
October 1995 Vol 5 N02
:ditors

John Pughand PaulWhite
CarfetorrLbdverrify&JfreObjertkuple

FIGSPublications Advisory Board
TomAlvmdObjecttiign
Franfni! Bantilhrm,O, kdmology

GradyBoodr,fTw”orro/
GeorgeBoswwth,Ptrrc%ce-Oigito/k
JesseMichael Chonoles,b@edMmtinACC
Stoarr FfostSElfCTJohvore
Adele Goldberg,PartPAwe-Oigita/k
Thomas Keffef,Rogrn Wow 5oftwofe
R.JordanMendler, MM CordingGroup
Thomas Love,(onffdtont
Bertrand Meyer,/5F
Meilir Page-Jones,W@mdSyrfemr
cliffReeves,m
BjarneWoustru~,4T&TBelllobj
DaveThomas,O#jertkdrrrdogyhrtemofiorrd

me Smalltalk Report
:ditorial Board

Jim Anderwr,Pom%wXjto/k
Adele Goldberg,PrrrcP/orc-Oigirrdk
Reed Phillips
MkTa~w,Pa~P/wc-Oigiru/k
Daw Jhomas,LMjed kfmologylnfemotiorrol

:olumnlsts
JayAlmarode,fiem5forreSystem~hr.
KentBecl@rtC/oss 5oftwore
Juanita Evdng,PrrrtP/oce-Oigitolk
GregHwsdl@rowfe@@twm tirp.
Tim”HmvardJHFmtoro~ hr.
Alan Knight fie ObjertPeop/e
William Kohl,flothWdl/fffwfroUorrrr/
Mark loreru, Hoftemstifhwm Irrc
EdcSmiUr,/browfedgeSystemsCorp.
RticaWrh-Brw~Pa~~~~@o/k

ilGS publications Group, Inc.
RichardP.Friedman,Fowsder,Presidwrtand CEO
Hal Avery,Gmuppublisher

klitorlaWroduction
KristinaJoukhadar,EditorialOhector
ElisaVarian,PrcdurtiorrManager
AndreaCammarata,Ars Ohertw
ElizabethA.U~Associale Managing Editor
Margaret Conti,AdverdsingProdutdon Coordinator
5hannon5mith, EditorialProductionAssistant

circulation
Brure5hrCver,Jr,,CirurlationOhectw
LawrenceE.HoCfer,MarkefingManager

khferUsing/Marketing
Gary Portie,Adverdsing Manager, EafiCoastiCanada/Europe
MichaelW. Perk,Adverdsi~ Re~esentative
KriSthreVikSninS,WWCoastEshibitSales
SarahOlseewki,East CoastEshibiI Sales

112.241.7447 (V),212.Z4L7574 (0
OianeFuller &Assotiates,5ales Re~eserrtative,West Coast

403.255.1991 (v),408.255.2992 (O
5arah Hamilton, Oirectorofpromofions and Researrh
Wendy tSinbokmviQ,PromotiwrsManagw for Magazines

Kdmintstration
Margherita R Monck+GeneralManager
OavidChalterpaul,5mior AccountingManager
Bibi Budhram,Aaounts Payable

~SIGS
PUBL1CATIONS

‘ublishers of JOURNALOFOB]ECS-OFUENTED
lItOGRAMMING,OBIECTMAGAZINE,C++ REPORT,THE
ihSALtTALKREPORT,THEX JOURNAL,REPORTO,N
)BIE~ANALYSIS& DESIGN,OBJECTSEXPERT(I-HO,
.nd OErEKr SPEFCIRUM(GEMMANY)

October1995

Features

Coverageanalysis in Smalltalk
Mark Mwphy
Coverageanalysis greatly benefits quality assurance efforts on Smalltalk projects by
identifying areas that have been inadequately tested. An implementation in Visual
Smalltalk is presented.

Columns
Deep in the Heart of Smalltalk
Breakpoints revisited
Bob Hinkle and Ralph E, Johnson
These new breakpoints and lightweight classes narrow
the focus of debugging, allowing programmers to
investigate close to suspected bugs without wading
through extraneous information.

Managing Objects
Exploiting stability
Jan Steinman and Barbara Yates
Successful team Smalltalk demands that synchronization
and coordination take place during periods of maximum
stability. The techniques presented heb You detect and
make the best use of such stability. -

Project Practicalities
improving your designs
by Mark Lorenz
A metrics process such as this one, which measures inheritance,
collaboration, encapsulation, and design techniques, will help you
build higher-quality systems using OT.

Getting Real
Ciass versioning and instance migration
Jay Almarode
In the dynamic Smalltalk environment, you need a strategy for when
class modification causes structural changes to instances.

comp.lang.smalltalk
Hardware
Alan Knight
Could we build a Smalltalk processor that runs Smalltalk as fast as C
runs on a conventional CPU? More importantly, should we?

Departments
Editors’ Corner

4

9

16

19

22

24

2
Interview 28
Recruitment 30
The 5malltalk Report (155N# 105&7976) is published 9 times a year, monthly except in Mar-Apr,July-Aug, and N.n-Oec, Published by
51G5 Publications Inc., 71 West 23rd 5t., 3rd Floor, New York, NY 10010,@ Copyright 1995 by 51GSPublications, All rights reserved.
Reproduction of this material by electronic transmission,)temn or any other method will be treated as a willful violation of the L15
Copyright Law and isFlatly prohibited. Material maybe reproduced with express permission from the publisher, 5econd ClassPostage
Pending at NY NY and additional Mailing ofncm, Canada Post International Publications Mail Product 5ales Agreement No. 290366.

Individual Subscription rates 1 year (9 issues] domestic $B9; Mexico and Canada $114, Foreign $129; Institutional/Library rater
domestic $199, Canada & Mexico S224, Foreign $239. To submit articles, pleas+ send electronic files on disk to the Editors at SS5
Meadowlands Drive #5o9, Ottawa, Ontario I(2C 3N2, Canada, or via Internet to stmpn@objenpeople, on,ca,Preferred formats for figures
are Mac or ~5 EP5,TIF,or GIF formats,Always send a paper copy of your manuscript, including camera-ready copiesof yaurfigures (laser
output i5 fine),

P05TMA5TEFt 5end domestic address changes and subxription orders to The 5rnalltalk ReporC P,O,Box 5050, Brentwood,TN 37024-
5050. For serviceon current domestic subscriptionscall 1.S00.361.1279 or fan615.370.4E45, Emaikwbscriptions@sigs.tom, Fm foreign
subscription orders and inquiries phone +44(0)1 B5B,435302. PRINTED IN THE UNrTED 5TATEs.

1

John Pugh PaulWhite
continued on page 32

2

A
s SCHOOL SESSIONHAS BEGUN again around North
America, one question we often get asked is
“why wen’t more schools teaching Smalltalk?” To

us, it has been a point of frustration that there has not
been a great increase in the number of schools using
Smalltalk somewhere in their curriculum. The univer-
sity with which we are affiliated, of course, was (and
continues to be!) a pioneer in the use of Smalltalk. At
Carleton, we introduce students to Smalltalk during
their first week in the program, and use it pervasively
throughout. Smalltalk is used when teaching program-
ming techniques, data structures, programming lan-
guage concepts, and a variety of advanced topics such
as computer animation and
expert systems, Object-oriented

algorithms at our
“object nonsense’
solutions for his f
all Smalltalk! We
single champion
implement the c
the will of a signi
happen, and that
be happening in

Another reason
is that it is perce
crowd to be just
move to structure

software engineering principles It seems onlv when
are taught ahead of structured
techniques, although both are
covered in detail (as well as a
number of courses that utilize
more traditional CS languages
such as C and UNIX).

We think the end products
produced—our graduates—are
as strong or stronger as those
from any other school. And this

fimdingsta;ts to be

impacted, or enough

pressurefiom industry
gets exerted, that

[CS] departments begin
to chan~e.

strength is more than just with
Smalltalk programming—they
are very strong software engineers. The feedback from
employers has been excellent. When talking to one
employer, their comment was “these students under-
stand that software development is not an individual
thing that software generated must be integrated with
other software,” This was interesting because the stu-
dents were actually co-op students carrying out C
development, It seems the principles of data and pro-
cedural abstraction, which are introduced immediate-
ly when using Smalltalk, are tiken with the students as
they move forward into other application areas. The
old adage of “what is learned first is what is always
remembered” is true for software engineers.

So, why aren’t computer science departments rush-
ing to jump on the Smalltalk bandwagon? It seems,
unfortunately, that they believe it’s too much work. A
program as radical as the one we have implemented,
for example, does have a fundamental impact on
everything done within the program, and requires a
commitment from faculty that is difficult to attain. An
interesting case was a person teaching analysis of

.– ---.-.-o_-

asked, the faculty
bozud, made up e
(who hire their stu
doing their studen

What is needed
advisory boards”
ments, It seems
impacted, or eno
exerted, that depa
suggest that you
know that you th
producing should
ware field of today

And for those o
to make these ch
make sure that bo
general, and thos
understand the la
doomed to fail,
arrangements for
school, who felt sheltered from this
’—but when students submitted
irst assignment, the pseudocode was
recognize that it isn’t realistic for a
of Smalltalk in a department to

hanges necessary it really requires
ficant number of faculty to make it
, unfortunately does not appear to
most cases.

for this lack of movement to objects
ived by many of the “ivory tower”

another passing craze, Unlike the
d programming, which was really

led by academics rather than
industry, the move to object-
oriented programming has very
much been driven by industry.
On a positive note, we are now
seeing some colleges getting into
the act, and in a hurry. We had the
pleasure this past summer of
spending some time with the
entire faculty of one community
college that has decided to turnitscompleteCSCwriculumup-
side down and become an object-
oriented school. Clearly this was a
painful thing to do but, when

answered frankly that “their advisory
ntirely of members of local industry
dents) said failing to do so would be
ts a dissemice.”
, of course, is for other “industry
to shake up many other depart-
only when funding starts to be

ugh pressure from industry gets
rtments begin to change. Well, we
in industry let your alma maters

ink the software engineers they are
be better equipped for the new soft-
.
f you in departments who are trying
anges, some words of advice. First,
th the people who teach objects in
e who teach Smalltalk specifically
nguage. Put in the wrong hands, it is
Second, make sure that you make
access to the software ahead of time.
The Smalltalk Reporl

Introducing Argos
The onlyend-to-endobjectdevelopmentand deploymentsolution

An integratedobjectdhsg ml providesmodd-driwn
developmentforenterprise-wideapjlmions 1

AUobjectmcdekmemanagedin a shared repsitq,

supporting team dew40ptnent and Cractity

I

L&&l ;A
Power@dragunddrop“enzymes”makeapplication

Comprehensiwsetofwidge~, imludingbuiinfw I Ill
graphics,mukiwdia,andothersmakea#kiOn —
developmenteusyandpowerfd

VERSANT ArgosTMis the only application development
environment (ADE) that makes it easy to build and deploy
powerfi.sl,enterprise-wide object applications. Easybecause
Argos features an embedded modeling tool and SmaHtalk
code generation that ensure synchronization between your
models and applications. Powefil because Argos supports
fill traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANTTheDatabase For ObjectsTM

control transparently. And only Argos is packaged as
completely visual ADE built on ParcPlace VisualWorks”.

a

Leading organizations — in industies fl-omtelecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

1380 WillowRoad ● Menlo Park, CA 94025 s (415) 329-7500

1

0 IYv4 h Vcrsant(M@ Tcchrmluw. W.R.%4.., VElW4hT hws and11. DaI&u l% Objccrsm rradmur!ao[Vmsmrohjca lm-hnnlu~!(lqnmtiun AHmhcr cmnp.y nammandlogos arc rmgi.wcrcdtrademark!ofrhc indnmbmlcomp.icb

Coverage analysis
in Smalltalk

Mark L.Murphy
HOW MUCH IS ENOUGH?

Quality assurance, unfortunately is largely a guessing
game. You know when programming is complete on a
project, because all the requirements have been met.
However, the standard against which quality assurance is
held is, “Are there any bugs left?” which is impossible to
know. You could test until the end of time and still miss
bugs. Every project, therefore, makes a decision as to how
much testing is enough.

Project managers are charged with ensuring that the
testing is done, and done properly. It is not always easy to
tell, however. Suppose you ask to see the unit test plan for
a 24-class subsystem, and the developer hands you a 7-
page document outlining a dozen tests, It is quite likely
just by looking at it, that the test suite is insufficient to
really test out all the subsystem’s functionality-it is sim-
ply too short. Suppose, however, that the test plan were 70
pages, or 700. How do you know if the tests really do thor-
oughly exercise the subsystem? A 700-page test plan may
seem to be good based on size alone, yet might miss
entire classes, if the suite is really bad. You just do not
know for sure.

What we need is an objective measurement and set of
criteria for determining test completeness, Coverage
analysis is one such metric. This article will describe what
coverage analysis means and how one can use it in prac-
tice, It includes an overview of some classes for measur-
ing method coverage in Visual Smalhalk 3.0.1 (VST).
4

ENTER COVERAGE ANALYSIS

Coverage analysis involves “teaching” the subsystem to
track what portions of it a test suite executes. For exam-
ple, each method might note that a test executed it before
evaluating the body of the method itself (see Fig. 1). One
can run a test suite, collect coverage tracking informa-
tion, and determine specifically what the test executed
and what it did not,

Now you have real-world information to determine how
thorough a test suite is. The spots that were missed repre-
sent areas that the suite cannot audit. If they were not test-
ed by hand in some other way, they have not been tested at
all, and may contain bugs. You can even express coverage
data in metric form (e.g., “we covered 87?i0of the subsys-
tem’s methods”) for use in overall project benchmarking.

COVERING WHAT? AND HOW?

A generic coverage analysis tool will not know specifics
about an application. Hence, it cannot say “You missed
testing the X-Base file filter.”

All the analyzer can do is report on abstract coverage
metrics. For example, method coverage asks the question,
“Has every method been executed at least once?” Ifyou’ve
never tested a method, you cannot know if it works!

Researchers and practitioners have identified several
types of useful coverage metrics, each asking a different
question. These include:

● Statement: Has each line of code been executed at
least once?

werena..*C.4

ksedMeUmds
lastSntry
ove

asoxillopencd

mateCllild
>clo.wRequest

●

●

●

Branch: Has every logical branch (e.g.,
ifl’me:and ifFals@ been tried in both the
true and false directions?
Loop: Has every loop (e.g., do: on a
collection) been tried with O,1, and
several passes through the loop? Zero
passes means that the loop body (e.g.,
the block passed to do:) is never
evaluated,
Path: Has every logical path through a
method been tried? Figure 2 shows a
sample Smalltalk method and the four
paths that an application could take.
Branch coverage would be satisfied by
testing only two of the paths: A and D.
-.[-,

K
/

Lit 0f M
TestClass>
TestClaeoxem

TestClass cl

TcslClassx
OticrClass

Figure 1. Method coverage in action.
The Smalltalk Report

Now it’s EasV to Build Interactive Diagrams

Quickly create advanced interfaces that convey
information better than lists... with DDF

DDFh’ is an easy-to-use tool that

dramatically reduces the time

needed to build interfaces:

●

●

●

9

9

●

Example intetiace built with the Dynamic Diagram Framework

makes building diagrams simple

provides a new VisualWorks widget

pre-configured for immediate use

written completely in Smalltalk

refineable and extendable

includes ARS’S Parcels & Structured
Graphics for building “dynamic” nodes

With DDFM you can quickly and easily ...
● create customized node icons with shapes ■ select and move nodes

“ add and remove nodes from a diagram ● format diagrams and hide nodes
● connect and disconnect nodes within a diagram ● print and store diagrams
● customize lines and line decorations “ dynamically update diagrams

Parcels & Structured Graphics (P&SG”)
&

●
“ high precision 2-d object-oriented graphics for VisualWorks

*

#“ structured graphic shape objects

● drag-and-drop with parcels ...-,

● shapes recognize “hot-spots”

“ provides 2 new VisualWorks widgets Shapes can be rotated, translated, scaled
and combined to form new shapes.

Call (800) 260-2772 today to order or e-mail info@ arscorp.com
for more information. Ask for a free copy of the white-paper

“Building Diagram-Based Applications with DDF”

A/so Available: Ml - Multiple Inheritance

App/ied Reasoning Systems Corporation (ARS) is an innovative devdoper of high
quality Sma//ta/k development too/s, application frameworks, intelligent soffware
systems,and rdated services thatprovide advanced so/utions to compks prob/ems.

Smalltalk Products 9 Consulting ■ Education ● Mentoring

Phone: (91 9) 781 -7997¤ E-mail: info @arscorp.com

I COVERAGEANALYSISIN SMALLTALK
ANALYZING THE RESULTS

From a quality-assurance perspective, coverage analysis
will provide a list of missed pieces of code, along with an
overall percentage of code coverage. Developers must
decide on an acceptable coverage level for a project. If a
unit test for a subsystem fails to meet that metric, devel-
opers can add more tests based on the list of missed
coverage spots.

Note, however, that some coverage “misses” may actu-
ally be expected. For example, perhaps there is some code
that specifically handles the exception raised when a
database server is not responding, Testing that code in a
live situation means bringing down the server, which
database administrators typically dislike. Hence, the test
suite intentionally might skip a test for that exception
handler, but the coverage analysis will still report that the
suite missed it. Hence, a sub-100% coverage value may
still be acceptable,

What you really want is 100% practical coverage, where
testers justify each missed method. Note that those meth-
ods still must be tested somehow, even if it is by hand.
Since you cannot continually re-test that method (regres-
sion testing), make sure it is right the first time!

METHOD COVERAGEIN VST
If you want to employ method coverage in your Smalltalk
application, you have three main choices:
1. Hand-code messages to a coverage-logging routine, as

was shown in Figure l—but this is time consuming.
2. Use the profiler that comes with the Smalltalk

development environment.
3. Use or construct custom classes specifically for doing

method coverage analysis in an automated fashion.

Using a profiler
Many Smalltalk implementations come with profiling
tools used for measuring the performance of pieces of
Smalltalk code. One could, in principle, use them for
method coverage analysis as well, since they watch over
what a test executes. The TimeProfder that comes with
VisualWorks would not work in this case, because it uses
a statistical sampling technique that might miss methods,

The profiler that comes with VST,however, does catch
each and every message an application sends. Why, then,
build another set of classes for method coverage? There
are two reasons:
1.

2.

The VSTprofiler watches all methods in the image,
Even the simplest test generates dozens to thousands
of messages, most of which are for Smalltalk kernel
classes, It would be difficult to determine the use of
application classes with all this “noise.”
The profiler does not report the methods the test
missed, only those that it executed (and how long they
took]. Developers would have to manually cross-
-reference against the class to figure out which ones the
test missed.
—

6

Ci.mtbtlmdxmend-
ATmcinlmlI -

■m=ondnmthdm .BO.lmari
*.1- an..lean

ifmm: [. ..1 +Ifl”rue: [. ..]
if Fml-: [. ..1 if False: [..]

‘res t of meth. d here- ‘rest of In-athad hers-

Sir.wthd Bmod- .=.=mndmathodr mkl.nn
Um.lerm B: Tnlc, ulmrak .BOnlean

ifmue: [.. .1 irTrue: [. ..1
If FalBe: [. ..] —irFmlse: [. .,1

‘rest of methcd here- ‘rest ❑ f method here-

tk.tmmthmd, mu-l.- ■m.OndUathd I *.1-
amolean Cwliwallrm anmlear,

ifl’me: [, ..] +ifmue: [. ..]
ifF.l,a: [. ..1 ifmlse: [...]

‘rest of method here- ‘rest ❑ f m.ethad hem”

Eir.mthd,ml.m .00.nmmthnd, nbl.mm
aB.ol - awolear,

iflmle: [., .1 DFnlzeinhb _ irTrue: [,, .]
if False: [. ..1 —iEFal se: [. ..]

‘rest ❑f matlmd here- ‘rfmt of method here-

-. —..
Figure 2. Paths to be covered.

Technique: Method wrapping
What we want to do is create a mechanism of “instru-
menting” methods: adding code that does not change
their original behavior but adds in new functionality. For
coverage analysis, the instrumentation will simply inform
some Smalltalk global that this method has been invoked.
That global will have to track the called methods and pro-
vide coverage results on demand when the testis done, as
shown in Figure 1.

The term for this instrumentation technique is
“method wrapping.” There are two ways one can wrap a
method, One is simply to add new Smalltalk code to the
source of the existing method and recompile it. This will
work in many situations, but not all. Primitive methods
cannot be wrapped this way, because Smalltalk code and
a primitive call cannot coexist. It also requires one to
parse Smalltalk methods, which is a nuisance.

Another approach, moving the existing method, is
used both by the TimeProfiler that comes with Visual-
Works Advanced Tools and the classes in this article. The
CompiledMethod to be wrapped is moved in the class’
method dictionary from its original selector to a new,
unused selector. Then, a new CompiledMethodis created
and installed under the original selector. This new

Table 1. Method dictionary before instrumentation.

Selector Method

log:fothzss: log: aSymbol forClass: a Class

“Executereal code here”

Table 2. Method dictionary after instrumentation.

wSelector

real_log:forClass:

Method

log: aSymbol forClass: a Class
“Executereal code here”

log: pl forclass: p2
“Executeinstrumentation code here”
‘self real_log:PI fdlass: p2
The Smalltalk Report

I+gh

Code
Quality

Low

Maximize Reuse

Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused.

Reueable Reusable software requires readily available, high
Components

quality documentation.

o-

And the easiest way for Smalltalk developers to get
Non-reusable quality documentation is with Synopsis. Install it
@nponenle and see immediate results!

Features of Synopsis
. Documents Classes Automatically

Low
Documentation

H@
+ Builds Class or Subsystem Encyclopedias

Quality . Moves Documentation to Word Processors

. Packages Encyclopedias as Help Files

Products

mSynopsis for IBM Smalltalk $295 Team $395 -

8912 OxbridgeCourt,Suite 300, RaleighNC 27613 Synopsis for Smalltalk/V and Team/v $295
Phone 919-647-2221 Fax 919-676-7501 Synopsis for ENVY/Developer for SmalltallW $395
—

method executes the instrumentation code, then sends
a message, using the temporary selector, to invoke the
original behavior. Since the original CompiledMethod
remains unchanged, any type of method can be wrapped.
Tables 1 and 2 show a fragment of a class’ method dic-
tionary, both before and after instrumentation.

In either case, to “unwrap” the method one simply
restores the original compiled method under its original
selector. While a method is wrapped, it will perform the
added code (e.g., log method execution to a global) in
addition to its old behavior. Once you unwrap it, every-
thing returns to normal.

The VST implementation of coverage analysis via
method wrapping for this article involves three classes:

● SRInstrumentedMethod-can wrap and unwrap a
specified method.

● SRCoveredMethod-a subclass of SRInstrumentedMethod
that wraps methods with coverage-logging statements.

● SRCoverageMonitor—logscoverage events created by
the SRCoveredMethodinstances.

These classes are available on the Internet at
http, //www.evro,com/STReport/Oct 95,htm.

Using the monitor
The only class that developers need to use directly is
October 1995
SRCoverageMonitor.The following steps describe how to
start and stop coverage and get results:
1.

2.

3.

4.

Create anew instance of aSRCoverageMonitorvia the
new class method.
Tell the monitor which classes and methods to watch.
There are three methods that one can use:
● cover: aChss—covers all methods for that class (or

metaclass)
s cover: aClassincluding: aCollection-covers the

indicated methods for that class
s cover: aClassexcluding: aCollection-covers all

methods for the class except the specified ones
Start monitoring these methods, by sending
enableCoverageto the monitor.
Perform the tests to be monitored.

5. Stop monitoring by sending disableCoverageto the
monitor.

6. Inspect the results, using these methods:
● coveredMethods-returns a list of all methods that

were executed during the tests, along with how
many times they were sent

● notCoveredMethods-returns a list of those methods
on the covered classes that were not executed

● browseNotCoveredMethods-brings up a MethodBrowser
on those methods that were missed during the test
7

ARBOR INTELLIGENT SYSTEMS, I

VisualWorksmakesyou productive.

Arbor Help System ● Arbor Utilities ● Arbor Ins
makeyou evenmoreproductive!

At ArboL we’ve been building Smalltalk applications for over five years.

During that time we’ve learned quite a bit about what developers need to be

Now we’ve taken some of that knowledge and packaged it for your team,

ArborUtilities—Over50enhancementsand additions to [he VisualWorksenvironm

ArborInspector-Anenhancedversionof the standardVisualWorksinspectorthat

need to open multiple windows while inspecting—no more duttefino more fuss,

ArborHelpSystem3.O—The bestjust got better ... Forover two yearsAH5 hasb

most powerful way to add end-user help to your application:[ontext sensitive,widge

that doesn’t need a developerto author” A powerful, hyperlinked on-line documenta

. Support for multiple languagesand easyintegration into object databases., it’s all

With version 3.0,we’ve added numerousfeaturesand enhancementsto makeAHSm

and easierto usefor developers,authors and end-usersalike. Also availablefor Argos

Findout why somany compank5are turning ta Arbor for help

Calltoday,be more productive tomorrow, Site licensing is ava

(313) 996-4238s fax (313)996-4241” info@aisys.com
The following code fragment illustrates the use of these
methods:

I mon today I
mon := SRCoverageMonitornew.
mon cover: Date.
mon enableCoverage.

“Thisis the test that coverage for which is being measured”
today:= Date current,
Transcript show: ‘Thedate is: ‘, today printString; cr.

mon disableCoverage.
mon browseNotCalledMethods.

A few caveats about using these classes:
● Because method wrapping does change classes at a

low level, it is best to save your image before using it,
in case of disaster. If the test crashes and fails to run
to completion, one can restore the original versions of
the instrumented methods via SRInstxumentedMethod
class>>restoreAllOldMethods.Each wrapped method is
tracked in a class variable, which this method uses to
unwrap them all.
8

NC.

pector

productive.

ent,

eliminates the

een the easiest,

t basedhelp

tion browser

still there,

ore’helpful’

.

ilable.

Enabling coverage on methods that the
coverage analysis classes use will cause an
infinite loop, Only enable coverage on
application-specific classes or method
extensions.
The enableCoverageand disableCoverage
methods may take awhile to run if a lot of
methods are being monitored.
Methods whose selectors are made up solely
of punctuation (e.g., <=)cannot be wrapped.
The algorithm for coming up with a
temporary selector (the original with a “real_”
prefix) will not work. SRInstrumentedMethod
could be modified to use an alternate scheme
that would overcome this limitation.

OTHER SMALLTALKS,OTHER
COVERAGEMETRICS
Coverage analysis is not limited to VST. Both
VkualWorks and IBM Smalltalk/VisualAge can
employ method coverage using the same tech-
nique. Note that configuration management
tools, such as EW, will require slightly different
code, as they typically have different methods
for compiling methods into classes. Also, we do
not want the instrumented version of the
method to go into the revision history, lest it
grow out of control.

You could also implement other coverage
metrics, but with some difficulty. Ideally, one
could do loop and branch coverage by creating

modified versions of Boolean and the block classes (e.g.,
VST’S ZeroArgumentBlock). However, most Smalltalks
irdine a lot of that code, so real messages are not sent;
hence, the modified versions would not get triggered, One
could modify the Smalltalk compiler classes to overcome
this problem.

SUMMARY
Coverage analysis is an important component in the
quality-assurance program for software development,
It is the only real way to feel confident that the test
suite is doing its job. These classes for VST will give you
a head start toward incorporating method coverage on
your project.

Acknowledgments
It should be noted that the research for this article was
conducted as part of work done for American Manage-
ment Systems. Also, the author thanks Doug Kittelsen for
his able editorial assistance.

Mark Murphy is an independent consultant and Smalltalk tool-
smith. He is also the author of QUALITYTOOLSFOIIC/C++ (Prentice
Hall, 1995). He can be reached at 71202.2241 @compuserve,com.
The Smalltalk Report

Breakpointsrevisited*
Bob Hinkle Ralph E.Johnson
I
N THE LAST ISSUE,we described the implementation of
a new subsystem for compiling based on the new
classes MethodProducer and ParameterizedCompiler. In

this issue we describe an extension of this subsystem and
use it to implement a more powerful variety of break-
points. This will provide better motivation for the large
degree of flexibility built into ParameterizedCompiler.

Our new breakpoints must be locatable between any
two statements. Each breakpoint also has a condition and
is activated only if this condition evaluates to true. These
new breakpoints have a three-phase lifecycle, First, a
breakpoint is created by a user interacting with a pro-
gramming tool to insert a breakpoint into the text of a
method. Second, the breakpoint is implemented when the
source text is compiled into a new method. Third, the
breakpoint is examined when the new method is browsed,
and it’sactivated when the new method is executed, draw-
ing attention to itself in some useful way. We will focus on
the second phase of this lifecycle because that’s where the
bulk of the work is done and where we use the changes to
the MethodProducer-ParameterizedCompilerteam.

THE EVOLUTION OF METHODPRODUCER
The design we described last issue used the new classes
MethodProducer and ParameterizedCompiler to restructure
compilation, malting it easier for programmers to special-
ize the process. Figure 1 shows how these classes interact.

This diagram indicates the sequence of messages and
activity during method production. Time flows from top
to bottom, and vertical boxes indicate periods of activity
for a given objector logical group of objects. Solid vertical
lines show the lifetime of an object. If an object does not
exist rit the beginning of the interaction, its vertical line
will be dashed until the moment it’s instantiated, Solid
horizontal lines represent message sends, with the selec-

Bob Hinkle isan independent Smalltalk consultant and writer. His
current focus is the improvement of existing tools and the cre-
ation of new tools to revitalize the Smalltalk environment, He can
be reached at hinkle@primenet.com. Ralph Johnson learned
Smalltalk from the Blue Book in 1984. He wrote his first Smalltalk
program in the fall of 1985 when he taught his first course on
object-oriented programming and design. He has been a fan of
Smalltalk ever since. He is the only author of DESIGN PAITEFINS:

ELEMEIWS OF REUSABLE OSJECr-ORIEtWED SOWWARE to regularly program

in Smalltalk, and continues to teach courses on object-oriented

programming and design at the University of Illinois.
October1995
1=cwnpilerclass

I/T
......!W

inMalu&mnpiler

Iserckm, Rk.

-==~ !mmpilninrmlii.gHFaik

4--=-4

1=
MM.mmTredoK

lransfomC0dsStr9anrfac

I,am.rmmh%lhadbc

slmwSwrcemtihoddas%
8.4ec1nrmlaSifed

1-Rswreaamrcn

J=o@i.dSourcwEl.rASwma

methodclassseleciordmfied

l+
nwparmr, &.

.W.
punmra5moPaHern
.mnlexlmolfjngb.ildw
swnCarmotidFrnk

rnah~Mdhad

em#EHect

I

I

—
Figure1. Interactiondiagram for MethodProducerand
ParameterizedCompiler

tor indicated, while dashed horizontal lines represent
messages that create a new object in the interaction.

This process begins when a MethodRoducer creates a
new ParameterizedCompiler,passing as parameters the vari-
ous classes used to create collaborators during compila-
tion. The MethodProducerthen has the ParameterizedCompiler
begin compiling, The ParameterizedCompilerdoes this in
much the same way the original SmalltalkCompilerbehaved,
with two exceptions. First, it creates new collaborators
using the classes it was given by its MethodProducer.Second,
at four points during compilation, the Parameterized-
Compiler calls back to its MethodProducer, allowing the
MethodYroducerto transform the objects flowing along the

● Sourcecode for the breakpoints package is available by anonymous ftp
from st.cs.uiuc.edu.Look for the file Breakpoint20.st in pub/st_vw. A
new version of lightweight classescompatible with this project is also
available in the same directory in the file Liqhtweiaht20.st.
9

Help Designer
for VisualWork~

Heip Designer Is net just a programmer’stool- now any teem
member can create high quality on-llne help. This powerful
developmenttool is rich in featuree,providesflexibleset of toote,
endfacilitatesthe reuseof componentswithinyour applications.
Here Is whatyou get

~ ~

● Help Editor * Context-sensitivehelp
● Help Viewer ● Inllneend outtlne
● Image Editor s Tag Help
● Text Editor ● Hypertextlinksand
Help Manager references
● ControlPanel ● Popupdefinitions
@Help CustomControls ● Keywordsearch

● Historysupport

FREE DEMO AVAILABLE I ● Macro definitions
● Accees to font, paragraph,

TO ORDER CALL 212-765-5982 and colorattributes
● Embeddedobjects

FAXREWEST 212-765-6920 ● Run-timea4fWlngmode
● PlatformIndependenthefp

files

Gp GreenPoint, Inc.
77Wesf55 Slfeet, Suite 110
New Yorir,NY 10019
EMaii:75070.3353@20rrrpuserve.tern

FtiWakW imamdemrk cfPucPlaca Syatmns
compilation pipeline. When the ParameterizedCompiler
returns a new compiled method, the MethodProducercalls
back to the target class to load the new method into its
method dictionary and to store the method’s source code,
in whatever way the class deems fit.

The first extension of the subsystem is a new subclass
of ParameterizedCompilercalled GenericCompiler,Whenever
GenericCompilercreates a new collaborator, it sends a mes-
sage to its producer with the new collaborator and itself as
parameters. This allows the producer to initialize the col-
laborator as desired.

The second extension redesigns MethodProducer to
make it less monolithic. Suppose we’re designing a
MethodProducer for breakpoints, and later we wish to add
producers that support activating instance variables and
test coverage instrumentation. How would these three
producers be combined? We could make three sets of
changes to the original MethodProducer, but, as the num-
ber of producer specializations grow, this wil result in
one horribly complicated class. One can imagine meth-
ods that have lots of internal tests: if there are break-
points but no active variables or test coverage, do this;
but if there are breakpoints and active variables but no
test coverage, do that; and so on. This becomes a pro-
grammer’s (and especially an object-oriented progam-
10
mer’s) nightmare. A better solution is to create a new
hierarchy of method producers (see Fig. 2) that can be
combined dynamically at runtime.

Dashed ellipses indicate abstract classes, classes that
define an interface but are not intended to be directly
instantiated, Solid ellipses indicate concrete classes, which
are to be instantiated. The arrows indicate inheritance.
LightweightProducer is a producer associated with light-
weight classes, which we described in a previous article.1

MethodProducer is now an abstract class defining the
interface for all producers. MethodProducer has two sub-
classes. ClassBasedProduceris the normal default method
producer for a class (much like MethodProducer used to
be). ProducerModifier is an abstract class. It is a building
block for creating new subclasses that can be combined
with a ClassBasedProducerto create a composite producer
object with new specialized capabilities. Using this archi-
tecture, a method producer may be either a single
ClassBasedProducerobject or a chain of ProducerModifiers
connected by their component instance variables and ter-
minating in a ClassBasedProducer,Another ProducerModifier
can be added to an existing producer by sending the Pro-
ducerModiiier the #component: message, which stores the
producer in the ProducerModifier’s component instance
variable, effectively placing the ProducerModifierat the top
of the producer chain, The compiler interacts only with
the topmost producer, or simply “top producer,” thus
keeping the nature and organization of the producer
structure invisible to the compiler. This way of combining
producers may seem familiar, as it’s similar to the combi-
nation of Wrappers and Views.Both ProducerModifiers and
Wrappers are applications of the Decorator pattern des-
cribed by Gamma et al.z

The methods defined in MethodProducer fall into two
categories. The first category of methods are called “driver”
methods. These are methods that drive the compilation
process and should be executed only once, by the top pro-
ducer. Examples of driver methods are the public interface
methods such as #compile:in:notifying: and #parse: in:noti-
ljing:, and instance creation methods such as #new-
Compilerand #newParser. The second category of methods
are the “chain” methods. These methods are ones that
must be passed down the chain of producers so that each
one can provide its own special processing as desired. For

-“----

I .-------.w.
.. MethodProducer :

1
Ie

. _ ProducerModifier ;.------ --

A
BreakpointProducer

Figure 2.The new MethodProducer hierarchy.
The Smalltalk Report

Here’s Your Chance
To Discover What A

Smalltalk Consulting
Firm Can Really Do.

Object/nfe//igencem
Helping Clients Buiid
Enterprise Applications

● ParcPlace
VisualWorks”

. IBM VisualAgem

. DigltalkVisual
Smalltalkm

Consulting &
Development Services

Hourly Smalltalk
Contracting

On-Site Smalltalk
Development &
Project Management

00DBMS Development:
Gemstonem, Versantm &
ObjectStorem

On-Site Mentoring &
Training

Object Modellng,
Analysis & Design

800.789.8595.,
e-mail: info@ objectint.com

Objectlntelligence
Will INdgefleld Drtue,Suite240
Raleigh,NC27609
Voice919.E7S.66WFax919.878.m
example, the four transformation methods are chain
methods. Each ProducerModifiercan transform the input,
but it must then pass the input on to its component for
more possible transformations. The new GenericCompiler
sends messages to the top producer to initialii each col-
laborator, and these messages must also flow down the
producer chain,

Athird example of chain messages requires a little more
thought to implement, These are the various messages,
such as #parserClass and #builderClass, used by Method-
Producer to specify the classes used by Parameterized-
Compiler.In a producer chain, each ProducerModfier and the
ClassBasedProducermay have preferences for a given collab-
orator, and somehow these different preferences must be
combined into a single answer to pass to Parametexized-
Compiler.We combine classes using the message #compose-
With:, which must be implemented in any classes that
instantiate compilation collaborators. When this message
is sent, the answer must be a class that has the abilities of
both the receiver and the message parameter. By default,
C1.assAcomposeWitk nil returns ClassA.Fmthermore, if ClassB
inherits from ClassA,the answer to ClassA composeWith:
ClassBshould be ClassB.However, if ClassAand ClassBare not
related by inheritance, then there must be some class ClassC
(and it will probably be a subclass of one of the two) that
melds their behavior for compilation, and ClassCshould be
returned from ClassAcomposeWith:ClassB.Thus, the result of
#composeWith:will be the union of the two classes consid-
ered as implementations.

With this architecture, the interaction between a Gener-
icCompilerand a producer chain (see Fig. 3) is quite similar
to the interaction of Figure 1. Each ProducerModifier
responds to chain messages by performing any special
processing of its own and then forwarding to its compo-
nent. The GenericCompiler,in addition, adds its call-backs
to the producer for initializations.

In this diagram, the thick arrows represent interactions
between the top-most ProducerModifier and its compo-
nents. In these cases, the ProducerModitiers sandwich any
special-processing code of their own around forwarding
the same message to their component. This forwarding
process stops at the ClassBasedProducerbecause it has no
components.

MethodProducers have a number of responsibilities to
their associated compilers, with default responses
defined in MethodProducer and ProducerModiKer. As a
result, most new specializations of either ClassBased-
Producer or ProducerModifier need implement only a few
messages. When we were first developing this new design,
we worked with a chart that summarized the necessary
changes for various kinds of producers. We’vereproduced
a portion in Table 1. It may give you an idea of how to
begin if you’d like to develop anew producer of your own.

The left-hand column contains messages sent to pro-
ducers from themselves and their associated compiler.
The next three columns contain notes about the imple-
mentations of these messages for three different kinds of
October 1995 11

Whe 405 El CarninoReal,#106
MenloPsr& CA 94025,U.S.A

Wmalltalk o,~::~:::fl~ti
Wtore

Jm:1-415-854-2557
BBS: 1-415-854-5581

emuil: info@smalltalk.corn
CompuServe:75046,3160

The Srnalltalk Store carries over 75

Smalltalk-related items: compilers, class
libraries, books, and development tools. Give
us a call or send us an email - we’ll put you
on the mailing list and send you a copy of
our combination newsletter-catalog. It’s
informative and entertaining.

When you get the
chance, check out our new
dialect-neutral Smalltzdk
bulletin board system at
415-854-5581, 8N1.

Send For Our Free Catalog!

12
producers, Cells left blank indicate that the default
response (as implemented in MethodProducer) is used. An
equals sign “=” means the implementation is the same as
in the cell immediately to the left,

BREAKPOINTCOMPILATION
With these new additions to the producer-compiler fami-
ly we can now compile our improved breakpoints, using
the class BreakpointProducer, BreakpointProducer is a sub-
class of ProducerModifier because it will be needed if and
only if there are breakpoints present in the text being
compiled. As we said in the previous section, a new
ProducerModifier only needs to override those few meth-
ods where it must intervene to fulfill its purpose. In the
case of BreakpointProducer, the necessary methods can be
determined by a quick glance at its column in Table 1.

It has four preferences for collaborator classes, using the
new classes GenericCompiler,GenericCodeStream,Extended-
NodeBuilder and AlteredDisplayMethod, GenericCompiler is
necessary because Table 1 indicates that BreakpointProducer
must perform some collaborator initializations. Generic-
CodeStreamis a partner of GenericCompilerthat makes it pos-
sible to initialize CompiledMethodsand CompiledBlocksas
they’re created. BreakpointProducer uses ExtendeclNode-
Builder to create a new kind of parse node called Break-
pointNode, whose purpose wiUbe explained below. Altered-
DisplayMethodis a new subclass of method that maintains
Table 1. Implementation notes for different producers.

ClassBaaedProducer LightweightProducer BreakpointProducer

cornpiler(lass ParameterizedCompiler 1 = GenericCompiler
inilializehnuile~
parserClass Parser .

initializeParsenfor ignore breakpoint characters

builder(lass ProgramNodeBuilder . ExtendedNodeBuilderI
initializeBuilde~ fo~
codeStreamClass CodeStream . GenericCodeStieam

initializeCodeSixeamfo~
mmeScoueClass NameScoue ——

I initiliseNameScou=fo~ I I I
method(lass CompiledMethod UnstoredMethod AlteredDisplayMethod

initializeMethodfor set method’s breakpoint —
flag to true

blocldhss CompiledBlock ——

initilizeBlockfo~
transforrnSourceStream:fon I f I re-position breakpoints

to statement end

transforml’ree:fo~ insert breakpoint code
I into parse tree

transfonnCodeStream:fo~

I transfornlwthodfoc ‘ I I

IasStoredSource: I I I strip breakpoint characters
from stored version of source

originalSource:storedSource:
methodclass:selectm
classified:

set method’s source to set method’s display source
equal the original source to equal the original source
The Smalltalk Reporl

Need to create 3-tieq enterprise-
wide applications and integrate
other languages with your
Srnalltalk application?

With HP distributed Smalltalk 5.0, you
can move beyond simple clientlserver to
true distributed, enterprise-wide applica-
tions, That’s because you get tools for dis-
tributed development and debugging, a
CORBA 2.0 object request broker, and
related object services that make it easy to
create business objects and distribute
them wherever you like on your network.
Control your business objects with the
Transaction CORBAservice in HP DST,
Integrate them with other C++ objects
when you use HP DST and another
CORBA 2,0 object request broker.

HP Distributed Smalltalk is an extension
of the ParcPlace VisualWorks environ-
ment. Put together, your programming
team gets a faster, easier way to develop
and deploy distributed applications on any
combination of supported UNIX and PC
platforms,

Send us your name, address, and phone #
and we’ll send you free white papers titled
“Manager’s Guide to Distributed Objects”
and ‘HP DST Technical Information.”

Phone: (408) 447-4722
F= (970) 229-2180

Attention: HP DST White Papers

e-maik dst@sde.hp.com

m HEWLETT@
PACKARD
two versions of its source, one as stored on disk and the
other as displayed in the browser. This allows methods cre-
ated by the BreakpointProducer to show breakpoints on the
screen without saving them to the ChangePile,

BreakpointProducer also implements two initialization
messages. The first used during compilation is:

initializeParser: aParser for: aCompiler
‘(component initializeParseK aParser for: aCompiler)

typeTableAt
Breakpoint absoluteBrealcpointCharacter

put: #hcIgnore;
typeTableAt:

Breakpoint conditionalBreakpointCharacter
put: #xIgnore;
yourself

This code causes the Parser to ignore the special break-
point characters, which permits them to occur anywhere
within their statement, including in the midst of other
tokens, without causing an error. Note that this method
forwards the initialization method to Breakpoint-
Producer’s component. This forwarding must be done in
every reimplementation of a chain method to ensure
correctness. The second initialization used by Break-
pointproducer is:

initializeMethod: aMethod fo~ aCornpiLer
“(component initiaLizeMethod:aMethod for:

aCompiler)
breakpoint hue;
yourself

This sets a flag associated with InstrumentedMethod,
AlteredDisplayMethod’ssuperclass, to indicate that the cre-
ated method has breakpoints. The Browseruses this flag to
indicate breakpointed methods in its selector list, It could
also be used by new tools to track debugging changes in
the environment and to turn breakpoints on or off on a
class or project basis.

Two more methods are required to handle the source
code as it’sbeing stored. First, to strip breakpoint charac-
ters from the stored version of the code, Breakpoint-
Producer implements:

asStoredSource: code
‘(component asStoredSource: code) copyWithoutAll:

(Array
with: Breakpoint absoluteBreakpointCharacter
with: Breakpoint

conditionalBreakpointCharacter)

Then, before the class is sent the message to store source,
each producer in the producer chain receives the message
#originalSource :storedSource:method: class :selector:classi-
fied:. This message gives producers a chance to do special
processing, BreakpointProducer sends the new method the
#displaySource: message with the original source (that is,
the source as actually parsed, before the breakpoint char-
acters were stripped out) as parameter. That way, the new
October 1995
01995EewletwnclUmd Compuly

I DEEPIN THE HEARTOF SMALLTALK
method can provide two forms of its source text, both with
and without breakpoints included.

BreakpointProducer’s most complicated responsibility
is to respond to the #bansformTree:for: message. It must
transform the input parse tree by adding new code at
every spot where a breakpoint occurs. We implemented
BreakpointProducer’s response using three methods. The
implementation starts with

transfonnTree: methodNode for: aCompiler
I block statements I
source computeTextPositions.
(self breakpoints asSortedColLection:[:x :y I x start>-

y start]) Do: [:bp I
block:= self findBlockEnclosing: bp in:

methodNode.
block body isSequenceNode

ifFaLse:[
block

arguments: block arguments
body (aCompilertransl.ateBuilder

newSequenceStatements:
(OrderedColletion with: block body))].
14
statements:= block body statements.
(self add: bp toStatements: statements for:

aCompiler) isNil
ifTrue: [*nil]].

‘methodNode

For each breakpoint, the BrealqointProducer sends itself the
message #fmdBlockEnclosing:in: to find the smallest (or
most deeply nested) block enclosing the breakpoint, This is
done using the ProgramNodeEvaluatorwe described last
issue. The BreakpointProducerthen ensures that this enclos-
ing block has a SequenceNode(rather than some individual
statement node) for its body. This is necessary because the
breakpoint code will be added to the block’s body as a sep-
arate statement, After that, the producer sends itself
#add:toStatements:in:, which we’ll explain a piece at a time,

The method fust determines which individual state-
ment contains the breakpoint to be added.

add: bp toStatements: statements for: aCompiler
I last c stint shnts I
last:= (c:= statements select: [:s I s extraPosition

first < bp start]) isEmpty

m.ilFtik
dta.

.

Patiml:
uiWr

I

ifl’rue: [nil]
ifPalse: [c last],

We added a new positional instance
variable extraPosition to all Program-
Nodes to help us find the statement
containing a given breakpoint, (The
existing variable sourcePosition is
unhelpful because it doesn’t run from
the statement’s beginning to end, but
just over those characters highlighted
during debugger stepping.) This vari-
able is set during the parsing of a
SequenceNode, and it includes all char-
acters in each statement, from the first
non-whitespace character to the last
one, including the terminating period
if present. With this new information,
we might wish simply to test which
statement’s extraPosition contains the
breakpoint’s position. Unfortunately,
extraPosition does not include white
spaces between statements (and fur-
thermore it would be quite difficult to
make it do so). So, instead, we find all
statements that start before the break-
point is defined, and choose the last of
these.

stints := aCompilertranslatePamer
parseBody bp sourceString readStream
class: aCompilertranslateClass
no-g: SilentCompilerErrorHandlernew
ifl%k [*nil].

Next we parse the breakpoint’s source
mpilwc!ass

mrmilwCl=

r *
I

.T. ‘

E ~

l,andatemoPmte
ure.M.phm

I I 11-nwparsar,*.

r

r

r

.

bmsl.mSOurceSlrmmfoc pamd&arro
Sircmsourcmslremlrlm

mnbdmolitJWb

kamdornCmdeSirmmfm
mndmmCcdaSkeamloc

I T
Figure 3. Interaction diagram for ProducerModifiers and GenericCompiler.
The Smalltalk Report

-
Database Solution

~~~m for Smalltalk
ODBTtdk Aclass library for ODBC

Database Access

. ODBC 2.JCsupport for 50+databases
I Visual development components for database access
I Native ODBC data type support
I Online documentation, source included, no runtirne fees
I programming examples and sample application
I 00 to RDBMS mapping framework, based on types &

brokets, ideal for complex client-sewer applications
I compatible with OTI’s ENVY/Developer, Object Share’s

WindowBuilderPro
I SLL and Team/V packaging support

/ersions Available for Windows, Windows-NT,
0S/2, and for IBM, Digitalk, and ParcPlace

New for ParcPlaceVisualWorks

~= ~;~~ff&3

@compu&3rve.com
Check OU1LPC’S Intemel World Wide Web home page:

http://uww.rwi.mrn/amaI1ta1k/pmduets/vendora/lpc/lpchome.hti

continued on page 18
string, using the same parser as for the code that con-
tains this breakpoint. The breakpoint’s response to
#sourceSttig will either be ‘self halt’ or ‘[some condition]
value ifl’rue: [self halt]’, where ‘some condition’ is the con-
dition string input for a conditional breakpoint. (Using
#halt to activate breakpoints is a matter of convenience,
You could instead implement anew Signal for breakpoint
activation, which would allow special handling and
interface for brerdcpoints.) If there is a problem parsing
this conditional part of the code, the method returns nil
to MethodProducer>>transformTree:fo~, which can indicate
an appropriate error condition, We assume most condi-
tion code will be relatively simple, and therefore that this
situation will not arise frequently. If it does, you can add
more elaborate error handling, using a different
requestor to the parsing, to be able to report more fully
whatever error occurs.

stint: = stints at: 1.
(stint nodeEvaLuatorC1.assnew tree: stint)

do: [ m I
n sourcePosition: (bp start to: bp stop);

extraPosition: (bp start to: bp stop)].
bp isConditional

ifhue: [stint receiver sourcePosition: nil].

This step adjusts the sourcePosition and extraPosition of the
ProgramNodes generated from the breakpoint’s source
string so that they point only to the breakpoint’s character
position in the method’s source string. Otherwise, these
nodes would refer to indexes from the breakpoint’s source
string that don’t make sense in the method’s string. Also,
we set the sourcePosition of a conditional breakpoint’s
condition block to nil, so that it won’t be present in the
sourceMap used for debugging. As a result, every break-
point will require only a single step to process in the
debugger, making the interface uniform.

stint:= aCompilertmnslateBuilder newEtreakpointBodyshnt.
stint extraPosition: (bp start to: bp stop).

The above two lines wrap the subtree parsed from the
breakpoint’s source string inside an instance of Break-
pointNode, the new kind of Progran-dfode mentioned
above, BreakpointNode is a subclass of Instrumentation-
Node, which is in turn a subclass of InvisibleNode. The lat-
ter class is an important addition to the ProgramNode
hierarchy, as it creates a class of statements that can be
added to a parse tree with no visible effect. Whhout
something like InvisibleNode, a reflective programmer
would have to be very careful where they added instru-
mentation statements into a parse tree, to respect the
semantics of block return, These semantics state that the
return value of a block is the value returned by the last
statement in the bloclq or, in the case of a block with no
statements, the value of the last block parameteq or nil in
the case of a block with neither statements nor parame-
ters, We changed the two places that implement these
semantics to use the notion of “visible statement(s)” in
October 1995
—

place of “statement(s)”, thus allowing us to insert new
invisible statements anywhere without affecting the
code’s visible behavior,

last isNil
ifTrue: [statements addPirst: stint]
ifPalse: [statements add: stint after: last]

The final step in #add:toStatements:in: adds the newly pro-
duced BreakpointNode into the collection of statements
that was passed in, It’sadded after the statement that con-
tains the breakpoint, if there is one, or else before all state-
ments, Breakpoint code might be added after a return
with this mechanism, since that error is only detected
during parsing. This will not cause any errors, although of
course the breakpoint will never be activated. It would be
possible to alert users if this happens, so they won’t be
surprised by breakpoints that don’t activate when it seems
they should.

CONCLUSION
These new breakpoints improve significantly on the old
version, and, when combined with the lightweight class-
es of our previous article, further extend the program-
mer’s options and opportunities when debugging. These
improvements can be characterized as locality enhance-
ments. With breakpoints that can be conditionally
15



Jan Steinman BarbaraYates

Exploitingstability
A
s DAVE THOMAS OF Object Technology International is
fond of saying, “Software development is a ‘bursty’
process.” Long periods of time may pass during which

seemingly nothing is accomplished, followed by periods of
intense development and miraculous productivity

When one person works alone, this “burstiness” aver-
ages out, and its impact is limited to “did I get done what
I wanted to in the time I had?” However, when the efforts
of many need to be coordinated, the “bursty” nature of
development can sink a project, or at least significantly
impact its schedule,

ADOPT A SPIRALPROCESS
Traditional software development follows a “waterfall”
process, in which different kinds of activities (such as
specification, design, implementation, and test) are allot-
ted sequential time periods, with rigidly defined check-
points at the end of each phase.

Waterfall works great ifyou can determine exactly what
you want to build, but most modern systems are not so
easily specified, or their requirements change during
development.

Barry Boehm recognized this weakness and proposed
a scheme by which the various development activities are
more tightly integrated. Such a “spiral” process can be
classified as iterative, in which portions of a system are re-
implemented in each cycle to achieve quality goals, or
incremental, in which a system is grown by adding func-
tionality in each cycle. Ideally these two patterns should
be mixed and used as needed.

This spiral process has numerous advantages, mostly in
providing the flexibility needed to apply Smalltalk to ill-
defined or evolving systems, but there is no free lunch, A
spiral process falls down when it is too rigid, or when it
must closely follow a corporate waterfall process mandate,

Waterfall is falling out of vogue (overheard at 00PSLA
“If you’re not doing incremental development, you’re
doing excremental development.. .“), but for well-defined

Jan Steinman and BarbaraYatesare cofounders of Bytesmiths,a
technical services company that has been helping companies
adopt Smalltalk since 1987, Between them, they have over 20
years Smalltalk experience.They can be reached at Barbara.Byte-
smiths@acm.org or Jan.Bytesmiths@acm.org.
16
problems with extremely high reliability requirements,
waterfall may be more appropriate. Ifyour software is life-
critical, you’d better fully understand your requirements
up front, and the flexibility of spiral development is then
not as useful.

AVOID SCHEDULE RIGIDITY
In waterfall development, the predefine project phases
naturally break a project into manageable bits, In spiral
development, there is no such natural division, and an
arbitrary division is often used. These “cycles” are typical-
ly assigned the same length, such as seven weeks.

The functionality assigned to a cycle will be based, to
some extent, on guesswork, especially in an organization’s
fust spiral process project. This shouldn’t reflect poorly on
the manager; rather it is an acknowledgment of what real-
ly happens in most waterfall-based projects! It should
help to know ahead of time that the spiral process sup-
ports this inherent “truth in planning,” and that func-
tionality will be shuffled around to different cycles as its
meaning and relationships are elaborated.

However, you don’t get the full benefit of spiral’s flexi-
bility if you are rigid about cycle length. If your project
intends to exploit stable periods, some cycles may take
less than their allotted time, while few (or none!) should
take extra time,

When deciding when to end a cycle, it’sbetter to post-
pone functionality than extend the cycle. If a particular
feature has not even been started before the last week of a
cycle, slip i~ don’t cram it in!

If you are rigid about both functionality and cycle
length, you are simply going to “fail” most of the time-
you deserve a more realistic definition of success when
working on ill-defined problems!

If you are rigid about functionality you may end up in
the “death spiral,” where each extension of the cycle lets
you discover problems in the specification or implemen-
tation of the functionality, so that you keep trying to
squeeze in more work.

The quality of a rigid-functionality cycle’s product suf-
fers because the lengthened cycle has shifted emphasis
from integrated development to simple coding, at a time
when the emphasis should be on integration, testing, and
The Smalltalk Report



documentation clean-up. The result is a mad push to add
a lot of code that will most likely have to be rewritten in
the next cycle anyway!

Managers who are new to the spiral approach are often
reluctant to shorten a development cycle and postpone
functionality, due to “waterfall-think,” e.g., “if it doesn’t
get in now, it’ll be dropped altogether and we must have
the ‘DithyWither’ function!” Spiral’s flexibility means
that the relative importance of different features can be
continuously reevaluated, so that if it is really that impor-
tant, “DithyWither” can be the first thing to happen in the
next cycle,

WHAT IS STABILITY?
The definition of stability is like a Supreme Court Justice’s
definition of pornography “I can’t tell you what it is, but I
know it when I see it!”That isn’t good
enough, so here’s a working defini-
tion: Stability is a condition where
features are implemented, integrat-
ed, and tested to a planned degree of
completion, combined with low
rates of recent change.

The combination of a pkzrmed
degree of completion and lack of
change is crucial; things that are
completed—including testing—but
have recently changed considerably
should not be considered stable.

Low rates of rece
If your team is ho
to assess the feat
you’ll need some
rate, sometimes d

With groupwa
Developer, it is n
Even ad hoc sch
SCCS can give you
gross level.

Using ENVY/D
ratio of method ed
two app or subapp
yield an me/m of
20 for highly chan
mal study, a year

Stability is a condition
where features are

implemented, integrated,

and tested to a plunned

degree of completion,
combined with low rates

of recent change.
Conversely incomplete things that
have not changed in a long time are
not really stable, due to incipient change.

Also note that something does not have to be in its end
form to be stable-otherwise, the only stable point to
exploit would be at project end! Alternating incremental
cycles with iterative cycles can provide stable points even
during evolution.

Features at a planned degree of completion . ..
Here’s an example of planned completion John’s stuff
works with Sue’s stuff and both of theirs works with Eds
stuff, Each of them has completed most—and perhaps
all-of their assigned features for the cycle.

If all of them have completed less than 3/4 of their
tasks and it’s one week before cycle end, the cycle
plan was far too ambitious, If any of them are in this
situation, it’s time to slip some of their work into the
next cycle.

Sometimes, the last week of the cycle arrives, and
individual modules are complete but not yet integrated
with the entire team’s development. If this begins to
happen regularly, it is a sign that your project is not
practicing continuous integration, but is instead doing
“mini-waterfaJl” development, It may be implemented
and tested, but without being integrated such work is still
not stable, and your developers need to review your
groupware support to see if they can do internal integra-
tion more frequently.

may go out of the
doing lots of wor
methods at the sa
as needed. Avoid
measurements ar

Rather than red
would be interesti
in a module and p
A bucket size of
make tallying met
a manager an indi
than a gross “how

I’MSTABLE,WHAT

With modern code
son for your enti
when they near th
essarily means de

If John overest
deemed stable tw
what should he do

(a) Read news o
(b) Mess around

take less spa
(c) Continue wi

What John wants
out! What he shoul
October 1995
nt change...
nest and communicating, it is not hard
ure-completion aspect of stability, but
tool support to accurately assess change
erisively called “code thrash.”

re tools such as Team/V or ENVY/-
ot too difficult to measure change rate.
emes using file-based repositories like

an idea of your change rate, albeit at a

eveloper information, we measure the
itions to methods (me/m) between any
editions. Obviously no changes would

one, but we’ve seen numbers as high as
ging code! Although we’ve made no for-
or so of gathering this metric leads us to

believe that “stable” code will have
an me/m below2.

Like all “sadistic,” this one is sub-
ject to artifacts and abuse. New
Smalltalkers and those unfamiliar

WithEm tendto haveinflated
me/m rates not necessarily because
their code is unstable but simply
because they insert halt more often,
or because they manually revert
code back to the way it was rather
than loading a previous edition—
they are merely less efllcient users of
the environment,

Conversely paranoid developers
ir way to avoid seeming “unstable” by
k in workspaces, working on multiple
me time, or not saving methods as often
this by building a group culture where

e indicators, not juries!
ucing an entire cycle to a scalar ratio, it

ng to “bucketize” method timestamps
lot the resulting histogram against time.
one day should be adequate, and will
hod timestamps easier. This data gives
cation of intracycle stable points rather
stable are we right now?” figure,

NOW?

-management systems, there is no rea-
re team to “freeze” their development
e end of a cycle. Exploiting stability nec-
aling with asynchrony within the team,
imated his work, and so his stuff is
o weeks before the planned cycle end,

now?
r play Doom.
with his code, making it run faster or

ce,
th work allotted to the next cycle.
to do is (a), but that usually doesn’t work
d do is (c), but people are usually afraid
17



! MANAGING OBJECTS

DEEPIN THE HEART OF SMALLTALK

continued fiorrs page 15

18
activated and flexibly located, programmers can investi-
gate close to suspected problems, without having to
wade through extraneous debugging information.
Likewise, lightweight classes help narrow the focus of
debugging to the locality of individual objects.

In addition to improving debugging, this project
again demonstrates the large degree of openness in
Smalltalk-80, and the usefulness of allowing program-
mers reflective access to their environment. The central
work described in this article is the extension of the
MethodProducer-ParameterizedCompiler tandem, We can
create them and use them to produce breakpointed
methods because all collaborators in the compilation
process are first-class objects. The pair of producer and
parametrized compiler have many uses beyond break-
points, and we intend to bring those out in
columns, starting with the implementation of
variables and their use in defining watchpoints
debugger.

References

future
active
in the

1. Hirdde,B.,V.Jones,and R.E.Johnson.Debuggingobjects,THF
SMALIXALKREPORT2(9), 1993.

2. Gamma, E. et al. DESIGNPATISXW:ELSMENTSOFRMJSAFII.EOBJECT-
OIWJTFIISCIFTAAIWAddison-Wesley Reading, MA, 1994.
of destabilizing things by adding new features. What usu-
ally happens is (b), which often destabilizes things as
much as (c) would have!

The key is for John to “checkpoint” his stable work
before getting a jump on the next cycle’s work. In EM,
this means making certain that all his stable code is
released, but none of his new code gets released. In
extreme cases, this may require working in a new app or
subapp edition (or even a different image), although it is
best to avoid having more than one editable edition at
any given time.

Periods of stability are also ideal points for peer
review, although not necessarily on the stable modules!
Achieving stability gives developers a chance to plan for
their next period of instability, which takes some of the
uncertainty away. Design review should be conducted on
planned work, and code review should be conducted on
stable or nearly stable work.

Unfortunately peer review is often done the other way
around! There is a strong tendency to review designs once
the code is written and stable, when no one is willing to
destabilize them, and an equally strong tendency to
review code that is still in flux, which means very little of
the reviewed code will actually end up in the product
because most of it will change. Ignoring stability concerns
when planning peer reviews simply wastes the time of the
reviewers and gives a false sense of security.

It is important to be able to recognize incipient insta-
bility, or rdl this flexible planning and asynchronous
development goes away. If John suddenly recognizes a
design error or discovers a new requirement, he is about
to leave stability. If Sue needs to make small changes to a
class that handles function “furble,” while Ed needs to
make a small change to that class to improve behavior for
“snotzer,” their integration stability decreases, even
though their individual changes are benign.

In such cases, it’s best to call an early cycle end so that
you can capture your stable point before everything
comes tumbling down!

PLANNING FOR STABILITY
We hinted earlier that elements of both incremental and
iterative spiral methods can be successfully combined,
We call this expand-contract development, and it is a life-
saver for projects that encounter quality problems related
to “rampant featuritis.”

In this scheme, periods of added functionality are
interspersed with periods whose purpose is to improve
the quality of existing functionality, “Quality” is an over-
loaded term, and any aspect of it could be pursued in
intervening periods. Typical quality goals are increased
factoring, increased abstraction, increased cohesion, and
increased reuse, as well as decreased mass of code,
reduced coupling and reduced variable scope. These
periods need not be entire cycles, nor does the entire
team need to switch modes in lock step.

Unfortunately most projects cannot tolerate (or think
they cannot tolerate!) budgeting as much as half their
time to rework “You mean that every six weeks, you’re
going to take six weeks to rewrite what you just did?
Why don’t you guys just take a 10-minute coffee-break
every 10 minutes?!”

A contract phase by itself does not yield stability,
because it is itself changing code. Stability is like fine wine
or compound interest: it requires time, By shifting the
goaJ from “more” to “better,” the output of a contract
phase is much more likely to be deemed stable after one
additional cycle than the output of an expand phase.

CONCLUSION
A spiral development process can be useful for the flexi-
bility it provides to reevaluate and reschedule work.
~ically, this flexibility results in increased work in a
cycle, but rarely results in reduced work in a cycle, This is
a missed opportunity!

When a cycle somehow ends up with fewer days than
expected, many managers sacrifice quality and stability
for functionality, resulting in massive rework in subse-
quent cycles.

However, with careful attention to points of stability
during a cycle, a manager can improve quality, morale,
and productivity by shortening cycles as needed, and
individuals in the habit of honest self-assessment can
help their manager synchronize the group’s efforts at the
most stable point,
The Smalltalk Report



W E u mmw that successfully moving a pro-
ject to object technology involves many dif-
ferent efforts and challenges, It is not possi-

ble to staff a commercial project of any size with
experienced O-O developers. And there are precious
few products to help us be successful.

One area that can directly help you develop higher-
quality systems using object technology is metrics.
This article will present a metrics process that you can
use to measure how well you and your project team
members are using inheritance, collaboration, encap-
sulation, and O-O design techniques.

A DESIGN IMPROVEMENT PROCESS
The basic steps to a better design are detailed in the
following sections.

Run a metrics analysis

Choose what metrics as well as what target designs to
examine and run a metric analysis, as shown in Figure 1.

Interpreting the anulysis results
●

●

●

9

A~rage Zthe avem-gemeasurement value for this metric.
Percent anomalies. the percentage of target objects that
are considered anomalies with the cun-ent thresholds.
Maximum value = the largest meamuement found in
the target design.
Total = the sum of all measurements taken for this metric.

Look for anomalies
Either online, as shown in Figure 2, or offline, as shown in
Figures 3–5, examine the results of your analysis to see
what anomalies you find. These are the areas that are out-
side the thresholds set for your project. In other words,
they are possible problem areas that would benefit from
design changes.

Figures 3–5 are taken from 00Metnc’s summary report
output, for use with any word processor (in this case, I

Mark Lorenz is Founder and Presidentof Hatteras Software Inc.,a
company that offers education, consulting,and products to help
other companies successfullyuse object technology,as evidenced
by commercial products such as IBMs StorePlaceand Hatteras’
00Metric. He welcomes questions and comments via email at
mark@hatteras.tom,phonemailat919.31 9.3816,faxat919.31 9.3877,
or snailmail at 2000 RegencyPkwy, Ste.230,Car’y,NC27511.
October 1995
used Lotus ArniPro). The following subsections take you
through some sample analysis results.

Method size: Number of message sends. Figure 3 shows
example results. I use this metric instead of others, such
as lines of code (LOC), because it automatically removes
style issues.

When examining results, don’t worry about GUI con-
struction methods or accessing methods (variable getters
and setters). Model classes should have smaller methods
than GUI classes, which often have a significant number
of methods to handle listboxes, buttons...

Smaller methods are more reusable, easier to build and
maintain, and indicative of a better O-O design (O-O is
about collaboration, even within a class). Reuse is achieved
more easily through smaller components, since they do
one thing only. Complexity is managed better by delegating
to objects that balance the work amongst them.

Method complexity: McCabe compkzcity Figure 4 shows ex-
ample complexity results. Similar to method size, complexi-
tyis indicative of methods trying to do too much work them-
selves rather than delegating to other objects. It is also poss-
ibly indicative of poor designs, as evidenced by additional
conditional statements instead of the more single-minded
logic that occurs with better responsibility distribution.
19



Figure 2. Analyzing metric analysisresults for anomalies.

Inheritance: Number of methods overridden Figure 5 takes
a look at the use of inheritance by a project. Framework
template methods and method extensions have aheady
been filtered out. Vthat we want to do is also tllter out tool-
related methods, such as GUI construction methods.

Use anomalies to focus design reviews

Typically there are sets of classes and methods that raise
the anomaly flag over and over again, These are the areas
on which you want to focus your attention f~st and fore-
most for design reviews. These are the areas that wiU give
you the most “bang for the buck.” You can then decide
how much time you will spend reviewing other areas, up
to reviewing the entire system.

During the review, you need to decide which anom-
alies are problems and which ones do not need any fol-
low-up actions. Note that anomalies can be due to trends
in measurement values and comparisons of measure-

Numberof messagesends

Description: The number of message sends in a
method. Message sends are a style-independent way
to measure method size.
Average: 4.57
Percent anomalies: 3.05
Maximum value: 135.00

Total:
Value
68.00
79.00
42.00
57.00

29.00

1948.00

BomClass>>reportDatesCreated:method
BomClass>>writeCppmethod
BomClass>%vriteCppHeadeflo:method
BomClass>xwiteSmalkaUdlassDeclarationTo:
method
BomClass%vriteSmalkalkMethodsTo: method

m
d
D
u
t

T

F
l
A
f
t
d
p
c
a
T
t

M
m

as func
other w
instead
busines

Comple
of the
upper
ation a
handle

self
self

These t
while c
time,

Listing 1.

Figure 3. Anal~ing metric analysis results for anomalies (message sends).

writ

I
(

(
a
(

(

(

(

.

20
ent values to other projects or company stan-
ards.
esign reviews should always result in code vol-
me reduction. It is typical to see methods reduced
o 1/3 their original size,

ake actions to improve designs

or those areas that are considered problems, fol-
ow-up actions are defined in the design review.
ctions taken depend on the types of problems

ound, of course, At the highest level, however,
hey fall into two categories: (1) reworking the
esign and implementation, and (2) dealing with
eople skills. The latter is not the topic of this arti-
le, but generally involves additional mentoring
nd/or reassignment to non-O-O tasks.
he following sections give examples of actions

aken for the anomalies previously discussed,

essage sends, Examining the code for the large
ethods reveals that they are indeed written more

tion-oriented rather than object-oriented logic. In
ords, they do a lot of work in a single method
of leveraging the services of other objects in the

s model. They need to be redesigned.

xity. Listing 1 gives the source code related to one
methods that was above the complexity metric

threshold, A variety of actions to improve the situ-
re possible, including (1) invocation of methods to
the outputting of methods and variables:

titeMethodsTo: aStream.
writeVariablesTo: aStream.

wo lines would replace the four loops in the code,
reating additional reusable services at the same

Design review actions (complexity).

eCpp
“GenC++code& write it to a separate file based on
my name.”

aFileStream I
self parent isNil ) ifh-ue: [ “seLf]. “Objectis a

special case...”
self filename isNil ) iflrue: [ self filename: ...
FileStream := File pathName: self filename.
self allPublicMethods ) do: [ :each I aFileStream

nextPutAlk ...
self allPrivateMethods ) do: [ :each I aFileStream

nextPutAlk ...
self alKkissVariables) do: [ :each I aFileStream

nextPutAIL ...
self alUnstanceVariables ) do: [ :each I aFileStream

nextPutAk ...
. .
The Smalltalk Report



McCabe cyclomatic complexity (for methods)

Description: Method complexity, as determined by
the control flow graph, which reduces to the number
of decision points.
Average: 1.58
Maximum value: 13.00
Total: 674.00

Value:
6.00 BomClass>>addConhact: method
5.00 BomClass>>deletemethod
5.00 BomC1.ass>>generateConflictReportFor:method

13.00 BomC1.ass>>reportDatesCreated:method
7.00 BomClass>>writeCppmethod

Figure 4. Analyzing metric analysisresultsfor anomalies (comple~ity).

(2)Validation of the information in separate method, sep-
arating out the checks at the beginning:

self checkValidity.

This is also a new reusable service.
These actions would bring the complexity level (as well

as the method size level) well within the limits set by the
project. At the same time, the design is clearer, easier to
maintain, and more reusable.

Ovem-des. As we said, tool-generated methods (e.g.,
constructWindow for WindowBuilder Pro and abtBuild-
Intemals for VisualAge) should be ignored. In the class
from Figure 5, createViewsis a GUI construction method.
label is supposed to be a fiarnework template, but was
written with the wrong Smalltalk selector (subclass-
Responsibility instead of implementedBySubclass). It was
fixed. The other methods need further examination in
relation to the class hierarchy and collaborating classes
to see if changes are warranted.

Iterate the previous steps

Improving your designs can be a part of each iteration in
your development process. Developers can use it during
line item production to periodically check their work
team leads can use it during each iteration assessment
period to focus design reviews, as we have discussed and
project managers can use it to assess the quality and
progress of the project as a whole and compared to other
O-O projects in the company. In other words, design qual-
ity is an on-going effort and not just an end-of-project
report to management.

SUMMARY
We have examined the steps used to achieve a higher-
quahty 00 software system

● Run a metrics analysis
● Look for anomalies
● Use anomrdies to focus design reviews
● Take actions to improve designs
● Iterate the previous steps
October 1995
Number of methods overridden

Description: The number of methods defined in a class
that are also defined in one or more superclass.
Methods that invoke the superclass’method or over-
ride template methods are not included,
Average: 4.31
Percent anomalies: 31.58
Maximum value: 14.00
Total: 56.00
Value
5,00 BomAnalysisModelBrowser class
Specific advice: The following methods are overrides:

BomAnalysisModelBrowseP>initPanes
BornfmaQsisModeLBrowser>>createViews
BomAnalysisModeJ.Browser>>activeObjecb
Bom4nalysisModeLBrowser>>applyIndentionShing:
BomAnalysisModelBrowser>X.abel

Figure 5.Analyzingmetric analysisresultsfor anomalies(method overrides)

These steps lead to higher-quality designs, which result
in systems easier to build and maintain. In other words,
they lead to quicker product cycles and more delivered
functionality.

Terminology

anomaly A deviation from the common result,

measurement The determination of the value of a
particular metric for an object.

method extension A method that invokes the super-
class’ corresponding method and then adds special-
ized logic.

metric A standard of measurement used to judge the
attributes of something being measured, such as
quality or complexity, in an objective marmer.

metric analysis Application of a set of metrics to a
portion of a software system, resulting in values which
can be examined for trends and anomalies,

problem A development decision that has been
deemed to be low-quality and in need of improvement.

template method A method that designates an
empty portion of a design framework that is intended
to be fiJled in by client subclasses,

threshold A measurement wdue that has been deter-
mined through project experiences to be significant
in terms of desirable or undesirable designs, with
some margin of error.

References
1. Lorenz, M. OBIECT-OMENTSDSOFIWmE Mmmrcs, Prentice Hall,

Englewood Cliffs, NJ, 1994.
2. Lorenz, M. RAPID SoFIWma DSVSLOPMENTWITHSNIALLTALK,SIGS

Books, NewYork, 1995.
3. Hatteras Software. Object-Oriented Metric Workshop course

materials, 1995.
21



Classversioningand
instancemigration

JayAlmarode
N
o MAITER How CAREFULLYyou design an application,
it is inevitable that you will have to change your
code in response to new requirements, bugs, or

performance bottlenecks.
One of the nice things about Smalltalk is the dynamic

nature of application development. You can easily modi-
fy a class definition and test the new code immediately, In
some cases, you can modify a class while its instances are
being used in a running application. This is one reason
Smalltalk development is known for its rapid prototyping
and high productivity.

All Smalltalk systems allow a developer to add, remove,
or modify methods dynamically during development.
This is not hard to provide because method lookup
occurs at runtime. A more problematic situation arises
when a class is mocMed so that its instances have a dlf-
ferent structure. This occurs when a class definition has
an instance variable added or removed, or possibly when
its position in the class hierarchy is changed (i.e., it is
given a dfferent superclass). This column discusses the
different strategies used when class modification causes
structural changes to instances.

In single-user Smalltalks, the underlying systems only
allow one class with the same name to exist, This is
appropriate since there is only one name space in which
the class could reside. When you redefine an existing
class, a new class is created, a “become:” operation is per-
formed to cause the new class to have the identity of the
old class, and the new class replaces the old class in the
SystemDictionary.But what happens to the instances of the
old class? Their state may not match what is expected
from them by their own class. Single-user Smalltalk sys-
tems handle this situation by automatically migrating all
instances of the old class to have the appropriate struc-
ture of the new class. Instance variables are removed if
necessary, and added instance variables have an initial
value of nil.

In multi-user Smalltalk, it is possible for multiple
classes with the same name to exist. This is because mul-
tiple users have multiple name spaces so there is no con-

Using Smalltalk since 1986, Jay Almarode has built CASEtools,
interfaces to relational databases, multi-user classes,and query
subsystems. He is currently a Senior Software Engineer at
GemStone SystemsInc.,and can be reached at almarode@slc.tom,
22
flict in having two or more classes with the same name.
When a developer creates a class with the same name as
an existing class, it is important that the old class still exist
and its instances behave correctly. This is because other
users may be running applications that expect instances
of the class to operate a certain way. In single-user
Smalltalk systems, modifying a class only affects your
worlq in multi-user Smalltalk, your changes may affect
others. However, developers still need a way to modify a
class that is being used by other users without breaking
existing applications.

The solution is to create a new version of the class
rather than modifying the existing class, The new version
has its own unique identity and does not interfere with
the operation of the original class. The instances of the
original class are unchanged and still look and behave as
defined by the original class definition. In GemStone
Smalltalk, versions of a class are maintained in a
ClassHistosyobject, A ClassHisto~ is essentially an array of
classes intended to be versions of one another. You can
place classes in the same ClassHisto~ in a number of ways.
One way is to define a new class with the same name as
an existing class. The underlying system will recognize
the common name and automatically place the new class
as a version of the old class. Another way is to use a vari-
ation of the standard class creation message in which you
can specify the old class from which you would like to cre-
ate a new version, In this way, you can create aversion of
a class in which the new class does not have the same
name as the old class. In either case, each class references
a ClassHistogr(possibly shared) that maintains versioning
information about the class.

The following example illustrates how to create a new
version of a class. I will continue this example to illustrate
how to control migration of instances from the old class
to the new class. Suppose you initially create the follow-
ing class to model a Part in a manufacturing application:

Object subclass: #Part
instVarNames:#(partNumber manufacturer)
classVars:#()
pool.tlitionaries: #()
inDictiona~ UserGlobals
constraints: #[ #[#partNumber, Integer] ]
isInvarianh false
The SmalltalkReport



continued on page 27
Afew things in this example are different from the class cre- class (this could happe
ation messages in single-user Smalltalks. First, there is the name), you can always
“irdliction~” keyword used to specify in which symbol tory by sending the m
dictionary you would like to place this new class. This is class with the new clas
used for name space management-mStone Smalltalk Once the migration
provides a scoping mechanism in which names can be migrate an instance o
resolved from multiple dictionaries, possibly shared by “migrate” message, The
multiple users. Second, the “con-
straints:” keyword allows you to One of the nice things about
specify the kind of object that can be
stored into an instance variable. You Smalltalk is the dynamic
arenot required to specify the con- nature ofapplication
straint for an instance variable, but it
is useful for data consistency as well development. You can easily
as for speeding up queries. FinaJly
the “ishmia.nk” keyword is used to modifl a class definition and
specify that once an object of this test the new code
class is committed, no other changes
can occur to it. In this example, the immediately.
object is not invariant, so users can
modify instances.

Now suppose that after building an application, you
find out that the class definition above is insut%cient. You
learn that part numbers may contain alphabetic charac-
ters, so they should be modeled as Shings, not Integers.
Also, you realize that for performance reasons, a Part
should also maintain its cost, rather than looking it up
from the manufacturer. This leads you to create the fol-
lowing new version of class Park

Object subclass: #Part
instVarNames:#(partNumber manufacturer cost)
classVars:#()
poolDictionaries: #()
inDictionaqn lJserGlobals
constraints: #[ #[#partNumber, String] ]
isInvariant: false

Because this new class has the same name, the new class
is automatically created as a new version of the old class.
Because you can send the message “classHisto~” to the
new class to get its ClassHisto~ object, you can execute
“Part classHisto~ ah 1“ to get the old class (because you
can no longer reference the old class by the name #Part).
Remember, the ClassHistory object is like an array of
classes, so the old class is stored in the first slot, and the
new class is stored in the second,

Because there is a new class Part that defines instances
to be structurally different than the original class, at some
point you may want to migrate the instances of the old
class to become instances of the new class. The first thing
you must do is tell the old class to which class you would
like to migrate its instances, This is clone by sending the
message “migrateTo:”to the old class. For example, if you
stored a reference to the old class in the global name
#OldPart, then you would execute “OldPartmigrateTo: Part.”
This allows you to migrate instances of a class to any other
class, as long as they reside in the same class history. If
you forgot to create a new class as a version of an existing

t
y
h
s
t
w
v
d
m
i
t
v
n

the value of a new ins
than nil, In our example
to class Part. If we want
able, we could override

Method for Part
migrateFrom: onginal

“Initialize the state o
migrated), based upo
<instVarMapArrap is
instance variables of

“Handle same-named
super migrateFrom: o

“Lookupthe cost from
the receiver”
self cost (self manufa

Our redetiition of clas
problem. Although bot
Part have an instance va
definition has constrain
An attempt to migrate
error when an integer
that must store a string
overriding the appropri
method is invoked whe
and should return the
variable. Here is a possib

Method for OldPart
invalidInstVzuConshti
shouldBe: aClass

“Thereceiver could no
instance variable <ins
October1995
n if the new class has a different
add a class to another class’s his-

essage “addNewVersion” to the old
s as the argument.
destination has been set, you can
f the old class by sending it the
default implementation will map

he values of instance variables as
ou might expect. If the new class
as an instance variable with the
ame name as the old class, then
he value of that instance variable
ill be retained. Any new instance
ariables will have a value of nil, If
esired, you can override the
ethod that assigns values to

nstance variables during migra-
ion. This allows you to assign the
alue of an instance variable that is
amed differently, or to initialize

tance variable to- something other
, we added anew instance variable
to initialize the “cost” instance vari-
the method as follows:

Part instVarMap:instVarMapArray

f the receiver (a instance being
n the state of the original. The
an array of offsets that associates
<originalYart>to the receiver.”

instance variables the usual war
riginallart instVarMap:instVarMap.

the manufacturer and assign it to

cturer costForPart: self paflumber)

s Part has dso introduced a subtle
h the old and new deftitions of
riable called #partNumber, the new

ed the part number to be a Wing.
an old instance will result in an

is forced into an instance variable
. This problem is easily solved by
ate method in the old class. This
n the constraint violation occurs

new value desired for the instance
le implementation of the method

tWhenMigratigInstVar instVarName

t be migrated due to having an
tVarName>whose value is not a
23



Hardware Alan Knight
T
HERE ARE CERTAJNREC[JRFUNGIDEAS in the Smalltalk
community. One of these is that we will one day
have special hardware that can run Smalltalk as

fast, or faster, than C. For example, Stefan Monnier
(sm86+@andrew,cmu.edu) writes:

I believe that speed increase will mainly become pos-
sible with special hardware. Since current processors
are specifically designed to run C-like programs, it
seems normal that different language paradigms
can’t really [compete].

Is this true? Certainly the standard processors have been
optimized for traditional languages, If Smalltalk is going
to compete against this advantage, maybe it needs special
hardware. We’d have Smalltalk-specific instructions, and
maybe a garbage collection co-processor to go with it.

BENCHMARKS
Before we even get into CPUS, we should define what
we’re aiming for. For a real application, how much slower
do we expect Smalltalk to be? Although Smalltalk can do
very poorly on simple benchmarks, the typical simple
benchmark is just a loop doing arithmetic operations, It
does no memory allocation, no procedure calls, no data
structure manipulation, and may well fit entirely in the
cache. While the performance numbers for such a pro-
gram may be interesting, they don’t mean much for real-
world programs.

Smalltalk suffers on these benchmarks because there’s
a lot of infrastructure built into the language. Dynamic
binding, safety checking, garbage collection, and being
“objects all the way down” all have performance costs that
far outweigh their benefits on a trivial benchmark. They
are there because they have significant benefits for large
system development. In my opinion, this kind of infra-
structure is important, if not essential, for a wide range of
systems. If you don’t have it, you’ll end up building it,
probably much less efficiently than if it were built in.

Unfortunately “a wide range of systems” is not all sys-
tems. I know I’ve worked on systems where the overhead

Alan Knight is an adaptive neural network with hardware and
software optimized for semantic processingand connected via a
speech recognition interface to The Object People, 885
Meadowlands Dr.,Ottawa, Ontario, Canada, K2C 3N2. He can be
interfaced to at 613.225.8812 or as knight@acm.org.
24
of dealing with every floating-point number as an object
with full dynamic binding would be absolutely fatal.* Let’s
be ambitious, and try to make Smalltalk workable for all
systems. We want a Smalltalk processor that can run
Smalltalk just as fast as C runs on a conventional CPU.
Besides, all that “real applications” stuff, valid as it is,
sounds too much like the marketing drivel that’s used to
hide a slow implementation.

OBSTACLES
We’ve got our hypothetical processor in mind. Let’s call it
SKAMP (for Smalltalk Kick-Ass Mega-Processor). What do
we need in order to build it?

The biggest obstacle is money which is directly related
to economies of scale. Creating a fast custom processor is
a very expensive business, To keep the price/performance
ratio acceptable, we’ll need to sell a lot of units. This is
much easier for a general-purpose CPU than one tuned
for a particular language, Maybe there’s someone else we
can base our business model on, There haven’t been any
commercial Smalltalk machines, but we can use some-
thing quite similar, LISP machines. Unfortunately, that’s
not a very inspiring example. John Nagle (nagle@net-
com.tom) writes:

That was the premise behind Symbolics and their
LISP machines. It turned out, though, that simple
RISC machines with a decent compiler run Common
LISP with substantially better price/performance
than Symbolics’ refrigerator-sized machines.

and Markus Stumptner (mst@vexpert.dbai.tuwien.ac.at)
writes:

[It] is not that such an implementation is impractical
at a given time, but that, quite generally, while
research projects may initially produce fast designs,
there just is not enough money behind language-
specific processors to keep pace with the speed
increases of general purpose machines. I don’t think
this is going to change.

Even if we can make enough money to stay in business
producing this chip, we run into issues of compatibility

* This does not include financial systems. Anybody that’s even thinking of
using floating-point for financial calculations should go and read my previ-
ous columns on math (THE SMAI,I I’AI.KREPorrI4[7]and 4[8]).
The Smalltalk Reporl



M
AbouttheAuthor,,.
Mark Lorenz is the founder and
president of Hatteras Software,
Inc. a company that specializes
in helping projects use object

technology successfully. The author has
already published two popular books on
object technology entitled C)EIJELT-ORIENTELJ

SOFTWARE DEVELOPMENT A PRACTICAL GLIIDE and
OB,JELT-ORIENTELI SOFTWARE METRICS (Prentice
Hall) and also writes a regular column for
THE SMALLTALKREPORT called “Project
Practicalities.”

Available at selected book stores,
Distributed by Prentice Hall,

RAPID SOFTWARE DEVELOPMENT WITH 5MALLTALKcovers the spectrum
of O-O analysis, design, and implementation techniques and
provides a proven process for architecting large software sys-
tems. By using detailed examples of an extended Responsibilityy-
Driven Design (RDD) methodology and Smalltalk, readers will
find techniques derived from real O-O projects that are directly
applicable to on-going projects of any size.

The author provides readers with specific guidelines that could
dramatically cut costs and keep projects on-time. Specifically,
the author provides readers with project patterns that work,
illustrations of design patterns, O-O metrics with example code
to test design quality and of course, numerous Smalltalk code
examples.

R~aderswill,,,
●

●

●

●

9

●

Speed up the development process by fostering reuse

Significantly reduce debugging time

Gain step-by-step instruction on how to make
the object model more robust

Learn how to distribute responsibilities within
the object model more effectively

Discover a practical day-by-day breakdown
of a rapid modeling session

See how to organize the development team most efficiently

-------- -------- -------- -------- -------- -------- --------- -------- -------- - .-_-=---- ---------- .

This book will prove invaluable to anyone interested in speeding
up the consistent development of high-quality object-oriented
software systems based in Smalltalk.

SIGS BOOKS ORDER FORM -$
~ YES! Please rush me _copy(ies) of RAPIDSOFTWARE

DEVELOPMENT WITH SMALLTALKat the low price $24 per
COPY. (LSBN:1-LW4B42-12-7; Approx2(K1PSS,)

Money-track Guarantee: If I am nut completely satisfird, I may return
the book(s) within 14 days and receive a complete refund, promptly and

without question.

~ Check payable to SIGS Books

~ Visa ~ American Express ~ MasterCard

Card# Exp.

Signature

SHIPPING.4ND tiAFmllNG: For US orders, plrase add S5 fur shippirrg and handling;
Canada and Mexico add $10; Oulside North America wfd S15. IMPORTANTNY State

residentsadd applicahlr sales (w. Wm allow 4-6 wwks for delivq.

Name

Company

Address

City/State/Zip

Country/Rxtal Code

Phone Fax

SINDTD:
116$BOOkS,P.0,kx 99QS

(olhgswood,NJ00101M970

m
SIGS

Phonc609MU1.9602fw609.4N).6188 B 0“-0 K S



I THE BEST OF COMP.LANC.SMALLTALK
and reuse. It’spossible for Smalltalk to perform the func-
tions of an operating system, and early implementations
did just that, The question is whether it’s feasible, or even
desirable in today’s environment,

Suppose we’ve got our Smalltalk on a chip, running as
its own operating system, How many different video cards
will it support? Can it use VBXS?Will it run MSWord, or do
we also have to write all our own applications? Maybe
SKAMP will be so compelling that all the applications
developers will immediately start writing for it, Maybe not,

We, the champions of OOp should be practicing reuse,
not reinventing the wheel. Smalltalk is a programming
language and a development environment. It shouldn’t
also have to be an operating system and every application
you’d ever want. Let people who understand operating
systems write the operating system, and those who
understand application development develop applica-

The most impo
windows and ta
features nearly
ing the cost of s
ger operations ..

This was a very i
hardware. Why was
hardware? There’s a
ancestor of Sun’s SP
windows and tagg
with SPARCstations
tures to improve Sm

COMPILERS
The information on
thesis. Later, he led

tions. I want an environment that
can take advantage of their work, not
one that forces me (or the Smalltalk
vendors, who seem to have enough
trouble getting their own environ-
ments right) to duplicate it.

That’s my attitude, and I’m a con-
fessed Smalltalk bigot, The average
user will be much less sympathetic
to the purity and elegance of the
environment if it means they have to
buy a special machine that won’t run
their favorite application,

DORADO AND SOAR

The typical simple
benchmark does

no memory allocation,
no procedure calls, no data

structure manipulation,

and may well fit entirely
in the cache.

OK, we’ll admit there are a few obstacles, but surely suffi-
ciently good performance could overcome at least some
of them, Hasn’t anybody even tried Smalltalk hardware?

Yes, they have. In fact, Smalltalk’s first implementation
was on hardware built at Xerox PARC for that purpose,
They may not have had Smalltalk CPUS,but they did have
Smalltalk-specific microcode. These evolved into the
Dorado, a highly optimized Smalltalk engine that
remained the Smalltalk reference machine for many
years. The ParcPlace Advanced Tools benchmarks still rate
performance in terms of a Dorado. The machine was
described as:

This 70 ns ECL minicomputer costs $120,000 [in 19851
and dissipates over 2 kilowatts, requiring an air-condi-
tioned room.l

In the mid- 1980s, a group at Stanford University created
SOAR, a RISC chip optimized for Smalltalk. At the time,
RISC chips were a relatively new thing, and unproven for
languages like Smalltalk. This group managed to create a
Smalltalk-specific RISC chip that had roughly the same
performance as a Dorado despite having a cycle time that
was five times slower. This showed very clearly that a RISC
machine could run Smalltalk well, and in fact it showed
that not many additional features were necessary. David
Ungad describes the important features of SOAR:

Urs Holzle (urs@
project, writes:

In my experience
writing optimizin
little to be gained
an optimizing c
has today as far

To be more
instruction-level
grams, and I cou
ture that would
5%. The hardwa
was cache size,
the “00” featur
dows, a hypoth
combined. So I
reasonably large
programs faster
chip built with
words, special h
size reasons, it a

From this point of
gained by pestering
pilers than in pus
Even here there are
26
rtant hardware features are register
gged integer instructions, These two

double SOAR’sperformance by reduc-
ubroutine calls and type-checked inte-
.

mpressive result in Smalltalk-specific
n’t it carried forward into commercial
simple answer. It was, SOARis a direct
ARCchips, which also support register

ed integer operations. Those of you
are already using machines with fea-
alltalk performance.

SOARis from David Ungar’s doctoral
a research group working on an opti-
mizing compiler for Self, a Smalltalk-
like language that is well known in
the Smalltalk community for its
impressive benchmarks, running at
approximately half the speed of opti-
mized C, even on integer manipula-
tion benchmarks, on which
Smalltalk does very badly.
Self is a continuing research project,

with many publications. Informa-
tion, and copies of some of the
papers can be obtained by ftp from
self.stanford.edu or over the World
Wide Web from http: / /self. stan-
ford.edu.

cs.stanford, edu), a member of the Self

(which is based on several years of
g compilers for Self..,) there is very

from special hardware *IF* you have
ompiler (which no Smalltalk system
as I know).
concrete, I recently measured the

behavior of optimized Self pro-
ld not find any single hardware fea-
improve performance by more than

re “feature” with the biggest impact
and its impact was larger than all of
es (tagged arithmetic, register win-
etical l-cycle “lookup” instruction)
would claim that a standard RISC +
cache will run *optimized * Smalltalk
than any “SmaUtalk-in-Hardware”

the same chip technology. In other
ardware isn’t a loser just for market
lso loses on the performance side.

view, it seems there’s a lot more to be
the Smalltalk vendors for better com-

hing for language-specific hardware.
a few caveats. Self-style optimizations
The Smalltalk Repott



GETTINGREAL
continuedfiom page 23
kind of <aClass> (the constraint in the migration
destination). This method performs a conversion to return
a new value of kind <aClass>.”

instVarName= #partNumber
ifh-ue: [ Aself patiumber asString ]
ifFalse: [

* super
invalidInstVarConstraintWhenMigratingInstVar:

instVarName
shouldBe: aClass

1

There are a number of strategies for when to perform
instance migration. One strategy is to migrate all instances
of the class at once. This requires a scan of the entire object
memory to collect all instances, then invoking the mes-
sage to migrate each instance. When an object is migrat-
ed, it is written, so there is a chance of concurrency con-
flicts if other users are accessing the same instances, You
can acquire locks to make sure the migrations can be
committed, but this reduces availability for other users,
Migrating all instances is best performed when the sys-
tem is relatively inactive or when there are no other users
accessing these objects. Another strategy is to migrate
instances when they are accessed by an application. By
performing “migration on demand,” the semantics of the
application can determine whether to perform the
migration or not.
can have significant space costs that may make them
inappropriate for some environments. Also, those of us
using low-end systems don’t have an optimizing compiler
or a RISC CPU, and we’re lucky if we get to use a 32-bit
operating system.

THAT’S NO FUN

This is pretty discouraging news for those who were look-
ing to Smalltalk hardware for performance improvements.
It doesn’t mean there’s no hope, but the possibility looks
pretty remote. If special-purpose hardware is going to suc-
ceed, it’s seems to me it will have to be a much more radi-
cal departure, perhaps in the form of massively parallel
object systems. In the short term, it looks like we’re going
to have to rely on better compilation techniques, conven-
tional hardware improvements, and our own ability to use
efficient algorithms. We’re also going to have to keep
explaining that bit about benchmarking real applications,
even if it does make us sound like marketing people.

Reference
1. Ungar, D.M. TrrE DESIGNAND EVALUATIONOFA HIGH F%FIFORMANCE

SMALLTALKSYSTEM,MIT Press, Cambridge, MA, 1987.
October 1995



. .———.. —.— ...—— .—.—-—...——...-.

1

1

MergingSmalltalks:THESMALLTALKREPORT

talksto JimAnderson,Co-Chairman
of ParcPlace-Digitalk
continued on page 32
As most of you are aware, Digitalk and ParePlace have
recently merged to become ParcPlace-Digitalk. Di@”talk
and ParePlace marketed the Visual Smalltalk and
VisualWorks product lines, respectively mainly to the com-
mercial development organizations in lurge corporations,
We’ve asked Jim Anderson, one of the founders of Dip”talk
and now Co-Chairman of ParcPluce-Digitalk, to discuss
product strategy issues of concern to Visual Smalltalk and
ViiuulWorks users.

What was the pre-merger marketing situation?
Large companies have been adopting Smalltalk for their
business applications because it deals with change and
complexity so well. Frequently companies retrain
COBOL programmers to be Smalltalk developers, About
one-third of the time, ParcPlace and Digitalk have been
competing with each other for the same customers.
Often these customers are attempting to standardize on
a single Smalltalk vendor. The strengths of our two prod-
ucts are so different that choosing one over the other has
been a difllcult choice.

What differentiates the two products?
VisualWorks features extraordinary portability and plat-
form coverage, Both its Smalltalk image and its underly-
ing C-implemented virtual machine have demonstrated a
depth of portability unmatched by any other develop-
ment tool. The breadth of platforms covered, 12 in all, is
also impressive, including Windows 3.1, NT (Intel and
DEC Alpha), the Macintosh (68K and PowerPC), 0S/2,
Sun Solaris, HP UX, and AIX.In addition, VisualWorks has
proven to be scalable to extremely large corporate appli-
cations. Both VisualWorks and Visual Smahlk are the
leaders in Smalltalk execution performance.

Visual Smalltalk features extensive platform fidelity, a
component assembly paradigm, group development
support, and runtime modularity. It supports the look
and feel of Windows and 0S/2, and the soon to be
released Version 3.1 has already received Windows 95
logo certification. It includes the PARTSWorkbench for
28
assembling components into applications by “wiring”
instead of writing code. Visual Smalltalk Enterprise
includes the Team/V group development tools and API
(for user-configurable/created and our own vendor-
supplied tools), Vkual Smalltalk supports runtime mod-
ularity in the form of Smalltalk Link Libraries (SLLS).
These provide footprint control, cross-application shar-
ing, and incremental maintenance replacement.

What are the plans for upcoming releases post-merger?
Wdl both product lines continue to be supported?
In the fourth quarter of 1995 we plan to ship Visual-
Works Release 2.5 and Visual Smalltalk Release 3,1, as pre-
viously announced, These releases will feature 100% lan-
guage syntax and semantics compliance between the two
products, which conforms with the draft ANSI Smalltalk
specification from the X3J20 committee in which both
companies participate. The languages are already quite
similar, with minor differences in literal arrays and blocks
that affect very few customers.

Concurrent with these releases, we will issue a docu-
ment on base class commonality to guide customers in
creating portable business objects. The base classes are
also quite similar. We have several customers today that
use Visual Smalltalk on the client working with
VisualWorks on the server. At the ParcPlace and Digitalk
International Users Conference in August, we demon-
strated such a customer application. It was created as a
client-only Visual Smalltalk application. It was then parti-
tioned into presentation objects on the Visual Smalltalk
client, and business objects on the VisualWorks server, at
a development cost of less than two person-weeks. The
majority of the two weeks were spent re-architecting an
application intended to run in fat-client mode to a client
and server model, Most of the business logic moved over
without modification.

In 1996, we plan to bring the best of both products for-
The Smalltalk Report



‘“” Come Alive with this Completi

m New Guide

The$malltalkDeveloper’c
GuidetoVisualWorks

BY TIM HOW-

Foreword by Adele Goldbev~

THE SMALLTALK DEVELOPER’S GuIm TO VISUALWORKS provides
an in-depth analysis of the popular application development tool
produced by Parcl?lace Systems. Designed to enhance develop-

ment acumen, this book serves as a guide to using VisualWorks to

its full potential,

Divided into two logical parts, the reader first receives d-w basic
principles of VkualWorks and then is provided with concrete
examples of VisualWorks in action. In this way, you are sure to
gain a better understanding of the unique characteristics of this
powerfil development tool as well as a complete understanding
of its strengths and weaknesses. By reading this book, you’ll be
able to build better applications and enhance the tools them-
selves.

And as an added bonus, source code and numerous examples of
the outlined concepts are provided on the included diskette.
You’ll be able to test the concepts immediately and put theory
into practice as you read.

If you area professional sotlwarc developer already programming

in VisualWorks or an advanced Smalltalk programmer, this book
will prove an invaluable guide to enhancing your skills, cutting
development time, and saving money.

Not recommended for be@anin~ pro~rammcrs, PART ❑ F THE

Available at selected bookstores. ADVANCES IN
DistributedbyPrentice Hal[. aEdEcT
SIGS ISBN: 1-884842-11-9
PH ISBN:O-13442526-X TEUHNCiLOHY
Diskette included SERIES

ITheSmalttalkDevelopers
Guideto ViswlWorks

Complete and easyto read,you can use this book a~
● a study guide
● a series of tutorials

● a reference for items and concepts
● a valuable source of VisualWorks code

Eminentlyuseful,this book is unique because

● Each topic is reinforced with a concrete example.

The concepts are clearly illustrated and the reader
can actually see their application.

● A special browser is provided containing all the

examples referenced, alleviating the need to enter
code.

● Rigorous definitions of terms are provided to
mitigate confilon.

● Applications buJt prior to VisualWorks are covered

to build an understanding of where some of the
constructs in VisualWorks originated.

● Detailed descriptions of how to add new

components to the palette are illustrated,

allowing rhe reader to extend the fimctionality
of VisualWorks. Three new components are

provided as examples.
~--. --------------------------------.---------------------------------------------------------------"--

51G5 BOOKS ORDER FORM
T

D YES!please send me _ copy(ies) of THE SMALLTALK
DEVELOPER’SGUIDE TO VISUALWORKS at the low price
of $39 (disketie included)
LSBN: 1-884S.42-1 1-9. Approx. 630 pages.

Money Back Gwmntcc: If I am not com ktcly rati$l.d, I may,return th.book(r)
)within 14 dap and rectivc a wrnpletcw und, promptly and w~thotit gwem”on,

Methodof Payment
Cl Check Enclosed (payable to SIGS 1300kJ)

Q Charge My: ClAmex Cl MasterCard D Vka

Card # Exp

Signature

Shipping & Handling For US orders, please add .S5 fur shipping & handling,
Canada & Lltxico add .S10, outside N. .Arncrica add S 15, N!Y State residents add
appiimbksalestax, Pleawallow4-6 web kr delivery.

Name

Title

Company

Address

City State _ Zip

Phone/Fax

SENDTO:
SIGS 600ks, PO. 60X 99425
Collingswood, NJ 08108-9970
Fax To: 609-488-6188

u

SIGS
Phone: 609-488-9602 BOOKS



MakeNo Compromises.
Join a leader in
ObjectTechnology.
We are KnowledgeSyskms Corpnmion,(heacknowledgedleaderin

Objsci OrientedTechnologyservices.Workingon k cuthg edgeof tech-

rmlogy,we arepokd to moveLOgreakr klghk of kchnid diversity,

cfie.nlservicetiltily, andesnployeropporhrrrily.We areprofessional,tessn

oriented,anddriven 10excellence,bl moslof all, we am anemployeeti-

entedcoqmmliorrUralprovidesanemellenl workingenvironmentIlrrrltill

chattengcyourabilitiesandsharpenymr skills. Weare KSC. Weare your

jsrsue.

Presently,we are A@ 10augsrsenlmmIecherhl Lrainingandcmrsulting

staffswilb professionalswhohavemmplusyearsof demmssmedexperi-

emx widr OOA&D,IBM SmafhalkorVraustAge,PsrcPfamVisuslWorks,
DigitalkSrnstlWr/V,andEFW’W.kvelop.

Asa leaderin supplyingourFonrrrw5(KIcliem basewith Objert (lrienkd

solutions,Kmwledge SystemsCorpormionis abte10offer a very conrpcti-

Iive salary,an excellentbenclilvpackageandmanyopportunities10grow

with Ihe le-akr. Pleaseserrdlfasyourcoverlelkr, resume,andasfary

rcquirmnenkw KnowtedgeSysremsCorporation,4001 WestonParkway,

CSIY,NC 2751% or call (919) 4U1-4@Q Fas (919) 677-MM3 or e-mail to

jdemichief@ksccary.cmn..Equalxunhy Employer.

Ob@clSpace,a leaderin the ObJect.Orlesstedarene,
hasenjoyadX0% growlh in the Iasl year, and as a result,
has IMMEDU4TE opportunities for extraordinarily talented
people dedided to the cr~tion and deploymentof ad-
vanced Technologies,Ckrrareasof inlerestinclude:COFIBA,
00DBMS, Conslrainl-baaedProgramming,Rule-based
Programming,Prolotype-basedLanguages(Classless),as
wellas AgentTechnology,DesignPatlems,Biological
Syslems,Cognitie Science,00A/OOD and Sell.

Our requirements [or EXPERTS commilled10excellence
include4+ yearsof experiencewilhC+ +, Smalltalk,
DistributedSmalltelk,VisualWorksorVisualAge.In addition,
candidatesshouldalsopossessexpertiseinObjecl-
OrienledSoftwareDevelopmentMethodologies.

We offercompetitivecompensation,performance-based
bonusesand a completebenefitspackage. Forimmediale
consideration,forwardyourresume10

Fax (214) 663=9099
ObjeclSpace,Inc.,14SS1 QuorumDr., Suite400, Attn:
ST1C95,Dallas,TX 75240; @@@bjeclspace.cam: or call
(BOO)OBJECT1 EOE,

SMALLTALK POSITIONS
ParcPlace-Di~italk is seeking experienced Smalltalk
instructors ;nd consultant; fo; our world-class
Professional Services team. At ParcPlace-Digitalk you
will work with one of the world’s leading development
teams, use state-of-the-art products and assist companies
on the forefront of adopting object technology in client-
server applications.

Requirements for Senior Consultants: solid experience
with %nalltalk (3-5 yeara) and/or PARTS Workbench
experience. 00A/D experience and GUI design skills.
Mainframe . database experience is a big plus.
Requirements for instructors: previous training experi-
ence in a related field (2-4 years), understanding of 00
concepts and Smalltalk.

Positions are available in various sites throughout the
U.S. Compensation includes competitive salary, bonuses,
equity participation, 401 (k) and family medical cover-
age. All positions require travel. ParcPlace-Digitalk is an
equal opportunity employer.

Please forward your resume to

Director of Enterprise Services
ParcPlace-Digitalk, 7585 S-W. Mohawk Drive

Tualatin, OR 97062 fax (503) 691-2742
intemeh holly@digitalk,com

SMALLTALK Oppotiunities

For more information, fgpvard resumes or call:

12360 66th Street North
Large, FL 34643

TEL: 800/257-7308 FAX: 813/224-9144
E-Mail to cpi7@occ.com EOE



~~---—~ - ContactBob Hall, IBM Australia-- 9--- ~ ~~- ——- - ---- fax: 61.2.353.3604
-—-w- Footpriin”t>——-w- internet :bobhall(iijvnet.ibm.com -—..... ....



Smalltalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS
This is your opportunity to join
the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan..=

(CHECK OUT OUR
‘“ NEW WEB PAGE!)

http: ttwww.nvi.coml
.

BOX 270566 Houston TX 77277

(713) 660-8080; Fax (713) 661-1156
(800)256-9712; landrevv@rwi.com—

SmaUtalk RothWell SmaM.alk RothWell

EDITORIAL
continued ji-orn page 2

A

RECRUITMENT
CENTER

INTERVIEW
continuedfiom page 28
ll the major Smalltalk vendors have special packages for
educational institutions that make it easier for depart-
ments. Be aware that the hardware requirements might
be more demanding than what your department has
available, not to mention students’ own machines at
home, Third, try introducing Smalltalk into your data
structures course first, rather than your programming
languages course-we certainly had great success with
this approach. Fourth, try not to compromise in terms of
how objects get introduced. Often, the issue gets brushed
off by the statement “we teach C++,” which is fine if the
statement is true, but more often than not what is taught
is C using a C++ compiler.

We would like to thank Jim Anderson for allowing us to
discuss with him the future of the new ParcP1ace-Digitalk
venture. Jim, of course, was one of the founders of
Digitalk and has been a true champion of Smalhalk from
its early commercial days. We plan to use this interview
as a launching pad for introducing you to other players
within the Smalltalk arena. We hope you will enjoy this
new feature in coming months.
32
ward in a new integrated product. Incremental release of
this new product is targeted to begin in the second quarter.

We will start with the portable VisualWorks virtual
machine as the basis, extended with the Visual Smalltalk
SLLcapability. Added to this will be the VisualWorks base
classes and portable GUI framework, as well as the Visual
Smalltalk event framework. Visual Smalltalk platform
integration will be added, consistent with the portable
GUI framework, for selected platforms. Initially, all
Windows platforms and 0S/2 will be supported. This will
be accomplished using SLL technology to plug in a plat-
form-integrated implementation dynamically in place of
the portable implementation. We will also add the Visual
Smalltalk team API and infrastructure. On top of this will
be hosted the tools from both Visual Smalltalk and
VisualWorks, including the canvas, browsers, and data
lens from VisualWorks, the PARTS Workbench, and
Team/V tools from Visual Smalltalk.

Which product should we buy today to be best aligned
with this new product direction?
That depends on your priorities. If platform portability or
UNIX platforms are very important for you today, then
begin with VkualWorks. On the other hand, if platform
fidelity, Windows 95 compliance, or component-based
development using OCX controls are very important for
you today, then begin with Visual Smahlk. Whichever
choice our customers make, we’ll ensure they have a
migration path toward the new products.
The Smalltalk Repoti


	By Article Title 
	Breakpoints revisited
	Coverage analysis in Smalltalk
	Exploiting stability
	Glass versioning and instance migration
	Hardware
	Improving your designs
	Interview

	By Author Name
	Almarode, Jay
	Hinkle, Bob
	Johnson, Ralph E.
	Knight, Alan
	Lorenz, Mark
	Murphy, Mark
	Steinman, Jan
	Yates, Barbara

	By Topic
	comp.lang.smalltalk
	Deep in the Heart of Smalltalk
	Getting Real
	Managing Objects
	Project Practicalities


