Smalltalk....

PROVIDING SOLUTIONS TO THE SMALLTALK COMMUNITY

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Design
Frangais Bancilhon, 0, Technology
Grady Booch, Rational
George Bosworth, ParcPlace-Digitalk
Jesse Michael Chanoles, Lockheed Martin ACC
Adele Goldberg, ParcPlace-Digitalk
R.Jordan Kriendler, IBM Consulting Group
Thomas Love, (onsultant
Bertrand Meyer, {SE
Meilir Page-Jones, Wayland Systems
(liff Reeves, IBM
Bjarne Stroustrup, AT&T Belf Labs
Dave Thomas, Object Technology International

The Smalltalk Report
Editorial Board

Jim Anderson, ParcPlace-Digitalk

Adele Goldberg, ParcPlace-Digitalk

Reed Phillips, ST

Mike Taylor, ParcPlace-Digitalk

Dave Thomas, Object Technology International

Columnists
Jay Almarode, GemStone Systems Inc.
Kent Beck, First Class Software
Juanita Ewing, ParcPlace-Digitalk
Greg Hendley, Knowledge Systems Corp.
Tim Howard, FH Pratocol, Inc.
Alan Knight, The Object People
William Kohl, RothWell International
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brack, ParcPlace-Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman, Founder, President, and CEQ
Hal Avery, Group Publisher

Editorial/Production
Kristina Joukhadar, Editorial Director
Elisa Varian, Production Manager
Andrea Cammarata, Art Director
Elizabeth A. Upp, Associate Managing Editor
Margaret Conti, Advertising Production Coordinator
Shannon Smith, Editorial Production Assistant

Circulation
Bruce Shriver, Jr., Circulation Director
Lawrence E, Hoffer, Marketing Manager

Advertising/Marketing
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Jeff Smith, Advertising Manager, Central U.S.
Michael W. Peck, Advertising Representative
Kristine Viksnins, Exhibit Sales Representative
212.242.7447 (v),212.242.7574 (f)
Diane Fuller & Associates, Sales Representative, West Coast
408.255.2991 (v),408.255.2992 (f)
Sarah Hamilton, Director of Promotions and Research
Wendy Dinbakowitz, Promotions Manager for Magazines
Laura Eville, Promotions Graphic Designer

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
Michele Watkins, Assistant to the President

WSIGS

PURLICATIONS

Publishers of JOURNAL oF OBJECT-ORIENTED
PROGRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALK REPORT, THE X JOURNAL, REPORT ON
OBJECT ANALYSsIS & DESIGN, OBJECT ExPeRT (UK),
and OBJEKT SPEKTRUM (GERMANY)

September 1995

Table of Contents

September 1995 Vol 5 Nol
Features

Managing asynchronous network messages

from external applications 4
Michael Christiansen

The problems commonly found in managing communications across a network
channel, e.g., defining and maintaining a protocol between the sending and
receiving processes, are addressed by the design of ExternalReadStreamAdaptor.

Accessing configuration data in the

DOS/MS Windows environment 12
Dayle Woolston and Bob Capel

Techniques for manipulating DOS/MS Windows configuration data in
VisualWorks 2.0 applications, by retrieving and updating information
through the DLL and C Connect product.

Columns

Getting Real 17

Faster queries in Smalltalk

Jay Amarode

For large collections and for queries with high selectivity, indexes
give the best performance.

Smalltalk ldioms 20

Uses of variables: Temps
Kent Beck

Patterns for the four ways temp variables are used, plus an update
from PPDUC.

Managing Objects 23
Managing project documents
Jan Steinman and Barbara Yates

This hypertext-like literate programming
environment can help maintain Smalltalk
project documentation.

Departments

Editors’ Corner 2
Recruitment 31

The Smalltalk Report (I5SN# 1056-7976) is published 9 times a year, monthly except in Mar—Apr, July-Aug, and Nav-Dec. Published by
5IGS Publications Inc., 71 West 23rd St, 3rd Floor, New York, NY 10010, © Copyright 1995 by SIGS Publications. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other methad will be treated as a willful violation of the US
Copyright Law and is Flatly prohibited. Material may be reproduced with express permission from the publisher. Second Class Postage
Pending at NY,NY and additional Malling offices. Canada Post International Publications Mail Product Sales Agreement No.290386.
Individual Subscription rates 1 year (9 issues): domestic $89; Mexico and Canada $114, Foreign $129; Institutional/Library rates:
domestic $199, Canada & Mexico $224, Foreign $239. To submit articles, please send electronic files on disk to the Editors at BBS
Meadowlands Drive #509, Ottawa, Ontario K2C 3N2, Canada, or via Internet to streport@objectpeople.on.ca. Preferred formats for figures
are Mac or DOS EPS, TIF or GIF formats. Always send a paper copy of your manuscript, including camera-ready copies of your figures (laser
output is fine).

POSTMASTER: Send domestic address changes and subscription orders to: The Smalltalk Report, PO. Box 5050, Brentwood, TN 37024-
5050.For service an current domestic subscriptions call 1.800.361.1279 or fax 615.370.4845. Email: subscriptions@sigs.com. For foreign
subscription orders and inquiries phone +44(0)1858.435302. PRINTED IN THE UNITED STATES.

1

Editors’ Corner

en ParcPlace announced their proposed
w‘r]nerger with Digitalk, devotees of VisualWorks
and Visual Smalltalk were left with many
unanswered questions. Would both dialects remain
intact? Would one dialect be dropped in favor of the
other and, if so, for how long would the discarded
dialect continue to be supported? Would a new dialect
emerge and, if so, would the base for the new Smalltalk
be VisualWorks or Visual Smalltalk? What would hap-
pen in the area of team programming and configura-
tion management? Would the
combined company take up the
challenge issued by the Gartner
Group, who urged Smalltalk
developers to challenge the two
companies to commit to a coher-
ent strategy for the integration of
the libraries, syntax, and tools of
the two dialects? How would the
investment made by organiza-
tions who have adopted one dialect or the other be pro-
tected? It was no surprise, therefore, that the close to
1,000 Smalltalkers attending the ParcPlace-Digitalk
International Users Conference awaited the opening
presentations with much anticipation.

Digitalk had been courted by a number of compa-
nies but if we examine the strengths and weaknesses
of the two companies and their Smalltalk dialects, the
rationale for the merger with ParcPlace and the future
path to be charted by the combined company be-
comes evident. Digitalk’s strengths lie in their visual
programming, component, and packaging technolo-
gy (PARTS Workbench, SLLs), and platform look and
feel (Windows and 0OS/2). ParcPlace, on the other
hand, brought to the table a much wider range of plat-
forms including UNIX (a major weakness of Digitalk),
better support for new application creation and enter-
prise-wide computing, “image-level” portability
across platforms, and, arguably, better access to rela-
tional and object-oriented databases. As summarized
by PP-D, the strengths of ParcPlace and Digitalk are in
“producer” programming and “consumer” program-
ming respectively. There is also a question of size that
comes into play. The combined company will have the
technical and professional services personnel to com-
pete with the competition from the likes of Powersoft
(PowerBuilder), Microsoft (Visual Basic), Forte, and,
dare we say, IBM.

The strategy outlined by PP-D at the conference was
to release new versions of both products (VisualWorks

The combined company
will have the technical and
professional services
personnel to compete with
the competition

N

John Pugh

Paul White

2.5 and Visual Smalltalk 3.1) as planned in 4Q 1995 but
to work toward a converged image to be released in
1996. The latter, known internally as “Van Gogh,”
would be based on the VisualWorks engine with the
addition of key capabilities from Visual Smalltalk such
as component assembly (via “wiring”), component
packaging (SLLs will replace the now interim notion of
parcels in VW 2.5), Team/V for team programming and
configuration management, platform compliance via
host integration, and the event mechanism. There will
be no further development on
Visual Smalltalk after Release 3.1.

A look at the features in the
upcoming releases of both prod-
ucts plus the long list of features
planned for the combined image
again emphasizes why the com-
panies found the merger an irre-
sistible proposition. OLE support,
better performance, headless
capability, certification (Windows '95 for Digitalk and
Windows NT 3.51 for ParcPlace), and compatability
with the ANSI standard are to be found in both of the
new releases. In the future, PP-D promise superior
clients and servers, much enhanced support for distrib-
uted computing, and tolls for network and application
management. Dedicated clients will have improved
platform compliance and better interoperability with
other languages; they will be faster and take up a small-
er footprint. Application servers will be tuned for
deployment of shared use of business model compo-
nents and provide outstanding throughput, concurren-
cy, scalability, and reliability. This is an awesome list. If
they succeed in the aggressive imeframe they have set
for themselves, the merger will be more than vindicated.

The highlight of the conference? Not much doubt
about that. The most captivating technology and the
most compelling presentation involved ParcPlace’s
new World Wide Web technology. Michael Robicheaux,
better known as Roby, appeared on stage on a Harley
Davidson piloted by no less than Adele Goldberg in full
biker gear. In a carefully staged event, Roby demon-
strated how a VisualWorks windowSpec could be ren-
dered as HTML rather than Windows or Motif, by
showing a Netscape client attached to a VisualWorks
server. The “coup de grace” was to see Roby bringup a
Netscape Smalltalk browser page to fix a bug in a
Smalltalk application directly from NetScape!
Wadsworth, as the WWW technology is called, will
appear next year.

The Smalitalk Report

Introducing Argos

The only end-to-end object development and deployment solution

An integrated object modeling tool provides model-driven

All object models are managed in a shared repository,
supparting team developrment and traceability

e

ﬂl’-m

Ay

. TR
Whaere the money Is... | 0 ' i g
Authorizalio ChangePool
nTool

development for enterprise-wide applications
[Agan _ -1 1=
JjoInm - :
= ot Demo ! 1] Finanea
Smasitatie || Projects || Domaina | Cultura b
: e - Main -2
1l = S E
E Tutorial Help Toola Poals R —
. gor |
PEWIERT RitA _
: lus: italSta —l
Look || ciewn || 8ave] ean |[Hetue:merismue
mage

s Poal) :
E -

[s
ns »

1234847058101

MiNov Il Dec W Oct [J Sep
L.Jun

Powerful drag and drop “entymes” make application
development intuitive

Stz rd> | 5@ laryHislory: inlagarDalaSeries)

1
[L b,

4

descriplion: text (Y
name: alphaNume s
numberOfPersons: integer

Comprehensive set of widgets, including business
graphics, multimedia, and others make application

development easy and powerful

VERSANT Argos™ is the only application development
environment (ADE) that makes it easy to build and deploy
powerful, enterprise-wide object applications. FEasy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concwrrency

VERSANT

The Database For Objects ™

01994 by Versant Object Technology. VERSANT, VERSANT Argos and The Database For Objecrs are trademarks of Versant Object Technology Corporation. All other company names and logos are regj:

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks®.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

today at
Contact us
1-800-VERSANT, ext. 415

ot via e-mail a

'mfo@versant.com

1380 Willow Road e Menlo Park, CA 94025 e (415) 329-7500

ks of the individual

Managing asynchronous
network messages from
external applications

that allows applications written in ParcPlace Visual-

Works to respond to messages received from external
sources: support applications written in C++ and attached
to telecommunication switches and other components of a
cellular phone network. Overall, this effort (the Cellular
Performance and Management System, or CPMS) is to pro-
vide performance monitoring and control facilities for
these networks and their individual components.

Messages from these external sources are delivered via
inter-processor communication services provided by the
underlying operating system, e.g., pipes and sockets. The
information is delivered to our system in an asynchro-
nous manner in the form of event and error notifications.
We were required to respond to the asynchronous deliv-
ery of messages from the network elements, extract and
process the information contained in the messages, and
perform one or more operations with the information.
These messages are described as asynchronous because
we cannot predict when or how often they will be deliv-
ered to our applications.

During the initial phases of CPMS, the issues related to
inter-process communications (IPC) and communica-
tions with the network elements were analyzed. We
defined what were felt to be important goals for the
design and implementation of the services described in
this article. The highlights of these goals are:

« Implement CPMS IPC in a separate application. Our
interface to the telecommunications network compo-
nents was accomplished through a C-based API we
didn't wish to integrate into the Sinalltalk object engine
for the following reasons. First, we felt the API might
comprise the integrity of the object engine in ways that
were hard to detect and debug. Also, the API employs a
callback mechanism, similar to the X-Windows System
callback, which would have been difficult to integrate
with the object engine. Finally, API integration would
have severely constrained our application’s portability.

 Apply an interrupt-driven mechanism to detecting
delivered messages. This can be contrasted with the
decision to apply a polling mechanism where the
receiver periodically polls the communications chan-
nel, checking if any messages have been received.

Polling wastes processing cycles if the polling rate is

R ECENTLY, WE WERE ASKED TO DEVELOP a service

Michael Christiansen

too high, or causes unnecessary and possibly danger-
ous delays in the response to a received message if the
polling rate is too low.

s Integrate our message delivery notification mecha-
nism with Smalltalk’s Model-View-Controller (MVC)
and the underlying framework that permeates Small-
talk’s class library. Specifically, we wanted to provide
model-like behavior, where an ICP channel’s depen-
dents would be notified via the traditional update: pro-
tocols when a message arrives.

= Instance-specific behavior to define the processing of
messages. We wanted the option of allowing for
instance-specific behavior when interpreting the mes-
sages that arrives from a network element. This is con-
trasted with constructing a subclass for each type of
message and embedding the specific behavior in the
subclass. The subclassing approach would cause a pro-
liferation of classes that had only a single instance.

This article describes a ValueModel we developed to meet
these goals. But beyond a discussion of how this was
accomplished, this article presents solutions to several of
the pitfalls and problems present in the development of any
mechanism that applies socket-based IPC in a multi-
threaded environment. The implementation of the solution
is available in the VisualWorks sections of the Manchester
Goodies Library as ExternalReadStreamAdaptor.st.

DESIGN

This section describes the design of ExternalRead-
StreamAdaptor (ERSA), a ValueModel subclass that allows its
users to construct and install a process that listens for and
decodes messages received through an ExternalReadStream.

Like the ValueModel, an installed instance of ERSA
behaves as a model whose dependents are notified when
its value changes. The value of the ERSA is set according
to the information provided by the messages it receives
and decodes.

The behavior that defines the decoding of a received
message is provided by the user of the ERSA. During
instance initialization, the user provides two blocks that
are evaluated for every received message. The evaluation
of the first of these blocks reads the message off the exter-
nal stream. The second block produces the new value of
the ERSA instance.

The Smalitalk Report

s 'r'r4 Loy r

T OpJrCT PrOPLE INC.
Sune Ty Epsalon Honse, Chilswordy Science Park

SOTG NS

AL 103 TAAGG VAN TEDE YA

S09-585 Meadovwlands Dr.

Ouavwa, Ontario, K20 3N

hone: (6137 2258512 TAN (o3 2255905 I'honc:
Imail: info@objeapeople.onaa

| MANAGING ASYNCHRONOUS MESSAGES

The processing that takes place for every message
received is illustrated in Figure 1.

The ERSA instance is initialized with an External-
ReadStream that has been attached to a communications
channel, for example, on an open socket connection.
Message handling is then started within its own processing
context. The process first waits for a message to arrive. Once
information is detected on the stream, the information is
read and decoded to create a new value for the ERSA. Finally,
the dependents are notified via the changed update proto-
col inherited from ValueModel.

The processing described above is executed within an
independent process (thread) within the image. This fea-
ture is necessary because messages are received asynchro-
nously from external sources, independent of the process-
ing state of the applications and other objects that make
use of the received information. The dependency mecha-
nism provided by the ValueModel allows these applications
to register themselves as dependents of an ERSA and
receive notification when new information arrives.
However, these dependent objects must be aware that the
notifications will arrive asynchronously and take whatever
precautions necessary to ensure that their states are prop-
erly maintained.

Because each instance of an ERSA maintains its own
process, or thread, it is important that each thread is
properly scheduled. That is, each ERSA’s thread should
wait in a suspended state until a message arrives on its
external stream. The mechanism used to schedule the
thread is provided by the I0Accessor maintained by the
ExternalConnection, which in turn is maintained by the
ExternalReadStream. The method I0Accessor>>read-Wait will
suspend the thread that makes the call if no data is avail-
able on the I0Accessor's external connection. This external
connection is usually a socket or pipe, and is provided by
the underlying operating system. This service of the
I0Accessor allows each instance of an ERSA to wait in a sus-

Fork new context
and begin message processing

Figure 1. Messaging processing loop.

pended state until information arrives for it across it's
external connection. At this point, processing and depen-
dent notification occurs, after which the adaptor again
waits in a suspended state for the next message to artive.

Message processing
Each ERSA instance receives messages from its peer exter-
nal process across the IPC channel they share. In its sim-
plest form, this message can be seen as a stream of bytes
to be interpreted and converted into a value useful to the
adaptor's dependent objects. The ERSA instance must be
prepared to decode the received information into the type
of value expected by the application. For example, length
of a queue or capacity measurement from a cellular
switch might be transmitted by the external process in an
ASCII format. The adaptor would be required to decode
this ASCII information into an integer, float, or higher-
level abstraction such as a running average of the values.
An important aspect of defining the message format is
the mechanism used to detect the end-of-message on the
receiving end, i.e., the ERSA end of the connection. An
ExternalStream provides no mechanism for determining
when an entire message has been read. In fact, attempt-
ing to read a byte from an empty ExternalStream will cause
the calling thread to suspend until data arrives.
Understanding the format of the message that will be
received from the external process is the responsibility of
the ERSA instance. The developer first determines the for-
mat and end-of-message marker to be utilized by the
external process, and then encodes this format into the
reader block used to initialize the ERSA instance. This
process is described in more detail in the section describ-
ing implementation issues.

Message encoding and decoding. Because the peer exter-
nal process is implemented in C++, there exist limited
options in the methods employed to encode its messages.
We found that either we could transmit the information in
its native binary representation or encode the binary
information into ASCII strings.

A binary representation would require both the ability
to convert native binary data to Smalltalk objects, and to
detect and translate differences in the native binary for-
mats for the sending and receiving processors. Methods
of translating binary representation into Smalltalk objects
and for marshaling between native binary formats is pro-
vided by the class UninterpretedBytes.

The alternative to binary representation is to encode
and decode the binary values to and from ASCII strings.
C++ applications can implement the encoding of a binary
value into ASCII using the function sprintf or an equivalent
stream operat.ion.1 The examples presented in this article
demonstrate ASCII decoding techniques in Smalltalk.

Within Smalltalk, there exist several options for decod-
ing the received ASCII strings. All the options described in
this article employ the Smalltalk compiler to translate
expressions into object instances. An alternative is to

6

The Smalitalk Report

Reuse Depends on

Quality Documentation

High
. Reusable
Code Companents -
Quality S

\ Nqnfradsébiq._ \
Components

Documentation
Quality

Svnopsis Software

8912 Oxbridge Court, Suite 300, Raleigh NC 27613
Phone 919-847-2221 Fax 919-676-7501

Maximize Reuse

Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused.

Reusable software requires readily available, high
quality documentation.

And the easiest way for Smalltalk developers to get
quality documentation is with Synopsis. Install it
and see immediate results!

Features of Synopsis

« Documents Classes Automatically

«» Builds Class or Subsystem Encyclopedias

+ Moves Documentation to Word Processors

« Packages Encyclopedias as Help Files

Synopsis for IBM Smalitalk $295 Team $395
Synopsis for Smalltalk/V and Team/V $295
Synopsis for ENVY/Developer for Smalltalk/’v $395

Products ‘

develop an application-specific translator using the com-
piler construction tools provided by ParcPlace’s advanced
programming tool kit.2

In the simplest of implementations, the compiler can
be used to evaluate the message. For example, try evalu-
ating the following code:

wrstr := String new writeStream.
101 storeOn: wrstr.
Compiler evaluate: wistr contents

The code segment above causes the compiler to evaluate
the contents of the stream and returns a reference to the
object 101. In the example, the integer value is encoded
via the storeOn: method.

Note that there are some important differences
between the example given above and an acceptable ERSA
implementation where the stream being processed will be
an ExternalReadStream. It is not safe to use the contents mes-
sage to extract the message from an ExternalStream,
because the contents message relies on state information
not available to an ExternalStream. The caller has no way of
knowing if the entire message has been retrieved from the
external connection by a single contents operation. The fol-
lowing section discusses the issues and options related to
detecting the end of a received message.

The previous example demonstrated the simplicity of
producing a Smalltalk value from an ASCII encoding.
However, the compiler can only translate valid Smalltalk

expressions, and this approach to decoding fails when
complex values need to be encoded and decoded. For
example, when two values are transmitted, the following
code segment produces a compiler exception:

wrstr := String new writeStream.
101 storeOn: wrstr.

wrstr nextPut: Character space.
232 storeOn: wrstr.

Compiler evaluate: wrstr contents

This compiler error occurs because the contents of the
stream “101 232" is not a valid Smalltalk expression. The
sender would need to embed the values in an expression
generating a container such as #(101 202).

But there is an alternative to the compiler: applying the
Smalltalk Scanner to tokenize the stream of characters
received from the external stream. For example:

wrstr := String new writeStream.
101 storeOn: wrstr.
wrstr nextPut: Character space.

232.94 storeOn: wistr.

Scanner new scanTokens: wrstr contents.
This code segment produces an array of two values: an
integer and a float. The scanner will also decode text and
single quoted strings.

The above examples demonstrated how a simple
encoding of values into ASCII representation can be

September 1995

7

| MANAGING ASYNCHRONOUS MESSAGES

decoded by a Smalltalk application. But if the sending
process has been implemented in Smalltalk, additional
encoding options exist such as the use of storeOn: (as in
the above examples), or the use of BOSS encoding and
decoding as described in White et al.3

End of message detection. The second issue in defining
the message protocol between the sending process and
receiving ERSA instance is the end-of-message marker
used to locate the last byte of the message. In one
respect, the marker is needed to determine the separa-
tion of two messages queued up in

the IPC connection. But, more

there are exceptional conditions that can occur, and are the
responsibility of the ERSA to detect and recover from.

The first exceptional condition occurs when the external
process closes its end of the IPC channel, e.g., when it
finishes processing or if the external process unexpectedly
crashes. The closed connection must be detected and hooks
provided to allow the developer to respond accordingly.

The second exceptional condition arises when the
ERSA reader receives a partial message due to errors in its
transmission across the IPC channel or errors in the send-
ing external process itself. The partial message will cause

the ERSA instance reading the mes-
sage to suspend, waiting for the full

importantly, the marker is used by The pr otocol deﬁned message to arrive. Again, it is the
the ERSA instance to ensure no . responsibility of the adaptor to
attempt is made to read on an between the sendmg detect this condition and supply the
empty external stream. process and ERSA reader developer the hooks needed to

The protocol defined between the
sending process and ERSA reader
must ensure that the reader does not
attempt to read past the end of a
message. As stated earlier, if an
attempt is made to read from an
empty external stream, the thread
performing the read operation will suspend. This makes it
impossible for the ERSA reader to decode the message and
update the dependents directly upon the receipt of the
message.

There are at least two approaches to determining the
position of the end of a message in an external strearn.
One is to prepend the length of the message to the head of
the message itself. The reading process can read that value
and then extract only that number of bytes from the exter-
nal stream. The Scanner is useful in reading and decoding
the numeric value from the head of the message.

A second approach is to append a special character
(any character value not used in the encoding of the mes-
sage) to the end of the message. The reader process can
extract characters from the stream until the special char-
acter is found. In the case of ASCII text, the carriage
return (cr) is often applied as such a special character. In
the UNIX environment, control-d (integer 4) is often
used to denote the end of a file or message.

The Smalltalk Stream class offers support for employ-
ing a special character as an end-of-message marker. The
method Stream>>through: returns the contents of the tar-
get stream, starting at its current position through the
position of the first instance of the argument, e.g.:

anExternalStream though: Character cr.

This code segment returns a Collection subclass with the
contents of the ExternalStream from its initial position up
to and including the position where the cr was located.

Exceptional conditions
Figure 1 illustrates the processing of messages arriving
from the external process under ideal conditions. However,

must ensure that the reader
does not attempt to read
past the end of a message.

recover.
Detecting when the IPC channels
has been closed is performed by the
I0Accessors class and is integrated
into the design of ERSA. This is
described in the section covering
implementation issues.

Detecting an incomplete message is complicated by the
fact that ExternalStream does not provide a mechanism for
“read with time-out,” i.e., read the next byte from the target
streamn or time-out if no data is available. If the external
process sending the message across the IPC connection
fails to follow the agreed upon protocol between sender
and receiver, the ERSA reader will not detect the end of the
message and will continue to read bytes off the stream until
it is empty with the unfortunate results described earlier.

Our solution to the lack of a read with time-out is to
create the service. This is accomplished by nesting the
acquisition of the message in its own thread, and raising a
time-out signal if the message has not been acquired
within some predefined interval. This is illustrated in the
following code segment:

localPDelay := Delay forSeconds: 5.

messageOK := false.

localProcess :=
[theMessage := self readMessageFrom: aStream.
messageOK := true.
localPDelay delaySemaphore signal] fork.

localPDelay wait.

localProcess terminate.

message0K
ifTrue: [self value: (self performProcessingOn: theMessage)]
ifFalse: ["Raise a messageAcquisitionTimeoutSignal"]

This example demonstrates how the acquisition of the
message is performed within an independent thread
whose parent context maintains a time-out delay. Once
the delay semaphore is released, the parent context will
signal an error if the messageOK flag has not been set true.

The Smalltalk Report

Are you maximizing your Smalltalk class reuse? Now you can with...

MI - Multiple Inheritance for Smalltalk

MI™ from ARS
« adds multiple inheritance to VisualWorks™ Smalltalk
* provides seamless integration that requires no new syntax
s installs into existing images with a simple file-in
¢ is written completely in Smalltalk

Leading methodologies (OMT, CRC, Booch, OOSE)
advocate multiple inheritance to facilitate reuse. Smalltalk's
lack of multiple inheritance support impedes the direct
application of these methodologies and limits class reuse.
Ml is a valuable tool which enables developers to apply

advanced design techniques that maximize reuse.

Introductory Price: $495

To order MI or for more information on ARS’s family of products and
services, please call 1-800-260-2772 or e-mail Info@arscorp.com.

| Applied Reasoning Systemns Corporation (ARS) is an Innovative developer of high
i quallty Smalltalk development tools, application frameworks, intelligent software APPLIED REASONING SYSTEMS
= systems, and related services that provide advanced solutions to complex problems.

Smalitalk Products = Consulting « Education » Mentoring

2040 Plazis Place = Suile 325 « Raleig NC = 876512

Phone: (919) 781-7997 = Fax: (919) 781-4414
E-mail: info@arscorp.com

Within the context referenced by localProcess, the delay
semaphore will be signaled (released) immediately after
message processing has successfully completed, mini-
mizing the amount of delay in the notification of depen-
dent objects.

Also notice the call to “self value:” that set the value of this
ValueModel subclass to the value returned by the message’s
processing and notifies dependent objects of the change.

Message processing exceptions. During the processing of
the message, any form of exceptional condition might
arise, e.g., arithmetic errors, etc. Because the processing
of the message is performed within its own process con-
text (see Fig. 1), the parent context cannot set up handlers
to be caught by errors that occur within the child (ERSA
instance) context. More specifically, a signal raised in a
child context will not be caught by an exception handler
installed by the parent context.

To address the situation, each instance of an ERSA can
be initialized with and maintains an instance of a Handler-
Collection. The handlers maintained by this collection are
installed within the message processing context to catch
exceptions that arise during the processing of messages.

IMPLEMENTATION

The design issues described in the previous section were
implemented in the class ExternalReadStreamAdaptor. This
class provides instance-based configuration of the behav-

iors needed to read and process messages, as well as han-
dlers for exceptional conditions.

While the class has been designed to be configured for
instance-specific behavior, its instance and class methods
have been designed to allow for subclassing to define
application-specific behavior.

While this section describes the implementation of the
services provided by the class, we felt that including the
source code in the article would either constrain the
amount of detail given to the specific issues we encoun-
tered, or would make the article too long to be publish-
able. Instead, the source code of the classes can be
acquired from the Manchester Goodies Library, or the
reader can send a request to the author at the addresses
appearing at the end of the article.

Instance initialization
An instance of the ERSA is initialized with:
s the ExternalReadStream, which provides the connection
to the peer application.
s a block that implements the reading of the message
from the external stream.
* a block that decodes the contents of the message and
provides a new value.
* optionally, a set of exception handlers to catch signals
raised by the ERSA during its processing.
We felt that it should be the responsibility of the user to
open and create a ReadStream connection to the peer

September 1995

| MANAGING ASYNCHRONOUS MESSAGES

application. An example of doing this is given in the fol-
lowing section, and further examples are given in the dis-
tributed source code.

There are several reasons for making the management
of the external connection the responsibility of the user.
First, there are issues related to the different types of exter-
nal connections that can be created via the socket inter-
face provided by ParcPlace. Second, the opening, closing,
and overall management of an external connection can be
highly application specific. Finally, external connections
are not preserved across image snapshots and so must be
reinitialized when the application is started.

The block used to define the behavior of reading the
message from the external stream is called the readerBlock.
This block evaluated with a single argument, the stream
defined during the initialization. The block is expected to
return the message it extracts from the stream. For example:

[:anExStream | anExStream through: Character cr].

This block returns a Collection containing the data read
from the external stream up to and including a carriage
return.

The second block, called the actionBlock, defines the
behavior that takes the message returned from the above
block and produces the value the ERSA instance assumes
and provides to its dependents. The actionBlock is called
by a single argument, the message (value) returned by the
readerBlock. For example:

[:message | Compiler evaluate: message]

This block evaluates the contents of the streamn returned
by the readerBlock. The value produced by the evaluation
becomes the current value of of the ERSA instance.

At this point, the reader might wonder why we split the
behavior of the reading and decoding the of the message
into two blocks when a single block could perform both
services. Our reason for this separation was to allow the
detection of a message read time-outs independent of the
time needed to decode the message.

The optional fourth argument that ERSA accepts is a set
of exception handlers encoded into an instance of a
HandlerCollection.4 The application of this set of handlers
is described next.

Exception handling

The user of the ERSA is able to provide a set of exception
handlers to be installed within the context of the process
that the instance maintains. The method readLoop
defined in the following code segment illustrates the
definition of that process and the processing loop that
manages the reading and decoding of messages from the
external stream:

readLoop

readLoopProcess := [
self handlerCollection handleDo: [

"if the peer connection has been closed the wait-
ForReadableData will return false. This would
indicate a closed external stream or other error.”

[self waitForReadableDataOn: readStream]
whileTrue: [self processAndUpdate: readStream].

"This branch will be entered when the peer
connection has been closed."
ExternalReadStreamAdaptor
streamClosedSignal raiseWith: readStream.

self shutdown]] fork
The HandlerCollecton should provide handlers for those
signals that might be raised during the evaluation of the
actionBlock (evaluated within the processAndUpdate:
method) and two ERSA-specific exceptions. These ERSA-
specific exceptions are:

* MessageAcquisitionTimeoutSignal: The acquisition of the
message from the external stream took longer than the
value set by the class variable MessageReceiveTimeout.

e StreamClosedSignal: That a close (or some other error)
was detected on the external connection.

The implementation of detecting and raising the message
acquisition time-out was described in the previous section.

Detecting data and closed streams

The method readLoop, described above, maintains a while
loop whose test determines the life of the process it is
embedded within. The method implementing this test is
shown here:

waitForReadableDataOn: anExternalReadStream
anExternalReadStream ioConnection input readWait.
~anExternalReadStream atEnd not.

This method utilizes two services provided by
ExternalReadStream. The first line implements a call to
I0Accessor>>readWait. This method will suspend the call-
ing process until data is available for reading from the
external connection. The second line of the method imple-
ments the test for a closed stream. If the stream has been
closed from the peer end, the readWait method will return
when no data is present on the external connection. This
fact is detected and returned as the value of this method.

EXAMPLE

This section provides a detailed example of the application
of the ExtemnalReadStreamAdaptor. The example includes
opening a socket and initializing the ERSA instance.

"Create a socket on the given host and port."
socket := UnixSocketAccessor

new TCPclientToHost: 'localhost'

port: port.

A second approach utilizes a platform and OS-indepen-
dent method of creating the socket that has been made
available in VisualWorks 2.0:

socket := I0Accessor defaultForIPC

10

The Smalitalk Report

new TCPclientToHost: 'localhost'

port: port
This segment creates a new socket that is connected to
the given host and port number address:

extCon := ExternalReadStreamAdaptor
newWithStream: (socket readStream)
readerBolck: [readStream |
readStream through: Character cr]
actionBlock: [:charArray |
Compiler evaluate: charArray]
handler:
{HandlerCollection new
on: ExternalReadStreamAdaptor
messageAcquisitionTimeoutSignal
handle: [:ex | Transcript show: 'processing restart' :cr.
ex restart];
yourself).

This segment creates a new instance of the adaptor. The
ExternalReadStream is created from the socket accessor using
the method I0Accessor>>readStream. The readerBlock reads
characters from the stream until a carriage retumn is seen.
The actionBlock evaluates that text. The HandlerCollection is
installed with a single handler that will restart the process-
ing when raised.

extCon readLoop.

This method starts the message handling process as
described in the previous section.

The distributed source code provides further examples
of applying this class, as well as examples of applications
that act as the peer connection and GUI applications that
display the value of an ERSA instance.

CONCLUSIONS

This article described a-kind-of ValueModel developed to
provide a mechanism for receiving and decoding asyn-
chronous messages from external C and C++ applica-
tions. The class implementing these services is called the
ExternalReadStreamAdaptor.

Rather than demonstrate how peer-to-peer connec-
tion is established using socket-based interprocess com-
munications, this article has tried to demonstrate how the
MVC pattern can be applied to message decoding and
notification of dependent objects. The services provided
by this class permit its users to create an independent
process that will receive and decode messages received
across an ExternalReadStream. The class permits the para-
meterization of the behavior that reads the expected mes-
sages from the socket and of the behavior that decodes
the information into the application-specific value.

In the design of the ExternalReadStreamAdaptor, we have
attempted to provide a service that addresses the prob-
lems commonly found in managing communications
across a network channel, e.g., defining and maintaining
a protocol between the sending and receiving processes.

continued on page 19

September 1995

oL
L
r—
—
T,
=1
><
1L
—
S
—
[
=
7
L
=
S
=
S
=1
T
=

8 Your Chance
gver What A
Consulting

Small
Firm Can Really Do.

Ohi'ectlntel_lfg nee™

Helping Clients Build
'Enterprise Applications

¢ ParcPlace
VisualWorks™

Consulting &
Development Services

e Hourly Smalltalk’ -
Contracting '

¢ On-Site Smalltalk
Development &
Project Management

e 00DBMS Development:
Gemstone™, Versant™ &

ObjectStore™

* On-Site Montoring &
Tralning
Analysis & Design

Call 800.789.6595 o

e-mall: info @ objectint.com

Objectintelligence

900 Ridgefield Drive, Suite 240
igh, NC 27609
919.878.6690 Fax 919.870.6605

Accessing configuration data
in the DOS/MS Windows

environment

use to manipulate DOS/MS Windows configuration
data in VisualWorks 2.0 applications. Configuration
data for Windows applications are defined in files such as
AUTOEXEC.BAT, CONFIG.SYS, WIN.INI and any number of
application-specific .INI files. VisualWorks 2.0 applications
retrieve and update information contained in these files
through the DLL and C Connect product.
The examples in this article were coded on an AST
4/50d running Novell DOS 7.0, MS Windows 3.1, and
ParcPlace VisualWorks 2.0 with DLL and C Connect.

T HIS ARTICLE ILLUSTRATES some techniques you can

WINDOWS KERNEL SERVICES
In the “Appendix: Module and library names” section of
THE PROGRAMMER'S REFERENCE, VOLUME 1: OVERVIEW (con-
tained in the Microsoft Windows Software Development
Kit), there is a listing of Windows kernel functions, some
of which provide features useful for manipulating config-
uration information.

We define the class WindowsKernel to provide access to
the functions found in KERNELL.DLL:

ExternalInterface subclass: #WindowsKernel
includeFiles: ‘windows.h '
includeDirectories: "
libraryFiles: 'KERNEL.DLL'
libraryDirectories: "
generateMethods: "
beVirtual: false
optimizationLevel: #debug
instanceVariableNames: "
classVariableNames: "
poolDictionaries: 'WindowsKernelDictionary '
category: 'Windows-ExternalApplications'

The DLL and C Connect product includes a tool set that
builds function call templates and type definitions such
as those which follow. In a future article, we can talk
about the utility of these tools. Parsing out dense, hierar-
chical header files can be a challenge. (Parsing out WIN-
DOWS.H is right on the border of difficult.)

READING THE DOS ENVIRONMENT
Our first example illustrates how to fetch DOS environ-
ment text. In this example, we use the function call

Dayle Woolston and Bob Capel

GetDOSEnvironment, defined in the Windows SDK as:
LPSTR _far GetDOSEnvironment(void)

We define the corresponding Smalltalk methods on the
instance side of WindowsKernel:

LPSTR
<C: typedef char _far * LPSTR>

GetDOSEnvironment
<C: LPSTR _far GetDOSEnvironment(void)>
“self externalAccessFailed

The tricky issue here is that Windows passes back a C
pointer to a contiguous set of null-terminated strings. The
end of the set is identified by the empty string—two adja-
cent nulls. The following method copies each C string into
a write stream and returns a Smalltalk string describing
the DOS environment:

getDOSEnvironment
| dstr temp ws |

dstr := self GetDOSEnvironment.
ws := (String new: 1000) writeStream.

[temp := dstr copyCStringFromHeap.
temp isEmpty]
whileFalse:
[ws nextPutAll: temp; cr.
dstr datum: dstr datum + temp size + 1].

~ws contents
Inspect (execute) the following code:
WindowsKemel new getDOSEnvironment

and you will see something similar to:

'CONFIG=WORKNET

PROMPT=pg

LMOUSE=C:\MOUSE

TEMP=C:\D0S
COMSPEC=C:\COMMAND.COM
PATH=C:\WINDOWS;C:\DO0S;C:\MOUSE

12

The Smalltalk Report

NAME=dwoolsto

windir=C:\WINDOWS'
We have found it useful to cache DOS environment infor-
mation in a dictionary. It does not change within the run-
time life of the application and there is no sense in repeat-
edly parsing out specific entries. The code below allocates
a dictionary. Each key gets parsed out as the string pre-
ceding the equals character; its corresponding value is the
string following the equals character.

getDOSEnvironmentDictionary
"WindowsKernel new getDOSEnvironmentDictionary"
| dstr dictionary temp |

dstr := self new GetDOSEnvironment.
dictionary := Dictionary new.

[temp := dstr copyCStringFromHeap.
temp isEmpty]
whileFalse:

[| key value |
key := temp copyUpTo: $=.
value := temp copyFrom;: key size + 2 to: temp size.
dictionary at: key put: value.
dstr datum: dstr datum + temp size + 1].

~dictionary

Your application may hold on to the dictionary for future
reference or you may choose to cache it in WindowsKemel.

In the example above, we created an instance of
WindowsKemnel to get the DOS environment. Applications
that make repeated calls on kernel services should proba-
bly create a well-known instance of WindowsKemel. We do
this by adding the class variable Default to WindowsKemnel.
The class-side selector, default, lazy-instantiates its content:

default
Default isNil ifTrue: [Default := self new].
~Default

Create a corresponding getDOSEnvironmentDictionary meth-
od on the class side of WindowsKermnel and direct it to use its
default WindowsKernel instance to return the dictionary:

getDOSEnvironmentDictionary
"WindowsKermmnel getDOSEnvironmentDictionary"
Agelf default getDOSEnvironmentDictionary

READING .INI FILES

Let's next take a look at information available through the
Windows environment. Windows configuration information
is maintained in the WIN.INI file usually found in C:\WIN-
DOWS. Applications use the kemnel calls GetProfileInt and
GetProfileString to read information from WIN.INI. They use
WriteProfileString to store information in WIN.INI. You may
find it convenient to store application-specific information

for VisualWorks™

Help Designer is not Just a programmer's tool - now any team
member can create high quality on-line help. This powerful
development tool Is rich in features, provides flexible set of tools,
and facllitates the reuse of components within your applications.
Here Is what you get:

Jools

& Help Editor
@ Help Viewer

Features

Context-sensitive help
Inline and outline

@ Image Editor » Tag Help
& Text Editor # Hypertext links and
& Help Manager references

Control Panel
Help Custom Controls

Popup definitions

» Keyword search

@ History support

Macro definltions

Access to font, paragraph,
and color attributes

¢ Embedded objects

Run-time editing mode

& Platform Independent help
files

GreenPoint, Inc.

FAX REQUEST 212-765-8920
77 West 55 Streel, Suite 110
New York, NY 10019

EMail:75070.3353 @ compuserve.com

Visua|Works™ is a trademark of ParcPlace Sysio

FREE DEMO AVAILABLE |

TO ORDER CALL 212-765-6882

in your own .INI file. Windows provides three similar calls to
interact with custom .INI files: GetPrivateProfileInt, GetPri-
vateProfileString, and WritePrivatePrifileString.

Starting with WIN.INI, we define the following function
template for GetProfileString. By convention, the DLL and
C Connect tool places this type of method in the instance-
side procedures protocol.

GetProfileString: arg1 with: arg2 with: arg3 with: arg4
with: arg5

<C: short _far _pascal GetProfileString(char _far *,
char _far *, char _far *, char _far *, short)>

Aself externalAccessFailed

For readability reasons, we often prefer to encapsulate the
template in anather method whose signature is more self-
documenting than the with:with:with: convention. In
addition, this encapsulation provides the service of allo-
cating a C String buffer required by the call, returning to
the caller a conventional Smalltalk string. We place the
following method in the instance-side services protocol:

getProfileString: sectionString entry: entryString default:
defaultString

| returnString |

returnString := CIntegerType unsignedChar gcMalloc16: 80.
self GetProfileString: (sectionString gcCopyToHeap16)

September 1995

13

I = __" Database Solution]

o Database Solution
| 3.~ for Smalltalk
|ODBTalk A class library for ODBC

| Database Access

« ODBC 2.x support for 50+databases I
= Visual development components for database access
» Native ODBC data type support I
» Online documentation, source included, no runtime fees
= programming examples and sample application I
= 00 to RDBMS mapping framework, based on types &
I brokers, ideal for complex client-server applications I
= compatible with OTI’s ENVY/Developer, Object Share’s
WindowBuilderPro I
» SLL and Team/V packaging support

IVersions Available for Windows, Windows—NTl
I 0S/2, VisualAge and Visual Smalltalk/E I

I LPC is a member of the Digitalk PARTners Pro-l
gram, the IBM Object Connection for VisualAge,
I and the Smalltalk Industry Council I
I Tel: 416-787-5290 I
B Consulting Services
I Tuals fon e Swalltath domlopor
Internet:73055,123
@compuserve,com

Fax: 416-797-9214

CompuServe: 73055,123'

with: (entryString gcCopyToHeap16)
with: (defaultString gcCopyToHeap16)
with: returnString
with: 80.
~retumString copyCStringFromHeap
Inspect (execute) the following code:

WindowsKernel getProfileString: ‘windows' entry:
'KeyboardSpeed’ default: '0'

and you will see something similar to: '31'.

This code works fine for reading single entries from
WIN.INL. However, as in the DOS environment dictionary
example above, you may want to return the entire collec-
tion of entries belonging to a section of the WIN.INI file.
Two methods can be useful for this purpose. In the first,
we return an ordered collection of section entries. These
entries play an identical role to that of the key values
described earlier.

getProfileSectionEntries: sectionString
"WindowsKernel getProfileSectionEntries: ‘windows' "
| returnString default oc temp |
returnString := CIntegerType unsignedChar

gcMalloc16: 80.
default :='**NONE**'.

self GetProfileString: (sectionString gcCopyToHeap16)
with: nil
with: (default gcCopyToHeap16)
with: returnString
with: (80).

oc := OrderedCollection new.
[temp := returnString copyCStringFromHeap.
temp isEmpty]
whileFalse:
[oc add: temp.
returnString datum: retumString datum + temp
size + 1].

~(oc size == 1 and: [oc first = default])
ifTrue: [OrderedCollection new]
ifFalse: [oc]
Inspect (execute) the code in the method comment and
you will get something similar to:

‘OrderedCollection ('Load' 'NetWarn' 'spooler' 'run’ 'Beep'
‘NullPort' 'BorderWidth' 'CursorBlinkRate'
'‘DoubleClickSpeed' 'Programs’ 'Documents'
"DeviceNotSelectedTimeout' 'TransmissionRetryTimeout'
'KeyboardDelay' 'KeyboardSpeed' 'ScreenSaveActive'
‘ScreenSaveTimeOut' ‘CoolSwitch' ‘device')'

Knowing the entries (keys) to a section, your application
can make the appropriate getProfileString:entry:default call
to get a value for any specific key. You may want to build a
method that returns a dictionary of keys and values for the
section—precisely as we did in getDOSEnvironmentDictionary
above. Consider the following code:

getProfileSectionDictionary: sectionString
"WindowsKernel getProfileSectionDictionary: ‘windows' "
| dictionary |

dictionary := Dictionary new.
(self getProfileSectionEntries; sectionString) do:
[:entryString |
dictionary
at: entryString
put: (self getProfileString: sectionString
entry: entryString default: '<none>")].

~dictonary

Inspect (execute) the code in the method comment and
you will get a dictionary whose keys are the contents of
the ordered collection in the previous example and whose
values are their corresponding strings.

SOME OPTIMIZATIONS WORTH CONSIDERING

The code above works fine. However, with a little additional
complexity, we can get some worthwhile optimizations. The
gcCopyToHeap16 method is the most general mechanism for

14

The Smalitalk Report

copying data to the C heap and returning the pointer neces-
sary for passing a string through the C interface. However, it
has two drawbacks: first, if called relatively frequently, it
causes work for the garbage collector, and, second, there is a
faster alternative, which we describe below.

Typically, the applications that we write are database-
retrieval intensive. Consequently, we have a habit of tor-
menting the garbage collector through constant SQL
selections and object instantiations. We have had to look
for more frugal memory allocation strategies. We have
adapted one of these strategies to the WindowsKernel class
hierarchy described below.

Let’s begin by generalizing the WindowsKernel inheri-
tance hierarchy as follows:

ExternalInterface
WindowsInterface
WindowsDialog
WindowsKermnel
WindowsUser

WindowsKernel retains the same methods (and more)
described above. WindowsDialog and WindowsUser imple-
ment Windows DIALOG.DLL and USER.DLL calls document-
ed in the MS Windows SDK. They each inherit optimiza-
tions implemented in WindowsInterface.

We define WindowsInterface as follows:

Externallnterface subclass: #WindowsInterface
includeFiles: "
includeDirectories: "
libraryFiles: "
libraryDirectories: "
generateMethods: "
beVirtual: false
optimizationLevel: #debug
instanceVariableNames: "
classVariableNames: 'CHeapStrings CHeapStringsIndex '
poolDictionaries: 'WindowsInterfaceDictionary '
category: 'Windows-ExternalApplications'

The class variables CHeapStrings and CHeapStringsIndex are
used by WindowsInterface to manage a round-robin queue
of C heap strings. Five methods manage this service. First,
the class initialize method for WindowsInterface makes the
class a dependent of ObjectMemory. The reason for this will
be explained later. Second, we explicitly initialize the class
variables to nil. (This is extraneous in a production appli-
cation, but useful in debugging a development image.)

initialize
"WindowsInterface initialize"

(ObjectMemory dependents includes: self)
ifFalse: [ObjectMemory addDependent: self].

CHeapStrings := nil.

CHeapStringsIndex := nil.

Default := nil.

VOSS 3.0

Persistent Object Management for

Visual Smalltalk

O TRANSPARENT access to persistent Smalltalk objects

]

TRANSACTION MANAGEMENT with two-phase commit, checkpoints,
nesting, rollback on exception and rollback & retry on deadlock or time-out

u

TRANSACTION LOGGING for roliforward recovery from power failure
or disk head-crash

NETWORK-INDEPENDENT multi-user access with object level locking
MULTI-KEY/MULTI-VALUE COLLECTIONS for efficient queries
INCREMENTAL GARBAGE-COLLECTION removes discarded objects
IMAGE INDEPENDENCE Virtual spaces may be reconnected to any image

Wy iy Ry w iy

INTEROPERABILITY All kinds of Smalltalk object may be stored,
including therefore wrappers for ather services

D

OBIECT REPLICATION & DISTRIBUTION Transactions may include
objects in multiple distributed virtual spaces

O HiSTORICAL OBIECT VERSIONING & ALTERNATIVE FUTURES
O SLL-COMPATIBLE dynamically bound Smalltalk Link Library

[0 ic 'VOSS 3.0 is available for Visual Smalltalk 3.0 for Windows and 0S72.

- Logic Arts is a Digilalk PARTner
A R T S Logic Ans Lid 78 Hemingford Road. Cambridge CB1 3BY, England
I T = Tel: +44 1221 212392 Fax: —44 1223 245171 Email: 100040.364@compuserve.com

In this rework of the class hierarchy, Default is a class-
instance variable defined in WindowsInterface and inherit-
ed by WindowsDialog, WindowsKemel, and WindowsUser. In
this variable, each class lazy-instantiates a well-known
instance of itself.

The C heap strings that we allocate below must be freed
up prior to exiting the application or Windows loses sub-
sequent use of these resources. To support this mecha-
nism, we define the following method on the class side of
WindowsInterface:

update: anAspectSymbol with: aParameter from: aSender

(aSender == ObjectMemory)
ifTrue:
[(anAspectSymbol == #aboutToQuit)
ifTrue: [self release]

Because WindowsInterface is a dependent of ObjectMemory,
it gets notified when the image is about to quit, at which
time it calls its release method:

Telease
CHeapStrings notNil
ifTrue:
[CHeapStrings do: [:acstr | acstr notNil ifTrue:
[acstr free]]]-

cHeapString is a WindowsInterface class-side method that

September 1995

15

405 El Camino Real, #106
Menlo Park, CA 94025, U.S.A.
voice: 1-415-854-5535

or 1-800-ST-SOFTWARE
Sfax: 1-415-854-2557

BBS: 1-415-854-5581

email: info@smalltalk.com
compuserve: 75046,3160

The Smalltalk Store carries over 75
Smalltalk-related items: compilers, class
libraries, books, and development tools. Give
us a call or send us an email - we’ll put you
on the mailing list and send you a copy of
our combination newsletter-catalog. It’s
informative and entertaining.

When you get the
chance, check out our new
dialect-neutral Smalitalk
bulletin board system at
415-854-5581, 8N1. N

Send For Our Free Catalog!

he
malltalk
tore

lazy-instantiates the round-robin queue of C heap strings.
In this case, we initialize the queue with 8B strings:

cHeapString

CHeapStrings isNil ifTrue: [
CHeapStringsIndex := 0.
CHeapStrings := Array new: 8.
1to: 8 do:
[:i | CHeapStrings at: i put:
(CintegerType unsignedChar malloc16:
(self defaultLargeBufferSize))]].

CHeapStringsIndex := CHeapStringsIndex + 1.
CHeapStringsIndex > 8 ifTrue; [CHeapStringsIndex :=1].
~CHeapStrings at: CHeapStringsIndex.

Finally, the only method that needs to be published to
WindowsInterface subclasses is:

copyTaStaticHeap: aString

| len cstr |

len := aString size.

cstr := self cHeapString.

cstr copyAt: 0 from; aString size: len startingAt: 1.
cstr at: len put: 0.

~estr

This method accepts a Smalltalk string, copies it to the next
available cHeapString, and returns the cHeap5String pointer.
The following method illustrates the use of the cHeap-

String feature described above and extends our profile
string examples by providing access to an application-
specific .INI file.

getPrivateProfileString: sectionString
entry: entryString
default: defaultString
fileName: nameString

| returnString |
returnString := self class cHeapString.

self GetPrivateProfileString: (self copyToStaticHeap:
sectionString)
with: (self copyToStaticHeap: entryString)
with: (self copyToStaticHeap: defaultString)
with: returnString
with: (self class cHeapStringSize)
with: (self copyToStaticHeap: nameString).
“returnString copyCStringFromHeap

Compare this code to getProfileString:entry:default des-
cribed at the beginning of the article.

Is all this trouble worth it? Probably not if you are just
making a few calls to determine configuration at startup.
However, if your Windows interface is extensive and you
make many calls to it, the answer is probably yes. The fol-
lowing tests were executed three times each.

Time

millisecondsToRun:
[100 timesRepeat: [WindowsInterface
copyToStaticHeap: Test']]

18 17 20

Time
millisecondsToRun:
[100 timesRepeat: ['Test' gcCopyToHeap16]]
125 117 130

Asyou can see, the optimized method is six or seven times
faster at runtime and does not require an incremental
garbage collection performance penalty. The only garbage
collection required by this optimization is at quitting time.
These are truly cheap strings!

The catch here is that you can only make as many as
eight calls to copyToStaticHeap: per Windows function
invocation. Otherwise, your ninth parameter will over-
write the first. Practically speaking, this is not a problem.
It does not appear that any of the Windows function calls
contains more than eight string parameters. You could
also make the queue larger than eight. And there are ways
to make the queue dynamically expandable.

Dayle Woolston and Bob Capel have been working with Smalltalk
for four years building client/server database applications. They
can be reached at dayle_woolston@novell.com and bob_capel
@novell.com.

16

The Smalitalk Report

Faster queries in Smalltalk

various queries using the select:, detect:, and reject:

methods. When the argurnent to these methods is a
regular block (delimited by [and] brackets), the default
implementation enumerates over every element of the
collection, sending messages to determine if the element
satisfies the query criteria. An alternative kind of block,
called a SelectBlock (delimited by { and] brackets),
restricts the kinds of statements inside the block, but also
allows the use of a dot notation to specify the traversal
along a path of instance variables. The main advantage of
using SelectBlocks is that users can create indexes on cer-
tain kinds of collections, and SelectBlocks can take advan-
tage of those indexes to speed up queries. This column
describes indexes and how to use them effectively.

Before describing how to use indexes, what exactly is an
index? An index provides a means to traverse backwards
along a path of instance variables for every object in the
collection for which the index was created. For example, if
you have a set of employee objects, then creating an index
along the path 'spouse.occupation.title' will create internal
indexing structures that maintain mappings from titles (a
String) to occupations, from occupations to spouses (a
Person), and from spouses to employees in the set. With this
information, when a query is posed to find all employees
whose spouse’s title is 'Manager', the indexing subsystem
searches for all 'Manager's, then works backwards to obtain
the employees. This is usually much quicker than iterating
through the entire set of employees, traversing through all
spouses and occupations to find the ones that match.

In SmalltalkDB, there are two kinds of indexes that users
may create: identity and equality indexes. For either kind,
when creating an index, you must specify an index path,
which is the path of instance variable names for which the
reverse mappings will be maintained. To create an index for
the previous example, you might perform the statement:

l N A PREVIOUS COLUMN, I described how to express

aSetOfEmployees createEqualityIndexOn:
'spouse.occupation.title'.

Once the index is created, queries that contain a predi-
cate using this index path can use the reverse mappings
to speed them up. The two kinds of indexes are used for
slightly different purposes. Identity indexes are used to

Jay Almarode can be reached at almarode@slc.com.

Getting Real

Jay Almarode

speed up queries where the comparison operator is based
upon identity, i.e., when the comparison operator is == or
~~. These kinds of queries are unique to object-based
systems where objects have unique identity. For example,
if you have a reference to the instance of Department that
represents the sales department (stored in the global vari-
able SalesDept), then you could express the query to find
all employees that work there by performing:

aSetOfEmployees select:
(:emp | emp.worksIn == SalesDept)

The other kind of index that can speed up queries is an
equality index. An equality index is used to speed up
range queries and queries that utilize an equality opera-
tor. A range query is a query that contains a comparison
operator like <, >, <=, or >=. For example, to find all
employees over 30 years old and less than 50 years old,
you could perform the query:

aSetOfEmployees select:
{ :emp | (emp.age > 30) & (emp.age < 50) }

In this example, both predicates traverse the same path, so
an equality index on that path could be used if it exists. In
fact, the indexing subsystem recognizes that the two pred-
icates define an upper and lower bound on the values to be
searched and combines the two lookup operations when
composing the result. One thing to note about identity and
equality indexes is that the existence of one kind of index
does not prohibit you from expressing any kind of query. If
an index is available for the query path and kind of com-
parison operator, then the indexing subsystemn will utilize
it; otherwise it will evaluate the query by enumeration. You
can find out the available indexes on a collection by send-
ing it the message equalityIndexedPaths or identity-
IndexedPaths, both of which return an array of strings.
Now that you know how indexes are used, let’s look
under the hood and see how they are implemented. To
maintain the reverse mappings along an index path, the
indexing subsystem must maintain auxiliary structures
that provide very fast lookup operations and are built to
handle large numbers of objects. These structures are typ-
ically hash dictionaries and btrees. In addition, the index-
ing subsystem must handle the updating of these struc-
tures when an object that participates in an index is
modified or when new objects are made to participate in

September 1995

17

| GETTING REAL

an index. For identity indexes, all reverse mappings along
the index path are maintained in a special kind of identity
hash dictionary called an RcIndexDicHonary. This dictio-
nary is optimized for a very large number of entries, as well
as having “reduced conflict” characteristics. In a previous
column, I described reduced conflict classes and how they
allow concurrent users to modify the same object without
experiencing concurrency conflict. An RcIndexDicHonary
allows concurrent adders and removers to update the dic-
tionary without experiencing conflict. Because this dictio-
nary may be updated whenever a user adds or removes an
object to the indexed collection, or modifies an instance
variable of an object that participates in an index, it is
important to reduce concurrency conflicts.

For equality indexes, all the reverse mappings except
the last are maintained in the collection’s index dictionary.
The last reverse mapping in the index path is maintained
in a btree. For example, if there were an equality index on
a set of employees along the path 'spouse.address.zipCode'
then the reverse mappings for spouse to employee and
address to spouse would be maintained in the index dictio-
nary, and the mapping from zipCode to address would be
stored in a btree. Btrees are a standard indexing structure
used in databases because they have many desirable char-
acteristics. Btrees maintain an ordering of its entries in
such a way that the tree is always balanced; all nodes in the
tree have at least a minimum number of entries and all leaf
nodes in the tree reside at the same depth. Because a node
can hold many entries, btrees are usually shallow, so
search operations are quite fast. When you execute the
“selectAsStream:” query (described in my previous col-
umn), the stream object that is returned as the result of the
query is actually streaming over the contents of the btree.

For more sophisticated users of indexes, a new feature
allows developers to plug in their own custom btree nodes
to speed up queries. In the latest release of GemStone,
users are allowed to create equality indexes along a path
where the last object is an instance of a user-defined class.
Prior to this feature, the last object along the path had to
be one of a few basic kinds of objects, like Strings, Numbers,
Characters, etc. This was necessary to ensure that the last
objects along the path could be ordered. To allow the last
object to be a user-defined object, you are required to
implement the comparison operators (<, >, <=, >=, and =)
for that class. These operations must be implemented so
that the following properties hold:

Ifa<band b<c thena<c

Exactly one of these is true: a< b,or b<a,ora=>b
a<=bifa<bora=b

Ifa=bthenb=a

Ifa<b thenb>a

Ifa>=b thenb<=a

Adhering to the properties described above is the only
requirement to be able to create equality indexes on paths
where the last object is a kind of user-defined class.

However, you can go one step further by emulating the
technique that is used for storing basic kinds of objects
(Strings, Numbers, etc.) in btree nodes. This technique
involves storing additional information in a btree entry so
that the lookup operations execute faster. For example,
when GemStone stores a string in a btree, it also stores an
encrypted form of the first nine characters of the string.
When performing look-up operations, if the first nine
characters determine whether the entry is <, >, or = to the
lookup key, then it is not necessary to fetch the string to
perform the comparison operation. Obviously, the fewer
objects that you have to fetch to perforrn comparisons,
the faster the total search operation will execute.

So how do you create your own custom btree nodes
that store additional information in an entry? It is mainly
a matter of creating subclasses of existing btree node
classes, and overriding a small number of methods. I will
illustrate with an example class called BagOrderedBySize, a
subclass of Bag whose ordering is determined by its size
(i.e., a bag with the two elments is less than a bag with five
elements). As you might expect, BagOrderedBySize imple-
ments the comparison operators based upon the sizes of
the receiver and the argument. To speed up comparisons
in the btree nodes, we will store the size of the bag in the
btree entry. Thus, a btree entry will consist of the
BagOrderedBySize, the object to which it is mapped (the
reverse mapping), and the size of the bag.

The first thing to do is to create subclasses of Btree-
InteriortNode and BtreeLeafNode, calling them CustomBag-
InteriotNode and CustomBagLeafNode. We need to override
about 10 methods to make our custorn btree nodes work;
however, most of the methods are trivial. For example, we
must override methods that return the btree entry size (it
should return 3), and the encryption size (it should return 1,
in which to hold the bag’s size). Another method to override
is the method that returns the maximum number of entries
in a node. For performance reasons, we do not want the size
of a btree node to be larger than a page, which is approxi-
mately 2,000 object references. Therefore, we override this
method to return 667 (size of an entry times 667 = 2,001).
We also need to override the method that returns the mini-
mum number of entries a node should hold; for btrees this
is typically half the maximum number of entries, so our
method will return 333. Another trivial method we need to
override is the one that returns the class of btree node to use
as a parent node. This is used when we must split a node
into two nodes and create a new node as a parent. In our
case, this method returns the class CustomBagInteriorNode.

The remainder of the methods to override for our custom
btree nodes involve inserting the size of a bag into a btree
entry and performing comparison operations. The method
to insert the size of a bag into a btree entry is as follows:

method: CustomBagLeafNode

_insertEncryptionFor: aBagOrderedBySize
value: aValue startingAt: offset
" Get the size of <aBagOrderedBySize> and place it in the

18

The Smalltalk Report

receiver at the given <offset>. The argument <aValue> is

unused. "

self _at: offset put: aBagOrderedBySize size
There are four comparison methods that need to be over-
ridden for our custom btree nodes. The implementation of
one of them should illustrate how to implement the others:

method: CustomBagLeafNode
_compareKey: aBagOrderedBySize lessThanEntryAt: offset
" Perform a "less than' comparison between <aBag-
OrderedBySize> and the entry whose key is at the given
<offset>. The size of the key has been stored at offset + 1. "
" define comparison such that nil is less than any
BagOrderedBySize "
aBagOrderedBySize isNil
ifTrue: [~ (self _at: offset) notNil].
A aBagOrderedBySize size < (self _at: offset + 1)

There are a few more details to integrate our custom btree
nodes into the indexing framework. We must override a
method on BagOrderedBySize to indicate which class of btree
node to use when an index is created. This class method,
called btreeLeafNodeClass, returns CustomBagLeafNode.
Finally, because our comparison operations are based upon
the size of the bag, when an object is added or removed
from any particular bag, the ordering of bags in our btree
nodes might change. Therefore, we must update any btrees
in which the bag is stored when a change to the size of the
bag occurs. Fortunately, there are convenience methods
that do this work for us. There are two methods, inherited

from Object, one of which removes the receiver from any
btrees in which it is stored, and another that inserts it back.
The implementation of the add: method for BagOrdered-
BySize illustrates the use of these methods.

method: BagOrderedBySize

add: newObject

" Adds <newObject> to the receiver, updating any btrees
in which the receiver might stored."

| values |

values := self removeObjectFromBtrees.

super add: newObject.

self addObjectToBtreesWithValues: values

Hopefully this column has given you a deeper under-
standing of how indexes work. They are most useful when
querying large collections where iteration over the entire
contents is prohibitive. For small collections, the over-
head of determining which index to use and fetching the
internal indexing objects negates the efficiency of index-
es. For collections that contain more than 1,000 objects,
indexes can speed up your queries. Another factor in
determining if indexes will help is the percentage of
objects returned for a query. If all elements of the collec-
tion satisfy the query, then you have effectively touched
all objects the same as if you had enumerated over the
entire collection. In this case, indexes will not give you
any performance advantage over brute force enumera-
tion. To summarize, indexes give the best performance for
large collections and for queries with high selectivity.

MANAGING ASYNCHRONOUS METHODS continued from page 11

The source code for the ExternalReadStreamAdaptor is
within the Manchester Goodies Library and its mirror
sites, registered in the file: ExternalReadStream_st within the
VisualWorks directories. The reader can also obtain the
source directly from the author. We hope this class will be
of use to other developers and welcome any comments.

Acknowlegment

The author wishes to thank Greg Cowin and Shawn Smith
for their feedback and suggestions in the design of the
services described in this article.

References

1. Teale. C++ 10STREAMs HanDBOOK, Addison-Wesley, Reading,
MA, 1993.

2. ParcPlace Systems Inc. Advanced Programming Users’ Guide,
Ch.3,p.9.

3. White, Deugo, and Ulvr. Object transfer between Smalltalk VMs,
THE SMALLTALK REPORT 4(2):11-13, 1994.

4. ParcPlace Systems Inc. OBJECTWORKS \ SMALLTALK USERS GUIDE,
Ch. 8, p.81.

Dr Michael Christiansen is a Consultant for Bell-Northern
Research in Richardson, TX, where he develops management
applications for cellular telecommunication networks. He can be
contacted through BNR at 214.684.2550 or by email at mikec@
metronet.com.

Applying OMT

A Practical Step-by-Step Guide to Using the Object

Modeling Technique
KURT DERR

Applying OMT was written to
illustrate the process for
implementing an application
using the very popular Object
Modeling Technique (OMT)
created by James Rumbaugh.
Designed as a how-to guide,
this book instructs readers on
the implementation process
and on practical approaches
for OMT. The included
diskette provides relevant
C++ and Smalltalk code.

This is an essential reference
for anyone wishing to learn

Applying OMT

(1SBN: 1-884842-10-0)

To order a copy of

Applying OMT object-oriented analysis and

call (609) 488-9602 design or who uses or wants to

or see our Home Page pegin exploration of the
htip://wwwsigs.com/ Opject Modeling Technique.

WS

Available at selected book stores. Distributed by Prentice Hall.

September 1995

19

Uses of Variables:
Temps

instance and temporary variables, I came upon the
information (some of it is patterns, some isn't yet) in
the course of writing my forthcoming book of Smalltalk
coding patterns. I looked at temporary variables first, and
found patterns for four ways temps are used:
1. Reuse the value of a side-effecting expression (like

ASStream>>next"T)

2. Cache the value of an expensive expression
3. Explain the meaning of a complex expression
4. Collect the results of several expressions

Success in hand, I went to look for a similar set of
canonical uses of instance variables. No dice. I came up
with a taxonomy of the uses of instance variables, but no
patterns. Many of the uses are bound up in other patterns
(like the instance variable that holds the current State
object). Others are too vague to make good patterns. ru
present what I have so far, because I have found it useful
even in its unpolished state.

Ward Cunningham and I had a good long talk about this.
We decided that the reason I was having so much trouble
was scope. In the first book I am looking for coding pat-
terns, the tactics of successful Smalltalk. Choosing to use a
temporary variable is a tactical decision. It affects nothing
but the single method in which the variable is used.
Choosing to use an instance variable is not a tactical deci-
sion (except in a few cases like caching). Instance variables
are tied up with the bigger issues of making models in
Smalltalk. I already had lots of patterns upstream and
downstream of the temporary variable patterns, so they fit
right in. The modeling patterns are not nearly so well devel-
oped (that's why I'm leaving them out of the first book).

THE Topic oF this and the next columnn is how to use

PPDUC
Before I talk about variables, I'd like to give you an update
from PPDUC.

I gave a half-day pattern tutorial the first day. Around
150 folks attended. I knew I wanted to cover a lot of
ground quickly, so I tried something new for me: I pro-
grammed live while talking about coding patterns.

Let me recommend this as a technique to all you trainers

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, PO.Box 226, Boulder Creek, CA 95006-0226,408.338.4649
(voice), 408.338.3666 (fax), or by email at 70761,1216 (Compuserve).

Smalltalk Idioms

Rl

Kent Beck

out there. The great thing about programming and teaching
at the same time is there is so much shared context. You cre-
ate a class, then ask, “How are we going to represent
instance creation?” Everybody is thinking about what they'd
do, so when you introduce the pattern (Complete Creation
Method), they can see exactly how it relates to their experi-
ence. The terrible thing about programming and teaching
simultaneously is that you are trying to keep two stories
going in your head at once—the development story and the
teaching story. I found myself typing a few characters, talk-
ing for 15 seconds, typing a few more characters, talking
some more. Really quite distracting.

I had been hacking like crazy trying to get a new release
of Profile/V ready for the show (I didn’t quite make it}, so I
was running on little sleep. The morning I left for the con-
ference my wife reminded me “don’t say anything you
don't want to see printed in THE SMALITALK REPoRT.” I'm
afraid I blew that in the first couple of minutes. Oh well...

On a related note, a very angry developer came up to
me at one of the breaks. A colleague of his had read some
of my comments from Smalltalk Solutions in THE
SMALITALK REPORT, and understood them to mean that you
dor't have to design Smalltalk programs. The VAD blamed
me for the resulting mess, which was now his problem
since he had inherited the code.

I won't even argue about whose responsibility the ugly
code is. If even one person misunderstood, however, the
comment deserves a little explanation.

You have to design Smalltalk programs much more than
programs in other languages, not less. You expect Smalltalk
programs to do much more. However, you can't do all that
design at the beginning of the project when you're ignorant.
You have to get smart before you design. Effective design
happens in episodes (Ward's word) throughout the life ofa
project. Just because you don't kill a whole bunch of trees in
the first six months doesn't mean you aren't designing.

Back to the conference, many of the presentations
were deadly dull. Next year I expect much better. I see lots
of amazing things out there, so I know there’s enough
material. Two stand-outs were Ward's talk about how to
decide to harvest frameworks from code and Roby's
1200cc presentation of “Smalltalk: The Web Server.”
Coming soon to a network protocol stack near you!

The booths were certainly lively. Everybody had lots of
traffic. The attendees seem to be serious about looking for
ways to protect and capitalize on their Smalltalk invest-
ment. That’s good news to us third-party folks.

20

The Smalitalk Report

TEMPORARY VARIABLES

Smalltalk provides temporary variables to hold objects for
the duration of a method. When I learned Smalltalk, I had
to learn how to use them by reading examples in the
image. Trial, error, and reading left me with a handful of
ways to use temps, but the information was all subcon-
scious. When I was looking for patterns of use, I went
through every method in the image that uses temps:

| methods |
methods := OrderedCollection new.
Object allSubclassesDo:
[:eachClass |
eachClass selectors do:
[:eachSelector | | node |
node := eachClass decompile: eachSelector.
node block body temporaries notEmpty ifTrue:
[methods add:
eachClass printStxing , ' ', eachSelector]]].
MethodListBrowser
openlListBrowserOn: methods
label: 'Methods with temps'

I cycled through all the methods trying to classify each
temporary variable. When I got to a variable I couldn't
classify, I added a new category. Here are the results, writ-
ten as patterns:

Pattern: Reusing Temporary Variable
How do you repeatedly use the same evaluation of an
expression whose value changes?

Repeating an expression is often the simplest way to
write a method. Reading a method without temporary
variables is easier than reading one that has them.
Occupying your mind remembering the assumed value of
a variable provides a distraction from the work of com-
prehending the rest of the method.

Some expressions return new values for each evalua-
tion because of side-effects. If you are relying on the same
value, you cannot simply execute the expression again
and get the right results. For example:

parseLine: aStream
aStream nextWord = ~Qone' ifTrue: ["self parseOne: aStream).
aStream nextWord = ~Qtwo' ifTrue: [*self parseTwo: aStream).

is not likely to be what you meant. Instead, you want to
grab the first word in the line once, then use that word in
subsequent tests:

parseline: aStream
| keyword |
keyword := aStream nextWord.
keyword = ~Qone' ifTrue: [*self parseOne: aStream].
keyword = ~Qtwo' ifTrue: [*self parseTwo: aStream].

Other expressions, like "Time millisecondClockValue", change
value because of resources external to Smalltalk rather than

September 1995

h

Increase your
productivity with the

manager’s guide for
object technology.

0O-0 technology, OBJECT MAGAZINE is the "point

of entry” publication for you. Written for both
the newcomer and experienced software manager,
each issue provides a candid and detailed discussion
of the developmental management issues
surrounding object orientation, as well as “real
world” applications and case studies. Edited by
Marie Lenzi, cofounder of Syrinx Corp. and world-
wide industry lecturer,
OBIECT MAGAZINE is filled
with articles from the
industry leaders themselves
including: Adele Goldberg, SMALLTALK
Grady Booch and many more. |

I f you're a software professional working with

OBJLe 1

. maghz.ne

Now in its 4th year
with over 40,000 readers
in 61 countries!

OBJEC.T

RETURN COUPON TO:
SIGS Publications, PO Box 5050, Brentwood, TN 37024-5050
For faster service, call: 1-800-361-1279, fax: 615-370-4645,
e-mail: subscriptions@sigs.com, or WWW- http:/iwww.sigs.com/

J YES! Send me one year (9 issues) of 0BJECT MAGAZINE
for $39. Plus, FREE issues of Cross-Platform Strategies.

Method of Payment
QO Check Enclosed (payable to SIGS Publications)
Q Charge My: Q Visa O Mastercard O Amex

Card No. Exp. Date
Signature

Name

Company
Address

City/State/Zip
Country/Postal Code
Phone/Fax

Important: Non-U.S, orders must be prepaid. U.S. orders include shipping. Canadian and
Mexican orders please add $25 for air service. All others add $40. Checks must be paid in U.S.
dollars drawn on a U.S. bank. Please allow 6-8 weeks for delivery of first issue.

S IG_S Complete Money-Back Guarantee!

PUBLICATIONS

| SMALLTALK IDIOMS

side-effects. They, too, must be stored in a Reusing
Temporary Variable.

Store the value of the expression in a temporary vari-
able. Use the variable instead of the expression in the
remainder of the method.

Pattern: Explaining Temporary Variable
How do you clearly communicate the intent of complex
expressions?

Introducing the complexity of a temporary variable
may be warth the cost if there are complex expressions in
a method. Readers must carefully study an expression
with 5 or 10 messages embedded in it to understand its
meaning. You can use a temporary variable to communi-
cate the intent of part of the expression.

For example, you might need to compute the size of a
widget by combining several factors:

extent

“self textWidth + self leftBorder + self rightBorder +
self margin
@ (self textHeight + self topBorder + self bottomBorder +
self margin)
Compare that to:
extent

| xy |

x := self textWidth + self leftBorder + self rightBorder + self
margin.

y := self textHeight + self topBorder + self
bottomBorder + self
margin.

"X@y

You can read the second version in three separate chunks,
without having to understand the whole expression at once.

Store the value of a part of a complex expression in a
temporary variable. Use the variable in place of the sub-
expression. Give it a name that reflects the meaning of the
expression.

Explaining Temporary Variables are often a prelude to
Composed Method. The example above looks even better as:

extent
“self width @ self height

Pattern: Caching Temporary Variable
How do you improve the performance of a method that
repeatedly calculates the same value for an expression?
Often, redundant calculation makes for the most read-
able code. For example, if you haven't had any other excuse
to introduce a temporary variable, you shouldn't use one just
because you are redundantly executing an expression. For
example, self bounds in the following code always returns the
sarne Rectangle, but it reads best if it is executed repeatedly:

smallerChildren
“self children select: [:each | self bounds contains:
each bounds)

If you measure that the repeated execution of bounds is
slowing the whole computation down, and if this method is
the only one for whom it is a bottleneck, the simplest solu-
tion is to compute it once and store the value in a tempo-
rary variable:

smallerChildren
| bounds |
bounds := self bounds.
“self children select: [:each | bounds contains: each
bounds]

The result is longer, more complex (because of the temp
you have to keep track of), and more prone to breaking
(what happens if the receiver's bounds change during the
method?) However, if you need the code to go faster, the
costs are likely to be a good investment.

Execute the expression once. Put its value in a tempo-
rary variable. Use the variable instead of the expression.

Pattern: Collecting Variable
How do you collect results across several expressions?

The enumeration protocol does a good job of relieving
you of the burden of writing most looping code. You just
write collect or select or whatever and the details are taken
care of for you.

This is all well and good as long as you are working with
a single collection at a time (which is 95% of all uses).
When you need to coordinate several collections, or even
collect results from several objects, you need to do a bit
more of the coding yourself.

As with the other temporary variable patterns, if you
can get away without them, you should. However, the only
alternative in this case is to write a whole slew of enumer-
ation methods, and keep extending them for every new
application. Using a temp isn't so bad compared to that.

For example, say you need to return the concatenation
of two collections, but the elements should be perfectly
shuffled—an element from the first, an element from the
second, an element from the first, and so on. Here's how
you do it using a temporary variable:

couples
| result |
result := OrderedCollection new.,
self girls
with: self boys
do:
[:eachGirl :eachBoy |
result add: each@Girl.
result add: eachBoy].
“result

Use a temporary variable to collect results. Initialize it,
add to it, and return it as the value of the method.

CONCLUSION
In the next column I'll talk about the 11 ways I've found so
far for instance variables to be used. See you next month!

22

The Smalitalk Report

Managing Objects

Managing project
documents

N THE JUNE ISSUE, we made a case for “continuous doc-

umentation,” and outlined what that entails. We also

promised to give you some concrete examples and
source code, so you could begin to implement a continu-
ous documentation process. In the July issue, as many
readers know, we were diverted from this topic by a base
image change alert. So, now let’s return to the topic of
managing project documents.

There are at least five widely differing Smalltalk
dialects out there, augmented by two major and numer-
ous minor code management systems. Rather than
attempt the impossible task of embracing such diversity,
we'te presenting stuff that is actually implemented and
working in VisualWorks 2.0 under ENVY/Developer R1.43.

Many of these things can be done in other environ-
ments. However, much of the following assumes you can
associate storage with arbitrary software components,
which might be difficult if your code manager is simply a
layer on top of source code files.

* Principle 1: Conceptual Integrity—Documentation
must be at the same level as that which it describes. There
is simply no way you can cram all your documentation
needs into class and method specifications. ENVY
provides nestable modules called Applications and
SubApplications that have a specification field, and a
module binding component called a “configuration
map” that also has a specification field.

¢ Principle 2: Constant Accuracy—Documentation must
be stored with that which it describes. If you want your
developers to maintain their documents, you've got to
make it easy for them to do so.

* Principle 3: Accessibility—Documentation must be
available quickly and efficiently from other, related
documentation. This does not mean sending a reference
number via email to your organization's technical library!

A SIMPLE MACRO FACILITY
The marriage of these three principles demands some

Jan Steinman and Barbara Yates are cofounders of Bytesmiths, a
technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over 20
years Smalltalk experience.They can be reached at barbara.byte-
smiths@acm.org or jan.bytesmiths@acm.org.

Barbara Yates

Jan Steinman

way of linking related parts of documentation together.
VisualWorks has a simple but efficient tagged-character
class, Text, that allows you to associate arbitrary objects
with each character in a string. (If your Smalltalk has no
such thing, you will need to either add it, or come up with
some other linking mechanism.)

This tagged-character capability suggests a simple
“not-quite-hypertext” linking facility. First off, we need to
fix a bug; add the following instance method to TextStream:

TextStream:
nextPutAll: alext
"Place each of the elements of aText on myself, starting
at my current position. If I'm fed an instance of Text,
keep its emphasis. Answer aText."

(aText respondsTo: #runs)
ifFalse: ["super nextPutAll: aText].

1 to: aText size do: [|
"I know, it's brute-force. Someday, this should be
optimized by examining runs."
self
emphasis: (aText emphasisAt: i);
nextPut: (aText string at: i)].
~aText

Without this bug fix, Text fed to a TextStream loses its
emphasis, which sorta defeats the purpose! Readers of our
last column may recognize a “signature testing” pattem of
managing system changes, and may recall that an override
is indeed a base image change. Be aware that code that
expects the superclass behavior will now be “broken” by
this bugfix!

Now implement the following three methods in a class
extension of Text. We try to put system additions in a par-
allel application with a similar name. In our repository,
the following extensions are in a subapp called
DevelopmentBytesmiths because they relate to the develop-
ment process, and not particularly to Text in its full gener-
ality. Note also that these extensions are dependent on
Compiler; simply adding these extensions to the subapp
Collections, where Text is defined, would create a circular
dependency between the apps Kemel and Compilation.

September 1995

23

| MANAGING OBJECTS

Text:
withInclusions
"Answer a copy of me in which all strings with the
emphasis #Smalltalk are evaluated and replaced with
a String or Text representation of the result."

~self withInclusionsIn: nil

withInclusionsIn: codeOwner
"Answer a copy of me in which all strings with the
emphasis #Smalltalk are evaluated and replaced with
a String or Text representation of the result. The
context of evaluation is the object codeOwner."

~(self
withInclusionsIn: codeOwner
on: (TextStream on: (String new: self size * 2 "Guess
that inclusions may double size."))) contents

withInclusionsIn: codeOwner on: textStream
"Place on textStream a copy of me in which all strings
with the emphasis #Smalltalk are evaluated and
replaced with a String or Text representation of the
result. The context of evaluation is the object
codeOwner. Answer textStream."

| whereAmI whereWasl |
A(self size > 0 and: [runs values includes: #Smalltalk])
ifFalse: [textStream nextPutAll: self]
ifTrue:
[whereAmI := whereWasl := 1.
[whereAmI := whereAmI + (self runLengthFor:
whereAmlI).
(self emphasisAt: whereWasI) == #Smalltalk
ifFalse: [textStream nextPutAll: (self copyFrom:
whereWasl to: whereAmI-1)]
ifTrue: [(Object errorSignal
handle: [:ex |
textStream
emphasis: #bold;
nextPutAll: *** Cannot include the
following expression!! ***';
emphasis: nil;
cr;
nextPutAll: (string copyFrom: whereWasI
to: whereAmI-1).
ex returnWith: "]
do: [Compiler
silentEvaluate: (self copyFrom:
whereWasI to: whereAmI-1)
for: codeOwner
logged: false]) withInclusionsIn:
codeOwner on: textStream].
whereWas] := whereAml.
whereAmI = 0 or: [whereAmI > self size]]
whileFalse: [].
textStream]

The VisualWorks 2.0 compiler is in many ways as old as
Smalltalk itself, and has not been fully integrated with sig-
nals and exceptions. We fixed that by adding silent-
Evaluate:for:logged:, which always raises an exception
when compilation breaks. You can do the same, or you
can change this to evaluate:for:logged: and put up with
the occasional syntax error window when expanding Text
that has bad expressions to expand.

This facility is recursive; if a section of Text has the
emphasis #Smalltalk, the resulting expansion is itself
scanned for inclusions, so any object that understands with-
InclusionsIn:on: can implement its own expansion scheme.
In fact, without someone putting an end to this recursion,
there can be real trouble! Implement the following two
methods in extensions to Object and String, respectively:

Object:
withInclusionsIn: ignored on: textStream
"Place on textStream a printable representation of me
suitable for use in documentation. Answer textStream.
This is a 'bug catch' message in this class, and should
normally only be sent to Texts or Strings. Subclasses should
not normally override simply to change presentation."

self printOn: textStream.
“textStream
String:
withInclusionsIn: ignored on: textStream
"Place myself on textStream for use in documentation.
Answer textStream."

textStream nextPutAll: self
textStream

For even more flexibility, add the following to an exten-
sion of BlockClosure. If the Text being expanded is a block,
the block will be evaluated, and the result will be inserted
into the expanded output. The block can optionally take
the “code owner” and the active TextStream as arguments,
which allows included source code blocks to query their
environment and directly manipulate the resulting
expanded output.

BlockClosure:
withInclusionsIn: codeOwner on: textStream
"Place on textStream a printable representation of my
evaluation suitable for use in documentation. Depending
on the number of arquments I take, pass me codeOwner
and textStream on evaluation. Answer textSiream."

| args |

args := Array new: self numArgs.

1 <= args size ifTrue: [args at: 1 put: codeOwner].

2 <= args size ifTrue: [args at: 2 put: textStream]-

A(self valueWithArguments: args) withInclusionsIn:
codeOwner on: textStream

These methods add the basic “hypertext” behavior to Text.
Now your app/subapp comments can have things like

24

The Smalitalk Report

“MyClass comment” with the emphasis #Smalltalk,

and sending withInclusions to that Text will embed

the comment for MyClass. But, by itself, this inclu-

sion facility is not terribly useful for two reasons:

1. ENVY strips the per-character attributes from
Text before storing it.

2. Basic VisualWorks provides no user interface for
applying custom character attributes to a Text.

ENVY Text storage
If your hypertext goes away when your image quits, it
won't improve your team’s productivity one bit! When
you press the “source” button in an ENVY browser to
switch to “comment” mode, any changes you make
are stored as Strings in “inherited user fields.” These
are arbitrary key-value storage locations, in which
both key and value must be a String. If we can trick
ENVY into storing Text (or even arbitrary objects) in
these fields, it saves us from changing each of the
many places where these fields are accessed.

This gets a little difficult, because the source code
for methods that access the repository has been
removed, and your ENVY/Developer license keeps

you from decompiling or otherwise reverse-engi- [
neering those methods. The following technique
allows you to copy the hidden methods and associ-
ate that copy with a new method selector, allowing you to
provide an original implementation in its place that con-
ditionally sends the old method.

OTI has no legal objections to this technique, but it can
be dangerous if misused! We've been using the following for
some time, but if there is a typo, or if you use this technique
to intercept and modify other hidden methods, you may
damage your ENVY repository. Be sure to follow our sug-
gestions in last month's column for managing base image
changes, and consider making and testing these changes in
a separate repository until you are certain they are safe.

Do this in a workspace to copy and rename the two
hidden methods that need to be intercepted:

| meth oldRecord |
meth := (UserFieldRecord compiledMethodAt: #contents)
copy.
oldRecord := meth record.
meth selector: #contentsFromVendor,
UserFieldRecord
updateEditionsRecordIn: LibraryManagement
with: [:record | record
addMethod: meth
source: nil
basedOn: oldRecord
changeCategoryTo: 'intercepted methods']
ifUnable: [].
meth := (Record class compiledMethodAt: #libraryFormatFor:)
copy.
oldRecord := meth record.
meth selector: #libraryFormatForFromVendor:.

Figure 1. An application comment template, showing hyper-links.

Record class

updateEditionsRecordIn: LibraryManagement
with: [:record | record

addMethod: meth

source: nil

basedOn: oldRecord

changeCategoryTo: ‘intercepted methods']
ifUnable: []

Before we go any further, we need to establish the predi-
cate we are going to use for switching between the original
implementation and our Text-capable implementation.
Put the following two methods in the same Application or
SubApplication where you put the other class extensions:

Text class:
canReadFrom: chars
"Does the String (or streamed String) chars contain
information that can be used to create an instance of
me via #readFrom:?"

| signatureChars |
~chars size >= "String new asText storeString size" 56 and:
['(Text string: "
occursIn: (chars isSequenceable
ifTrue: [chars]
ifFalse:
[signatureChars := chars next: ™(Text
string: " size" 15.
chars position: chars position - 15.
signatureChars])
at: 1}

September 1995

25

| MANAGING OBJECTS

“expand comment”
enu item.

Record class:
libraryFormatFor: anObject
"Answer a format suitable for storing
anObject in the library."

~(anObject respondsTo: #libraryFormat)
ifFalse: [self libraryFormatFor
FromVendor: anObject]
ifTrue: [anObject libraryFormat]

Note the conditional nature of these
changes. They can safely replace those in
{ the base image, because they will not break
if the Application or SubApplication con-
§ taining the Text extensions is not present.
Now, character emphases you change in
any comment or notes field will be pre-
served in ENVY. More importantly, the
emphasized commentary does not “break”
if these changes aren't present; since they
are in the storeString format, they are sim-
ply a bit difficult to read.

You now have all the “modeling” changes

you need to implement hypertext based on
arbitrary Smalltalk expressions embedded
in Text objects—that’s always the hardest
thing to get right. Now all you need is a UI!

Setting #Smalltalk Text emphasis

We've added extensive support for viewing,
2 searching, and modifying these embedded
expressions that we don't have room to
show here. However, there are a few simple

gure 2. Exmple of fully expanded documentation.

Text
libraryFormat
"Answer a representation of myself suitable for storing
in ENVY user fields."

self storeString

Now replace those two hidden methods that we copied
with original implementations that conditionally send
the renamed method:

UserFieldRecord:
contents
"Answer my contents, decoding them if necessary."

| charStream decoder |
charStream := self collection readStream position: self
startPosition - 1.
~((Text respondsTo: #canReadFrom:) and:
[Text canReadFrom: charStream])
ifTrue: [Text readFrom: charStream]
ifFalse: [self contentsFromVendor]

things you can do to get started, which may
be enough to get you started.

ParagraphEditor is the class that generates and modifies
Text, including character emphasis. Unfortunately, there is
no simple way to fully support new emphasis types with-
out changing existing ParagraphEditor code, making new
TextAttributes and CharacterAttributes instances, and then
managing those instances as long-lived system resources.

We're going to cheat by adding a simple facility for set-
ting and removing the new #Smalltalk emphasis we've
specified in a less general way. To be able to set or remove
an arbitrary emphasis, add the following to an extension
of ParagraphEditor:

ParagraphEditor:
addEmphasis: emphasis
"Add the given emphasis to the emphasis of the
current selection.”
| thisText |
thisText := self selectionStartIndex = self
selectionStopIndex
ifTrue: [Text string: 'x' emphasis: emphasisHere]
ifFalse: [self selection].
thisText addEmphasis: emphasis

26

The Smalitalk Report

JUST PUBLISHED!

Rapid Software Development , :
with Smalltalk The Ultimate Guide to Better

Smalltalk Development...Write Code
Faster Without Sacrificing Quality.

RAPID SOFTWARE DEVELOPMENT WITH SMALLTALK covers the spectrum
of O-O analysis, design, and implementation techniques and
provides a proven process for architecting large software sys-
tems. By using detailed examples of an extended Responsibility-
Driven Design (RDD) methodology and Smalltalk, readers will
find techniques derived from real O-O projects that are directly
T -~ applicable to on-going projects of any size.

The author provides readers with specific guidelines that could
dramatically cut costs and keep projects on-time. Specifically,
the author provides readers with project patterns that work,

Abo“t the AUthor'" illustrations of design patterns, O-O metrics with example code
Mark Lorenz is the founder and to test design quality and of course, numerous Smalltalk code
president of Hatteras Software, examples.
Inc. a company that specializes
in helping projects use object '

technology successfully. The author has Readers WI""'

already published two popular books on * Speed up the development process by fostering reuse
object technology entitled OBJECT-ORIENTED « Significantly reduce debugging time

SOFTWARE DEVELOPMENT. A PRACTICAL GUIDE and i .)
OBJECT-ORIENTED SOFTWARE METRICS (Prentice * Gain step-by-step instruction on how to make

Hall) and also writes a regular column for the object model more robust
THE SMALLTALK RepoRT called “Project * Learn how to distribute responsibilities within
Practicalities.” the object model more effectively

» Discover a practical day-by-day breakdown
of a rapid modeling session

* Seec how to organize the development team most efficiently

CAn T This book will prove invaluable to anyone interested in speeding
GLEAIRIMNEILIR A, silable at selected book stores. up the consistent development of high-quality object-oriented
DBJEET Distributed by Prentice Hall ftw. tems based in Smalltalk
TECHNDLOGY istributed by Prentice Hall, software system .
SFENRIES
SIGS BOOKS ORDER FORM %

[YES! Please rush me __copy(ies) of RAPID SOFTWARE Name

DEVELOPMENT WITH SMALLTALK at the low price $24 per Compan

COPY. (ISBN: 1-884842-12-7; Approx 200 pgs.) pany

Title

Money-back Guarantee: If I am not completely satisfied, [may return
the book(s) within 14 days and receive a complete refund, promptly and Address
without question.

City/State/Zip
[J Check payable to SIGS Books Country/Postal Code
[Jvisa [American Express [J MasterCard Phone Fax
Card# Exp. SEND T0:
Signature S16S Books, P.0. Box 99425
S1uPPING AND HANDUNG: For US orders, please add 55 for shipping and handling; (o"inqswood' NJ 08108-9970

Canada and Mexico add $10; Outside North America add $15. IMPorTANT NY State

residents add applicable sales tax. Please allow 4-6 weeks for delivery. Phone: 609,‘“.9602 I:ﬂx: 609.&“.6'88

O‘h—d
A

U-‘J‘C/)

HOW TO CONTACT SIGS PUBLICATIONS

To submit materials for publication
Article proposals, outlines, and manuscripts; industry news; press
briefings; product announcements; letters lo the editor—send to
John Pugh & Paul White, Editors
THE SMALLTALK REPORT
885 Meadowlands Drive, Suite 509
Ottawa, Ontario K2C 3N2, Canada
Phone: 613.225.8812 Fax: 613.225.5943
email: john@obiectpeople.on.ca
paul@obijectpeople.on.ca

For customer service and to order a subsaiption, renew,
or change the name/address of an existing subscription
In the US—

P0. Box 5050

Breniwood, TN 37024-5050

Phone: 800.361.1279 Fax: 615.370.4845

email: subscriptions@sigs.com

In Europe—

Subscriptions Dept.

Tower House

Sovereign Park

Marke! Horborough
Leicestershire, LE16 9EF UK
Phone: +44(0)1858 435 302
Fax: +44(0)1858 434 958

To order back issues

Back Issue Order Dept.

SIGS Publications

71 West 23rd Sireet, 3rd floor

New York, NY 10010

Phone: 212.242.7447 Fax: 212.242.7574

For information on list rentals, contact:
Rubin Response

1111 Plaza Dr.

Schaumburg, IL 60173

Phone: 708.619.9800 Fax: 708.619.0149

For information on reprints of published material, contact:
Reprint Managemenl Services

505 East Airport Road, Box 5363

Lancaster, PA 17601

Phone: 717.560.2001 Fax: 717.560.2063

To ploce an odvertisement or request a media kit for any
SIGS publications, contact:

Advertising Department

SIGS Publicafions

Phone: 212.242.7447 Fax: 212.242.7574

For information on SIGS Books and
SIGS Conferences
Phone: 212.242.7447 Fax: 212.242.7574

removeEmphasis: #()
allowDuplicates: false.
self selectionStartIndex = self selectionStopIndex
ifTrue: [emphasisHere := thisText emphasisAt: 1]
ifFalse: [self replaceSelectionWith: thisText].
view topComponent refresh

removeEmphasis: emphasis
"Remove the given emphasis from the emphasis of the
current selection."

| thisText |
thisText := self selectionStartIndex = self
selectionStopIndex
ifTrue: [Text string: 'x' emphasis: emphasisHere]
ifFalse: [self selection].
thisText addEmphasis: #()
removeEmphasis: emphasis
allowDuplicates: false.
self selectionStartIndex = self selectionStopIndex
ifTrue: [emphasisHere ;= thisText emphasisAt: 1]
ifFalse: [self replaceSelectionWith: thisText].
view topComponent refresh

Now, wire it to a pair of “hot” keys. This method works like
the other emphasis hot keys, such as “ESC b” to add bold
and “ESC B” to remove bold, but unlike the method that
implements other emphasis changes, this one is not hard-
wired to a particular key.

ParagraphEditor:

changelnclusionKey: aChar
"Add or remove 'inclusion' emphasis of the current
selection, depending on the case of aChar. Uppercase
removes, lowercase adds."

aChar keyValue isUppercase
ifTrue: [self removeEmphasis: #(Smalltalk)]
ifFalse: [self addEmphasis: #(Smalltalk)].
“rue

Finally, evaluate the following statements to bind this
emphasis change to a “hot” key of your choice. (We chose
“h” for “hyper,” and because it was not already used.) These
statements should go in the loaded method of the
Application or SubApplication where you have been
putting all this code. (While you're at it, add a removing
method that undoes these key bindings.)

(ParagraphEditor classPool at: #Keyboard)
bindValue: #changeInclusionKey: to: ESC followedBy: $h;
bindValue: #changeInclusionKey: to: ESC followedBy: $H.
ParagraphEditor withAllSubclasses do: [:peClass |
peClass alllnstancesDo: [:pe |
pe flushKeyboardMap]]

Viewing the results
Now you are able to create and store runtime inclusions

28

The Smalltalk Report

Introducing the
new ohject technology magazine
for Europe...

Upcoming Features
e What's Going On with Distributed Objects
o New Cost Estimation Techniques
o Mastering Memory Management
e Using Use Cases
e Business Objects Made Easy
e Building 0-0 Client/Server Architectures
e Understanding Object Database Systems

Osject EXPERT is written for and by European object
technology users. Under the editorial direction of
well-respected UK practitioner John Daniels, OBJECT
ExperT offers detailed how-to articles, insightful
columns, and helpful case studies for those seeking
object technology solutions. Each issue includes sev-
eral short, easy-to-read articles for both newcomers
and advanced users. OBJECT EXPERT is the one easily
accessible and readable forum that unites all object
technology users throughout Europe.

OBJECT =
EXPERT

Regular Columns and Columnists
e Methods and Tools, John Cameron
e Distributed Object Systems, Andrew Watson
o Using C++, Bryan Boreham
o System Architecture, Sanjiv Gossain
e Smalltalk Means Business, Bernard Horan
o Building From Components, Andy Carmichael
e Migration Strategies, Alan 0°Callaghan
e Formal Techniques for OT, Alan Witls
e Business Objects, oliver Sims
o Market Trends, Philip Carnelly
o Skills Transfer, Roger Holmes

A must-read for anyone who wants
to become an Object Expert.

Upiate oa e 0M T Bandy Merper

Maximizing
Your Reuse

QO YES! Send me one year of OBJECT EXPERT (six issues) beginning
with the premiere November/December ‘95 issue:

Q £25 UK 0O £35 Europe O £45 outside Europe O DM 92 O FF 324

METHOD OF PAYMENT
Q Cheque enclosed (Payable to SIGS, drawn on 2 bank in the country of currency)
Q Charge my: Q Visa U Mastercard 1 AMEX

Cardi#: Exp. date:

Signature:

Al credit card transactions will be debited at the £ Stevling rate above.

All prices include shipping.
FOR FASTER SERVICE,

PSIGS call +44 01858 235301

fax +44 (0)1858 434958

Company

Address

Town

Country/Postal Code

Phone Fax

SIGS Publications, Tower House, Sovereign Park, Lathkill Street,
Market Harborough, Leicestershire LE16 9EF United Kingdom

superView

- add:
SIGS Refercnce I-lbrary (LookPreferences edgeDecorator on: (anInspector
. . . class textViewClass on: anInspector aspect: #text
SIGS Books is seeking authors for its change: #acceptText:from:
new book series, 7he S/GS Reference _ menu: #textMenu initialSelection: nil))
. . . e in: area
Library. Titles in the series include The rest is eight methods that all override Inspector methods.
THE DiRECTORY OF OBJECT TECHNOLOGY and This works great as the “developer” interface—your
THE DicTioNARY OF OBJECT TECHNOLOGY. developers will be so glad to be rid of keeping class com-
ments in synch with app/subapp comments that they
To discuss or submit a proposal on won't mind that their l];yperlink Lo en:)bedded doc;r:llefn-
- P tation is an inspector. But something better is needed for
writing white papers, handbooks, etc., the “linear reader” and for hard copy,
please contact: Unfortunately, any presentation change that is avail-
. able from existing browsers is going to be a base image
Don F"esmlth. Editor-in-Chief change. We consigdered wiring incllfsion expansion to a
4001 Weston Parkway, new ParagraphEditor menu item, but we didn't feel the
carv NC 27513 facility was general enough, and we certainly didn't want
’ it slipping through to the end user!
919-481-4000, 919-677-0063 (f) Instead, we dug into the EnvyBrowser hierarchy, adding
dfiresmith@ksccary.com yet another mode to the code pane, with a menu item in
the status area to expand all inclusions. Figure 2 shows the
linearized hyperdocument, including two of the hyper-
S I G S links displayed in Figure 1. This isn't the entire story, but it
BOOKS should get you started:
AbstractMethodsBrowser:
expandComment

"I assume that my text view is in comment mode.
Cause the comment to be re-generated, with all Text
of #Smalltalk style evaluated and inserted in-place."

in your project documentation. This allows detailed doc-
umentation to be linked to abstract documentation, yet
be maintained at the detailed level, while not distracting
the reader of the abstract information. Figure 1 shows

C oldState |
three hyperlinks in a code browser. We purposely make | -
#Smalltalk emphasis difficult to read, to limit distraction [oldState := self textSelector.
self changedTextTo:

and to encourage link expansion. But what if the reader
wants to be so distracted? How do we see this stuff?

The simple way is to select a #Smalitalk-emphasized
expression and inspect it. You get a basic inspector on a
Text, which allows you to see the plain ASCII expansion.
Alternatively implement an Inspector subclass for Text that
allows you a WYSIWYG view of Text.

Rather than use up precious column space with an entire

#textShowingCommentWithInclusions]
valueNowOrOnUnwindDo: [self textSelector: oldState]

textShowingCommentWithInclusions
"Answer the expanded comment."

~Cursor read showWhile: [self commentString asText

implementation, we'll tease you with some salient bits: withinclusions]
Inspector subclass: #TextInspector
instanceVariableNames: ' '
classVariableNames: " CONCLUSION
poolDictionaries: " Getting project documentation to flow out of the devel-
category: '‘BaseToolsBytesmiths' opment process can greatly increase productivity, and if it
is well done the developers actually begin to enjoy pro-
TextInspector comment: 'This class allows normal ducing and maintaining their documentation!
ParagraphEditor style editing of a Text just by inspecting In two columns, we've outlined the requirements and
it. It has no list view, since you don't really need one.' principles of a continuous documentation process, and
TextInspector class: provided some concrete examples of how it can be accom-
view: aninspector in: area of: superView plished. In the future, we'll periodically revisit the topic
"Create a text view on anInspector in area of superView." with further design sketches and examples.

30 The Smalitalk Report

Recruitment Center

CORPORATION

KNOWLEDGE SYSTEMS

Make No Compromises.

Join a leader in
Object Technology.

We are Knowledge Sysiems Corporation, the acknowledged leader in

Object Oriented Technology services. Working on the cutling edge of tech-

nology, we are poised 1o move to greater heights of technical diversity,
client serviceabilily, and employer opportunity. We are professional, team

oriented, and driven Lo excellence, but most of all, we are an employee-ori-

ented corporation thal provides an excellent working environment that will
challenge your abiities and sharpen your skills. We are KSC. We are your
future.

Presently, we are seking o augment our lechnical training and consulling
staffs with professionals who have two plus years of demonstrated experi-
ence with OOA&D,]BM Smalltalk or VisualAge, ParcPlace VisualWorks,
Digitalk Smalltalk/V, and ENVY/Developer,

As a leader in supplying our Fortune 500 client base with Object Oriented
solutions, Knowledge Systems Corporation is able (o offer a very competi-
tive salary, an excellent benefits package and many opportunities 1o grow
with the leader. Please send/fax your cover letter, resume, and salary
requirements Lo: Knowledge Sysiems Corporation, 4001 Weston Parkway,
Cary, NC 27513; or call (919) 481-4000; Fax (919) 677-0063 or e-mail lo
idemichiel@ksccary.com.. Equal Opportunity Employer.

KNOWLEDGE SYSTEMS

CORPORATION

Smalitalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS

This is your opportunity to join
the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan.

(CHECK OUT OUR

™ NEW WEB PAGE!)
http:/fwww.rwi.com/

Boi270566 Houston TX 77277
(713) 660-8080;Fax (713) 661-1156
(800) 256-9712; landrew@rwi.com

RothWell Smalltalk RothWell Smalitalk RothWell

AEEWS [PAWICH A=ews [PAAYIoY Nie)ews

Smaliltalk RothWell Smalltalk RothWell

SMALLTALK POSITIONS

ParcPlace-Digitalk is seeking experienced Smalltalk
instructors and consultants for our world-class
Professional Services team. At ParcPlace-Digitalk you
will work with one of the world’s leading development
teams, use state-of-the-art products and assist companies
on the forefront of adopting object technology in client-
server applications.

Requirements for Senior Consultants: solid experience
with Smalltalk (3-5 years) and/or PARTS Workbench
experience. OOA/D experience and GUI design skills.
Mainframe database experience is a big plus.
Requirements for instructors: previous training experi-
ence in a related field (2-4 years), understanding of OO
concepts and Smalltalk.

Positions are available in various sites throughout the
U.S. Compensation includes competitive salary, bonuses,
equity participation, 401(k) and family medical cover-
age. All positions require travel. ParcPlace-Digitalk is an
equal opportunity employer.

Please forward your resume to:
Director of Enterprise Services
ParcPlace-Digitalk, 7585 S.W. Mohawk Drive
Tualatin, OR 97062 fax: (503) 691-2742
internet holly@digitalk.com

E‘(PANDING bMALLf ALI\
OPPORTUNITIES

Yaur expertise in SMALLTALK i in demand with today’s most dynarmic

and progressive companies. At TRECOM, a progressive consulting

Tecimology Integration and outsourcing firm, our wltimate goal i to help

our clients improve their market share through innovative solutions .
devele Your challenge is to make it happen. Moving with confidence

~ from meprgectm the next, ywllwtyourmhnmlo?mta.ra

TRECOM consultant, pammmg with /ngh -profile, Fortune 200 cliens.

As part of our rapidly exp youlltryq
precisely the seabilisy, the gmwth and the career challenge you e after.

" We're also biring sytems professionals in these areas:

N SYBASE H SQL SERVER N POWERBUILDER
OPEN § ORACLE N VISUAL BASIC
CLIENT/SERVER E MOTIF H WINDOWS NT
B REPLICATION ® C++ u TCP/IP
SERVER H GALAXY .
The diversity of our projects is mirrored by the diversity of our consultants —
their unique skills form the basis of a succzssful and growing team. A
compesitive compensation package is just one of the ways we ll show our
appreciation for the ml: - you play on this team. Please send your resume to:
Director of TRECOM Business Systems Inc., Dept. ST,
" 45 Broadway, 15th Floor, New York, NY 10006; FAX (212) 344
0629; PHONE (212) 809-6600. TRECOM is committed to equal
apportunity employment.

Busmess Systems Inc.

ALQBosmNOCI‘OFLO GA'NJ‘NY.WASHINGTON,D.C.

September 1995

IF OPPORTUNITY CALLS...

Technology that inspires.
By people with initiative.

At a company that innovates.

Join a unique organlizatlon dedicated to providing an
open environment Lhat allows Technical Professionals that
chance {o innovate by developing new lechnologies thal solve
our clients’ business objectives. As the need for our experlise
expands to various areas of technology, we have exciting
opportunilies for Producl Developers, Insiructors, Consullants
and Mentors. Our current solutions include producls developed
in G+ + and Smallialk, along with the following technical
areas:

CORBA Prototype-Based
OODBMS Languages {Classless)
Constraln-Based Design Patterns
Programming Blological Systems
Rule-Based Cognitive Sclence
Programming 00A/00D

Agent Technology Self

Our free-thinking environment is exceplional and we
offer competiliva salaries, oulslanding benelits, as well as
unparalleled opportunily for long-term 1echnical growth. If you
have advanced language skills and can appreciale an atmos-
phere thal promotes leam-orienled software development,
forward your resume 10: Direclor of Human Resources,
ObjectSpace, Inc., 14881 Quorum Drive, Suile 400, Dallas, TX
75240, call (800) OBJECT1, fax lo (214) 663-9099 or e:mail lo
jobs@objecispace.com. EQE.

bjectSpace”

.. LISTEN, even though you're not "looking" now.
Exceptional career-advancing opportunities for a
particular person occur infrequently. The best time to
investigate a new opportunity is when you don't have to!

You can increase your chances of becoming aware of
such opportunities by getting your resume into our full-
text database which indexes every word in your resume.
(We use a scanner and OCR software to enter it.) Later,
we will advise you when one of our search assignments
is an exact maltch with your experience and interests, a free
service to you.

Founded in 1974, we are a San Francisco Bay Area
based employer-retained recruiting and placement firm
specializing in Object-Oriented software development
professionals at the MTS to Director level throughout
the U.S. and Canada.

We would like to establish a relationship with you for
the long-term, as we have with hundreds of other
Object-Oriented professionals.

Established 1974
Intemnet: lji@dnai.com URL: hup://www.dnai.com/~lji

Voice: 510-787-2110 FAX/BBS(8N1): 510-787-3191
P.O. Box B17. Crockelt. California 94525

Smalltalk Professionals

|
L]
BehavHeurislics is an emerging growth company that develops
leading edge products in ParcPlace Smalltalk, which incorporate
Neural Networks and Operations Research lechniques. Our
alrline decision support syslems are successful in the U.S. and
internationally, and we are now diversifying inlo other induslries.
.]
We have several openings and seek both recent college graduales
and senior professionals with Smalltalk experience (all dialecls

considered). O

Our developers and managers have years of OO experience, and
we conslanly slrive to improve our methodology (e.g.,
incorporaling Design Pallems). This creates an environment
where new graduates can learn and senior professionals can

thrive.

We offer competilive compensation, including a stock option
plan. If you would like lo join our leam, please mail or fax a
resume and cover letler (recenl graduates send iranscript also) 1o:

BehavHeuristics, Inc.
335 Paint Branch Drive
College Park, MD 20742
Fax: (301) 314-9592

~

i

y —%
‘é
y —

BehavHeuristics, Inc.

DALLAS AND OTHER MAJOR CITIES for i

brokerage companies have state-of-the-art [#

SMALLTALK

OPPORTUNITIES IN NEW YORK CITY,
LOS ANGELES, SAN FRANCISCO,

DEVELOPERS
SOFTWARE ARCHITECTS
SR. STAFF CONSULTANTS
SR. PROGRAMMERS
PROJECT MANAGERS
MENTORS/TRAINERS

Ovur Fortune 500 dlients including the
major software, investment banks and

To place

anad
in this

opportunities in Object Oriented Se(:tion/

application development in:

SMALLTALK & C++
WINDOWS OR UNIX

CICS/MAINFRAME SMALLTALK

call
Michael Peck
at
212.242.7447

These are excellent opportuniies with
compensation to match. Fax, mail, e-mail
resume to Denise Lorri or call us ak:

TECHRECRUITERS, INC.
30 West Broadway
New York, NY 10007
Voice: 212-346-7773
Fax: 212-346-2406
E-mail: dlorri@ix.netcom.com
http:/ /www.oke.com/techrecruiters

32

The Smalitalk Report

	By Article Title
	Accessing configuration data in the DOS/MS Windows environment
	Faster queries in Smalltalk
	Managing asynchronous network messages from external applications
	Managing project documents
	Use of variables: Temps

	By Author Name
	Almarode, Jay
	Beck, Kent
	Capel, Bob
	Christiansen, Michael
	Steinman, Jan
	Woolston, Dayle
	Yates, Barbara

	By Topic
	Getting Real
	Managing Objects
	Smalltalk idioms

