDEVELOPEK’SGUIDE TO VIsuwWom provides
an in-depth analysis of the popular application development tool
produced by ParcP1ace Systems. Designed to enhance develop-
ment acumen, this book serves as a guide to using VisualWorks to
its fill potential.

Divided into two logical parts, the reader first receives the basic
principles of VisualWorks and then is provided with concrete
examples of VisualWorks in action. In this way, you are sure to
gain a better understanding of the unique characteristics of this
powerfid development tool as well as a complete understanding
of its strengths and weaknesses. By reading this book, you’ll be
able to build better applications and enhance the tools them-
selves.

And as an added bonus, source code and numerous examples of
the outlined concepts are provided on the included diskette.
You’ll be able to test the concepts immediately and put theory
into practice as you read.

If you area professional software developer already programming
in VisualWorks or an advanced Smalltalk programmer, this book
will prove an invaluable guide to enhancing your skills, cutting
development time, and saving money.

Not recommended~ beainnin~pro~ammers. PART OF THE

Available at selected bookrtorai. ADVANCES tN

Dism”buted by Prentice Hall. OBJECT
SIGSISBN: 1-884842 -11-9
PH ISBN: O–13-442526X TECH NOLO=Y

Diskette included 9ERIE9

SIGS BOOKS

Q YES!please send me _ copy(ies) of THE SMALLTALK
DEVELOPER’S GUIDE TO VISUALWORKS at the low price
of $39 (disketteincluded)
ISBN: l-a134842-l 1-9. Approx.630 pages.
MomyBock Guarantee: If I am not mm ktefyswi$?cd,I may return the book(s)

hwithin 14 dn~ and receivea complcre w nd, pmwptly and witbont question.

Methodof Payment
Cl Check Enclosed (payable to SIGS Books)

Cl Charge My: D knex El MasterCard Cl Visa

Card # Exp

Signature

Shipping& Handlin&For LX orders,pleaseaddS5 farshipping& ha-ding,
Canada& Mcxim add S1O, oumide N. America add $15. NY State residents add
applicable sdcs W. Pleaseallow4-6 web h delivery,

Ih Srnalltalkkdqll?t’k
Guideto ViiualWorks

Complete and easy to read, you can use this book as:
● a study guide
● a series of tutorials

● a rek.rence for items and concepts

● a valuable source of VkMVorks code

Eminently useful, this book is unique becauw.
Each ~opicis reinforcedwith; concrete example.
The concepts are clearly illustrated and the reader
can actually see their application.

A special browser is provided containing all the

examples referenced, alleviating the need to enter
code.
Rigorous definitions of terms are provided to

mitigate confusion.
Applications built prior to VkualWorksare covered

to build an underskuding of where some of the
construct in VisualWorks originated.

c Detailed descriptions of how to add new
components to the palette are illustrated,
allowing the reader to extend the fi.mctionality

of VisualWorks, Three new components are
provided as examples.

ORDER FORM
.

Name

Title

Company

Address

City State _ Zip

Phone/Fax

SENDTO:
SIGS Books, PO. BOX99425
Collingswood, NJ 08108-9970
Fax To: 609-488-6188

m

&IGS
Phone: 609-488-9602 BOO-KS

.—— —. .—. —.
I
I

I

I B

I

SMALLTALK POSITIONS

ParcP1ace-Digitalk is seeking experienced Smalltalk
instructors and consultants for our world-class
Professional Services team. At ParcPlace-Digitalk you
will work with one of the world’s leading development
teams, use stat=f-the-art products and assist companies
on the forefront of adopting object technology in client-
server applications.

Requirements for Senior Consultants solid experience
with Smalltalk (3-5 years) and/or PARTS Workbench
experience. 00A/D experience and GUI design skills.
Mainframe database experience is a big plus.
Requirements for instructors: previous training experi-
ence in a related field (2-4 years), understanding of 00
concepts md Smalltalk.

Positions are available in various sites throughout the
U.S. Compensation includes competitive salary, bonuses,
equity participation, 401(k) and medical and dental cov-
erage. All positions require travel. ParcPlace-Digitalk is
an equal opportunity employer.

Please forward your resume to

Director of Enterprise Semites
ParcPlace-Digitalk, 7585 S.W. Mohawk Drive

Tualatin, OR 97062 fax (503) 691-2742
intemek holly@ digitalk.com

ObjsctSpaca, a leader in the ObJect.Oriented erena,
has enjoyed 300%growlh in the last year, end es a resull,
has IMMEDIATE opportunities for estraordinsrity telenled
people dedicaled 10 the crealion and deployment of ad-
vanced technologies, Our areas of interest include: CORBA,
OODBMS, Conslrsinl-beeed Programming, Rule-based
Programming, Prololypa-based Languages (Classless), as
well as Agenl Technology, Design Patterns, Biological
Systems, Cognitive .%iince, 00N0OD and Sell.

Our requirements for EXPERTS commilted 10 excellence
include 4+ years of experience wilh C + +, Small lalk,
Distributed Smelltalk, VisualWorks or WsualAge. In addtion,
candidates should also possess expertise in Objecl-
Orienlad Software Development Methodologies.

We offer competitive compensation, performance-based
bmuses and a complete banefits package. For immediate
consideration, fonvard your resume 10:

Fax (214) 663=9099
ObjeclSpace, Inc., 14881 Quorum Dr., Suile 400, AtIn:
ST1 195, Dallas, TX 75240 jobs@objectspace.tom; or call
(800) OBJECT1. EOE. htlp://www.objeclspace. corn/

@bjectSpace” ~
-

MePakhvayToProgreffIll
Meeting the multifaceted information management needs of the ever-evolv-
ing haafthsare induafry requires aoftwara solutions that am as advanced as
they are flexible the fdnd of soludona that HSO& Company(HBOC)has
beendevelopingforover20yrws.A memberoftheNASDAII100,wehave
been ranked by hiplingersRrtarrsialM@zineas one of the top 15 compa-
nies poised Ior mnfinuad success in the year 2~ and beyond.

INFORMATIONTECHNOLOGYPROFESSIONALS
Atlanla, GA ● Amharsl, MA ● Mlnneapolls, MN

Eugano, OR ● SaN Lake City, UT ● Orlando, FL ● Charlotta, NC

We havechallenging opportunities for innovative software professionals
to analyze, design, develop and implement our highly progressive
haalth care information systems. Requires experience in one of
the following:

C/C++” Smalltalk ● Visual Basic
SQL Windows ● Sybase ● Informix ● Mumps

Your expertise will be rewarded with ascellent benefits, a competiivw salary
and the opportunity to advance your wear in an environment where pro-
motion from within is the standard. For consideration, forward your
resume, indicating location preference, to: CorpnraloRacrullhrg,
SEHBTM9M,HSO6 Crmrpsny,391PwimelarCenterNorth,Atfsnta,GA
39346.M (404) 992-3059.E-Mall(shamrr.ha@hbos.sorn).Nophone
sails,pfease.EOE hW/IW

Smalltalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS
This is your opportunity to join
the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan.

(CHECK OUT OUR
‘“ WEB PAGE!)

http:llwww.nvi. corral

BO~ 270566 Houston TX 77277

(713) 660-8080;Fax (713) 661-1156

(800) 256-9712; lanclrew@rwi.com
Smalltalk RothWell SmalMk RothWell

28 The Smalltalk Report

	By ArticleTitle
	A methodology mix
	GF/ST - A Smalltalk framework for graphical objects
	Object security
	Smalltalk with Style
	Understanding inter-layer communication with the SASE pattern
	Variables of the world

	By Author Name
	Almarode, Jay
	Beck, Kent
	Brown, Kyle
	Haungs, Jim
	Lorenz, Mark
	Steinman, Jan
	Yates, Barbara

	By Topic
	Book Review
	Getting Real
	Product Review
	Project Practicalities
	Smalltalk Idioms

