Cover illustration by Dave Cutler/siS

Simalitalk ... Table of Contents

PROVIDING SOLUTIONS TO THE SMALLTALK COMMUNITY

Editors
John Pugh and Paul White
Carfeton University & The Object Peaple

SIGS Publications Advisory Board
Tom Atwood, Object Design
Frangois Bandlhon, 0, Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chonoles, Lockheed Martin ACC
Stuart Frost, SELECT Software
Adele Goldberg, ParcPlace-Digitalk
Thomas Keffer, Rogue Wave Software
R. Jordan Kriendler, /BM Consulting Group
Thomas Love, Consultant
Bertrand Meyer, /SE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjarne Stroustrup, ATET Belf Labs
Dave Thomas, Object Technology International

The Smalitalk Report
Editorial Board

Jim Anderson, ParcPlace-Digitalk

Adele Goldberg, ParcPlace-Digitalk

Reed Phillips

Mike Taylor, ParcPlace-Digitalk

Dave Thomas, Object Technology International

Columnists
Jay Aimarode, GemStane Systems Inc.
Kent Beck, First Class Software
Juanita Ewing, ParcPlace-Digitalk
Greg Hendley, Knowfedge Systems Corp.
Tim Howard, F¥ Protocol, Inc.
Alan Knight, The Object Peaple
William Kohl, RothWell Intemational
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowfedge Systems Corp.
Rebecca Wirfs-Brock, ParcPlace-Digitalk

SIGS Publications Group, Inc.
Richard P Friedman, Founder, President, and CEO
Hal Avery, Group Publisher

Editorial/Production
Kristina Joukhadar, Editorial Director
Elisa Varian, Production Manager
Andrea Cammarata, Art Director
Elizabeth A. Upp, Associate Managing Editor
Margaret Conti, Advertising Production Coordinator
Shannon Smith, Editorial Production Assistant

Circulation
Bruce Shriver, Jr,, Circulation Director
Lawrence E. Hoffer, Marketing Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Michael W. Peck, Advertising Representative
Kristine Viksnins, West Coast Exhibit Sales
Sarah Olszewski, East Coast Exhibit Sales
212.242.7447 (v), 212.242.7574 ()
Diane Fuller & Associates, Sales Representative, West Coast
408.255.2991 (v), 408.255.2992 (f)
Sarah Hamilton, Director of Promations and Research
Wendy Dinbokowitz, Promotions Manager for Magazines

Administration
Margherita R. Monds, General Manager
David Chatterpaul, Senior Accounting Manager
Bibi Budhram, Accounts Payable

SIGS

PUBLICATIONS

Publishers of JouRNAL oF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALK REPORT, THE X JOURNAL, REPORT ON
OBJECT ANALYSIS & DESIGN, OBJECTS EXPERT (UK),
and OBJEKT SPEXTRUM (GERMANY)

October 1995

October 1995 Vol 5 No2
Features
Coverage analysis in Smalltalk 4
Mark Murphy
Coverage analysis greatly benefits quality assurance efforts on Smalltalk projects by
identifying areas that have been inadequately tested. An implementation in Visual
Smalltalk is presented.
Columns
Deep in the Heart of Smalltalk 9

Breakpoints revisited

Bob Hinkle and Ralph E. Johnson

These new breakpoints and lightweight classes narrow
the focus of debugging, allowing programmers to
investigate close to suspected bugs without wading
through extraneous information.

Managing Objects 16

Exploiting stability

Jan Steinman and Barbara Yates

Successful team Smalltalk demands that synchronization
and coordination take place during periods of maximum

stability. The techniques presented help you detect and
make the best use of such stability.

Project Practicalities 19

Improving your designs
by Mark Lorenz

A metrics process such as this one, which measures inheritance,
collaboration, encapsulation, and design techniques, will help you
build higher-quality systems using OT.

Getting Real 22

Class versioning and instance migration
Jay Almarode

In the dynamic Smalltalk environment, you need a strategy for when
class modification causes structural changes to instances.

comp.lang.smalltalk 24

Hardware
Alan Knight

Could we build a Smalltalk processor that runs Smalltalk as fast as C
runs on a conventional CPU? More importantly, should we?

Departments

Editors’ Corner 2
Interview 28
Recruitment 30

The Smalltalk Report {ISSN# 1056-7976) is published 3 times a year, monthly except in Mar-Apr, July-Aug, and Nov-Dec. Published by
SIGS Publications Inc., 71 West 23rd 5t., 3rd Floor, New York, NY 10010, © Copyright 1995 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other methad will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited. Material may be reproduced with express permission from the publisher, Second Class Postage
Pending at NY, NY and additional Mailing offices. Canada Post International Publications Mail Product Sales Agreement No.290386.
Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at B85
Meadowlands Drive #509, Ottawa, Ontario K2C 3N2, Canada, or via Internet to streport@objectpeople.on.ca. Preferred formats for figures
are Mac or DOS EPS, TIF, or GIF formats. Always send a paper copy of your manuscript,including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domnestic address changes and subscription orders to: The Smalltalk Report, P.O. Box 5050, Brentwood, TN 37024-
5050.For service on current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. Fer foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED (N THE UNITED STATES.

1

Editors’ Corner

S SCHOOL SESSION HAS BEGUN again around North

America, one question we often get asked is

“why aren’t more schools teaching Smalltalk?” To
us, it has been a point of frustration that there has not
been a great increase in the number of schools using
Smalltalk somewhere in their curriculum. The univer-
sity with which we are affiliated, of course, was (and
continues to be!) a pioneer in the use of Smalltalk. At
Carleton, we introduce students to Smalltalk during
their first week in the program, and use it pervasively
throughout. Smalltalk is used when teaching program-
ming techniques, data structures, programming lan-
guage concepts, and a variety of advanced topics such
as computer animation and
expert systems. Object-oriented

Paul White

John Pugh

algorithms at our school, who felt sheltered from this
“object nonsense”—but when students submitted
solutions for his first assignment, the pseudocode was
all Smalltalk! We recognize that it isn’t realistic for a
single champion of Smalltalk in a department to
implement the changes necessary; it really requires
the will of a significant number of faculty to make it
happen, and that, unfortunately, does not appear to
be happening in most cases.

Another reason for this lack of movement to objects
is that it is perceived by many of the “ivory tower”
crowd to be just another passing craze. Unlike the
move to structured programming, which was really

led by academics rather than
industry, the move to object-

software engineering principles It seems only when oriented programming has very
are taught ahead of structured . much been driven by industry.
techniques, although both are ﬁmdmg starts to be On a positive note, we are now

covered in detail (as well as a
number of courses that utilize
more traditional CS languages
such as C and UNIX).

impacted, or enough
pressure from industry

seeing some colleges getting into
the act, and in a hurry. We had the
pleasure this past summer of
spending some time with the

We think the end products gets exer ted, that entire faculty of one community
produced—our graduates—are . college that has decided to turn
as strong or stronger as those [CS] dep artments begl n its complete CS curriculum up-
from any other school. And this to change. side down and become an object-

strength is more than just with
Smalltalk programming—they
are very strong software engineers. The feedback from
employers has been excellent. When talking to one
employer, their comment was “these students under-
stand that software development is not an individual
thing; that software generated must be integrated with
other software.” This was interesting because the stu-
dents were actually co-op students carrying out C
development. It seems the principles of data and pro-
cedural abstraction, which are introduced immediate-
ly when using Smalltalk, are taken with the students as
they move forward into other application areas. The
old adage of “what is learned first is what is always
remembered” is true for software engineers.

So, why aren't computer science departments rush-
ing to jump on the Smalltalk bandwagon? It seems,
unfortunately, that they believe it's too much work. A
program as radical as the one we have implemented,
for example, does have a fundamental impact on
everything done within the program, and requires a
commitment from faculty that is difficult to attain. An
interesting case was a person teaching analysis of

oriented school. Clearly this was a
painful thing to do but, when
asked, the faculty answered frankly that “their advisory
board, made up entirely of members of local industry
(who hire their students) said failing to do so would be
doing their students a disservice.”

What is needed, of course, is for other “industry
advisory boards” to shake up many other depart-
ments. It seems only when funding starts to be
impacted, or enough pressure from industry gets
exerted, that departments begin to change. Well, we
suggest that you in industry let your alma maters
know that you think the software engineers they are
producing should be better equipped for the new soft-
ware field of today.

And for those of you in departments who are trying
to make these changes, some words of advice. First,
make sure that both the people who teach objects in
general, and those who teach Smalltalk specifically,
understand the language. Put in the wrong hands, it is
doomed to fail. Second, make sure that you make
arrangements for access to the software ahead of time.
continued on page 32

The Smalltalk Report

Introducing Argos

The only end-to-end object development and deployment solution

An integrated object modeling tool provides model-driven
development for enterprise-wide applications

All object models are managed in a shared repository,
supparting team development and traceability

Latus: maritaiSias

nTool

Where the maney Is... |0 E i “& é add
Authorizatio [ESSEIEE ChangePool

| =g W

28 |
e e e | b . & " .. | 292-92.9229 I
.n" o i w ; Engineering
m ! .1—"“-'-' ! 4 salaryHislory: inlegerDalaSerie: m_ .. s l "
- Fa—-—‘ﬁ A ssn: aljphaNumaeric - N - r
R ey = | w i G|
b — ? — # Ber Chanl Phch'l 1 .
—I.. —]) |
mamlu hep | I i K T " = m]T|_I|
e — 1 | g o . .) e -.) 3 %] |
ff ommi abar | § B - i
s i . ion: text P) i
- - nams: alphaNume I
g .DIIPsrsu.ns.': h ’. . }
TZSA00TER Y| :

Powerful drag and drop “enzymes” make application
development intuitive

Comprehensive set of widgets, including business
graphics, multimedia, and others make application

development easy and powerful

VERSANT Argos™ is the only application development
environment (ADE) that makes it easy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT

The Database For Objects ™

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks®.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

s today at

Contact U L. 415

1.800-VERSANT, €

or via e-mail @
info@versant.com

1380 Willow Road * Menlo Park, CA 94025 s (415) 329-7500

91994 by Versant Object Technology. VERSANT, VERSANT Argos and The Database For Objects are rademarks of Versant Object Technnlogy Corporation. All other company mames and logos are regi d trademarks of the individual

Coverage analysis

in Smalltalk

HOW MUCH IS ENOUGH?

Quality assurance, unfortunately, is largely a guessing
game. You know when programming is complete on a
project, because all the requirements have been met.
However, the standard against which quality assurance is
held is, “Are there any bugs left?” which is impossible to
know. You could test until the end of time and still miss
bugs. Every project, therefore, makes a decision as to how
much testing is enough.

Project managers are charged with ensuring that the
testing is done, and done properly. It is not always easy to
tell, however. Suppose you ask to see the unit test plan for
a 24-class subsystem, and the developer hands you a 7-
page document outlining a dozen tests. It is quite likely,
just by looking at it, that the test suite is insufficient to
really test out all the subsystem’s functionality—it is sim-
ply too short. Suppose, however, that the test plan were 70
pages, or 700. How do you know if the tests really do thor-
oughly exercise the subsystem? A 700-page test plan may
seem to be good based on size alone, yet might miss
entire classes, if the suite is really bad. You just do not
know for sure.

What we need is an objective measurement and set of
criteria for determining test completeness. Coverage
analysis is one such metric. This article will describe what
coverage analysis means and how one can use it in prac-
tice. It includes an overview of some classes for measur-
ing method coverage in Visual Smalltalk 3.0.1 (VST).

Mark L. Murphy

ENTER COVERAGE ANALYSIS

Coverage analysis involves “teaching” the subsystem to
track what portions of it a test suite executes. For exam-
ple, each method might note that a test executed it before
evaluating the body of the method itself (see Fig. 1). One
can run a test suite, collect coverage tracking informa-
tion, and determine specifically what the test executed
and what it did neot.

Now you have real-world information to determine how
thorough a test suite is. The spots that were missed repre-
sent areas that the suite cannot audit. If they were not test-
ed by hand in some other way, they have not been tested at
all, and may contain bugs. You can even express coverage
data in metric form (e.g., “we covered 87% of the subsys-
tem’s methods”) for use in overall project benchmarking.

COVERING WHAT? AND HOW?

A generic coverage analysis tool will not know specifics
about an application. Hence, it cannot say: “You missed
testing the X-Base file filter.”

All the analyzer can do is report on abstract coverage
metrics. For example, method coverage asks the question,
“Has every method been executed at least once?” If you've
never tested a method, you cannot know if it works!

Researchers and practitioners have identified several
types of useful coverage metrics, each asking a different
question. These include:

 Statement: Has each line of code been executed at
least once?

add; anobject
"<gelf> Adds an cbject”

Coverage
logEvent: kadd:
in: self clasa.
*rest of method here-

« Branch: Has every logical branch (e.g.,
ifTrue: and ifFalse:) been tried in both the
true and false directions?

* Loop: Has every loop (e.g., do: ona
collection) been tried with 0, 1, and

OtherClass class>>open:
etc.

. Global Lells tester which
methods on Ihase classes
were nol executed

1, Methads inform logging glob;
that they have besn creculed

kill: amobject

"<palf> Kills an objact”

Covarage
logBvent: #kill:
in: self claas.
rest of mathod hete®

OtherClass>>closeRequest

etc.

Figure 1. Method coverage in action.

several passes through the loop? Zero
passes means that the loop body (e.g.,
the block passed to do:) is never
evaluated.

* Path: Has every logical path through a
method been tried? Figure 2 shows a
sample Smalltalk method and the four
paths that an application could take.
Branch coverage would be satisfied by
testing only two of the paths: A and D.

4

The Smalltalk Report

Now it’s Easy to Build Interactive Diagrams

Quickly create advanced interfaces that convey
information better than lists... with DDF

Example interface built with the Dynamic Diagram Framework

DDF™ is an easy-to-use tool that
dramatically reduces the time
needed to build interfaces:

makes building diagrams simple
provides a new VisualWorks widget
pre-configured for immediate use
written completely in Smalltalk
refineable and extendable

includes ARS'’s Parcels & Structured
Graphics for building “dynamic” nodes

DDF - Dynamic Diagram Framework

With DDF™ you can quickly and easily ...
* create customized node icons with shapes
* add and remove nodes from a diagram
* connect and disconnect nodes within a diagram
* customize lines and line decorations

Parcels & Structured Graphics (P&SG™)

= structured graphic shape objects
* drag-and-drop with parcels
» shapes recognize "hot-spots”

* high precision 2-d object-oriented graphics for VisualWorks

* select and move nodes

» format diagrams and hide nodes
* print and store diagrams

= dynamically update diagrams

P&SG - Parcels & Structured Graphics

..' S
s

* provides 2 new VisualWorks widgets Shapes can be rolaled, translated, scaled

and combined to form new shapes.

Call (800) 260-2772 today to order or e-mail info@arscorp.com
for more information. Ask for a free copy of the white-paper
“Building Diagram-Based Applications with DDF*

Also Available: Ml - Multiple Inheritance

Applied Reasoning Systems Corporation (ARS) is an innovative developer of high

quality Smalitatk development tools, appiication frameworks, intelligent software Applied Reasonin g S ystems

systems, and related services that provide advanced solutions to complex problemns.

Smalitalk Products = Consulting = Education « Mentoring

Phone: (919) 781-7997 = E-mail: info@arscorp.com

| COVERAGE ANALYSIS IN SMALLTALK

ANALYZING THE RESULTS

From a quality-assurance perspective, coverage analysis
will provide a list of missed pieces of code, along with an
overall percentage of code coverage. Developers must
decide on an acceptable coverage level for a project. If a
unit test for a subsystem fails to meet that metric, devel-
opers can add more tests based on the list of missed
coverage spots.

Note, however, that some coverage “misses” may actu-
ally be expected. For example, perhaps there is some code
that specifically handles the exception raised when a
database server is not responding. Testing that code in a
live situation means bringing down the server, which
database administrators typically dislike. Hence, the test
suite intentionally might skip a test for that exception
handler, but the coverage analysis will still report that the
suite missed it. Hence, a sub-100% coverage value may
still be acceptable.

What you really want is 100% practical coverage, where
testers justify each missed method. Note that those meth-
ods still must be tested somehow, even if it is by hand.
Since you cannot continually re-test that method (regres-
sion testing), make sure it is right the first time!

METHOD COVERAGE IN VST

If you want to employ method coverage in your Smalltalk

application, you have three main choices:

1. Hand-code messages to a coverage-logging routine, as
was shown in Figure 1—but this is time consuming.

2. Use the profiler that comes with the Smalltalk
development environment.

3. Use or construct custom classes specifically for doing
method coverage analysis in an automated fashion.

Using a profiler

Many Smalltalk implementations come with profiling

tools used for measuring the performance of pieces of

Smalltalk code. One could, in principle, use them for

method coverage analysis as well, since they watch over

what a test executes. The TimeProfiler that comes with

VisualWorks would not work in this case, because it uses

a statistical sampling technique that might miss methods.
The profiler that comes with VST, however, does catch

each and every message an application sends. Why, then,

build another set of classes for method coverage? There
are two reasons:

1. The VST profiler watches all methods in the image.
Even the simplest test generates dozens to thousands
of messages, most of which are for Smalltalk kernel
classes. It would be difficult to determine the use of
application classes with all this “noise.”

2. The profiler does not report the methods the test
missed, only those that it executed (and how long they
took). Developers would have to manually cross-
reference against the class to figure out which ones the
test missed.

|sacond¥athods aBoolean
aBoolean

ifrrue: [...]
ifFalse: [-..]
*rest of mathod here®

firstMethod: mBoolsan
aBoolean
ifTrua: [...]
ifFalse: [...]
“ragt of method here”

A: Trme in both casen

sscondlethod: aBaclemn
aBoolean
iFTrue: [...]

———p ifFalse: [...]
"rest of method here”

firstMethads mBoolean
aBoolean
ifTrue: [...]—————0—1]
ifPalpe: [...]
*rast of method here”

B: True, then fale

sacondMathod)! mBoolean
aBoclean
| ifTrue: [...)
ifFalse: [...]
“reat of method here"

|firstEethod: mBaolean
aBoolean
ifTrue: [...)
ifFalsa: [...]———
"rest of method hera“

C: False, thea true

sscondiathod: mBoolean
aBoolean

irTrue: [...]

iFFalse: [...]

"rast of method here*

£ 1 mBoolean
aBoolean
ifPrue: [...]
ifFalse: [...]
“rest of methed here”

D: False in hoth cases

Figure 2. Paths to be covered.

Technique: Method wrapping

What we want to do is create a mechanism of “instru-
menting” methods: adding code that does not change
their original behavior but adds in new functionality. For
coverage analysis, the instrumentation will simply inform
some Smalltalk global that this method has been invoked.
That global will have to track the called methods and pro-
vide coverage results on demand when the test is done, as
shown in Figure 1.

The term for this instrumentation technique is
“method wrapping.” There are two ways one can wrap a
method. One is simply to add new Smalltalk code to the
source of the existing method and recompile it. This will
work in many situations, but not all. Primitive methods
cannot be wrapped this way, because Smalltalk code and
a primitive call cannot coexist. It also requires one to
parse Smalltalk methods, which is a nuisance.

Another approach, moving the existing method, is
used both by the TimeProfiler that comes with Visual-
Works Advanced Tools and the classes in this article. The
CompiledMethod to be wrapped is moved in the class’
method dictionary from its original selector to a new,
unused selector. Then, a new CompiledMethod is created
and installed under the original selector. This new

Table 1. Method dictionary before instrumentation.

Method

log: aSymbol forClass: a Class
"Execute real code here"

Selector
log:forClass:

Table 2. Method dictionary after instrumentation.

Method
log: aSymbol forClass: a Class
"Execute real code here”
log: p1 forClass: p2
"Execute instrumentation code here"
~self real_log: p1 forClass: p2

Selector

real_log:forClass:

log:forClass:

The Smalltalk Report

Reuse Depends on

Quality Documentation

Reusable
Components

Code
Quality

Non-reusable
Components

Low

Documentation
Quality

Svnopsis Software

8912 Oxbridge Court, Suite 300, Raleigh NC 27613
Phone 919-847-2221 Fax 919-676-7501

Maximize Reuse

Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused.

Reusable software requires readily available, high
quality documentation.

And the easiest way for Smalitalk developers to get
quality documentation is with Synopsis. Install it
and see immediate results!

Features of Synopsis

« Documents Classes Automatically

» Builds Class or Subsystem Encyclopedias

« Moves Documentation to Word Processors

« Packages Encyclopedias as Help Files

Products

Synopsis for IBM Smalltalk $295 Team $395 |
Synopsis for Smalltalk/V and Team/V $295
Synopsis for ENVY/Developer for Smalltalk/V $395

method executes the instrumentation code, then sends
a message, using the temporary selector, to invoke the
original behavior. Since the original CompiledMethod
remains unchanged, any type of method can be wrapped.
Tables 1 and 2 show a fragment of a class’ method dic-
tionary, both before and after instrumentation.

In either case, to “unwrap” the method one simply
restores the original compiled method under its original
selector. While a method is wrapped, it will perform the
added code (e.g., log method execution to a global) in
addition to its old behavior. Once you unwrap it, every-
thing returms to normal.

The VST implementation of coverage analysis via
method wrapping for this article involves three classes:

« SRInstrumentedMethod—can wrap and unwrap a
specified method.
* SRCoveredMethod—a subclass of SRInstrumentedMethod
that wraps methods with coverage-logging statements.
» SRCoverageMonitor—logs coverage events created by
the SRCoveredMethod instances.
These classes are available on the Internet at
http./ /www.evro.com/STReport/Oct 95.htm.

Using the monitor
The only class that developers need to use directly is

SRCoverageMonitor. The following steps describe how to

start and stop coverage and get results:

1. Create a new instance of a SRCoverageMonitor via the
new class method.

2. Tell the monitor which classes and methods to watch.

There are three methods that one can use:

» cover: aClass—covers all methods for that class (or
metaclass)

» cover: aClass including: aCollection—covers the
indicated methods for that class

¢ cover: aClass excluding: aCollection—covers all
methods for the class except the specified ones

3. Start monitoring these methods, by sending
enableCoverage to the monitor.
. Perform the tests to be monitored.
5. Stop monitoring by sending disableCoverage to the
monitor.
6. Inspect the results, using these methods:

e coveredMethods—returns a list of all methods that
were executed during the tests, along with how
many times they were sent

» notCoveredMethods—returns a list of those methods
on the covered classes that were not executed

» browseNotCoveredMethods—brings up a MethodBrowser
on those methods that were missed during the test

'-

October 1995

ARBOR INTELLIGENT SYSTEMS, INC.

VisualWorks makes you productive.

Arbor Help System - Arbor Utilities * Arbor Inspector
make you even more productive!

At Arbor, we've been building Smalltalk applications for over five years.
During that time we've learned quite a bit about what developers need to be productive.
Now we've taken some of that knowledge and packaged it for your team.

Arbor Utilities—Over 50 enhancements and additions to the VisualWorks environment.

Arbor Inspector—An enhanced version of the standard VisualWorks inspector that efiminates the
need to apen multiple windows while inspecting—no more clutter, no more fuss.

Arbor Help System 3.0—The best just got better. . . For over two years AHS has been the easiest,
most powerful way to add end-user help to your application: Context sensitive, widget based help
that doesn't need 2 developer to author « A powerful, hyperlinked on-line documentation browser

« Support for multiple languages and easy integration into object databases. . .it5s all still there.

With version 3.0, we've added numerous features and enhancements to make AHS mare ‘helpful

* Enabling coverage on methods that the
coverage analysis classes use will cause an
infinite loop. Only enable coverage on
application-specific classes or method
extensions.

* The enableCoverage and disableCoverage
methods may take a while to run if a lot of
methods are being monitored.

* Methods whose selectors are made up solely
of punctuation (e.g., <=) cannot be wrapped.
The algorithm for coming up with a
temporary selector (the original with a “real_
prefix) will not work. SRInstrumentedMethod
could be modified to use an alternate scheme
that would overcome this limitation.

OTHER SMALLTALKS, OTHER

COVERAGE METRICS

Coverage analysis is not limited to VST. Both
VisualWorks and IBM Smalltalk/VisualAge can
employ method coverage using the same tech-
nique. Note that configuration management
tools, such as ENVY, will require slightly different

and easier to use for developers, authors and end-users alike. Also available for Argos.

Find out why so many companies are turning to Arbor for help.

(all today, be more productive tomorrow. Site licensing is available.

(313) 996-4238 - fax (313)996-4241 - info@aisys.com

code, as they typically have different methods
for compiling methods into classes. Also, we do
not want the instrumented version of the
method to go into the revision history, lest it
grow out of control.

You could also implement other coverage
metrics, but with some difficulty. Ideally, one

The following code fragment illustrates the use of these
methods:

| mon today |

mon := SRCoverageMonitor new.
mon cover: Date.

mon enableCoverage.

"This is the test that coverage for which is being measured"
today := Date current.
Transcript show: 'The date is: ', today printString; cr.

mon disableCoverage.
mon browseNotCalledMethods.

A few caveats about using these classes:

* Because method wrapping does change classes at a
low level, it is best to save your image before using it,
in case of disaster. If the test crashes and fails to run
to completion, one can restore the original versions of
the instrumented methods via SRInstrumentedMethod
class>>restoreAllOldMethods. Each wrapped method is
tracked in a class variable, which this method uses to
unwrap them all.

could do loop and branch coverage by creating
modified versions of Boolean and the block classes (e.g.,
VST’s ZeroArgqumentBlock). However, most Smalltalks
inline a lot of that code, so real messages are not sent;
hence, the modified versions would not get triggered. One
could modify the Smalltalk compiler classes to overcome
this problem.

SUMMARY

Coverage analysis is an important component in the
quality-assurance program for software development.
It is the only real way to feel confident that the test
suite is doing its job. These classes for VST will give you
a head start toward incorporating method coverage on
your project.

Acknowledgments

It should be noted that the research for this article was
conducted as part of work done for American Manage-
ment Systems. Also, the author thanks Doug Kittelsen for
his able editorial assistance.

Mark Murphy is an independent consultant and Smalltalk tool-
smith. He is also the author of QuauTy TooLs For C/C++ (Prentice
Hall, 1995). He can be reached at 71202.2241@compuserve.com.

The Smalltalk Report

Breakpoints revisited®

a new subsystem for compiling based on the new

classes MethodProducer and ParameterizedCompiler. In
this issue we describe an extension of this subsystem and
use it to implement a more powerful variety of break-
points. This will provide better motivation for the large
degree of flexibility built into ParameterizedCompiler.

Our new breakpoints must be locatable between any
two statements. Each breakpoint also has a condition and
is activated only if this condition evaluates to true. These
new breakpoints have a three-phase lifecycle. First, a
breakpoint is created by a user interacting with a pro-
gramming tool to insert a breakpoint into the text of a
method. Second, the breakpoint is implemented when the
source text is compiled into a new method. Third, the
breakpoint is examined when the new method is browsed,
and it’s activated when the new method is executed, draw-
ing attention to itself in some useful way. We will focus on
the second phase of this lifecycle because that's where the
bulk of the work is done and where we use the changes to
the MethodProducer-ParameterizedCompiler team.

l N THE LAST ISSUE, we described the implementation of

THE EVOLUTION OF METHODPRODUCER
The design we described last issue used the new classes
MethodProducer and ParameterizedCompiler to restructure
compilation, making it easier for programmers to special-
ize the process. Figure 1 shows how these classes interact.
This diagram indicates the sequence of messages and
activity during method production. Time flows from top
to bottom, and vertical boxes indicate periods of activity
for a given object or logical group of objects. Solid vertical
lines show the lifetime of an object. If an object does not
exist #t the beginning of the interaction, its vertical line
will be dashed until the moment it'’s instantiated. Solid
horizontal lines represent message sends, with the selec-

Bob Hinkle is an independent Smalltalk consultant and writer. His
current focus is the improvement of existing tools and the cre-
ation of new tools to revitalize the Smalltalk environment. He can
be reached at hinkle@primenet.com. Ralph Johnson learned
Smalltalk from the Blue Book in 1984. He wrote his first Smalltalk
program in the fall of 1985 when he taught his first course on
object-oriented programming and design. He has been a fan of
Smalltalk ever since. He is the only author of DEsiGN PATTERNS:
ELEMENTS oF REuSABLE OBJECT-ORIENTED SOFTWARE to regularly program
in Smalltalk, and continues to teach courses on object-oriented
programming and design at the University of lllinois.

Deep in the Heart of Smalltalk

N-e

Bob Hinkle

Ralph E. Johnson

Parameterized [compiler |

| MethodProducer Compiler Collaborators

compilerClass :

...... . D
initlalizeCompiler: '
rserClass, sic. .
parserClass;, elc. - .
compile:in:nalifying:HFail: Iranslate:noPattem:ifFail: '
ourceMap:handler: .

newParsar, eic.
new
__lranslormSourceStraam:for. parse:dlass:naPatlern:

saveComments:itFail:
P transformTres:for:
makeMethad:
., IransformCodeStream:far:
|_|_| emitEffect:

sloreSource:method:class: L
seleclor:classifiad: F'

1

asSloredSource:

ariginalSource:sloredSourca:
method:class:seleclor-classified:

Figure 1. Interaction diagram for MethodProducer and
ParameterizedCompiler

tor indicated, while dashed horizontal lines represent
messages that create a new object in the interaction.

This process begins when a MethodProducer creates a
new ParameterizedCompiler, passing as parameters the vari-
ous classes used to create collaborators during compila-
tion. The MethodProducer then has the ParameterizedCompiler
begin compiling. The ParameterizedCompiler does this in
much the same way the original SmalltalkCompiler behaved,
with two exceptions. First, it creates new collaborators
using the classes it was given by its MethodProducer. Second,
at four points during compilation, the Parameterized-
Compiler calls back to its MethodProducer, allowing the
MethodProducer to transform the objects flowing along the

* Source code for the breakpoints package is available by anonymous ftp
from st.cs.uiuc.edu. Look for the file Breakpoint20.st in pub/st_vw. A
new version of lightweight classes compatible with this project is also
available in the same directory in the file Lightweight20.st.

October 1995

for VisualWorks™

Help Designer Is not just a programmer's lool - now any team
member can create high quality on-line help. This powerful
developmant tool is rich in features, provides flexible set of tools,
and facilitates the reuse of components within your applicatlons.
Here Is what you get:

Tools Fealires

#® Help Editor

& Help Viewer

Image Editor

Text Editor

Help Manager

& Control Panel

Help Custom Controls

Context-sensitive help

Inline and outline

® Tag Help

@ Hypertext links and
references

@ Popup dsfinitions

® Keyword search

@ History support

Macro definitions

® Access lo font, paragraph,
and color attributes

¢ Embedded objects

RAun-time editing mode

¢ Platform Independent help
files

GreenPoint, Inc.

77 West 55 Street, Sulle 110
New York, NY 10019
EMail:75070.3353 @compuserve.com

VisualWorks™ is a mademark of ParcPlace Systems

FREE DEMO AVAILABLE |
TO ORDER CALL 212-765-6982

FAX REQUEST 212-765-8920

compilation pipeline. When the ParameterizedCompiler
returns 2 new compiled method, the MethodProducer calls
back to the target class to load the new method into its
method dictionary and to store the method’s source code,
in whatever way the class deems fit.

The first extension of the subsystem is a new subclass
of ParameterizedCompiler called GenericCompiler. Whenever
GenericCompiler creates a new collaborator, it sends a mes-
sage to its producer with the new collaborator and itself as
parameters. This allows the producer to initialize the col-
laborator as desired.

The second extension redesigns MethodProducer to
make it less monolithic. Suppose we're designing a
MethodProducer for breakpoints, and later we wish to add
producers that support activating instance variables and
test coverage instrumentation. How would these three
producers be combined? We could make three sets of
changes to the original MethodProducer, but, as the num-
ber of producer specializations grow, this will result in
one horribly complicated class. One can imagine meth-
ods that have lots of internal tests: if there are break-
points but no active variables or test coverage, do this;
but if there are breakpoints and active variables but no
test coverage, do that; and so on. This becomes a pro-
grammer's (and especially an object-oriented progam-

mer's) nightmare. A better solution is to create a new
hierarchy of method producers (see Fig. 2) that can be
combined dynamically at runtime.

Dashed ellipses indicate abstract classes, classes that
define an interface but are not intended to be directly
instantiated. Solid ellipses indicate concrete classes, which
are to be instantiated. The arrows indicate inheritance.
LightweightProducer is a producer associated with light-
weight classes, which we described in a previous article.!

MethodProducer is now an abstract class defining the
interface for all producers. MethodProducer has two sub-
classes. ClassBasedProducer is the normal default method
producer for a class (much like MethodProducer used to
be). ProducerModifier is an abstract class. It is a building
block for creating new subclasses that can be combined
with a ClassBasedProducer to create a composite producer
object with new specialized capabilities. Using this archi-
tecture, a method producer may be either a single
ClassBasedProducer object or a chain of ProducerModifiers
connected by their component instance variables and ter-
minating in a ClassBasedProducer. Another ProducerModifier
can be added to an existing producer by sending the Pro-
ducerModifier the #component: message, which stores the
producer in the ProducerModifier's component instance
variable, effectively placing the ProducerModifier at the top
of the producer chain. The compiler interacts only with
the topmost producer, or simply “top producer,” thus
keeping the nature and organization of the producer
structure invisible to the compiler. This way of combining
producers may seem familiar, as it’s similar to the combi-
nation of Wrappers and Views. Both ProducerModifiers and
Wrappers are applications of the Decorator pattern des-
cribed by Gamma et al 2

The methods defined in MethodProducer fall into two
categories. The first category of methods are called “driver”
methods. These are methods that drive the compilation
process and should be executed only once, by the top pro-
ducer. Examples of driver methods are the public interface
methods such as #compile:in:notifying: and #parse:in:noti-
fying:, and instance creation methods such as #new-
Compiler and #newParser. The second category of methods
are the “chain” methods. These methods are ones that
must be passed down the chain of producers so that each
one can provide its own special processing as desired. For

: MethodProducer .

'.- ProducerMadifier ::

Il R -

ClassBasedProducer

LightweightProducer

Figure 2.The new MethodProducer hierarchy.

BreakpointProducer

10

The Smalitalk Report

example, the four transformation methods are chain
methods. Edch ProducerModifier can transform the input,
but it must then pass the input on to its component for
more possible transformations. The new GenericCompiler
sends messages to the top producer to initialize each col-
laborator, and these messages must also flow down the
producer chain.

A third example of chain messages requires a little more
thought to implement. These are the various messages,
such as #parserClass and #builderClass, used by Method-
Producer to specify the classes used by Parameterized-
Compiler. In a producer chain, each ProducerModifier and the
ClassBasedProducer may have preferences for a given collab-
orator, and somehow these different preferences must be
combined into a single answer to pass to Parameterized-
Compiler. We combine classes using the message #compose-
With:, which must be implemented in any classes that
instantiate compilation collaborators. When this message
is sent, the answer must be a class that has the abilities of
both the receiver and the message parameter. By default,
ClassA composeWith: nil returns ClassA. Furthermore, if ClassB
inherits from ClassA, the answer to ClassA composeWith:
ClassB should be ClassB. However, if ClassA and ClassB are not
related by inheritance, then there must be some class ClassC
(and it will probably be a subclass of one of the two) that
melds their behavior for compilation, and ClassC should be
returned from ClassA composeWith: ClassB. Thus, the result of
#composeWith: will be the union of the two classes consid-
ered as implementations.

With this architecture, the interaction between a Gener-
icCompiler and a producer chain (see Fig. 3) is quite similar
to the interaction of Figure 1. Each ProducerModifier
responds to chain messages by performing any special
processing of its own and then forwarding to its compo-
nent. The GenericCompiler, in addition, adds its call-backs
to the producer for initializations.

In this diagram, the thick arrows represent interactions
between the top-most ProducerModifier and its compo-
nents. In these cases, the ProducerModifiers sandwich any
special-processing code of their own around forwarding
the same message to their component. This forwarding
process stops at the ClassBasedProducer because it has no
components.

MethodProducers have a number of responsibilities to
their associated compilers, with default responses
defined in MethodProducer and ProducerModifier. As a
result, most new specializations of either ClassBased-
Producer or ProducerModifier need implement only a few
messages. When we were first developing this new design,
we worked with a chart that summarized the necessary
changes for various kinds of producers. We've reproduced
a portion in Table 1. It may give you an idea of how to
begin if you'd like to develop a new producer of your own.

The left-hand column contains messages sent to pro-
ducers from themselves and their associated compiler.
The next three columns contain notes about the imple-
mentations of these messages for three different kinds of

October 1995

wfd
b =
(b
= 18
><
LLJ
—
(4]
—_—
-
=
D
2
i -
1"
—
L=
=
b
=

Here’s Your Chance

Smalitatk Consulting
Firm Can Really Do.

Obi'ectlntelligence'“

Helping Clients Build
Enterprise Applications

e ParcPlace
VisualWorks™

e IBM VisualAge™

o Digitalk Visual
Smaiitalk™

Consulting &
Development Services

e Hourly Smalltalk
Contracting

¢ 0On-Site Smalltalk
Development &
Project Management

e 00DBMS Development:
Gemstone™, Versant™ &

ObjectStore™

¢ 0On-Site Mentoring &
Training

¢ 0Object Modeling,
Analysis & Design

Call 800.789.6595 o

e-mail: info @ objectint.com

Objectintelligence

900 Ridgefield Drive, Suite 240
Raleigh, NG 27609
Voiee 919.878.6690 Fax 919.878.6695

11

he 405 El Camino Real, #106

Menlo Park, CA 94025, U.S.A.
voice: 1-415-854-5535

malltalk

tore

or 1-800-ST-SOFTWARE
Jax: 1-415-854-2557
BBS: 1-415-854-5581
email: info@smalltalk.com
compuserve: 75046,3160

The Smalltalk Store carries over 75
Smalltalk-related items: compilers, class
libraries, books, and development tools. Give
us a call or send us an email - we’ll put you
on the mailing list and send you a copy of
our combination newsletter-catalog. It’s
informative and entertaining.

When you get the
chance, check out our new
dialect-neutral Smalltalk
bulletin board system at
415-854-5581, 8N1. N

Send For Our Free Catalog!

Table 1. Implementation notes for different producers.

producers. Cells left blank indicate that the default
response (as implemented in MethodProducer) is used. An
equals sign “=" means the implementation is the same as
in the cell immediately to the left.

BREAKPOINT COMPILATION

With these new additions to the producer-compiler fami-
ly, we can now compile our improved breakpoints, using
the class BreakpointProducer. BreakpointProducer is a sub-
class of ProducerModifier because it will be needed if and
only if there are breakpoints present in the text being
compiled. As we said in the previous section, a new
ProducerModifier only needs to override those few meth-
ods where it must intervene to fulfill its purpose. In the
case of BreakpointProducer, the necessary methods can be
determined by a quick glance at its column in Table 1.

It has four preferences for collaborator classes, using the
new classes GenericCompiler, GenericCodeStream, Extended-
NodeBuilder and AlteredDisplayMethod. GenericCompiler is
necessary because Table 1 indicates that BreakpointProducer
must perform some collaborator initializations. Generic-
CodeStream is a partner of GenericCompiler that makes it pos-
sible to initialize CompiledMethods and CompiledBlocks as
they’re created. BreakpointProducer uses ExtendedNode-
Builder to create a new kind of parse node called Break-
pointNode, whose purpose will be explained below. Altered-
DisplayMethod is a new subclass of method that maintains

ClassBasedProducer LightweightProducer BreakpointProducer
compilerClass ParameterizedCompiler = GenericCompiler
initializeCompiler:
parserClass Parser =
initializeParser:for: ignore breakpoint characters
builderClass ProgramNodeBuilder = ExtendedNodeBuilder
initializeBuilder:for:
codeStreamClass CodeStream = GenericCodeStream
initializeCodeStream:for:
nameScopeClass NameScope =
initializeNameScope:for:
methodClass CompiledMethod UnstoredMethod AlteredDisplayMethod
initializeMethod:for: set method’s breakpoint

flag to true
blackClass CompiledBlock =
initializeBlock:for:

transformSourceStream:for:

re-position breakpoints
to statement end

transformTree:for:

insert breakpoint code
into parse tree

transformCodeStream:for:

transformMethod:for:

asStoredSource:

strip breakpoint characters
from stored version of source

originalSource:storedSource:

set method's source to set method’s display source

method:class:selector: equal the original source | to equal the original source
classified:
12 The Smalitalk Report

two versions of its source, one as stored on disk and the
other as displayed in the browser. This allows methods cre-
ated by the BreakpointProducer to show breakpoints on the
screen without saving them to the Change File,
BreakpointProducer also implements two initialization
messages. The first used during compilation is:

initializeParser: aParser for: aCompiler
~(component initializeParser: aParser for: aCompiler)
typeTableAt:
Breakpoint absoluteBreakpointCharacter
put: #xIgnore;
typeTableAt:
Breakpoint conditionalBreakpointCharacter
put: #xIgnore;
yourself

This code causes the Parser to ignore the special break-
point characters, which permits them to occur anywhere
within their statement, including in the midst of other
tokens, without causing an error. Note that this method
forwards the initialization method to Breakpoint-
Producer’s component. This forwarding must be done in
every reimplementation of a chain method to ensure
correctness. The second initialization used by Break-
pointProducer is:

initializeMethod: aMethod for: aCompiler
~(component initializeMethod: aMethod for:
aCompiler)
breakpoint: true;
yourself

This sets a flag associated with InstrumentedMethod,
AlteredDisplayMethod’s superclass, to indicate that the cre-
ated method has breakpoints. The Browser uses this flag to
indicate breakpointed methods in its selector list. It could
also be used by new tools to track debugging changes in
the environment and to turn breakpoints on or off on a
class or project basis.

Two more methods are required to handle the source
code as it’s being stored. First, to strip breakpoint charac-
ters from the stored version of the code, Breakpoint-
Producer implements:

asStoredSource: code
~(component asStoredSource: code) copyWithoutAll:
(Array
with: Breakpoint absoluteBreakpointCharacter
with: Breakpoint
conditionalBreakpointCharacter)

Then, before the class is sent the message to store source,
each producer in the producer chain receives the message
#originalSource:storedSource:method:class:selector:classi-
fied:. This message gives producers a chance to do special
processing. BreakpointProducer sends the new method the
#displaySource: message with the original source (that is,
the source as actually parsed, before the breakpoint char-
acters were stripped out) as parameter. That way, the new

October 1995

Get CORBA 2.0
Inter?{)rerabﬂity

ow
with HP DST

Need to create 3-tier, enterprise-
wide applications and integraie
other languages with your
Smalltalk application?

With HP distributed Smalltalk 5.0, you
can move beyond simple client/server to
true distributed, enterprise-wide applica-
tions. That’s because you get tools for dis-
tributed development and debugging, a
CORBA 2.0 object request broker, and
related object services that make it easy to
create business ohjects and distribute
them wherever you like on your network.
Control your business objects with the
Transaction CORBAservice in HP DST.
Integrate them with other C++ objects
when you use HP DST and another
CORBA 2.0 object request broker.

HP Distributed Smalltalk is an extension
of the ParcPlace VisualWorks environ-
ment. Put together, your programming
team gets a faster, easier way to develop
and deploy distributed applications on any
combination of supported UNIX and PC
platforms.

Send us your name, address, and phone #
and we’ll send you free white papers titled
“Manager’s Guide to Distributed Objects”
and “HP DST Technical Information.”

Phone: (408) 447-4722

FAX: (970) 229-2180
Attention: HP DST White Papers

e-mail: dst@sde.hp.com

[baciarn

© 1995 Hewlett-Packard Company

| DEEP IN THE HEART OF SMALLTALK

method can provide two forms of its source text, both with
and without breakpoints included.

BreakpointProducer’s most complicated responsibility
is to respond to the #transformTree:for: message. It must
transform the input parse tree by adding new code at
every spot where a breakpoint occurs. We implemented
BreakpointProducer's response using three methods. The
implementation starts with:

transformTree: methodNode for: aCompiler

| block statements |
source computeTextPositions.
(self breakpoints asSortedCollection: [:x :y | x start >-

y start]) Do: [:bp |

block := self findBlockEnclosing: bp in:
methodNode.
block body isSequenceNode
ifFalse: [
block
arguments: block arguments
body: (aCompiler translateBuilder

statements := block body statements.
(self add: bp toStatements: statements for:
aCompiler) isNil
ifTrue: [*nil]].
~methodNode

For each breakpoint, the BreakpointProducer sends itself the
message #findBlockEnclosing:in: to find the smallest (or
most deeply nested) block enclosing the breakpoint. This is
done using the ProgramNodeEvaluator we described last
issue. The BreakpointProducer then ensures that this enclos-
ing block has a SequenceNode (rather than some individual
staterent node) for its body. This is necessary because the
breakpoint code will be added to the block’s body as a sep-
arate statement. After that, the producer sends itself
#add:toStatements:in:, which we'll explain a piece at a time.

The method first determines which individual state-
ment contains the breakpoint to be added.

add: bp toStatements: statements for: aCompiler

newSequenceStatements: | last c stmt stmts |
L) last := (c := statements select: [:s | s extraPosition
(OrderedCollection with: block body))]. first < b start]) isEmpty
ifTrue: [nil]
ClassBasedProducer top-most Generic Compiler ifFalse: [C laSt]'
+ ProducerModifers ProducerModifier Compiler Collaborators

—

C ‘ mﬁilafclass

InializeCompiler:
reerClass, etc.

parserClass:, elc.

L
compile:in:nolifying:iFail: | Iranslale:noPattemn:itFail:
urceMap:handter: '
'

newParser, stc.

initializeParser-for:, stc.

Tree:for.

transformCodeSiream:for:
emilEflect:

transformMethed:lor: g -

sloreSource:msthod:
class:selector.classified:

originalSaurce:sloredSource:
method:class:selaciorclassilied:

od:class:selector-classified:

Figure 3. Interaction diagram for ProducerModifiers and GenericCompiler.

We added a new positional instance
variable extraPosition to all Program-
Nodes to help us find the statement
containing a given breakpoint. (The
existing variable sourcePosition is
unhelpful because it doesn’t run from
the statement’s beginning to end, but
just over those characters hightlighted
during debugger stepping.) This vari-
able is set during the parsing of a
SequenceNode, and it includes all char-
acters in each statement, from the first
non-whitespace character to the last
one, including the terminating period
if present. With this new information,
we might wish simply to test which
statement’s extraPosition contains the
breakpoint’s position. Unfortunately,
extraPosition does not include white
spaces between statements (and fur-
thermore it would be quite difficult to
make it do so). So, instead, we find all
statements that start before the break-
point is defined, and choose the last of
these.

stmts := aCompiler translateParser
parseBody: bp sourceString readStream
class: aCompiler translateClass
notifying: SilentCompilerErrorHandler new
ifFail: [*nil].

Next we parse the breakpoint’s source

14

The Smalltalk Report

string, using the same parser as for the code that con-
tains this breakpoint. The breakpoint's response to
#sourceString will either be 'self halt' or '[some condition]
value ifTrue: [self halt]’, where 'some condition' is the con-
dition string input for a conditional breakpoint. (Using
#halt to activate breakpoints is a matter of convenience.
You could instead implement a new Signal for breakpoint
activation, which would allow special handling and
interface for breakpoints.) If there is a problem parsing
this conditional part of the code, the method returns nil
to MethodProducer>>transformTree:for:, which can indicate
an appropriate error condition. We assume most condi-
tion code will be relatively simple, and therefore that this
situation will not arise frequently. If it does, you can add
more elaborate error handling, using a different
requestor to the parsing, to be able to report more fully
whatever error occurs.

stmt := stmts at: 1.
(stmt nodeEvaluatorClass new tree: stmt)
do: [m |
n sourcePosition: (bp start to: bp stop);
extraPosition: (bp start to: bp stop)]-
bp isConditional
ifTrue: [stmt receiver sourcePosition: nil].

This step adjusts the sourcePosition and extraPosition of the
ProgramNodes generated from the breakpoint’s source
string so that they point only to the breakpoint’s character
position in the method’s source string. Otherwise, these
nodes would refer to indexes from the breakpoint’s source
string that don't make sense in the method’s string. Also,
we set the sourcePosition of a conditional breakpoint’s
condition block to nil, so that it won't be present in the
sourceMap used for debugging. As a result, every break-
point will require only a single step to process in the
debugger, making the interface uniform.

stmt := aCompiler translateBuilder newBreakpointBody: stmt.
stmt extraPosition: (bp start to: bp stop).

The above two lines wrap the subtree parsed from the
breakpoint’s source string inside an instance of Break-
pointNode, the new kind of ProgramNode mentioned
above. BreakpointNode is a subclass of Instrumentation-
Node, which is in turn a subclass of InvisibleNode. The lat-
ter class is an important addition to the ProgramNode
hierarchy, as it creates a class of statements that can be
added to a parse tree with no visible effect. Without
something like InvisibleNode, a reflective programmer
would have to be very careful where they added instru-
mentation statements into a parse tree, to respect the
semantics of block return. These semantics state that the
return value of a block is the value returned by the last
statement in the block; or, in the case of a block with no
statements, the value of the last block parameter; or nil in
the case of a block with neither statements nor parame-
ters. We changed the two places that implement these
semantics to use the notion of “visible statement(s)” in

Database Solution)
Jor Smalltalk

ODB Talk A class library for ODBC

Database Access

» ODBC 2.x support for 50+databases

= Visual development components for database access

« Native ODBC data type support

= Online documentation, source included, no runtime fees
» programming examples and sample application
» 00 to RDBMS mapping framework, based on types &
brokers, ideal for complex client-server applications

. compatlble with OTI’'s ENVY/Developer, Object Share’s
WindowBuilderPro

= SLL and Team/V packaging support

Versions Available for Windows, Windows-NT
0S/2, and for IBM, Digitalk, and ParcPlace

New for ParcPlace VisualWorks
Tel: 416-787-5290
Consulting Services | Fax: 416-797-9214
i jntke Sutiii i | CompuServe: 73055,123
@compuserve.com
Check oul LPC’s Internet World Wide Web home page:
L http://www.rwi.com/smalltalk/products/vendors/Ipc/lpchome. html J

Internet:73055,123

place of “statement(s)”, thus allowing us to insert new
invisible statements anywhere without affecting the
code’s visible behavior,

last isNil
ifTrue: [statements addFirst: stmt)
ifFalse: [statements add: stmt after: last]

The final step in #add:toStatements:in: adds the newly pro-
duced BreakpointNode into the collection of statements
that was passed in. It’s added after the statement that con-
tains the breakpoint, if there is one, or else before all state-
ments. Breakpoint code might be added after a return
with this mechanism, since that error is only detected
during parsing. This will not cause any errors, although of
course the breakpoint will never be activated. It would be
possible to alert users if this happens, so they won't be
surprised by breakpoints that don't activate when it seems
they should.

CONCLUSION
These new breakpoints improve significantly on the old
version, and, when combined with the lightweight class-
es of our previous article, further extend the program-
mer’s options and opportunities when debugging. These
improvements can be characterized as locality enhance-
ments. With breakpoints that can be conditionally
continued on page 18

October 1995

15

Managing Objects

Exploiting stability

fond of saying, “Software development is a ‘bursty’

process.” Long periods of time may pass during which
seemingly nothing is accomplished, followed by periods of
intense development and miraculous productivity.

When one person works alone, this “burstiness” aver-
ages out, and its impact is limited to “did I get done what
I wanted to in the time I had?” However, when the efforts
of many need to be coordinated, the “bursty” nature of
development can sink a project, or at least significantly
impact its schedule.

A S DAVE THOMAS OF Object Technology International is

ADOPT A SPIRAL PROCESS

Traditional software development follows a “waterfall”
process, in which different kinds of activities (such as
specification, design, implementation, and test) are allot-
ted sequential time periods, with rigidly defined check-
points at the end of each phase.

Waterfall works great if you can determine exactly what
you want to build, but most modern systems are not so
easily specified, or their requirements change during
development.

Barry Boehm recognized this weakness and proposed
a scheme by which the various development activities are
more tightly integrated. Such a “spiral” process can be
classified as iterative, in which portions of a system are re-
implemented in each cycle to achieve quality goals, or
incremental, in which a system is grown by adding func-
tionality in each cycle. Ideally, these two patterns should
be mixed and used as needed.

This spiral process has numerous advantages, mostly in
providing the flexibility needed to apply Smalltalk to ill-
defined or evolving systems, but there is no free lunch. A
spiral process falls down when it is too rigid, or when it
must closely follow a corporate waterfall process mandate.

Waterfall is falling out of vogue (overheard at OOPSLA:
“If youre not doing incremental development, you're
doing excremental development...”), but for well-defined

Jan Steinman and Barbara Yates are cofounders of Bytesmiths, a
technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over 20
years Smalltalk experience. They can be reached at Barbara.Byte-
smiths@acm.org or Jan.Bytesmiths@acm.org.

Jan Steinman Barbara Yates

problems with extremely high reliability requirements,
waterfall may be more appropriate. If your software is life-
critical, you'd better fully understand your requirements
up front, and the flexibility of spiral development is then
not as useful.

AVOID SCHEDULE RIGIDITY

In waterfall development, the predefined project phases
naturally break a project into manageable bits. In spiral
development, there is no such natural division, and an
arbitrary division is often used. These “cycles” are typical-
ly assigned the same length, such as seven weeks.

The functionality assigned to a cycle will be based, to
some extent, on guesswork, especially in an organization’s
first spiral process project. This shouldn't reflect poorly on
the manager; rather it is an acknowledgment of what real-
ly happens in most waterfall-based projects! It should
help to know ahead of time that the spiral process sup-
ports this inherent “truth in planning,” and that func-
tionality will be shuffled around to different cycles as its
meaning and relationships are elaborated.

However, you don't get the full benefit of spiral’s flexi-
bility if you are rigid about cycle length. If your project
intends to exploit stable periods, some cycles may take
less than their allotted time, while few (or none!) should
take extra time.

When deciding when to end a cycle, it's better to post-
pone functionality than extend the cycle. If a particular
feature has not even been started before the last week of a
cycle, slip it; don't cram it in!

If you are rigid about both functionality and cycle
length, you are simply going to “fail” most of the time—
you deserve a more realistic definition of success when
working on ill-defined problems!

If you are rigid about functionality, you may end up in
the “death spiral,” where each extension of the cycle lets
you discover problems in the specification or implemen-
tation of the functionality, so that you keep trying to
squeeze in more work.

The quality of a rigid-functionality cycle’s product suf-
fers because the lengthened cycle has shifted emphasis
from integrated development to simple coding, at a time
when the emphasis should be on integration, testing, and

16

The Smalltalk Report

documentation clean-up. The result is a mad push to add
a lot of code that will most likely have to be rewritten in
the next cycle anyway!

Managers who are new to the spiral approach are often
reluctant to shorten a development cycle and postpone
functionality, due to “waterfall-think,” e.g., “if it doesn't
get in now, it'll be dropped altogether and we must have
the ‘DithyWither' function!” Spiral’s flexibility means
that the relative importance of different features can be
continuously reevaluated, so that if it is really that impor-
tant, “DithyWither” can be the first thing to happen in the
next cycle,

WHAT IS STABILITY?
The definition of stability is like a Supreme Court Justice’s
definition of pornography: “I can't tell you what it is, but I
know it when I see it!” That isn’t good
enough, so here’s a working defini-
tion: Stability is a condition where

Stability is a condition

Low rates of recent change...

If your team is honest and communicating, it is not hard
to assess the feature-completion aspect of stability, but
you'll need some tool support to accurately assess change
rate, sometimes derisively called “code thrash.”

With groupware tools such as Team/V or ENVY/-
Developer, it is not too difficult to measure change rate.
Even ad hoc schemes using file-based repositories like
SCCS can give you an idea of your change rate, albeit at a
gross level.

Using ENVY/Developer information, we measure the
ratio of method editions to methods (me/m) between any
two app or subapp editions. Obviously, no changes would
yield an me/m of one, but we've seen numbers as high as
20 for highly changing code! Although we've made no for-
mal study, a year or so of gathering this metric leads us to
believe that “stable” code will have
an me/m below 2.

Like all “sadistics,” this one is sub-

features are implemented, integrat- ject to artifacts and abuse. New
ed, and tested to a planned degree of Wheref eatures are Smalltalkers and those unfamiliar
completion, combined with low implemented, integrated, with ENVY tend to have inflated
rates of recent change. me/m rates not necessarily because

The combination of a planned and tested to a Planned their code is unstable but simply
degree of completion and lack of . because they insert halt more often,
change is crucial; things that are degree Of comp letlon’ or because they manually revert
completed—including testing—but combined with low rates code back to the way it was rather
have recently changed considerably than loading a previous edition—
should not be considered stable. Of recent Change- they are merely less efficient users of

Conversely, incomplete things that
have not changed in a long time are
not really stable, due to incipient change.

Also note that something does not have to be in its end
form to be stable—otherwise, the only stable point to
exploit would be at project end! Alternating incremental
cycles with iterative cycles can provide stable points even
during evolution.

Features at a planned degree of completion...

Here's an example of planned completion: John's stuff
works with Sue’s stuff and both of theirs works with Ed’s
stuff. Each of them has completed most—and perhaps
all—of their assigned features for the cycle.

If all of them have completed less than 3/4 of their
tasks and it’s one week before cycle end, the cycle
plan was far too ambitious. If any of them are in this
situation, it's time to slip some of their work into the
next cycle.

Sometimes, the last week of the cycle arrives, and
individual modules are complete but not yet integrated
with the entire team’s development. If this begins to
happen regularly, it is a sign that your project is not
practicing continuous integration, but is instead doing
“mini-waterfall” development. It may be implemented
and tested, but without being integrated such work is still
not stable, and your developers need to review your
groupware support to see if they can do internal integra-
tion more frequently.

the environment.

Conversely, paranoid developers
may go out of their way to avoid seeming “unstable” by
doing lots of work in workspaces, working on multiple
methods at the same time, or not saving methods as often
as needed. Avoid this by building a group culture where
measurements are indicators, not juries!

Rather than reducing an entire cycle to a scalar ratio, it
would be interesting to “bucketize” method timestamps
in a module and plot the resulting histogram against time.
A bucket size of one day should be adequate, and will
make tallying method timestamps easier. This data gives
a manager an indication of intracycle stable points rather
than a gross “how stable are we right now?” figure.

I’'M STABLE, WHAT NOW?
With modern code-management systems, there is no rea-
son for your entire team to “freeze” their development
when they near the end of a cycle. Exploiting stability nec-
essarily means dealing with asynchrony within the team.

If John overestimated his work, and so his stuff is
deemed stable two weeks before the planned cycle end,
what should he do now?

(a) Read news or play Doom.

{b) Mess around with his code, making it run faster or

take less space.

(c) Continue with work allotted to the next cycle.
What John wants to do is (a), but that usually doesn’t work
out! What he should do is (c), but people are usually afraid

October 1995

17

| MANAGING OBJECTS

of destabilizing things by adding new features. What usu-
ally happens is (b), which often destabilizes things as
much as (c) would have!

The key is for John to “checkpoint” his stable work
before getting a jump on the next cycle's work. In ENVY,
this means making certain that all his stable code is
released, but none of his new code gets released. In
extreme cases, this may require working in a new app or
subapp edition (or even a different image), although it is
best to avoid having more than one editable edition at
any given time.

Periods of stability are also ideal points for peer
review, although not necessarily on the stable modules!
Achieving stability gives developers a chance to plan for
their next period of instability, which takes some of the
uncertainty away. Design review should be conducted on
planned work, and code review should be conducted on
stable or nearly stable work.

Unfortunately, peer review is often done the other way
around! There is a strong tendency to review designs once
the code is written and stable, when no one is willing to
destabilize them, and an equally strong tendency to
review code that is still in flux, which means very little of
the reviewed code will actually end up in the product
because most of it will change. Ignoring stability concerns
when planning peer reviews simply wastes the time of the
reviewers and gives a false sense of security.

It is important to be able to recognize incipient insta-
bility, or all this flexible planning and asynchronous
development goes away. If John suddenly recognizes a
design error or discovers a new requirement, he is about
to leave stability. If Sue needs to make small changes to a
class that handles function “furble,” while Ed needs to
make a small change to that class to improve behavior for
“snotzer,” their integration stability decreases, even
though their individual changes are benign.

In such cases, it’s best to call an early cycle end so that
you can capture your stable point before everything
comes tumbling down!

PLANNING FOR STABILITY

We hinted earlier that elements of both incremental and
iterative spiral methods can be successfully combined.
We call this expand-contract development, and it is a life-
saver for projects that encounter quality problems related
to “rampant featuritis.”

In this scheme, periods of added functionality are
interspersed with periods whose purpose is to improve
the quality of existing functionality. “Quality” is an over-
loaded term, and any aspect of it could be pursued in
intervening periods. Typical quality goals are increased
factoring, increased abstraction, increased cohesion, and
increased reuse, as well as decreased mass of code,
reduced coupling, and reduced variable scope. These
periods need not be entire cycles, nor does the entire
team need to switch modes in lock step.

Unfortunately, most projects cannot tolerate (or think
they cannot tolerate!) budgeting as much as half their

time to rework: “You mean that every six weeks, you're
going to take six weeks to rewrite what you just did?
Why don't you guys just take a 10-minute coffee-break
every 10 minutes?!”

A contract phase by itself does not yield stability,
because it is itself changing code. Stability is like fine wine
or compound interest: it requires time. By shifting the
goal from “more” to “better,” the output of a contract
phase is much more likely to be deemed stable after one
additional cycle than the output of an expand phase.

CONCLUSION

A spiral development process can be useful for the flexi-
bility it provides to reevaluate and reschedule work.
Typically, this flexibility results in increased work in a
cycle, but rarely results in reduced work in a cycle. This is
a missed opportunity!

When a cycle somehow ends up with fewer days than
expected, many managers sacrifice quality and stability
for functionality, resulting in massive rework in subse-
quent cycles.

However, with careful attention to points of stability
during a cycle, a manager can improve quality, morale,
and productivity by shortening cycles as needed, and
individuals in the habit of honest self-assessment can
help their manager synchronize the group’s efforts at the
most stable point.

DEEP IN THE HEART OF SMALLTALK
continued from page 15

activated and flexibly located, programmers can investi-
gate close to suspected problems, without having to
wade through extraneous debugging information.
Likewise, lightweight classes help narrow the focus of
debugging to the locality of individual objects.

In addition to improving debugging, this project
again demonstrates the large degree of openness in
Smalltalk-80, and the usefulness of allowing program-
mers reflective access to their environment. The central
work described in this article is the extension of the
MethodProducer-ParameterizedCompiler tandem. We can
create them and use them to produce breakpointed
methods because all collaborators in the compilation
process are first-class objects. The pair of producer and
parametrized compiler have many uses beyond break-
points, and we intend to bring those out in future
columns, starting with the implementation of active
variables and their use in defining watchpoints in the
debugger.

References

1. Hinlde, B, V. Jones, and R.E. Johnson. Debugging objects, THE
SMALITALK REPORT 2(9), 1993.

2. Gamma, E. et al. DesiGN PATTERNS: ELEMENTS OF REUSABLE OB)ECT-
ORIENTED SOFTWARE, Addison-Wesley, Reading, MA, 1994.

18

The Smalitalk Report

E ALL kKNow that successfully moving a pro-
W ject to object technology involves many dif-
ferent efforts and challenges. It is not possi-
ble to staff a commercial project of any size with
experienced O-0O developers. And there are precious
few products to help us be successful.
One area that can directly help you develop higher-
quality systems using object technology is metrics.
This article will present a metrics process that you can

members are using inheritance, collaboration, encap- }g
sulation, and O-0O design techniques.

A DESIGN IMPROVEMENT PROCESS .
The basic steps to a better design are detailed in the
following sections.

Run a metrics analysis
Choose what metrics as well as what target designs to
examine and run a metric analysis, as shown in Figure 1.

Interpreting the analysis results.
*» Average = the average measurement value for this metric.
» Percent anomalies = the percentage of target objects that
are considered anomalies with the current thresholds.
* Maximum value = the largest measurement found in
the target design.
* Total = the sum of all measurements taken for this metric.

Look for anomalies
Either online, as shown in Figure 2, or offline, as shown in
Figures 3-5, examine the results of your analysis to see
what anomalies you find. These are the areas that are out-
side the thresholds set for your project. In other words,
they are possible problem areas that would benefit from
design changes.

Figures 3-5 are taken from OOMetric's summary report
output, for use with any word processor (in this case, 1

Mark Lorenz is Founder and President of Hatteras Software Inc,, a
company that offers education, consulting, and products to help
other companies successfully use object technology, as evidenced
by commercial products such as IBM’s StorePlace and Hatteras’
OOMetric. He welcomes questions and comments via email at
mark@hatteras.com, phonemail at 919.319.3816,fax at 919.319.3877,
or snail mail at 2000 Regency Pkwy, Ste.230, Cary, NC 27511.

Project Practicalities

Mark Lorenz

Figure 1.Running a metrics analysis using OOMetric.

used Lotus AmiPro). The following subsections take you
through some sample analysis results.

Method size: Number of message sends. Figure 3 shows
example results. I use this metric instead of others, such
as lines of code (LOC), because it automatically removes
style issues.

When examining results, don't worry about GUI con-
struction methods or accessing methods (variable getters
and setters). Model classes should have smaller methods
than GUI classes, which often have a significant number
of methods to handle listboxes, buttons...

Smaller methods are more reusable, easier to build and
maintain, and indicative of a better O-O design (0-O is
about collaboration, even within a class). Reuse is achieved
more easily through smaller components, since they do
one thing only. Complexity is managed better by delegating
to objects that balance the work amongst them.

Method complexity: McCabe complexity. Figure 4 shows ex-
ample complexity results. Similar to method size, complexi-
ty is indicative of methods trying to do too much work them-
selves rather than delegating to other objects. It is also poss-
ibly indicative of poor designs, as evidenced by additional
conditional statements instead of the more single-minded
logic that occurs with better responsibility distribution.

October 1995

19

Figure 2. Analyzing metric analysis results for anomalies.

Inheritance: Number of methods overridden. Figure 5 takes
a look at the use of inheritance by a project. Framework
template methods and method extensions have already
been filtered out. What we want to do is also filter out tool-
related methods, such as GUI construction methods.

Use anomalies to focus design reviews

Typically, there are sets of classes and methods that raise
the anomaly flag over and over again. These are the areas
on which you want to focus your attention first and fore-
most for design reviews. These are the areas that will give
you the most “bang for the buck.” You can then decide
how much time you will spend reviewing other areas, up
to reviewing the entire system.

During the review, you need to decide which anom-
alies are problems and which ones do not need any fol-
low-up actions. Note that anomalies can be due to trends
in measurement values and comparisons of measure-

Number of message sends

Description: The number of message sends in a
method. Message sends are a style-independent way
to measure method size.

Average: 4.57
Percent anomalies: 3.05
Maximum value: 135.00
Total: 1948.00
Value

68.00 BomClass>>reportDatesCreated: method

79.00 BomClass>>writeCpp method

42,00 BomClass>>writeCppHeaderTo: method

57.00 BomClass>>writeSmalltalkClassDeclarationTo:
method

29.00 BomClass>>writeSmalltalkMethodsTo: method

Figure 3. Analyzing metric analysis results for anomalies (message sends).

ment values to other projects or company stan-
dards.

Design reviews should always result in code vol-
ume reduction. It is typical to see methods reduced
to 1/3 their original size.

Take actions to improve designs

For those areas that are considered problems, fol-
| low-up actions are defined in the design review.
i Actions taken depend on the types of problems
found, of course. At the highest level, however,
they fall into two categories: (1) reworking the
design and implementation, and (2) dealing with
people skills. The latter is not the topic of this arti-
cle, but generally involves additional mentoring
and/or reassignment to non-0-O tasks.

The following sections give examples of actions
taken for the anomalies previously discussed.

Message sends. Examining the code for the large

methods reveals that they are indeed written more
as function-oriented rather than object-oriented logic. In
other words, they do a lot of work in a single method
instead of leveraging the services of other objects in the
business model. They need to be redesigned.

Complexity. Listing 1 gives the source code related to one
of the methods that was above the complexity metric
upper threshold. A variety of actions to improve the situ-
ation are possible, including (1) invocation of methods to
handle the outputting of methods and variables:

self writeMethodsTo: aStream.
self writeVariablesTo: aStream.

These two lines would replace the four loops in the code,
while creating additional reusable services at the same
time.

Listing 1. Design review actions (complexity).

writeCpp
"Gen C++ code & write it to a separate file based on
my name."

| aFileStream |

(self parent isNil) ifTrue: [~self].
special case..."

(self filename isNil) ifTrue: [self filename: ...

aFileStream := File pathName: self filename.

(self allPublicMethods) do: [:each | aFileStream
nextPutAll: ...

(self allPrivateMethods) do: [:each | aFileStream
nextPutAll: ...

(self allClassVariables) do: [:each | aFileStream
nextPutAll: ...

(self allInstanceVariables) do: [:each | aFileStream
nextPutAll: ...

"Object is a

20

The Smalltalk Report

McCabe cyclomatic complexity (for methods)

Description: Method complexity, as determined by
the control flow graph, which reduces to the number
of decision points.

Average: 1.58
Maximum value: 13.00
Total: 674.00
Value:

6.00 BomClass>>addContract: method

5.00 BomClass>>delete method

5.00 BomClass>>generateConflictReportFor: method
13.00 BomClass>>reportDatesCreated: method

7.00 BomClass>>writeCpp method

Figure 4. Analyzing metric analysis results for anomalies (complexity).

(2) Validation of the information in separate method, sep-
arating out the checks at the beginning:

self checkValidity.

This is also a new reusable service.

These actions would bring the complexity level (as well
as the method size level) well within the limits set by the
project. At the same time, the design is clearer, easier to
maintain, and more reusable.

Overrides. As we said, tool-generated methods (e.g.,
constructWindow for WindowBuilder Pro and abtBuild-
Internals for VisualAge) should be ignored. In the class
from Figure 5, createViews is a GUI construction method.
label is supposed to be a framework template, but was
written with the wrong Smalltalk selector (subclass-
Responsibility instead of implementedBySubclass). It was
fixed. The other methods need further examination in
relation to the class hierarchy and collaborating classes
to see if changes are warranted.

Iterate the previous steps

Improving your designs can be a part of each iteration in
your development process. Developers can use it during
line item production to periodically check their work;
team leads can use it during each iteration assessment
period to focus design reviews, as we have discussed; and
project managers can use it to assess the quality and
progress of the project as a whole and compared to other
O-0 projects in the company. In other words, design qual-
ity is an on-going effort and not just an end-of-project
report to management.

SUMMARY
We have examined the steps used to achieve a higher-
quality OO software system:

* Run a metrics analysis

» Look for anomalies

» Use anomalies to focus design reviews

» Take actions to improve designs

* Iterate the previous steps

Number of methods overridden

Description: The number of methods defined in a class
that are also defined in one or more superclass(es).
Methods that invoke the superclass’ method or over-
ride template methods are not included.

Average: 431

Percent anomalies: 31.58
Maximum value: 14.00
Total: 56.00
Value

5.00 BomAnalysisModelBrowser class

Specific advice: The following methods are overrides:
BomAnalysisModelBrowser>>initPanes
BomAnalysisModelBrowser>>createViews
BomAnalysisModelBrowser>>activeObject:
BomAnalysisModelBrowser>>applyIndentionString:
BomAnalysisModelBrowser>>label

Figure 5. Analyzing metric analysis results for anomalies (method overrides)

These steps lead to higher-quality designs, which result
in systems easier to build and maintain. In other words,
they lead to quicker product cycles and more delivered
functionality.

Terminology
anomaly A deviation from the common result.

measurement The determination of the value of a
particular metric for an object.

method extension A method that invokes the super-
class’ corresponding method and then adds special-
ized logic.

metric A standard of measurement used to judge the
attributes of something being measured, such as
quality or complexity, in an objective manner.

metric analysis Application of a set of metrics to a
portion of a software systemn, resulting in values which
can be examined for trends and anomalies.

problem A development decision that has been
deemed to be low-quality and in need of improvement.

template method A method that designates an
empty portion of a design framework that is intended
to be filled in by client subclasses.

threshold A measurement value that has been deter-
mined through project experiences to be significant
in terms of desirable or undesirable designs, with
some margin of error.

References

1. Lorenz, M. OBJECT-ORIENTED SOFTWARE METRICS, Prentice Hall,
Englewood Cliffs, NJ, 1994.

2. Lorenz, M. RAPID SOFTWARE DEVELOPMENT WITH SMALLTALK, SIGS
Books, New York, 1995.

3. Hatteras Software. Object-Oriented Metric Workshop course
materials, 1995.

October 1995

21

Getting Real

Class versioning and
instance migration

it is inevitable that you will have to change your
code in response to new requirements, bugs, or
performance bottlenecks.

One of the nice things about Smalltalk is the dynamic
nature of application development. You can easily modi-
fy a class definition and test the new code immediately. In
some cases, you can modify a class while its instances are
being used in a running application. This is one reason
Smalltalk development is known for its rapid prototyping
and high productivity.

All Smalltalk systemns allow a developer to add, remove,
or modify methods dynamically during development.
This is not hard to provide because method lookup
occurs at runtime. A more problematic situation arises
when a class is modified so that its instances have a dif-
ferent structure. This occurs when a class definition has
an instance variable added or removed, or possibly when
its position in the class hierarchy is changed (i.e., it is
given a different superclass). This column discusses the
different strategies used when class modification causes
structural changes to instances.

In single-user Smalltalks, the underlying systems only
allow one class with the same name to exist. This is
appropriate since there is only one name space in which
the class could reside. When you redefine an existing
class, a new class is created, a “become:” operation is per-
formed to cause the new class to have the identity of the
old class, and the new class replaces the old class in the
SystemDictionary. But what happens to the instances of the
old class? Their state may not match what is expected
from them by their own class. Single-user Smalltalk sys-
tems handle this situation by automatically migrating all
instances of the old class to have the appropriate struc-
ture of the new class. Instance variables are removed if
necessary, and added instance variables have an initial
value of nil.

In multi-user Smalltalk, it is possible for multiple
classes with the same name to exist. This is because mul-
tiple users have multiple name spaces; so there is no con-

N 0 MATTER HOW CAREFULLY you design an application,

Using Smalltalk since 1986, Jay Almarode has built CASE tools,
interfaces to relational databases, multi-user classes, and query
subsystems. He is currently a Senior Software Engineer at
GemStone Systems Inc,, and can be reached at almarode@slc.com.

Jay Almarode

flict in having two or more classes with the same name.
When a developer creates a class with the same name as
an existing class, it is important that the old class still exist
and its instances behave correctly. This is because other
users may be running applications that expect instances
of the class to operate a certain way. In single-user
Smalltalk systems, modifying a class only affects your
work; in multi-user Smalltalk, your changes may affect
others. However, developers still need a way to modify a
class that is being used by other users without breaking
existing applications.

The solution is to create a new version of the class
rather than modifying the existing class. The new version
has its own unique identity and does not interfere with
the operation of the original class. The instances of the
original class are unchanged and still look and behave as
defined by the original class definition. In GemStone
Smalltalk, versions of a class are maintained in a
ClassHistory object. A ClassHistory is essentially an array of
classes intended to be versions of one another. You can
place classes in the same ClassHistory in a number of ways.
One way is to define a new class with the same name as
an existing class. The underlying system will recognize
the common name and automatically place the new class
as a version of the old class. Another way is to use a vari-
ation of the standard class creation message in which you
can specify the old class from which you would like to cre-
ate a new version. In this way, you can create a version of
a class in which the new class does not have the same
name as the old class. In either case, each class references
a ClassHistory (possibly shared) that maintains versioning
information about the class.

The following example illustrates how to create a new
version of a class. I will continue this example to illustrate
how to control migration of instances from the old class
to the new class. Suppose you initially create the follow-
ing class to model a Part in a manufacturing application:

Object subclass: #Part
instVarNames: #(partNumber manufacturer)
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#partNumber, Integer]]
isInvariant: false

22

The Smalitalk Report

A few things in this example are different from the class cre-
ation messages in single-user Smalltalks. First, there is the
“inDictionary:” keyword used to specify in which symbol
dictionary you would like to place this new class. This is
used for name space management—GemStone Smalltalk
provides a scoping mechanism in which names can be
resolved from multiple dictionaries, possibly shared by
multiple users. Second, the “con-
straints:” keyword allows you to
specify the kind of object that can be
stored into an instance variable. You
are not required to specify the con-
straint for an instance variable, but it

as for speeding up queries. Finally,
the “isInvariant:” keyword is used to

One of the nice things about
Smalltalk is the dynamic
nature of application
is useful for data consistency as well developmen t.You can eas lly

class (this could happen if the new class has a different
name), you can always add a class to another class’s his-
tory by sending the message “addNewVersion:” to the old
class with the new class as the argument.

Once the migration destination has been set, you can
migrate an instance of the old class by sending it the
“migrate” message. The default implementation will map
the values of instance variables as
you might expect. If the new class
has an instance variable with the
same name as the old class, then
the value of that instance variable
will be retained. Any new instance
variables will have a value of nil. If
desired, you can override the

mOdl.ﬁ’ a class deﬁmtwn and method that assigns values to

specify that once an object of this test the new code instance variables during migra-
class is committed, no other changes . . tion. This allows you to assign the
can occur to it. In this example, the lmmedlately. value of an instance variable that is

object is not invariant, so users can
modify instances.

Now suppose that after building an application, you
find out that the class definition above is insufficient. You
learn that part numbers may contain alphabetic charac-
ters, so they should be modeled as Strings, not Integers,
Also, you realize that for performance reasons, a Part
should also maintain its cost, rather than looking it up
from the manufacturer. This leads you to create the fol-
lowing new version of class Part:

Object subclass: #Part
instVarNames: #(partNumber manufacturer cost)
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#partNumber, String]]
isInvariant: false

Because this new class has the same name, the new class
is automatically created as a new version of the old class.
Because you can send the message “classHistory” to the
new class to get its ClassHistory object, you can execute
“Part classHistory at: 1” to get the old class (because you
can no longer reference the old class by the name #Part).
Remember, the ClassHistory object is like an array of
classes, so the old class is stored in the first slot, and the
new class is stored in the second.

Because there is a new class Part that defines instances
to be structurally different than the original class, at some
point you may want to migrate the instances of the old
class to become instances of the new class. The first thing
you must do is tell the old class to which class you would
like to migrate its instances. This is done by sending the
message “migrateTo:” to the old class. For example, if you
stored a reference to the old class in the global name
#0ldPart, then you would execute “0OldPart migrateTo: Part.”
This allows you to migrate instances of a class to any other
class, as long as they reside in the same class history. If
you forgot to create a new class as a version of an existing

named differently, or to initialize
the value of a new instance variable to something other
than nil. In our example, we added a new instance variable
to class Part. If we want to initialize the “cost” instance vari-
able, we could override the method as follows:

Method for Part
migrateFrom: originalPart instVarMap: instVarMapArray

"Initialize the state of the receiver (a instance being
migrated), based upon the state of the original. The
<instVarMapArray> is an array of offsets that associates
instance variables of <originalPart> to the receiver."

"Handle same-named instance variables the usnal way"
super migrateFrom: originalPart instVarMap: instVarMap.

"Lookup the cost from the manufacturer and assign it to
the receiver"
self cost: (self manufacturer costForPart: self partNumber)

Our redefinition of class Part has also introduced a subtle
problem. Although both the old and new definitions of
Part have an instance variable called #partNumber, the new
definition has constrained the part number to be a String.
An attempt to migrate an old instance will result in an
error when an integer is forced into an instance variable
that must store a string. This problem is easily solved by
overriding the appropriate method in the old class. This
method is invoked when the constraint violation occurs
and should return the new value desired for the instance
variable. Here is a possible implementation of the method:

Method for OldPart
invalidinstVarConstraintWhenMigratingInstVar: instVarName
shouldBe: aClass

"The receiver could not be migrated due to having an
instance variable <instVarName> whose value is not a

continued on page 27

October 1995

23

Hardware

community. One of these is that we will one day

have special hardware that can run Smalltalk as
fast, or faster, than C. For example, Stefan Monnier
(sm86+@andrew.cmu.edu) writes:

THERE ARE CERTAIN RECURRING IDEAS in the Smalltalk

I believe that speed increase will mainly become pos-
sible with special hardware. Since current processors
are specifically designed to run C-like programs, it
seems normal that different language paradigms
can't really [compete].

Is this true? Certainly the standard processors have been
optimized for traditional languages. If Smalltalk is going
to compete against this advantage, maybe it needs special
hardware. We'd have Smalltalk-specific instructions, and
maybe a garbage collection co-processor to go with it.

BENCHMARKS
Before we even get into CPUs, we should define what
we're aiming for. For a real application, how much slower
do we expect Smalltalk to be? Although Smalltalk can do
very poorly on simple benchmarks, the typical simple
benchmark is just a loop doing arithmetic operations. It
does no memory allocation, no procedure calls, no data
structure manipulation, and may well fit entirely in the
cache. While the performance numbers for such a pro-
gram may be interesting, they dont mean much for real-
world programs.

Smalltalk suffers on these benchmarks because there's
a lot of infrastructure built into the language. Dynamic
binding, safety checking, garbage collection, and being
“objects all the way down” all have performance costs that
far outweigh their benefits on a trivial benchmark. They
are there because they have significant benefits for large
systemn development. In my opinion, this kind of infra-
structure is important, if not essential, for a wide range of
systems. If you don't have it, you'll end up building it,
probably much less efficiently than if it were built in.

Unfortunately, “a wide range of systems” is not all sys-
tems. I know I've worked on systems where the overhead

Alan Knight is an adaptive neural network with hardware and
software optimized for semantic processing and connected via a
speech recognition interface to The Object People, 885
Meadowlands Dr., Ottawa, Ontario, Canada, K2C 3N2. He can be
interfaced to at 613.225.8812 or as knight@acm.org.

The Best of comp.lang.smalltalk

Alan Knight «

of dealing with every floating-point number as an object
with full dynamic binding would be absolutely fatal.* Let's
be ambitious, and try to make Smalltalk workable for all
systems. We want a Smalltalk processor that can run
Smalltalk just as fast as C runs on a conventional CPU.
Besides, all that “real applications” stuff, valid as it is,
sounds too much like the marketing drivel that’s used to
hide a slow implementation.

OBSTACLES

We've got our hypothetical processor in mind. Let’s call it
SKAMP (for Smalltalk Kick-Ass Mega-Processor). What do
we need in order to build it?

The biggest obstacle is money, which is directly related
to economies of scale. Creating a fast custom processor is
a very expensive business. To keep the price/performance
ratio acceptable, we'll need to sell a lot of units. This is
much easier for a general-purpose CPU than one tuned
for a particular language. Maybe there's someone else we
can base our business model on. There haven't been any
commercial Smalltalk machines, but we can use some-
thing quite similar, LISP machines. Unfortunately, that's
not a very inspiring example. John Nagle (nagle@net-
com.com) writes:

That was the premise behind Symbolics and their
LISP machines. It turned out, though, that simple
RISC machines with a decent compiler run Common
LISP with substantially better price/performance
than Symbolics’ refrigerator-sized machines.

and Markus Stumptner (mst@vexpert.dbai.tuwien.ac.at)
Writes:

[It] is not that such an implementation is impractical
at a given time, but that, quite generally, while
research projects may initially produce fast designs,
there just is not enough money behind language-
specific processors to keep pace with the speed
increases of general purpose machines. I don’t think
this is going to change.

Even if we can make enough money to stay in business
producing this chip, we run into issues of compatibility

* This does not include financial systems. Anybody that's even thinking of
using floating-point for financial calculations should go and read my previ-
ous columns on math (THE SmaLITaLK REPORT 4[7] and 4[8]).

24

The Smalitalk Report

JUST PUBLISHED!

Rapid Software Development , ,
with Smalltalk - The Ultimate Guide to Better

Smalltalk Development...Write (ode
Faster Without Sacrificing Quality.

RAPID SOFTWARE DEVELOPMENT WITH SMALLTALK covers the spectrum
of 0-0 analysis, design, and implementation techniques and
provides a proven process for architecting large software sys-
tems. By using detailed examples of an extended Responsibility-
Driven Design (RDD) methodology and Smalltalk, readers will
find techniques derived from real O-O projects that are directly
applicable to on-going projects of any size.

The author provides readers with specific guidelines that could
dramatically cut costs and keep projects on-time. Specifically,

Ab t h A h the author provides readers with project patterns that work,
out the Author... illustrations of design patterns, O-O metrics with example code
Mark Lorenz is the founder and to test design quality and of course, numerous Smalltalk code
president of Hatteras Software, examples.
Inc. a company that specializes
: in helping projects use object H
technology successfrl)lllg. Ii’l'hi author haJs Readers w'"'"
already published two popular books on * Speed up the development process by fostering reuse

object technology entitled ORJECT-ORIENTED
SOFTWARE DEVELOPMENT. A PRACTICAL GUIDE and
OBJECT-ORIENTED SOFTWARE METRICS (Prentice

* Significantly reduce debugging time
* Gain step-by-step instruction on how to make

Hall) and also writes a regular column for the object model more robust
THE S_MALL_TALK RepORT called “Project * Learn how to distribute responsibilities within
Practicalities.” the object model more effectively

* Discover a practical day-by-day breakdown
of a rapid modeling session
* See how to organize the development team most efficiently

S This book will prove invaluable to anyone interested in speeding

o [{J’[‘“l '[; :b[Sl Available at selected book stores. up the consistent development of high-quality object-oriented
RPN Distributed by Prentice Hall. software systems based in Smalltalk.
SIGS BOOKS ORDER FORM S
[YES! Please rush me __copy(ies) of RAPID SOFTWARE Name
DEVELOPMENT WITH SMALITALK at the low price 524 per
Company
COPY. (I5BN: 1-884842-12-7; Approx 200 pgs.)
Title

Money-back Guarantee: If [am not completely satisfied, | may return
the book(s) within 14 days and receive a complete refund, promptly and Address
without question.

City/State/Zip
[Check payable to SIGS Books Country/Postal Code
[J visa [American Express [d MasterCard Phone Fax
Card# Exp. SEND TO:
Signature $16S Books, 0. Box 99425
SHIPPING AND HAKDUING: For US orders, please add S5 for shipping and handling; (ollingswond, Nj 08'08_99"0

Canada and Mexico add $10; Oulside North America add $15. IMPORTANT: NY State

residents add applicable sales lax. Please allow 4-6 weeks for delivery. Phon(: 609.’!88.9602 Fﬂx: 609,‘80.6'88

| THE BEST OF COMP.LANG.SMALLTALK

and reuse. It's possible for Smalltalk to perform the func-
tions of an operating system, and early implementations
did just that. The question is whether it's feasible, or even
desirable in today’s environment.

Suppose we've got our Smalltalk on a chip, running as
its own operating system. How many different video cards
will it support? Can it use VBXs? Will it run MS Word, or do
we also have to write all our own applications? Maybe
SKAMP will be so compelling that all the applications
developers will immediately start writing for it. Maybe not.

We, the champions of OOP, should be practicing reuse,
not reinventing the wheel. Smalltalk is a programming
language and a development environment. It shouldn’t
also have to be an operating system and every application
you'd ever want. Let people who understand operating
systems write the operating system, and those who
understand application development develop applica-
tions. I want an environment that
can take advantage of their work, not
one that forces me (or the Smalltalk

The typical simple

The most important hardware features are register
windows and tagged integer instructions. These two
features nearly double SOAR’s performance by reduc-
ing the cost of subroutine calls and type-checked inte-
ger operations. ..

This was a very impressive result in Smalltalk-specific
hardware. Why wasn't it carried forward into commercial
hardware? There's a simple answer. It was. SOAR is a direct
ancestor of Sun's SPARC chips, which also support register
windows and tagged integer operations. Those of you
with SPARCstations are already using machines with fea-
tures to improve Smalltalk performance.

COMPILERS

The information on SOAR is from David Ungar’s doctoral
thesis. Later, he led a research group working on an opti-
mizing compiler for Self, a Smalltalk-
like language that is well known in
the Smalltalk community for its

vendors, who seem to have enough benchmark does impressive benchmarks, running at
trouble getting their own environ- . approximately half the speed of opti-
ments right) to duplicate it. no memory allocatlon, mized C, even on integer manipula-

That's my attitude, and I'm a con-
fessed Smalltalk bigot. The average
user will be much less sympathetic
to the purity and elegance of the
environment if it means they have to
buy a special machine that won't run
their favorite application.

DORADO AND SOAR
OK, we'll admit there are a few obstacles, but surely suffi-
ciently good performance could overcome at least some
of them. Hasn't anybody even tried Smalltalk hardware?
Yes, they have. In fact, Smalltalk’s first implementation
was on hardware built at Xerox PARC for that purpose.
They may not have had Smalltalk CPUs, but they did have
Smalltalk-specific microcode. These evolved into the
Dorado, a highly optimized Smalltalk engine that
remained the Smalltalk reference machine for many
years. The ParcPlace Advanced Tools benchmarks still rate
performance in terms of a Dorado. The machine was
described as:

This 70 ns ECL. minicomputer costs $120,000 [in 1985]
and dissipates over 2 kilowatts, requiring an air-condi-
tioned room.!

In the mid-1980s, a group at Stanford University created
SOAR, a RISC chip optimized for Smalltalk. At the time,
RISC chips were a relatively new thing, and unproven for
languages like Smalltalk. This group managed to create a
Smalltalk-specific RISC chip that had roughly the same
performance as a Dorado despite having a cycle time that
was five times slower. This showed very clearly that a RISC
machine could run Smalltalk well, and in fact it showed
that not many additional features were necessary. David
Ungar! describes the important features of SOAR:

no procedure calls, no data
structure manipulation,
and may well fit entirely
in the cache.

tion benchmarks, on which
Smalltalk does very badly.

Selfis a continuing research project,
with many publications. Informa-
tion, and copies of some of the
papers can be obtained by ftp from
self stanford.edu or over the World
Wide Web from http://self.stan-
ford.edu.

Urs Hélzle (urs@cs.stanford.edu), a member of the Self

project, writes:

In my experience (which is based on several years of
writing optimizing compilers for Self...) there is very
little to be gained from special hardware *IF* you have
an optimizing compiler (which no Smalitalk system
has today;, as far as I know).

To be more concrete, I recently measured the
instruction-level behavior of optimized Self pro-
grams, and I could not find any single hardware fea-
ture that would improve performance by more than
5%. The hardware “feature” with the biggest impact
was cache size, and its impact was larger than all of
the "00” features (tagged arithmetic, register win-
dows, a hypothetical 1-cycle “lookup” instruction)
combined. So I would claim that a standard RISC +
reasonably large cache will run *optimized * Smalltalk
programs faster than any “Smalltalk-in-Hardware”
chip built with the same chip technology. In other
words, special hardware isn't a loser just for market
size reasons, it also loses on the performance side.

From this point of view, it seems there’s a lot more to be
gained by pestering the Smalltalk vendors for better com-
pilers than in pushing for language-specific hardware.
Even here there are a few caveats. Self-style optimizations

26

The Smalitalk Report

can have significant space costs that may make them
inappropriate for some environments. Also, those of us
using low-end systems don't have an optimizing compiler
or a RISC CPU, and we're lucky if we get to use a 32-bit
operating system.

THAT'S NO FUN

This is pretty discouraging news for those who were look-
ing to Smalltalk hardware for performance improvements.
It doesn't mean there’s no hope, but the possibility looks
pretty remote. If special-purpose hardware is going to suc-
ceed, it's seems to me it will have to be a much more radi-
cal departure, perhaps in the form of massively parallel
object systems. In the short term, it looks like we're going
to have to rely on better compilation techniques, conven-
tional hardware improvements, and our own ability to use
efficient algorithms. We're also going to have to keep
explaining that bit about benchmarking real applications,
even if it does make us sound like marketing people.

Reference
1. Ungar, D.M. THE pESIGN AND EVALUATION OF A HIGH PERFORMANCE
SMALLTALK SYSTEM, MIT Press, Cambridge, MA, 1987.

GETTING REAL
continued from page 23

kind of <aClass> (the constraint in the migration
destination). This method performs a conversion to retum
a new value of kind <aClass>."

instVarName = #partNumber
ifTrue: [~ self partNumber asString]
ifFalse: [
~ super
invalidInstVarConstraintWhenMigratingInstVar:
instVarName
shouldBe: aClass

]

There are a number of strategies for when to perform
instance migration. One strategy is to migrate all instances
of the class at once. This requires a scan of the entire object
memory to collect all instances, then invoking the mes-
sage to migrate each instance. When an object is migrat-
ed, it is written, so there is a chance of concurrency con-
flicts if other users are accessing the same instances. You
can acquire locks to make sure the migrations can be
committed, but this reduces availability for other users.
Migrating all instances is best performed when the sys-
tem is relatively inactive or when there are no other users
accessing these objects. Another strategy is to migrate
instances when they are accessed by an application. By
performing “migration on demand,” the semantics of the
application can determine whether to perform the
migration or not.

October 1995

INFO@SIGS

BACK ISSUES

“ADVERTISING

SIGS HOME PAGE

27

Interview

Merging Smalltalks: THE SMALLTALK REPORT
talks to Jim Anderson, Co-Chairman

of ParcPlace-Digitalk

As most of you are aware, Digitalk and ParcPlace have
recently merged to become ParcPlace-Digitalk. Digitalk
and ParcPlace marketed the Visual Smalltalk and
VisualWorks product lines, respectively, mainly to the com-
mercial development organizations in large corporations.
We've asked Jim Anderson, one of the founders of Digitalk
and now Co-Chairman of ParcPlace-Digitalk, to discuss
product strategy issues of concern to Visual Smalltalk and
VisualWorks users.

What was the pre-merger marketing situation?

Large companies have been adopting Smalltalk for their
business applications because it deals with change and
complexity so well. Frequently companies retrain
COBOL programmers to be Smalltalk developers. About
one-third of the time, ParcPlace and Digitalk have been
competing with each other for the same customers.
Often these customers are attempting to standardize on
a single Smalltalk vendor. The strengths of our two prod-
ucts are so different that choosing one over the other has
been a difficult choice.

What differentiates the two products?

VisualWorks features extraordinary portability and plat-
form coverage. Both its Smalltalk image and its underly-
ing C-implemented virtual machine have demonstrated a
depth of portability unmatched by any other develop-
ment tool. The breadth of platforms covered, 12 in all, is
also impressive, including Windows 3.1, NT (Intel and
DEC Alpha), the Macintosh (68K and PowerPC), 0S/2,
Sun Solaris, HP UX, and AIX. In addition, VisualWorks has
proven to be scalable to extremely large corporate appli-
cations. Both VisualWorks and Visual Smalltalk are the
leaders in Smalltalk execution performance.

Visual Smalltalk features extensive platform fidelity, a
component assembly paradigm, group development
support, and runtime modularity. It supports the look
and feel of Windows and 0S/2, and the soon to be
released Version 3.1 has already received Windows 95
logo certification. It includes the PARTS Workbench for

assembling components into applications by “wiring”
instead of writing code. Visual Smalltalk Enterprise
includes the Team/V group development tools and API
(for user-configurable/created and our own vendor-
supplied tools). Visual Smalltalk supports runtime mod-
ularity in the form of Smalltalk Link Libraries (SLLs).
These provide footprint control, cross-application shar-
ing, and incremental maintenance replacement.

What are the plans for upcoming releases post-merger?
Will both product lines continue to be supported?

In the fourth quarter of 1995 we plan to ship Visual-
Works Release 2.5 and Visual Smalltalk Release 3.1, as pre-
viously announced. These releases will feature 100% lan-
guage syntax and semantics compliance between the two
products, which conforms with the draft ANSI Smalltalk
specification from the X3J20 committee in which bath
companies participate. The languages are already quite
similar, with minor differences in literal arrays and blocks
that affect very few customers.

Concurrent with these releases, we will issue a docu-
ment on base class commonality to guide customers in
creating portable business objects. The base classes are
also quite similar. We have several customers today that
use Visual Smalltalk on the client working with
VisualWorks on the server. At the ParcPlace and Digitalk
International Users Conference in August, we demon-
strated such a customer application. It was created as a
client-only Visual Smalltalk application. It was then parti-
tioned into presentation objects on the Visual Smalltalk
client, and business objects on the VisualWorks server, at
a development cost of less than two person-weeks. The
majority of the two weeks were spent re-architecting an
application intended to run in fat-client mode to a client
and server model. Most of the business logic moved over
without modification.

In 1996, we plan to bring the best of both products for-

continued on page 32

28

The Smalitalk Report

oo

roc See VisualWorks

< Come Alive with this Complete
New Guide

The Smalltalk Developer’s
Guide to VisualWorks

BY TIM HOWARD
Foveword by Adele Goldberg

THE SMALLTALK DEVELOPER’S GUIDE TO VISUALWORKS provides
an in-depth analysis of the popular application development tool
produced by ParcPlace Systems. Designed to enhance develop-
ment acumen, this book serves as a guide to using Visual[Works to
its full potential.

Divided into two logical parts, the reader first receives the basic
principles of VisualWorks and then is provided with concrete
examples of VisualWorks in action. In this way, you are sure to
gain a better understanding of the unique characteristics of this
powerful development tool as well as a complete understanding
of its strengths and weaknesses. By reading this book, you’ll be
able to build better applications and enhance the tools them-
selves.

And as an added bonus, source code and numerous examples of
the outlined concepts are provided on the included diskette.
You’ll be able to test the concepts immediately and put theory
into practice as you read.

If you are a professional software developer already programming
in VisualWorks or an advanced Smalltalk programmer, this book
will prove an invaluable guide to enhancing your skills, cutting
development time, and saving money.

Not recommended for beginning programmerys. PART OF THE

ADVANCES IN
OBJECT

TECHNOLOGY
BERIES

Available at selected bookstores.
Distributed by Prentice Hall.
SIGS ISBN: 1-884842-11-9

PH ISBN: 0-13-442526-X

Diskette included

The Smalltalk Developer’s
Guide to VisualWorks

Complete and easy to read, you can use this book as:
 astudy guide
e a series of tutorials

* a reference for items and concepts
* a valuable source of VisualWorks code

Eminently useful, this book is unique because:

¢ Each topic is reinforced with a concrete example.
The concepts are clearly illustrated and the reader
can actually see their application.
A special browser is provided containing; all the
examples referenced, alleviating the need to enter
code.
Rigorous definitions of terms are provided to
mitigate confusion.
Applications built prior to VisualWorks are covered
to build an understanding of where some of the
constructs in VisualWorks originated.
Detailed descriptions of how to add new
components to the palette are illustrated,
allowing the reader to extend the functionality
of VisualWorks. Three new components are
provided as examples.

S1IGS BOOKS ORDER FORM

[YES! please send me copy(ies) of THE SMALLTALK
DEVELOPER’s GUIDE TO VISUALWORKS at the low price
of $39 (diskette included)
ISBN: 1-884842-11-9. Approx. 630 pages.
Money Back Guarantec: If I am not completely satisfied, I may return the book(s)
within 14 days and receive a complete refund, promptly and without question.
Method of Payment
J Check Enclosed (payable to SIGS Books)
1 Charge My: O Amex O MasterCard [Visa

Card # Exp

Signature

Shipping & Handling: For US orders, pleasc add $5 for shipping & handling,
Canada & Mexico add $10, outside N. America add S15. NY State residents add
applicable sales tax. Please allow 4-6 weeks for delivery.

Name

Title

Company

Address

City
Phone/Fax

SEND TO:

SIGS Books, PO. Box 99425
Collingswood, NJ 08108-9970
Fax To: 609-488-6138

Phone: 609-488-9602

Recruitment Center

CHOWILEFEDGE SYSTEMS CORPORATION

Make No Gompromises.

Join a leader in
Object Technology.

We are Knowledge Systems Corporation, the acknowledged leader in
Object Oriented Technology services. Working on the cutting edge of tech-
mology, we are poised to move o greater heights of technical diversity,
client serviceabilily, and employer opportunity. We are professional, team
oriented, and driven to excellence, but most of all, we are an employee-ori-
ented corporation that provides an excellent working environment that will
challenge your abilities and sharpen your skills. We are XSC. We are your
future.

Presently, we are seeking to augment our technical training and consulting
staffs with professionals who have two plus years of demonstraled experi-
ence with OOA&D, IBM Smalltalk or VisualAge, ParcPlace VisualWorks,
Digitalk Smallalk/V, and ENVY/Developer.

As a leader in supplying our Fortune 500 client base with Object Oriented
solutions, Knowledge Systems Corporation is able to offer a very compeli-
live salary, an excellent benefits package and many opportunilies to grow
with the leader. Please send/fax your cover leiter, resume, and salary
requirements to: Knowledge Systems Corporation, 4001 Weston Parkway,
Cary, NC 27513; or call (919) 481-4000; Fax (919) 677-0063 or e-mail to
jdemichiek@ksccary.com.. Equal Opporiunity Employer.

S

"OGFE SYSTEMS CORPORATION

Smalitalk and C+ + Experts
30 IMMEDIATE OPPORTUNITIES

Chief Archilecls e Insiructors « Menlors

ObjectSpace, a leader in the Object-Orlented arena,
has enjoyed 300% growih in the las! year, and as a resull,
has IMMEDIATE opportunities for extraordinarily talented
people dedicated to ihe creation and deployment of ad-
vanced lechnologies. Our areas of inlerest include: CORBA,
00DBMS, Constraint-based Programming, Rule-based
Programming, Prolotype-based Languages (Classless), as
well as Agent Technology, Design Patlems, Biological
Systemns, Cognitive Science, OOA/O0D and Sell.

Our requirements for EXPERTS commitled lo excellence
include 4+ years ol experience with C++, Smalltalk,
Distributed Smalltalk, VisualWorks or VisualAge. In addilion,
candidates should also possess expertise in Object-
Oriented Soltware Development Melhodologies.

We offer compelitive compensation, performance-based
bonuses and a complete benefits package. For immediale
consideration, lorward your resume {o:

Fax (214) 663-9099

ObijectSpace, Inc., 14881 Quorum Dr., Suile 400, Alin:
ST1095, Dallas, TX 75240; jobs@objecispace.com; or call
(800) ORJECT1. EOE.

bjectSpace”

SMALLTALK POSITIONS

ParcPlace-Digitalk is seeking experienced Smalltalk
instructors and consultants for our world-class
Professional Services team. At ParcPlace-Digitalk you
will work with one of the world’s leading development
teams, use state-of-the-art products and assist companies
on the forefront of adopting object technology in client-
server applications.

Requirements for Senior Consultants: solid experience
with Smalltalk (3-5 years) and/or PARTS Workbench
experience. OOA /D experience and GUI design skills.
Mainframe database experience is a big plus.
Requirements for instructors: previous training experi-

ence in a related field (2-4 years), understanding of OO
concepts and Smalltalk.

Positions are available in various sites throughout the
U.S. Compensation includes competitive salary, bonuses,
equity participation, 401(k) and family medical cover-
age. All positions require travel. ParcPlace-Digitalk is an
equal opportunity employer.

Please forward your resume to:
Director of Enterprise Services
ParcPlace-Digitalk, 7585 S.W. Mohawk Drive
Tualatin, OR 97062 fax: (503) 691-2742
internet: holly@digitalk.com

st il

Fortune 1000 client base. CPi offers a
competitive salary and benefits package

-

with

S
S

For more information, f&n;ward resumes or call:
i

12360 66th Street North
Largo, FL 34643
TEL.: 800/257-7308 FAX: 813/224-9144
E-Mail to cpi7@occ.com EOE

i
.%L.\.ﬂ}fb

s

nt

rd
-

Foolpr

i

R

bm.com

bobhall@vnet.i

61.2.353.3604

internet

Classes

Contact Bob Hall, IBM Australia
fax

Smalitalk

e

Ei

Smalltalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS

This is your opportunity to join

the finest team of Smalltalk
professionals in the country!

ws

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan.

. (CHECK OUT OUR

™ NEW WEB PAGE!)
http://www.rwi.com/

BOX 270566 Houston TX 77277
(713) 660-8080;Fax (713) 661-1156
(800) 256-9712; landrew@rwi.com
malltalk RothWell Smalltalk RothWell

RothWell Smalltalk RothWell Smalitalk RothWell
qeewrs [IPAAYICYH MiBleWS [[PAAYIOT MieiIe

172]

EDITORIAL

continued from page 2

All the major Smalltalk vendors have special packages for
educational institutions that make it easier for depart-
ments. Be aware that the hardware requirements might
be more demanding than what your department has
available, not to mention students’ own machines at
home. Third, try introducing Smalltalk into your data
structures course first, rather than your programming
languages course—we certainly had great success with
this approach. Fourth, try not to compromise in terms of
how objects get introduced. Often, the issue gets brushed
off by the statement “we teach C++,” which is fine if the
statement is true, but more often than not what is taught
is C using a C++ compiler.

We would like to thank Jim Anderson for allowing us to
discuss with him the future of the new ParcPlace-Digitalk
venture. Jim, of course, was one of the founders of
Digitalk and has been a true champion of Smalltalk from
its early commercial days. We plan to use this interview
as a launching pad for introducing you to other players
within the Smalltalk arena. We hope you will enjoy this
new feature in coming months.

RECRUITMENT
CENTER

To place an ad
in this section,

call Michael Peck at
212.242.7447

INTERVIEW
continued from page 28

ward in a new integrated product. Incremental release of
this new product is targeted to begin in the second quarter.

We will start with the portable VisualWorks virtual
machine as the basis, extended with the Visual Smalltalk
SLL capability. Added to this will be the VisualWorks base
classes and portable GUI framework, as well as the Visual
Smalltalk event framework. Visual Smalltalk platform
integration will be added, consistent with the portable
GUI framework, for selected platforms. Initially, all
Windows platforms and 0S/2 will be supported. This will
be accomplished using SLL technology to plug in a plat-
form-integrated implementation dynamically in place of
the portable implementation. We will also add the Visual
Smalltalk team API and infrastructure. On top of this will
be hosted the tools from both Visual Smalltalk and
VisualWorks, including the canvas, browsers, and data
lens from VisualWorks, the PARTS Workbench, and
Team/V tools from Visual Smalltalk.

Which product should we buy today to be best aligned
with this new product direction?

That depends on your priorities. If platform portability or
UNIX platforms are very important for you today, then
begin with VisualWorks. On the other hand, if platform
fidelity, Windows 95 compliance, or component-based
development using OCX controls are very important for
you today, then begin with Visual Smalltalk. Whichever
choice our customers make, we’ll ensure they have a
migration path toward the new products.

32

The Smalltalk Report

	By Article Title
	Breakpoints revisited
	Coverage analysis in Smalltalk
	Exploiting stability
	Glass versioning and instance migration
	Hardware
	Improving your designs
	Interview

	By Author Name
	Almarode, Jay
	Hinkle, Bob
	Johnson, Ralph E.
	Knight, Alan
	Lorenz, Mark
	Murphy, Mark
	Steinman, Jan
	Yates, Barbara

	By Topic
	comp.lang.smalltalk
	Deep in the Heart of Smalltalk
	Getting Real
	Managing Objects
	Project Practicalities

