
ZEE!!il
Editors

John Pugh and Paul Whtie

Sarfatm hiwrirf b h objocr PEqAe

$IGSPrrblicationsAdsisory BOd
Tom Atwoed, Mjecl Oasiflrr

FranGois Bancilhmr, 02 Tar.hnologi~s

Grady Beach, Ffntinnal

Georga Bosworlh, Oi@trdk

Arf4a Goldbw& PwtPlaca Syatams

Tom Lwa

Sartrmd Mayw, ISE

Meifir PagAonaa, W%yland .S@ams

CMf ffnavaa, IBM

Sjarna Slmuslrup, ATbT Sell labs

Dwa Tlmmaa, Object Technology Intonational

r~ Swumur REPOSIEdiiaial Goard
Jim Andarsmr, Oigiidk

Adds Goldbarg, PwcPIace Systams

Raad PIIMPs,ftrmwladguSyatams Corp.

Mika Taytnr, O@lk

OrIW Thwrras, O&r Tacfmdtrgy frdnmadond

lolrrmniats
Kanlsack, First Claas .%ftwam

Juanti Ewing, Oigitzdk

Greg HandlaK Krmwladgn Sysiams Corp.

Tim Howmd, Rothk%ll Intarnadnnd

Ed Kfimas, Lirwa Enginaarinn Inc.

Alan Knight, llm Objact Paople

William Kohl, Ffothwdl hrtarrmtimral

Mark Inrenc Hatteras %ttwaw, Inc.

Eric Smith, Knowledga Systams Corp.

Ffabaccn Wirfs-Brock. Oigiialk

JIGS PUBLICATIONSGROU~INC.
Sichard F! Friadmarr, Founder b Group Pubfishw

Edtirial/Production
Krisiina Joukhadw, Marwging Edfinr

Susan Culligan, Pilgrim Road, Lid,, Dnsign

Sath J, Bnnkq, Production Ediim

Matqmat Cmrti, Advmtiaing Prediction Coordinator

Oan Olawski, Edtimial Production Assistant

Brian Siabar, mvar design

Circulation
Bruce Shrivw, Jr., Circulation Oiractm

John R. Wanglar, Circulation Manager

Kim Maureen Pannay, Circrrlaiion Analyst

Mvartising/MarkotinU
Gmy Portie, Advwtising Manager, Eam Coaat/Canada/Eurnpe

Kristine Vlksnirrs, Advartisirru b Exhibfi Srdas

Michaal W. Pack, Advertising Sdea Assistant

.%lm Ilepreserrtativa: Oiane Fullm b Asstmiaies, WESI Caasr

406.255.2991 (V), 406.255.2992 [1)

Sarah Hamiftmr, Ohactm of Pmmotiorrs and Research

Caran Pcdner, Sanior Graphic Designer

Administration
Margheritn R, Monck. Ganwal Manager

Dwid Chattwpaul, Sanim Accounting Mmwgm

Jamea Amanuvor, Susiness Manager

Michela Watkins, Spacid Assistant 10 ihn Pubfisher

Shannon Smti, Adminislratia Assistant

MSIGS
PUBLICATIONS

?ublishers of JOURNAL OF OLI]ECT-ORIP.ITED

PROGRAMMING, OWECC MAGAZINE, C++ REPORT,

jMALLTALK REPORT, THE XJOUUNAL, REPOUT ON

3BJECTANALYSIS& DEHGN, OBJEHS IN EURWE,

IIRECTORY OF OBJECT TECHNCILOGY, andOBJECT

imtmrtrm (GERMANY)

November-December 1994

November-Decamber 1994

Features

Improving dependency notification
Bobbg Woolf

VO14 N03

4

Smal~alk is being used more and more in large commercial applications. Bobby Woolf

examines how VisualWorks has enhanced the framework with objects that make depen-

dency notification more efficient. Understanding these extensions can help developers
improve the code they write and make better use of code generated by VisualWorks,

A quick peek under the covers
of IBM Smalltalk 12
Stem C. Harris& Hal Hildebrand
With the introduction of VisualAge, IBM entered the Smalltalk arena to compete with

established vendors. Steve and Hal show how the newcomer is faring well against tried-

and-true products, and sometimes surpassing them,

A trace logger 18
Alec Sharp & Dave Fanner
Alec takes a look at a mechanism for logging trace information about entry into methods,

and data sent to and received from an external device, Logging is controlled via a set of

dynamically changeable logging parameters,

columns

❑
Project Practicalities Collection protection 21
Bob Brodd
Using the private variable protection technique presented by Bob Brodd

retains the benefits of accessor methods while minimizing their draw-

backs. It also prevents unintended changes to other objects’ variables.

Tha bast of 23
comp.lang.smalltalk Literals
Alan Knight
How to create an array of points in a method? Alan Knight takes this

FAQ to some extremes, Some solutions aren’t what you might use,

but they elucidate some of the murky areas of Smalltalk.

Smalltalk Idioms Simple Smalltalk testing 26
Kent Beck
Architectural prototypes should communicate simplicity. Kent Beck

shows how a little bit of code can go a long way in advancing a project

that’s getting bogged down in discussions about design abstractness.

Departments
Editors’ Cornar 2

Remitment 30

Product Announcements 31
Tha Smdltalh Report IIS.3W 10567976) is published L7times a year. mtmlhly emcapt in MnvApr, JUIPAUU and Nw-Dee. Putidwd by SWS Publictiions Inc. 71 V&I

23rd St, Srd Floor. New hk. NY 10U1D. @ &IPqriuht 19!!4 bq SWS Publications. All riehts msmd. rl~pmducdon cd this malerial by electronic Irmrsmission,)larox ❑

ampchar tied will be trealcd us a willful vinltion of Ihn US @righl law and is flatly pmhibii. Mmmial w k rqmduced wbiI eqress pEIIkSkn irmn tie ruhlishw

Maikd firsi ❑ lwa. Cnnada Fmsl International Publicnrimm MnilProducl Sales Agreement No. 2SDXW.

Subscription rares 1 vw la i%wx): domestic. S79; Cnnmda nnd MaMim, $104. and Fmaign. $IW. To submit mddm, plmm smai decmnnic rles on disk to the UIDIX at

SS5 MsmJawfands Driw !iStO. Dbmw, Onrorn K2C 2N2, Canada. or via Imwnet 10 stmpor@W@pnnpk,on.c=a F’refarmd Immms br huuras am Mac or CilS EPS, TIF, m

WF hrrau AkwaJs ssnd a paper mpq of Pur manutip(itiutinn czmermady cupiis or VUUI figures [km au~ui is fine).

PDSTMASfEFk .%nd addrm changas imd subscription orders ❑ : The SinnNrzdk Repml, PO. Son 2027. IanBhorrr?. PA W047. Fur service on currant submxipdcm call

215.7 W.SWS, 215.7 H5.LT073 [lax), FQOa76@psihk.com {amaill. FlilMIIO INTSE UNrrED S7ATE.3

1

w en, we’re just back from Digitalk’s

Developers Conference in Irvine,

CA. This is their third such gath-

ering, and had quite a different feel to it than

their previous two. Most notable was the lack

of marketing effort on their part. They

seemed more intent on allowing their devel-

opers to describe what’s coming up in their

long-awaited 3.0 product. This release repre-

sents a major shift for Digita& as they are

planning on releasing their Parts Enterprise

product on all their supported platforms at

once. Digitalk users will find in thh release

some new features that should prove usefid, as

well as the cleaning up of many things from

their earlier products. A few comments made

that might be of interest to you from their

senior staff:

“ they state they will go public in 1995

“ they are bundkg their Parts, Smalltalk/V,

and their Team/v products

“ they plan to stop selling these as separate

products sometime in the near future

● they don’t plan to support their 16-bit ver-

sion of the product in the future

“ they are trying to put together a thkd-

party Partners program

As we saw in early August at ParcPlace’s Users

Conference, and again this week with Digi@

both these companies are targeting almost

exclusively the Fortune 500 companies, and

setting their price point for their products at

the high end of the scale. This, coupled with

IBM’S Smalltalk and VisualAge targeting a

similar market, seems to leave a major void in

the marketplace for a low-end Smalltalk prod-

uct. Neither QKS’ Smalltalk nor Enfin’s prod-

uct offerings seem to be heading in thk dmc-

tion either. It would be nice to see a Smalltalk

that might lack all the connectivity and glitz of

these mainstream Smalltalks, but nonetheless

filly supports the Smalltalk language and
2

library. Thk would certainly allow for students

and basement hackers to try SmaUt& which

in the long run can only help everyone in the

Smalltalk marketplace, Time will tell if some-

one steps forwsrd to fill this niche.

It’s fascinating to see the interest in design

patterns becoming more and more prevalent

each month. The upcoming 00PSLA confer-

ence featwes a number of different presenta-

tions that will deal with tlis topic from a vari-

ety of viewpoints. Also, new books are coming

to the market shortly that will describe the

use of patterns, and the list of people dis-

cussing the topic on the Internet is also grow-

ing. Certainly, Kent Beck has been using this

publication to further all of our understanding

on the topic, and your feedback attests the

popularity of hk columns.

It seems to us that the approach offered by

patterns offers the promise of group members

to be able to articulate succinctly their ideas

with one another, and to raise the level of

understanding of everyone in the group. I

know we are very interested in how we might

be able to exploit patterns, both with the work

being done by ourselves internally as well as

in our teaching. In fact, it is in thk area that

we might see a real win with thk approach.

We as teachers might be able to explain,

through patterns, approaches to softmmre

development which have kaditionally been

dlficuk to articulate. We think it represents a

very interesting area that we would like to see

many of you explore for yourselves.

We hope you’ll find this month’s line-up

of articles to be useful and stimulating.

Certainly Bobby Woolf’s article this month

on the evolution of MVC provides some

insight into the manner in which this much

talked about but not well understood archi-

tecture has come about.

Enjoy the issue.

❑
JOHN PUGH

PAUL WHITE
The Smalltalk Report

Introducing Argos
The only end-to-end object development and deployment solution

An intqqated objectmodelingtml providesroodt+driwn
developmentfur ent.@rise-wideapplifmfions I

All objecttmdeis are managed in a shared repositmy,
suppwting vam dmelnpment and traceability

I

‘“”” -11 :-—. 0 z –1LLllus rnmitalsta!us I =

I —= 1 , [~
. .

Ill
H,,p,”y -

mim~! Bala@lisl.w mlegerDalaSBrias!

:xni 4FEWIW.. --. -7 ---; ‘

*

210

M‘B
■

m“ “]lW ~.. -*--– ■,mr-:~. $
vIn .* .-

90 .—.+ ,

so descrlplion: texl
n’dnw alphaNumar

so ----. .”-..-.. . numberOfPsrsO.s:h
0 ,=-q-5 ~ii.g-io: ; :.?:.?:,::.,, y.,: .,, ~

I~’ .1

I

- PcweJ@ drag and drop “enzymes”make ap$icanon
dwekpnwnt intuitive

Comprekmiw set ofuidgets, includingbusiness
graphs, multimedia, and others make ajJ&UiOn J

devel@rmmteasy and @weJfd

VERSANT ArgosTh’ is the only application development

environment (ADE) that makes it easy to build and deploy

powerfi.tl, enterprise-wide object applications. Easy because

Argos features an embedded modeling tool and Smalltalk

code generation that ensure synchronization between your

models and applications. Powerfid because Argos supports

full traceability and workgroup development through a shared

repository.

Argos automatically generates multi-user database applications

that run on the industry-leading VERSA7NT ODBMS. Argos

deals with critical issues such as locking and concurrency

VERSANTTheDatabase For Objects TM

..

control transparently. And only Argos is packaged as a

completely visual ADE built on ParcPlace VkualWorks@.

Find out why 3 of every 4 customers who’ve seen Argos

purchase it to deliver their business-critical applications in

weeks rather than years. If your organization needs objects

today, let us prove it to you with Argos.

1380 WI11OW Road s ,Menlo Park, CA 94025 ● (415) 329-7500

0 IYW by \’tNt Ob@t T~rhnd<#y. WAWU, VEFLSAXT.Aw.s ml ‘fit Omhast For Objm, m’ mdcmk d’\”mmI OIVXI TcchnAn# [kpmlrion. W other compmv ,Emw ml Ik,gm. ,m rcgkmm! rrwimmrkv ot’rhcin,!ivi,lmlcmnpniu

Improving dependency
notification
BobbyWoolf
T he changed/update: protocol in SmslltaLk allows a par-

ent object to transparently notify its dependents of

changes in the parent’s state. However, the notification

process is inexact, for all notifications arc processed by all depen-

dents. Although the framework itself is highly object oriented,

the case statements the dependents must implement are not.

VisualWorks has significantly enhanced the framework with

Dependen@ransforrners and ValueModels, objects that make

dependency notification more efficient to execute and easier to

maintain. Even programmers who are not aware of these exten-

sions are using them through the code that VkualWorks auto-

matically generates. By understandkig how these extensions

work developers can improve much of the code they write and

make better use of the code that VisualWorks generates.

THE CHANGED:/UPDATE: PFIOTOCOL

The changed/update: protocol is a mechanism all objects have

for notiing each othe~ of changes in themselves. It is a weak

style of collaboration that the source object hardly even rcfllzes
it’s participating in. When two objects are defined as having a

strong collaboration, each must explicitly know about the other—
and must support the other through a relatively complex inter-

face. As an zkernative, the changed:/update: protocol provides

a simple interface tkough which all objects can collaborate by

exchanging simple information in one dkection only.

The information conveyed is that the source in the collabor-

ation is notifjing its targets that its state has changed; theta-gets

in thk relationship are called dqbendents,and the source is called

(for lack of a better word) a ~arent. As Smalltalk’s implementa-

tion has matured, the understanding of the role of the dependent

has changed somewhat. Increasingly a target in a dependency

relationship is thought of as registering its interest in the source,

an interest that may or may not be a dependency. In any event,

the targets are stiU called dependents, rdthough the phrases “reg-

ister dependency on” and “express interest in” are used inter-

changeably. Thus far, VkuslWorks does not appear to recognize

any other kind of interest than dependency for a target to have.

Because the dependents are hidden from the parent by its

changed protocol, it knows neither how many dependents it has

nor what their types m, all a parent knows is that at any time, it

has some number of dependents and they are each some type of

Object. Thk forms a very weak collaboration that essentially

hides dependents iiom their parents. For example, in the model-

view-controller framework (MVC), the view and conmofler know

what their model is but not vise versa. This is accomplished by

maldng the view and controller dependents of the mode~ the
4

model informs its dependents when it changes (in case it has any

dependents), then the view and controller receive thk update,

and then they reretrieve their values as they wish. The responsi-

bfity for keeping the view in sync with the model lies completely

with the view; the model doesn’t even know the view exists, it

just knows that periodically it’s being queried for its state.

This framework is ideal for modeling the dependencies

between any group of objects, not just model-tiew-controller

clusters. Real world objects often require that other objects

react when one changes. To encapsulate the one, it should not

be aware of the effects it has on the others. The dependency

framework does thk well, which is one of the prima~ reasons

Smalltalk is such a good language for modeling real world

objects and their interdependencies.

All objects handle dependents, but subclasses of Model handle

them more efficiently. In fact, the only difference between a

Model and an Object is how efficiently it is able to handle its

dependents. So if an object’s class would normally be a direct

subclass of Obje@ but it notifies its dependents often, it wiU do

so more efficiently if its class is a subclass of ModeL The reverse is

also true If an object rarely noties its dependents and its class is

a direct subclass of Model, its class can just as easily be a direct

subclass of Object with no significant decline in performance.

Figure 1 shows the messages in the changed:/update: pro-

tocol.

SPECIFYINGWHAT CHANGED

Ordinarily it is not enough for a parent to simply not@ its

dependents that it changed. The dependent usually needs to

know not only that the parent changed somehow but also

exactly what part of the parent changed. That way, if the part is

something the dependent is interested in, it can reac~ other-

wise, the dependent can ignore the notification.

For convenience, the parts of an object’s state are often

organized into aspects. An ui$ect is a single value (an object)

stored within the container object. It is retrieved and set via

getter and setter messages sent to the container, and it notifies

its dependents (via its container) when it changes. For an aspect

named aspect, the convention for its getter selector, setter selec-

tor, and update value is aspect, aspeck, and #aspect.

An aspect usually corresponds to an instance variable of the

same name in the container, but thk is not a requirement. Some

aspects are virtual in that they act like the public access for an

inst var, but their implementation actually delegates to other

aspects and/or behaviors within the container. Also, not all

aspects have setters; these provide access to values that maybe
The Smalltalk Report

OBJECTTECHIUIIIJGYIRAINIHGISAMOVING
) TARGET.KSCWill MAKESUREWI HITIT.

With soflware designtaking on new dimensionsalmostdaily,you ● AdvancedProgrammingin Smalltalkfl

can’t afford to make your transition to object technology a hit or miss ● AdvancedProgrammingin IBM Smalltalk

operation.Choosethe training specialistswho can helpyou keepupwith ● Bridge Coursefrom Smalltalk/V to Visual Works

the changesasthey happen— KnowledgeSystemsCorporation. All KSCcoursesare offered at the client site or our new training

Knowledge Systems Corpor-

ation offers the most comprehensive

classroom education program avail-

able, including Smalltalk coursesfor

ParcPlace,IBM and IJigitalk dialects.

Ourmaterialsare basedon overeight

years experience in applying object

technology.All KSCinstructorsunder-

go a rigorouscertification processand

1

have practical experience in real-

world applicationdevelopment.

KSCCLASSROOM

EDUCATIONCOURSES

● Manager’s Introduction to Object-

OrientedTwhnology

● Object-Oriented Ana/ysis and

Design

●/introduction to Object-Oriented

Programmingin Smalltalw

center in Cary, North Carolina,

Coursesare structured so that stu-

dents spend more than half their

classroomtime in hands-onprogram-

ming activities. To maximize actual

programmingtime, all classeshavea

ratio of onestudentpermachine,

KSC has a proven history

with companies such as American

Management Systems, GECapital

Corporation,IBM, NorthernTelecom,

The Prudential, Southern California

Edison, and Sprint. Our classroom

education, apprentice programsand

developmentservices offer our cus-

tomers a total solution to real busi-

nessproblems.

Toput your object technology

transition on target, call the Smalltalk training specialistsat Knowledge

. Introduction to Object-OrientedProgramming in VisualWorks SystemsCorporation,919-481-4000.Or email: salesinfo@ksccar-y,corn,

●/introductionto Object-Oriented Programming in IBM Sma//ta/k 4001 Weston Parkway,Cary,NorthCarolina27513,

Is
KNOWIEIICESYSTEMSCORPORATION

r-

Cf)
L.

.

919 4111-4000
/“

fi~

I The parent sends inself changed... I

I Each dependent receives up date:,.. I

Hgure 1, Messagss in ths change&/updaW protocol,

I

Figurs 2: Anexamplerd dependencyrelationships.

queried but not altered, If arr aspect’s value cannot be changed,

whether and how it notifies its dependents is irrelevant.

An aspect’s update value refers to how the parent can specifj

to its dependent what aspect has changed. If the parent has a

couple of aspects, one of whkh is area, dependents who are

only interested in that particular change will listen for the

update value #area and ignore the others.

THE ORIGINALPROTOCOL

Back in Objectworke 2.5, the usefldnees of the dependency

framework and its changed:/update: protocol was almost

equaled by its implementation difficulties. The difku.lties

included the following

■ Every method that changed an aspect in a parent object ought

to send out an update, just in case the parent had a dependent

on this aspect. Because any object can have dependents, every

object should be implemented as though it might be a parent.

● Every dependent object had to implement one or more varia-

tions of update:. This method had to teat for evay aspect value

its object is interested in. Unfactorable, it quickly became a

lengthy case statement. The list format usually obscured which

aspect values were expected to be sent by which parent(s).

“ Every dependent was notied of every change, even though

each often ignored the majority of the updates its parents sent.

● The traceability be~een senders of an update and its listen-

ers was very low. Assuming the update values were symbols,

the Smalltalk standard, the bnmme sendezs command would

show most (but not necessarily all) the senders and listeners

but would also mix into the list any methods that sent mes-

sages with the same name as the update (such as the getter
6

for the update’s aspect). Even with this list, matching a par-

ticular eender to its listeners was dh%cult at best.

In a small application implemented in a few months by one per-

son, thk lack of traceabilky between a sender of an update and

its listenera was usually not a problem; the code didn’t show the

relationship, but the developer already had it in hk head.

However, if an application was large and required a team of

developers a year or more to create and still more developers to

maintain, this lack of traceability would cause a maintenance

disaster. Over time, such a system would become filled with

parents sending out updates that no one ever listened for and

dependents testing for updates that were never sent-t least,

not to them. This extraneous code brought no value to the sys-

tem and in fact added to its code bulk and slowed its execution

efficiency. Yet, such code was difficult to isolate and remove

because a developer had dif%cuky “proving” that the code was

unnecessary. Therefore, it would be better to leave it in than to

risk addhg subtle but significant bugs to the system.

An example

Having said that the traceabihv between an update’s sender

and listener(s) is low, here’s an example.

Say part of a system has two parent objects, the first with

aspectI and aspect2, the other with aspect2 and aspect3 (they

duplicate the name of one of the aspects). The system also has

a dependent object that is dependent on both parents and

which listens for both parents’ aspects.

The four setter methods for the two parents look Iii this

example for aspectl:

aepectl: newValue

“Setthe vahre of aepectl to newvalue.”

aepectl := newvalue.

self changed #aepectl

The dependent object will make itself a dependent of both par-

ents:

irritializeParentl: parentl parent2: parent2

“Initialize the receiverto uae its parenta

.,.

parentl addDependenb self.

parent2 addDependentiself.

...

The dependent object’s update:... implementor will look like this:

update: arAspect

“Standard.”

anAspect==#aspectl ifie: [<alittle code>].

asulspect == #aspect2 ifl’rue: [<alot of code>].

Figure 2 shows the objects in thk example.

There are several problems with this implementation:

● Changed notification for aspect3 is being sent, even though

no one is listening for it.

● The dependent will receive notification of changes to

aspect3 and process them, only to finally ignore them.

g It is not clear i%m the update: method what objects are

expected to be sending these changed aep~, the developer

must locate initiliseParentl:parent2: to find thk itiormation.

Usiig updatewithfrorm might help, but is usually not required

to make the mechanism work and so it is often not used.
The Smalltalk Report

fiTheDifferenceBetweenSuccessandFailureinIBMSmalltalk9

-

WindowBuilder’M Pro
is an interactive tool that

lets you build polished

user interfaces fast in-Smalltalk-from
Digitalk and IBM. WindowBuilder Pro
(WBPro) saves you from the job of
building UIS in code. It helps simplify
maintenance and increase consistency.

Like VB, with Real Objects
Select controls from a palette. Place and
edit them interactively. Integrate the
controls with your app easily. Build
composites of controls to create your own
reusable UI components. Place and edh
them in WBPro just like the native controls.

Get portability of your UIS across all the
supported platforms of a Smalltalk family.
Includes autosizing, automatic alignment,
control of fonts, menus, colors, and more.

SHARE

g Iiiiia
m Urjectsfwe Systems, /m.
~ 5 Town&CountryVi//age
~ Suite735

8 x San Jose, CA95128-2026
vs Fax408-970-7282

JNc. CompuServe76436,1063

-———.:,— :, i
,_.

p 1m.ql=gw@ppii !! L.==:.. -:- n= . .= .=. ..=..=.-:.
!,r,

%, i. J
~mHJixt=m- . ..- ---..—-...~=ii ~ .:

Buildin~uwr interfacesiseasy

High-Level Controls for WBPro
When you use the high-level add-on
controls like spreadsheets, business
graphics, and others, your apps will be
more powerful and polished. And you’ll
save even more time and effort. Inquire
about specific offerings and platform
availabilityy.

NoruntimeLeesamrequiredforapplicationsdevelopedwith
WBPro.Freesupportfor thefirst90days.

All productsincludecompletedocumentation.Support
subscriptionavailable.WindowBuilderPmlViscompatiblewith

‘i Formost Sma/lta/kfVprogrammers,

WirrdowBui/derPro/Visa suwival too/—
the difference between successand failure.m

— Milen Sremsc, President,

Medical Soflware Systems

-

. .

fi Mass you’ra tots//y comfortable with the Motif API,

a tool I;ka Windowtl.ddar Prois the difference

batwean successand failura in IBM Sma//ta/k.9
— Gordon Sheppard, Senior Technologist

American Mrmegement Systems

Far IBM 0S/2 std. $495
Smalitalk Team $695

Windows std. $495
Team $695

Call to order (408)970-7280
Teamfi.CodeaenarationinIBMSmalltalkistatallvMotif or call for free info, 9AM to 5 PM PSI M-FI
compliant.O bbjectshareSystems,Inc.1994 I 30-daymonay-backguarantee

VisualAge SmalltalldV
Spreadsheets, business graphics, and other high-level

components are easy to add to your VisualAgem based

applications.

WidgetKitTM/Professional has powerfirl spreadsheets

and more. You get virtual spreadsheets, multi-column list

boxes, table editor, graphic viewers for BMP, PCX, and

GIF, input validation, tile system widgets, and more.

WidgetKit/Professional forVisuahgeWindows . . . $7%.

WidgetKit/Business Graphics has versatile graphs and

charts. You get bar, pie, area, line, gantt, high-low-close,

scatter, and more basic types. Options include 2-D and

3-D, fonts, colors, control of printing, and more.

WidgetKit/ Business Graphics
forVisualAgeWindows... $795. forVisurJAge0W2. $7%.

No run-time fees for applications, 30-day money-back guarantee,
90 days free support.

call (408) 970-7280 gmto 5PM PST,M-F

SHARE

ai53 Objectshare Systems Inc.

5 Town 8 Country Village, Suite 735

8 San Jose, CA 95126-2026

INc. fax 40d-97&7282, cis 76436,1063

Programming tools for SmalltalWV@ win wirr32 0S12

WindowBuilderm Pro/V
Interactive UI builder for SmalltrdklV,
Save time, simplifi maintenance. S295 S395 S.495

Add high-level controls to WindowBuilder Pro/V

SubpanesfV forWBRCJV
Table panes, columnar list box, drag
and drop, bitmap pane, and more S235 S235 $235

WidgetKitTM/CUA’91 forWSPION
Full CUA’91 controls — — S295

WidgetKitfProfessional forWBRW
Spreadsheets, tables, validation, graphic
viewers, virtual spreadsheet, and more S395 S395 -

WidgetKit/Business Graphics forWBHOIV
Pie, line, area gantt, high-low-close,
2-D and 3-D graphs, printing and more S495 $495 –

No inn-time fees for applications, 30-day money-back guarantee,
90 days free support.

Call (408) 970-7280 9AMi05 PM PSTM-F
SHARE

fiim53 Objectshara Systems Inc.

~

5 Town 8 Country Village, Suite 735

8 San Jose, CA 95128-2026

IN-c. w fax 408-970-7282, cis 76436,1063

Education& Training
Smalltalk/V
VisualWorks

VisualAge
ENVY/Developer

Analysis & Design
Project Management

In-House & Open Courses

ProjectRelatedServices
Object Immersion Program

Project Mentoring
Custom Software Development

Legacy Systems
GUI’s, Databases

Client-Server

● The update: implementor is effectively a case statemen~ this

is a procedural structure that is discouraged in Smalltalk, not

to mention the fact that itisinefficient to execute.

■ The update blocks are buried inside the update: method and

are unavailable for reuse. (However, some developers have

discovered a kludgy backdoor for accessing these blocks:

The object can send update: to it~e~(whkh is very uncon-

ventional!), providing the appropriate parameter to activate

the desired block, Then the poor maintenance person must

look for senders of a changed aspect not only in the parent

objects but in the dependent as well!)

Perhaps the worst problem, one that makes this kind of collab-

oration especially difficult to maintain in legacy code, is the

following:

■ It is unclear which sender of aspect2 the dependent is listen-

ing fo~ the source is ambiguous. Aa implemented, the depen-

dent is listening for that aspect from either parent (and in fact

anY P~nt that sends it)—but was that bY design? The o%-
nsl developer could have clarified tkk by testing the from:

parameter (in update:with:from:), but that wasn’t necessary to

make the code work so he or she didn’t do that test.

As the system’s requirements change, the parent objects will be

redesigned and refactored and the dependents’ interests will

have to be reevaluated. When making these enhancements,

maintaining the dependency relationships will require inordi-

nate time and effort as well as significant guesswork

Analysis

The basic problem with implementing dependencies in thk

fashion is that one large complex object is made a dependent

directly of another large complex object. One cannot easily tell

how many of the parent’s aspects the dependent requires. If the

two are redesigned such that the dependent no longer requires

one (or two, or 10) of the parent’s aspects, does it still need to

be a dependent of the parent? This kind of guesswork when

maintaining code is fertile ground for introducing bugs, ones

that in this case are subtle and dficult to isolate.

A BEllER WAY DEPENDENCYTRANSFORMERS

VkualWorks 1.0 introduced a new object,

Dependen@’ransformer, which is a substantial improvement to

the dependency framework. A Dependenqtl’ransforrrrer acts as

a bridge between the parent object and the dependent object.

It listens for exactly one update value from exactly one paren~

when it receives that update, it runs a specified method in its

sole target, the dependent. In this way, the update being lis-

tened for is factored out of the dependent object and a one-to-

one relationship is established between the update that a par-

ent sends out and the method that should subsequently be run

in the dependent.

This solves many of the problems (although not all) that the

old framework had:

● Dependents no longer have to implement update:...; it is

already implemented in Dependen@ransforrner to listen for

the specified update vahre. Instead, the dependent imple-

ments the method to be run when the update occurs, a

method often named a~~ectChanged. This is not only more

intuitive but is reusable as well.
November-December 1994
~ The update: method does not contain a case statement, just

a single test.

■ The dependent is only notified of the change for which it

wants to listen. The Dependenqtlhnsforrner must still

process every update the parent issues, but because it is only

listening for one aspect, it can quickly determine whether

the aspect received is the correct one.

■ When the dependent has multiple parents, it is clear which

one is expected to be sending the update: It’s the one at the

source of the Dependenc@nsforrcrer doing the listening. If

the dependent wants to listen for the same update from two

parents, it will specifically use two Dependerqtl’ransformers.

Thus, the use of DependenqtlYansforrners makes dependents

updating more encapsulated and the code used to implement

it more traceable and easier to maintain. Thk comes at the

expense of a layer of indirection between the parent and

dependent—a small price for a better factored set of collabo-

rating objects.

An oxampla

Here’s an example of the increased traceabihty

Dependen@ransforrners provide.

This will revisit the example above, where a system has two

parent objects with aspects 1-2 and 2-3, respectively and a

dependent object that is “dependent on both parents and that

listens for two of its parents’ aspects.

The four setter methods for the two parents look like the

example above.

The dependent object will make itself a dependent of the

parents with this code:

ini&JiseParentl: parentl parent2: parent2

“IniMise the receiver to use its parenta.n

...

parentl

expressIntere.sLIm#aspectl

for: self

sendBack #aspectlChanged;

expressInterestIrv #aspect2

for: seW

sendBack #aspect20fParentlChanged.

parent2

expressInteresffn: #aspect2

fck self

sendBack #aspect20fParent2Changed.

...

Each send of expressInteresffn: forxendBack creates a

Dependen@ransformer whose source is the receiver and whose

target is the fo~ parameter (ususlly sel~. It listens for the

update value specified by errpressInterestIn: and sends the mes-

sage specified by sendBack to the tsrget.

The dependent object will implement methods

aspectlChanged, aspect20fParentlChang ed, and

aspect20fParent2 Changed to be the code that was in the

update blocks:

aspectlChanged

“aspectl changed. Updatethe receiver.”

<a little code>
9

gure 3. An example of dependency relationships ueing DependencyTransfonnera.

aspect20fParentlChanged

“aapect2changed in Parentl.

Updatethe receiver.”

self aspect2Changed.

<codeparticular to aspeet2 in Parentl>

aspect20fParent2Changed

“aspect2changed in Parent2.

Update the receiver.”

self aspecti!Changed.

<codepaficular to aspect2 in Parent2>

aspect2Changed

“aspect2changed. Update the receiver.”

<a lot of code, applicableto Parents 1 and 2>

F&n-e 3 shows the objects in tliis example.

Notice that there is no ambiguity as to which parent object

the dependent object expects to send aspect2. Also, if the

dependent no longer has to listen for aspect2 in Parent2, the

code to register that interest will be removed. When the last

interest in a parent is removed, the object will automatically no

longer be dependent on that parent.

However, even with Dependenqfl’ransforrners, certain prob-

lems with the dependency framework still remain:

■ Every method that changes a parent object’s state is still

obligated to send out an update.

■ Every dependent is still notified of every change, alfiough

Dependenqtl’ransforrners factor the necessasy testing for bet-

ter encapsulation.

“ The traceability between senders of an aspect and its listen-

ers is better but stii not perfeet. Using “browse senders” still

produces a bewildering list of possibilities. Each of the par-

ent’s update values still act as a vague conduit from the part

of the perent’s state that is changing to the

Dependenqtl’ransforrner which is listening for the change.

Analysis

Dependen@ansforrner is a major step in the right direction,

reducing or eliminating many of the shortcomings of the origi-
10
m-l dependency framework but others still remain. The prob-

lem is that the parent object is still one large complex object

with numerous aspects; yet, each DependencyTransformer is

ordy interested in a single aspect. Thus, a

Dependenc@nsforrner needs a way to be a dependent ofjust

one single aspect in a parent, not the entire parent object.

AN EVENKITER WAY VALUEMODELSAND

DEPENDENCYTRANSFORMERS

The ValueModel framework was introduced in Objectworks 4.x

primarily to implement a structure through which any solitary

value in the system could be isolated and given the generic

aspect value. However, a helpful bonus of ValueModels is that

they provide a convenient place to register all of the dependen-

cies of that value. In fact, since the ValueModel controls the

access to setting the value, it is ideally positioned to inform

dependents when the value is changed. Thus, when a parent

object uses ValueModels to store its aspects, whenever those

aspects’ values change, the parent object does not have to take

responsibihy for notifying its dependents; the ValueModels

will do that. Thus, Dependen@ransformers factrsr the respon-

sibility of listening for updates out of the dependent, and

ValueModels factor the responsibility of issuing updates out of

the parent.

ValueModels and Dependen@ransforrners work hand in

hand. Because the only update value a ValueModel ever sends is

#value, that’s the only one its Dependenqfl’ransformers ever

have to listen for. Thus, the difference between two

Dependenqfl’ransformers on a single ValueModel is the depen-

dents they update and the messages they send to do so.

To register dependency on a ValueModel’s value, a dependent

sends it onChangeSend:to:, specifilng itself as the target. Thk

creates a Dependen@ransforrner between the ValueModel and

the dependent. This Dependenqfhnsfonner is not connected

to the parent object with its many aspects; it’s connected duect-

Iy to the aspect itself Thus, the only time that it receives an

update is when the value changes, so checking to make sure the

aspect is the correct one is merely a formali~ (it’s always

#value), and it tells the dependent to update.

Thus, using ValueModels and Dependencyhnsforrners

together eliminates the problems with simply using a

Dependen@ransfnrmer alone:

■ The methods that change a parent object’s state are not

obligated to send out updates if those parts of state are

stored in VahreModels.

. The only dependents that are notified when a value changes

are those of that particular valu~ thus, no one is informed

who is not interested.

■ The traceability between an object’s aspect and onc of its

dependents is a very clear bridge between the two objects.

Look at the sender of onChangeSend:to: (usually in the

dependent’s implementor of #initialize.,.) and it will explain

everything: what value is being listed to, what method will

be run when the value changes, and what object is the

dependent that contains that method.

■ Even at run time, the traceability is clean One can inspect

the ValueModel and its list of dependents (which are

Dependen~ansformers) and see what the targets of the
The Smalltalk Report

Dependen@ransforrners are. This is even easier to do

using First Class Software’s ObjectExplorer. No guesswork

is required.

Thus, a combination of ValueModels and Dependen@I’ransfnrrners

eliminate all the problems of the originrd dependency framework

The dependencies are set up in one place and execute efficiently.

The setup shows direct traceability between the aspect being

monitored and the result in the dependent, taking the guesswork

out of maintenance. The dependency implementation reflects the

design exactly.

An errampla

Here’s an example showing the increased traceability

ValueModels and Dependen@ransformers provide. Revisiting

the standard example, there is a system that has two parent

objects with aspects 1-2 and 2-3, respectively, and a dependent

object that is dependent on both parents and which listens for

two of its parents’ aspects.

The four setter methods for the two parents look a bit dif-

ferent now because the parents store their aspects in

ValueModels. Using aspectl: as an example gives the following

aspectl: newValue

“Setthe vahre of aapectl to newvalue.”

self aspectlHolder value newvalue

aepectlHolder

“Thismethod was generated by UIDefiner.”

AaspectlHolder isNil

ifhue: [aspectlHolder:= N1asVahre]

iff alse [aspectlHolder]

The dependent object will make itself a dependent of the par-

ents with this code

initilizeParentl: parentl parent2: parent2

“Initilise the receiver to use parentObject.”

...

parentl aspectlHolder

onCharrgeSend#aspectlChanged

to: self.

parentl aspect2Holder

onChangeSend #aspect20fParentlClmrged

to: self.

parent2 aspect2Holder

onChangeSend #aspect20fParent2Changed

to: self.

,..

Each send of onChangeSend:to: creates a Dependerqtkmformer

whose source is the receiver (a ValueModel) and whose target is

the to: parameter (In fact, this example shows that the to: para-

meter is pretty redundant, because it seems to always be self).

Because the source is always a ValueModel, the update value

being listened for is always #value. The message to be sent to the

target is specified by the parameter of onCharrgeSend:.

The dependent object will implement methods

aspectlChanged, aspect20fParentlChartged,

aspect20fParentl Changed, and aspect2Changed as before.

Figure 4 shows the objects in thk example.

Notice that the parent objects never send themselves

changed:; the ValueModels (accessed via the messages
November-December 1994
figure 4, An examplaof depandancyrelationshipsusingValueModels and
DependencyTransformers.

agwctHolder) do that for them. And the senders of

onChangeSend:to: in iniMizeParentl :parent2: tell the developer

everything he needs to know about what the dependencies are.

Analysis

All the problems of the original dependency framework have

been solved:

● Setter methods aren’t required to send out updates.

■ Dependents don’t have to implement update:,...

● Only dependents who care about a particular change are

notified.

● The traceabilky between parent aspects and their depen-

dents is quite clear when inspecting either the static code or

the run time objects.

Systems using this extended dependency framework run more

efficiently and are easier (and safer) to maintain.

CONCLUSIONS
The dependency framework from Objecrworks 2.5 is good,

and it still works for small one pereon projects. But

VkualWorke has extended it with ValueModel and

DependencyTransformer to make it much better, especially for

the large commercial applications for which Smalltelk is

increasingly being used. Because the new framework is a

supereet of the old one, developers can continue to use the old

one when desired, they can also use just parts of the new one

(just ValueModel or just DependencyTransformer). The best

results, however, are produced by using both parts of the new

framework- It will factor the changed:/update: code more

effectively, execute updates more efficiently, and be easier and

safer to maintain for the life cycle of the code. Not bad for a

couple of classes that many developers don’t even reahze

they’re using. ~

Bobby Woolf iss Momlssr of Technical Staff at Knowfadgre Systams Corp.,

where ho is developing techniques for applying Smalltalk to Iarga softwars

projeeta. Ha has also Iraan a Softwnra Engineer at Ascarat Logic Crrrp.,

where ha gained considaralrla axparianca maintaining the complax

depandansy relationships in its Iarga scala Smalltalk application, RDB1OO.

Commarate ara welcoma at wooH@acm.org.
11

A quick peek under the covers
of IBM Smal[talk
StevenG.HarrisandHalHildebrand
IBM released VisualAge some time ago, entering this prod-

uct into the Smalltalk marketplace with somewhat less

than a roar. The initial release was available only under

0S/2, which has limited its appeal to many potential end users.

Over the last several months, we have been actively involved in

using and evaluating the upcoming release of IBM Smalltallq

the foundation on which VisualAge is built. As we write this

article, the product is still in Beta testing. It runs under

Windows and 0S/2, and we feel that, from many points of

view, it is going to cause the roar that was missing before.

So what’s the big deal? Actually it’s not just one Aig deal, it’s

a lot of)ittfe deals that add up to something that makes die-

hard Smalltalkers like us sit up and take notice, Fkst, IBM has

separated the VisualAge visual programming environment from

the base IBM Smalltalk product, It is a separate application,

which can be loaded into the base image-use it if and when

you want it. Second, IBM has established a formal program

that actively encourages third-party suppliers-the first off the

mark will be ObjectShare’s WindowBuilder, coming soon to an

IBM Smalltalk platform near you. Last, IBM Smalltslk is pretty

hot stuff technically, and thk characteristic of the product is the

subject of this article,

As we are not doing a product review, we’ll limit our recom-

mendations to the following statement (sure to warm the hearts

of IBM marketers everywhere): IBM Smalltslk is definitely

worth taking a serious look at. Now, on to the show,

What’s in this thing? How is it different from the Smalltalk

products we’ve all come to know and love? We’ll concentrate on

the two most important areas: the class library and the develop-

ment environment. We will provide comparisons with

ParcPlace’s VkwalWorks product and Digitalk’s Smalltrdk/V,

because we are intimately fam~lar with them.

THE CLASSLIBRARY

Wherever possible, IBM has chosen to use industry standards for

developing their class library Because the ANSI standard process

(already in progress for Smalkalk) moves at glacial speed, they

have made heavy use of the Blue Book (Goldberg and Robson)

as we~ as of IBM’s own proposed standard for Smdlt& often

called the Red Book. Where things get more interesting, howev-

er, is IBM’S usage of POSIX.1 for their iile interface classes, X-

Wlndows for the graphics subsystem, and OSWMotif for widgets.

As shown in Table 1, they define a number of major subsystems

and attempt to adhere to a standard in each.

Of course, programmers who are Smalltalk-fluent in essen-

tially any dialect have very little learning curve to get started.
12
Those that are familiw with POSIX.1, X-Windows, and

os~otif get to leverage their misting expertise, cast in a nice

Smalltalk framework. People who know nothing about

PO SIX.1, X-Whdows, or OSF/Motif certainly aren’t any worse

off than they would be learning the VkualWorks or

SmaUtalk/V protocols. On the other hand, if you are already

familiar with Windows and 0S/2 programming to the degree

you need to be to do low level Smalltalk/V graphics work or if

you already know everything there is to know about

ValueModels and the UIBuilder framework in VisualWorks,

you won’t find a great deal of commonality in these areas with

IBM SmaUtalk. The way that IBM Smalltalk has implemented

the interface to the windowing and graphics subsystems makes

it easy to pick up a book on programming X and Motif inter-

faces and apply it directly to programming the IBM imple-

mentation. Finally, documentation that exists before the

release of the system.

It is also worth mentioning that many of the classes in these

subsystems have been prefuced with an abbreviation of the sub-

system name. For example, all the widget classes begin with Cw,

which stands for Common Widgets. This approach helps you

keep the modularity of the image in mind, but it does take

some getting used to. It’s also nice to see Sma.lkdk vendors

practicing what they preach in regard to prefhing class names

to avoid name-space conflicts.

Base classes

What we would think of as the Smalltalk base classes, IBM

groups into the Common Language Data T~es and Common

Language Implementation subsystems. There should be very

few surprises for any Smalltalk programmers in these areas.

IBM’s class hlersrchy approaches the Visualworks class library

in terms of sheer numbers of classes and built-in richness.

Perhaps ironically IBM has chosen to adhere to the Blue

Book and X Windows convention of the Point O@Obeing at

the upper left corner of the screen, x increasing to the right,

and y increasing downward. This choice was made to facilitate

portabihv in spite of the fact that the 0S/2 Presentation

Manager usage is different. Digitalk’s current releases match

the convention of the host windowing system, requiring usage

of messages like rightAndDown: instead of simply +, as + is not

consistent between the Windows and OS/2 implementations.

ParcPlace goes with the Blue Book. From a cross-platform

compatibility point of view, the impact of this decision goes a

long way to keeping hair out of your hands and on your head,

where it belongs.
The Smalltalk Repoti

IBM Smalhalk uses block contexts as does Digitalk

Smsll~ while ParcPlace uses block closures. This means

that blocks that should be “clean” (i.e., no references to the

outer context) are not treated as a special case, and thus, IBM

Smalltalk does not provide a speed advantage for using them.

Following Object Technology International’s approach in

ENV17beveloper, I13M Smskdk uses a single instance of

SystemConfiguration class (caUed System) as a cential point for

information on how the image is configured and for funneling

startup and shutdown messages, The original ENV17beveloper

approach has been extended to include information on what

subsystem types are installed, opening up the potential for inte-

gration with other products.

IBM’S process model essentially follows the Blue Book

approach. If you’re comfortable with forking lightweight

Smslkalk processes, you should feel at home here. They also

provide an implementation of the Delay class (like ParcPlace)

that allows you to impose delays based on the system real time

clock. In Smalltslk/V, it is extremely dit%cult to implement

delays that don’t lock up the system, In IBM SmaUt~ as in

VkualWorks, you can delay the entire user interface for as long

as you like and still have the system behave as it should. The

value of this subtle point goes a long way when programming

with multiple Smalltalk processes.

Graphicssubsystam

The graphics subsystem is complete and well implemented,

covering all the necessary graphics operations used by the host

graphics system. The IBM Smalltalk common graphics subsys-

tems let you:

I define drawing attributes such as line widths or styles

through the use of graphics contexts

■ perform drawing operations such as drawing lines, arcs, text

strings, and polygons

= manipulate colors

“ manipulate fonts

■ manipulate two-color bitmaps and multicolor pixmaps

IBM Smalltalk’s graphic subsystem is based on X Windows, and

it provides the same functions as the XUb C calls in that stan-

dard. This strategy results in a standard documented interface for

dealing with the graphics capabili~ of the host system regardless

of whether you are on a Windows, 0S/2, or AIX platform. IBM

Smslltslk uses a well-documented strategy for converting the

various types of objects and finction calls used by ~lb into the

equivalent Smdltalk objects and methods. The upshot of thk

approach is that you can pickup any book that deals with X

Windows and start using IBM Smalltslk graphics right away.
Tabla1

IBM Smallralk Subsystem Industry Standard

Common Language DataT~s Srnalltalk-BO Blue Book and IBM Red Book

Common Language Implemenmtion Smalltalk&l Blue Book and IBM Red Book

Common Process Model Smallmlk-f30 Blue Book

Common File System POSIX. I and Smalltalk-BO Blue Book

Common Gmphics XWindows

Common Widgets OSF/Motif
November-December 1994
Windowingsubsyslsm

As in the graphics subsystem, IBM has chosen to base their

window interface on another industry standard, OSF~otif

The windowing subsystem is known-as the common widgets

subsystem in IBM Smalltalk. Thk subsystem allows the devel-

oper to

= create individual widgets (or controls), inchdng buttons,

lists, text menus, and dhlog boxes

“ create compound widget structures by combining individual

widgets

■ speci& the positioning of widgets relative to each other

“ program actions to occur in response to user actions

IBM Smslltalk again uses a standard translation strategy for

converting OSF~otif C types and flmctions to Smalltalk class-

es and methods. Like the common graphics, you can easily find

documentation of these interfaces at your local bookstore.

The widget interiace is event driven, and the hierarchy is

designed in two pieces. The CwWidget hierarchy defines the

common interface to the system, The implementation hlerar-

U It k also nice to see
Smalltalk vendors

practicing what they preach
in regard to preiixing class

names to avoid name-space
conflicts. v

thy, under OsWidget, is the low-level interface to the host

operating system. Thus, unlike VkualWorks, IBM Smalltalk

actually uses the underlying host resources for windows,

menus, fonts, and such, whale maintaining a platform-inde-

pendent interface. IBM Smalltalk maintains the look and feel

of the host system, as well as the speed inherent in host oPer-

ating system supported functions. The clean implementation

helps make IBM Smalltalk’s user interface feel snappy in spite

of a relatively slow virtual machhe.

The implementation includes some wonderti.d goodies for

the developer, including a fidl implementation of form wid-

gets, which provide extremely powerful positioning mecha-

nisms, Row and column widgets simpli~ some common oper-

ations dealing with rows and columns of other widgets. Of

course, the usual list of suspects is also available: pop-up

menus, list boxes, buttons, and labels. The event mechanism

and callback system implemented in the widgets also follows

the OSFhlotif approach.

file systam

IBM Smakdk’s Common File System provides low-

level protocols based on the POSIX.1 standard. They

have included the necessary framework for dealing

with files in a platform independent manner. The

aPProach has to de~ efie~~lY M* the USU~ ~ler
minutiae such as line endings varying between plat-

forms, platforms that have no concept of drive versus

those that do, and so on. ParcPlace has been doing

this stuff for some time, and the IBM Smallalk
13

approach in MS area is no great surprise. In VlsualWorks, for
example, you would send the named. message to Filename class

to instantiate a platform-specific kind of Fdename object that

cars then be used to obtain a Stream on the file. In IBM

smallt~ you would use a CfsFileDescriptor to write platform-

independent code that handles platiorm-specifics for you auto-

matically.

IBM Smalltalk also provides a variety of fde sharing and

region-locking facilities based on the POSIX. 1 style. Since

these types of operations are not supported uniformly across

platforms, they offer the ability to determine whether the lock-

ing you want is supported. For example, note that

CfsFileDescriptorsupportsLoclCtJrpe:FMDLOCK

wiU return true or false depending on whether the platform

supports exclusive mandatory locks. Platform-specific file emors

are available to you if you need them, but most people will use

the subset of POSIX.1 error constants available via the CfsError

class to handle problems in a platform-independent manner.

Exceptionhandlingsystem

We happen to be big believers in the value of a robust excep-

tion handling system, or EHS. As long as you use an EHS to

handle exceptions and not to handle the kind of things that

happen all the time, it is an absolutely invaluable part of a

Smalltalk programmer’s tool kit. IBM provides an EHS with

IBM Smalltalk that is similar to the VisualWorks EHS in style.

Smalkalk/V follows the approach described by Christopher

Deny in ECOOP ’88, where exceptions are treated as first class

objects; i.e., each exception is an instance of some subclass of

ExceptionalEvent. ParcPlace and IBM take a slightly different

approach to achieve the same resuk each exception is an
instance of a single ckiss. Where IBM Smdkdk differs from

VisualWorks is that IBM Smalltalk provides a default handler,

which is a block of code that is evaluated if the exception is not

handled. We provide a thumbnail comparison in Table 2.

The asterisk in Table 2 that indicates the lack of Unwind

Protection for IBM is there because this feature is not present

in the Beta release (it maybe added in the final release).

Unwind protection requires nonlocal returns to be properly

handled by the virtual machine. For example, critical sections

implemented by Semaphores usually require unwind protection.

No matter how the critical section terminates, you want to sig-

nal the semaphore. The syntax for critical sections in both

Vkua.lWorks and IBM SmaUtsJk is aSemaphore criticab aBlock.

If you happen to return from the block (i.e., [... some code .. .

‘sew), the semaphore will never be signaled without unwind

protection. Both Smalltalk/V and VisualWorks implement thk

behavior correctly.
14
Interfaca to othar Ianguagas

IBM Smalltalk provides two interfaces to other languages:

platform functions and primitives. Platfon-n flmctions are simi-

lar to SmalltaWV’s ExternalInterface class (for interfacing to

DLL’S) and VisualWorks’ ExternalLibrary interface (used for

both DLL’S and statically bound code for platforms that do not

support DLL’S). The C calling convention is the only one cur-

rently supported by lB M Smalltalk, and it supports the stan-

dard C types you would expect.

Platform functions do not require you to write any code

other than the Smalltalk code used to access the external rou-

tines. IBM Smalltalk provides two approaches for defining

platform functions. In the first approach, you create an

instance of a platform function using protocol in the

PlatforrnFunction class. The instance of PlatformFunciion that

you obtain can be sent messages and treated as any other

Smalltalk object. You use the instance of PlatformFunction by

sendhg it messages appropriate to the number of arguments

used (i.e., call, callWith:, callWith:with:, etc.). The number of

~Wments m the cdl must match the number of arguments in
the platform function.

The alternate method of calling a platform function allows

you to irdine external finction calls directly in methods. The

syntax, which is the same syntax as PlatiormFunction, is embed-

ded in the body of a method, simiku to primitive fimctions. An

example is the following

send: magto: id

CC:int32 ‘message’:sendToint32 int32~

“self prirnitiveFailed

Thk example invokes the function sendTo in the library mes-

sage. This approach dhTers from the VkualWorks and

Smalltalk/V approaches, since platform functions can reside in

any class of the system, not in subclasses of a particular class.

Qtite useful and extremely slick-

Primitives

Like VisualWorks, IBM SmaUtalk supports a rich userprimitive

interface. A user primitive is code that is written in C, typically

for performance reasons. This code, unlike a platform or exter-

nal function, directly manipulates objects and is written for

exactly that purpose. Like external functions, primitives can be

inlined in methods on any class in the system, and IBM

Smalltalk provides syntax to access primitives in any shared

library (DLL) by name or number. From the C side of things,

you have access- to the context of the virtual machhe, who ~he

receiver of the message was, and to the objects passed to the

primitive method.

Functions that are available inside a user primitive are

impressive. Lk VisualWorks, but unlike Smalltalk/V, IBM

Smalltalk provides fi.mctions for object allocation, sending mes-

sages to Smalkalk objects from inside of primitives, and pro-
Talsle2. —

Feature IBM Digitilk ParcPlace

Exceptions as I sc Class Objects No Yes No

Unwind Protection No* Yes Yes

Genetal Usage [block] when exception do [handler] [block] on exception do [handler] exception handle [handler] do [block] ,
I I
The Sma[ltalk Report

Automatic Documentation - Easier Than Ever

With Synopsis for Smallta!L-/V Dnvlopnwnt Teumv

Development Time Savings

SYIIO@ produces high quality class documentation

automatically. With the combination of Synopsis and Coding Documentation

Smalltalk/V, you cut development time and eliminate the Without .,’
[

lag between the production of code and the availability

of documentation.
A

Start Finish

Synopsis for Smalltalk/V
Documentation

&:o@ a

Coding +::+f>,=

. Documents Classes Automatically

. Provides Class Summaries and Source Code Listings A A

. Builds Class or Subsystem Encyclopedias stall Finish

. Publishes Documentation on Word Processors
Products:

● Packages Documentation as Encyclopedia Files or
Synopsis for Smalltalk/V and Team/V
Synopsis for ENVY/Developer

as Help Files for Distribution

. Supports Personalized Documentation and
Environments: Windows, Win32, 0S/2

Coding Conventions
Pricing: Smalltalk/V $295, ENVY $395

Site licenses available.

Working with Synopsis is easy. Install Synopsis and see ‘.

%

Synopsis Software
immediate rewdts --- without changing a thing about the =

way you write Small talk code!
8912 Oxbridge Court, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650
tecting objects from garbage collection. In addition, IBM

Smrdhslk provides several other usefi.d tlmctions, including

determining the version of the virtuzl machine and explicitly

invoking both the scavenger and garbage collector from inside

of primitives.

IBM Smalltalk also provides a nice interface for dealing with

asynchronous messages (i.e., interrupts). Because interrupts can

happen at any time, the Smalltalk virtual machine must be pro-

tected from this behavior and interrupted only at certain check

points when the virtual machine is prepared to process inter-

rupts. IBM Smskdk provides a queue of interrupts that is

polled by the interpreter at various times.

Because the interrupt handler could become active at any

time (i.e., when the virtual machine is garbage collecting), nor-

mal objects cannot be used in asynchronous messages. To han-

dle this situation, IBM Smalltalk allows objects to become~me~

meaning that they do not move during garbage collection. Thk

approach means that direct references to fixed objects remain
valid and can be passed off to external tlmctions or primitives

without worrying about their being moved around during

garbage collection.

Finalization

One of the difficulties with dealing with host system resources

in Smalhalk has been the finfllzation of these resources.

Finalization is the process of determining when an object is

no longer referenced in Smalltrdk and is receiving a

notification of that fact. Current releases of Smalltalk/V leave
November-December 1994
. .

finalization to the programmer. VisualWorks has a rich final-

ization model, providing the programmer with such things as

WeakArrays and WeakDictionaries. IBM Smalltalk provides a

simpler approach to finalization. If you need to be notified

when a particular object is about to go to the great heap in

the sky, simply send it the message onFinalizeDo:

selectorOrNilOrMessage. When the receiver is about to become

garbage, the action supplied by the selectorOrNilOrMessage is

performed. If the argument is nil, the message finalize is sent

to the receiver. If the argument is a Symbol, then the receiver

is sent the message corresponding to the symbol. If the argu-

ment is a Message, then the receiver is sent the message (a

selector and arguments).

THE DEVELOPMENTENVIRONMENT

It is often difficult for Sms.lltalk programmers to mentally sepa-

rate the differences between the Smalltalk language, the class

library and the development environment. Let’s face it, though:

if all you had was the language and a workspace, you would not

be a happy Smallta.lker. Rather than talk about specific tools,

we will concentrate on what IBM is supplying for application

development, cross-platform development, and deployment of

Smalltalk applications. We’ll take a little side trip to dkcuss a

new gizmo, TrailBlazer, IBM’S shot at improving the basic

Smalltalk browsers.

Applicationmanagementarchitectureand team davalopment

OTI’S ENV17beveloper application management architecture is
15

provided with IBM SmaUtallc. Interestingly enough, they pro-

vide a separation between the single-user version and the Team

version, whale maintaining the same ENVY concepts in both.

The primary difference between them is that the single-user

version uses the standard Smalltslk change log/list approach,

whale the team version uses a central ENVY repository. In fact,

if you have ENW7beve10per, you can connect your Smakslk/V,

VkualWorks, and IBM Smalltalk images all to the ~arne Jource

coder~ositoy.

Let’s do a brief discussion on the application management

architecture. ENVY users will find nothing new For a more com-

plete discussion of ENVl%3eveloper, see the October 1992 issue of

THE SMALLTALKREPORT.We will simply present it as a well-

known fact that you cannot do serious Smalltalk development, or

have a hope of reuse, without some way to group together the class-

es and methods that comprise your application. In other words, you

need some way to cut across the class hierarchy to identi@ and

maintain the parts that make up your application. PsrcPlace uses

class categories in their base Viialworks product to accomplish

this goal to a limited degree, and in SmaUW, you can purchase

T12.41@J.You can also buy ENV17beveloper as an add-on to either

PmcPlace’s or D@rdW base image etinment.

Applications and subapplications (classes in the image) are

the basis for application management in IBM Smalltalk. All

classes must be defined as part of some application. There are

many applications provided in the base IBM Smrdltalk image, a

number of which correspond directly to the subsystems we’ve

been talking about. In addition, classes that are defined in one
. .

app~ca~on Cm be extended in another, so that the aPPlication-

specific ezrtensions you might add to somethhg like String are

localized to your application without affecting the Kernel appli-

cation definition and methods. Related applications can also be

grouped together into a configuration map,

which often corresponds to a single deliv-

erable software product.

Prerequisites are a central part of appli-

cation management in the ENVY environ-

ment, Prerequisites can be somewhat of a

religious issue, so we’ll try to stay out of it.

It would probably be fak to say that

nobody likes prerequisites, but if you feel

they are necessary, you better have tools to

deal effectively with them. In ENVY, they

are used to enforce the existence in your

image of one application before another

that depends on it can be loaded from the

library. IBM Smalltalk also extends the use

of prerequisites to configuration maps, a

welcome addition, Load order of classes

within an application is all handled auto-

matically-prerequisites have nothksg to do

with thhqy at a class level.

The Team version of IBM Smalkalk

comes with the fill arsenal of configuration

management took of ENVVbeveloper.

These tools enforce the concept that all Figurs1.Trailblazer,
16
I

software components, from classes, to applications and subap-

plications, to configuration maps, are subject to strict version

control. Once a component has been veraioned, you must create

a new edition to be able to change it or any of the components

that it contains. The development environment and use of the

ENVY repository then let you load configuration map, applica-

tion, and class versions without wondering whether that bug

you fixed last week is still fixed. Of course it is, because you ver-

sioned it!

Cross-platformdavalopmant

IBM has done a nice job of providkg a Smalkdk with com-

pletely portable code between platforms, but which uses host

widgets. ParcPlace goes one step further in portability but at

the expense of not using host widgets cunently. In

VisualWorks, you do your development under Windows, save

image, put your image on an 0S/2 or UNIX machine, and you

are up and running. Smalltalk/V in its current release (2.0) is

not quite source-level compatible between platforms

(Windows, 0S/2, and Mac). Some porting is required in

almost all cases, although it is usually not too tough. Upcoming

SmalltalW releases should eliminate the problem.

In lBM Smrdkalk, it doesn’t matter much which platform

you do your development on, If you keep to the common class-

es and don’t go dhing into places you’re not meant to go, you

will be able to move simply to another platform.

Here’s how you do i~ Because you must organize your code

into applications, you simply have to start up a virgin image for

the other platform and load your application from the libra~

into the image. ENVY provides ways to handle platform-

specific code loading within your application if you require it,

too. Then, you’re up and running on that platform. Eric

Claiberg at ObjectShare, who has been working on the

WindowBuilder version for IBM Smalltal~ reports having
The Smalltalk Repoti

never to change a single line of code between the Windows and

0S/2 versionsmnd ObjectShare does some pretty obscure

low-level graphics operations in their work.

Trailblazer-an improvadbrowser?

IBM provides a new browser called TrailBlazer with their

Smslltslk. Despite the fact that there is no documentation for it

in the Beta product, we still found it to be a usefid tool; this says

something significant about it. The idea is to combine a number

of the normal browsers into one window, as shown below

F@re 1 shows something like the Smslltalk.W class hierar-

chy browser or a VkualWorks hierarchy browser. The drop-

downs at the top let you choose what you want to appear in the

list. By default, if you open the IBM Smalltalk classes browser,

the list on the far right would be blank. We chose to view

&ThechoiceofPOSIX.1,X Wzdows,

and OSFIMotifstandah A3rthe file

system, graphics, and widgets in the

system will appeal both to developers

and to co~rate deckion makms
P

Messages Sent in it by selecting it from the drop-down menu.

As you might expect, the list shows all messages that are sent in

Object’s instance method addDependenk. When you select a

message in the list, the TrailBlazer shifts all the lists over one

slot to the left and shows Local Implementors on the right.

Senders are usually what you’re after when you look at the mes-

sages in a method, but you don’t get another window on your

screen. The thick bm under the lists shows (using a blue color)

which three slots you are viewing out of the trail you’ve gone

down. Togo back to the original three lists (with classes on the

left), you just have to click in the bar.

Okay it’s not perfect. It takes some getting used to. The

Beta version has some bugs. However, we found we could get

our work done at least as effectively with it, but without hav-

ing to track through 10 different windows at any given time. If

you don’t like it, IBM lets you use the standard ENVY-style

browsers, which most Smalltalkers feel pretty comfortable

with, ENVY experience or not.

Applicationdeployment

It often feels as though application deployment strategy is one

of Smalhalk’s dirty-and certainly well kept-secrets. The

usual ParePlace approach is simply to carve away, or ship, all

the classes and methods you do not need from the base image

before deploying. Digitalk nicely separates development classes

from base classes via DLLS, which helps somewhat, and they

allow you to build object libraries to which you can bind in

runtime. ENV17beveloper users under Digitalk Smakw

Windows and 0S/2 (but not WIN32) have had the luxury of

using the ENVY Packager. The concept here is that because the

image is built from applications, you should be able to build

one from scratch by speci@ing the applications you want in it

and leaving out the ones you don’t want. To build a really smrd
November-December 1994
image, you need some more refined tools, too, and these are

part of the Packager.

Not too surprisingly you get the packager as part of lBM

Smalltalk, The result is that you have a tool to help you deploy

a real Smalltalk application that uses as little footprint as pos-

sible, and you can track via ENVY’S configuration-management

facilities to see just how you did it.

What alsa is interesting?

The virtual machine is a byte code interpreter and does not

use dynamic compilation as do ParcPlace and Digitalk (in

their WIN32 and 0S/2 releases). consequently, IBM Smalltalk

is slower than either of these other products on host any of

the standard Smalltalk benchmarks you might use. However,

because of the clean archkecture and implementation of the

graphics and the use of host widgets, the user interface doesn’t

feel slow at all. IBM says, “We’re working on it.” As the adage

recommends, make it work first,then make it work righ, then

make it work~mt. It already works right, so we’ll have to wait

a little while for it to work faster.

The Beta release under 0S/2 and Windows comes with a

50 Mb ENVY library, chock full of thkgs. No wonder it’s dis-

tributed on CD! The library includes many examples that will

be a valuable aid to those for whom X Windows and OsWotif

are new, even if they are expert Smalltalkers. Apparently, IBM

is considering providing the full documentation set on the CD

as the standard way to distribute it.

WMI such a large class library, it seems a shame that so much

source code is missing. In the Beta release, no source code is pro-

vided for the compiler, common widget, OS widget, and the

common graphks subsystems. The lack of source could limit the

usefulness of these very useful areas of the class library and pre-

vent fiuther specialization and host operating system integration.

It is possible that the situation may change for the final release.

CONCLUSIONS

IBM has entered the Smalhalk market with a product that

compares well with the established vendors in most areas and

is in some ways superior. The choice of PO SIX.1, X Windows,

and OSF~otif standards as the basis for the file system,

graphics, and widgets in the system will no doubt have appeal

both to developers and to corporate decision makers. The

primitive and C language interfaces are innovative and provide

extremely useful fimctions for developers. The system uses host

widgets on all platforms and shows good user-interface speed

in spite of a relatively slow virtual machine. In addkion, IBM

bundles the team version of the product with the application

management and team development took of ENtieveloper.

All these factors combined show that IBM has placed itself in

a position to be reckoned with, not just from a marketing

point of view, but from a technical point of tiew as well. ~

Stevs Harris and Hal Hildnbrsnd founded Polymorphic %ftvsarsr, Inc., in

March 1993. Sinca that tima, Polymorphic haa raleaaad Tanaag~, an

objactariantad dstabasa for Smalltalltj as wall aa othar Smalltslk tools and

frsmaworks aimad at increasing davslopar pmdrrctivity and reducing time

Wmarkat of Smalltalk applications. Thay can ba raachad at 75910,3075 on

CompuSarva or at Iokiiiyrnorf.winmst on tha hrtarsrat.
17

A trace logger

AlecSharp& DaveFarmer
the trace mechanism.”
T hk article describes our implementation of a TraceLog

mechanism that we have found useful in the develop-

ment and support of our product. We describe various

features of the TmceLog and show some of the code. Embedded

in the code in italicsare explanations of some of the more inter-

esting aspects of the code. We also take detours on occasion to

go over things that we found interesting, and that maybe useful

to the reader. This is rather like the way we developed the

TraceLog, following a basically straight path, but taking little

detours now and then as something aroused our curiosity.

Our current product consists of a lot of UNIX processes

running in the background, each one with a speciahzed task to

perform. Each is forked by a single parent process and com-

municates with other processes via standard UNIX I PC mecha-

nisms (sockets and shared memory). Once running they con-

tinue until sent a signal from the parent. We are writing new

functionally for the product in Smalltalk, using ObjectWorks

4.1 from ParcPlace.

Our initial model of the TraceLog was that sending a

SIGUSR1 signal to our Smalltalk UNIX process would toggle

“packet tracing.” When packet tracing is enabled, we print to a

log file all data that is sent to a serial device and received from

the device. This ability is very important to our support people

in helping track down problems at customer sites.

We immediately decided to extend the model to allow us to

trace entry into methods, and to support the logging of debug

statements from within a method, We extended the model fur-

ther as we needed new capabilities for our own debugging, as

we thought of fun enhancements, and as we came across ideas

and features that we thought would make for a slick demo of

the TraceLog.

Here’s a listing of the parameter file that we now use to con-

trol logging; anythirg after a #is a comment. If the file does

not exist, then at startup, logging is off, and when a user sends

a SIGUSR1 signal, packet tracing is toggled:

Tracehg parameter file.

#

#resetLogPile # Open a new, empty log file

*ckDeptlu 1 # Omeansshowwholestackfor

eachmethod

tracaDebug: true # Trace Debug statements?

tiaceEntec true # TraceEn@ to methods?

tiacePaekets: true # Tracepacketsto andfromdevice?

showl’imeatamp:true # Showbe of eachloggedmeesage?

ehowsource: false # Hrowsourcecode?
18
Includeor excludespecffiedclasses.Formatk

Fncludetlass:<clasename>

excludetis: <classmme>

#An includelist takesprecedencewer an excludelist.

#If there are no lists, all classesare logged.

exit # Esit fromparameterfile processing

exdudetlass: LmSocket

excludeClass:LmOutput

excludeClaes:ChannelManager

When we read thk file, we ignore comments and blank lines.

All other lines are treated as Smalltalk code and executed using

the perform:withtuguments: method, shown later. The exit

statement in the file causes the exit message to be sent and thk

stops us readhg any more of the file. So, in this example, none

of the excludeClass: messages will be sent. If the exit was miss-

ing or commented out, the excludeflass: method adds the

specified class to a Set. We have two Sets, classesToInclude, and

classesToExclude, both initialized to nil. If classesToInclude is

not nil, classesToExclude will be ignored.

Rather than show all the code, we will just show some of

the key points, and leave it to the reader to fill in the gaps. To

start, let’s go over how we set up our signal handler and check

to see ifwe’ve received a signal, Our signal handler is written in

C, and so we use the CPOK extensions; our C interface object is

stored in a pool variable called CInterface.

We are limited by the ability of C and Smalltalk to commu-

nicate with each other-S malltalk can call C, and if you want

to, the C function could immedlatelv call back into Smalltalk.

However, a C tlmction cannot call Smalltalk asynchronously;

i.e., a C flmction can only call SmaUtalk if it was first called

from SmsUtalk. The problem is one of memory locations shift-

ing around under you. So the way we do this is to have our sig-

nal handler mod@ a Smalltslk heap variable, then check this

variable every time our product gets a new request to process.

We setup the signal handler in the initialize method of one of

our application objects.

initialize

...
self ptiaceReseti OgcCopyToHeap.

CInterfaceinitLogSignaU_IdhptfCraceReset.

checkTraceReset

“Checkto see if the signal handler has been invoked. If so, reset
The Smalltalk Report

Objects
Everywhere!

Why settle for hybrid implementations when
you can have the real thing? JumpStart is the
leading provider of solutions and training
programs for pure object systems using
Smalltalk and the GemStone(’m) ODBMS. We
also specialize in deploying IBM Smalltalk@)
and VisualAge@mlapplications.

Ask about our Corporate Educators Program.

Manufacturing

ProcessControl
Network Management

)
Pharmaceutical

rt Client4erver /S Systems

C;mtified %’vice Ptiers wwk

w

919.460.1583

Copyight I994,0 Jutnp.%wt Systenm, Inc.
selfptrTraceResetcontents = 1

ifl’rue:

[@TraceReset contents: O.

Note that for performance, after sending reset, we set the a pool

dictionary variable, Trace, to me if tracing is on. Our instance

of the TraceLog has been stored in the pool variable Log.

Logreset.

Trace :=LogtraceEnter on [1.ogtraceDebug]]

Here’s how we open and read the parameter file. Once the file

is open, we loop through it. As we loop through, if we come

across a line saying exit, the exit method returns true, termi-

nating the loop and preventing the rest of the file being read.

readPararneterFile

I stream tile I

file:= self parameterFileName.

file isReadable

We:

[self ~acePackets: hlse.

stream :=file readStream.

self loopThroughFile:stream.

stream close]

ifpalsw

~If there is no readable parameter file,

we should simplytoggle packet tracing”

self tracePackets: self tracePackets not].

loopThroughFile:aStream

I bne esit I

ercit:= false.

[aSheam atEnd OK[exit= true]]

whileFalse

Whydo we explicit~ te~texit against Inre, rather tlran simply say-
ing or [exit]? Became iti easier to al[ow the methodswe Perform to

return self rather than requiring them to return false, andyou can’t

say or: [exit] ~exit is not a Boolean.

Me:= aStreamupTo:Charactercr.

esit:= self processtie: line].

For each line we read, we strip off any comments: comments

start with a #. Then we break the line into white space sepa-

rated words. The key prut is that each line is in valid Smalltalk

syntax so we can simply perform the line, using the first word

as the selector and the rest of the words as the arguments. We

wrap the perform in a general exception handler so that we

tiap any errors-specifically: selector is unknown, and the

number of parameters is incorrect for the selector. Here’s the

code that processes each line.

procesd.ine tie

I may 1

array:= (she copyUpTo$#) as&rrayOElrbstrings.

array size >0

ifl’rue:

[ObjecterrorSignal

handle: [:es I selflogMsg:

‘Invahdline ‘, aI.ine]

do: [Aselfperfomr (array at: 1) asSyrnbol

witMrguments: (array copyFrom:2

to: array size)]]
November-December 1994
Let’s take a couple of detours here. The perform family of

selectors (perform:, perform: witk, perforrn:witluhguments:)

allow you to dynamically create messages in your code. The

perform: family are messages to which Object responds.

Regardless of which one you use, eventually

perforrnwitlulrguments: is sent, with an array of size zero or

greater, and a primitive is invoked.

The perform family can help eliminate the need for a

switcldcase statement or the need for multiple [conditional]

ifl’rue: [block] statements. For example, in our application, we

get back status codes from a serial device. We could check each

possible value and do something like:

statusCode= ‘0027’ifl’rue: [Adosomething].

status Code= ‘0028’MTrue:[“do somethi’rg].

statcssCode= ‘0029’ifllue: [“do something].

However, we can eliminate this checking for matches very sim-

ply. Instead, we create methods called messageO027, mes-

sageO028, etc., then we do:

ObjectmessageNotUnderstoodSignal

handle: [:ex I handle invalid statusCode]

do: [selfperform (’message’,statcrsCodeprintString) asSyrnbol].

An alternative way to do this last piece of code is to see if we

understand the message.

selector:= (’message’,statcssCodepcint.%ing) asSymbol.

(self respondsTo:selector)

ifkue: [selfperform selector]

ifpalsa [handle invalid statusCode].

In terms of performance, handle: do: is marginally faster when
19

continued on page32
the message is understood, but in our timings it was about

seven tiies slower than the respondsTo: technique when the

message was not understood. We feel that the handle: do: tech-

nique is more elegant t+ough.

The other detour is to take a look at the message

asArrayOfSubshings, This is a message that we added to the

system class S~ing. Here’s the codq note that it uses

6dFh~atarthgAt:, which we also added to String by an easy

extension to 6ndFkst:—

asArrayOfSubstigs

I 6rst last coUedion I

coUefion:= OrderedCoUecSionnew.

last :=0.

[M:= self EsWirsk [:ch I ch isSeparator not]

stastingAt last+ 1.

tit -= o]

whilellue:

~:= (self fidFirsk [:ch I ch isSeparator]

stastingAk fist) -1.
ti<oww @ast:=selftie].

coUeclionadd: (self copyFrorrcfast to: last)].

“hay withAU:collection.

Back to the ThaceLog, We have two functions that log entry

into methods, Here we examples of them.

Tracei.fltue: [Logenter],

‘hate W1’sutz[Logent= ‘hereis somevalue in string form’].

The enter method simply sends self enter nil. So let’s look at

the entec method

entec astring

I contest currentDepth I

tcaceEnterifFalse [Aselfl.

Next wepop the context until we are no longer in the TraceLog o~ect.

~ context knowJ what o@ct it G in (th receim), what rnemagewas

recec”ve~and what o~ect sent tbe message(the sendm). So we can

migrate out though th Jenakn of messagesuntil wefind a sender that

is not our TraceLog imtance; i,e., not sell The variable thisContext Ls

ckzsq~ed us a pecid va~le, along with self and super and contains

insation about, mrprire, th currentcontext It can be interesting to

put a self halt in a metbodand itupectthisConteti

conteti:= thiiContext sender:
[self= context receiver]

whilellue [context:= context sender].

The reasonforpqbping the context ii that we maybe cailedji-om the

enter metAo~ and we don’tparticufarly want to record TraceLog as

t~e c[au that is trying to iog a mes~age. what we end up with ix t~e

classy+om which the enter or enter menage wa~ sent. Once we

know this cAsJs,we can checkto see ifit ir?ne of t~e classeswe want

to log. The code that check whether to log a class is listed a~er tbh

method

(self logThisClass: context)

me

[curcent.thspth:= 0,

(seLflogFile) a; M;naxtputtdl: ‘Enter’,

self timestemp.

aSbing notNil ifl’rue: [(seLflogFile)nexlPutAU:ahing]l
20
We now stay in a loop,printing out the method we are in then pop-

ping the stack, until tither we are at the end of the stack, or we have

sati$ied the stack d~th condition in tbeparameterfile.

[contesctnotNil

and [contesrtreceiver notNil

and [currentDepth < seti stackDepth

OK[self stackDepth= O]]]]

whileli-ue

[(self logFile) cr; nextPutAU:context printitring.

Here, we print the ~ourcecode of the method we are in, assumin~

the parameterfile telh us to do so, i.e., we print the ~ourcecodefor

the context. We haven’tfound itparticcdar[y usefi~ but it makes an

impres~ive demo. Interestingly, it wi[[show the source code even If

the ~ource~are not available. It doe~tbi~ by decomposing tbe byte-

code.iand usin~ tl, t2, etc.,for the variable namet

self showSource

ifTrue: [(self logFile)

cc

nexLPutAILcontest sourceCode].

iVow get the context of tbe Jender of the message t~at generated tbe

context b~”ngprinted.

contesrt:= context sender.

currentoepth:= currentDepth + 1].

self logFileflush]

Here’s the code that checks to see if we should print trace infor-

mation for the current method. I.e., is the class of the object

which sent the message one of the classes we should be logging?

logThisClass:.Context

I thisclass I

(self c\assesToInchrdeisNil

and [self classesToExchrdeisNil])

iflue: [“true].

The next line looks rather Jtrange. What we are doing is taking

tfie context of the method that sent the enter or enter: message and

getting its clam aContext receiver printString = ‘a Thing’ zfthe

message waJ sent by an instance of Thing, and “Thing” zfit waJ

Jentfiom t~e c/ass Thing. aContex receiver class printString =

‘Thing’ tfthe mesJage waJ Jentfiom an irutance of Thing, and

Thing class’ rfit wa~ sent+om the clan Thing. So the line we

have ensures that we end up with Thing ‘jwhether tbe sender ix a

class or an irntance method,

thisClass := aContextreceiver class printitring

copyUpTo:Characterspace.

seLfclassesToInchrdenotliil

iflhcm [“self classesToIncludekcludes: thisllass]

Wake: [*(self classesToExcludeincludes: thisClass)not]

What is the final outcome of all this code? Here’s an example

of the log file, showing output from enter, enter:, and debug:,

with stackDepth set to 1, and with shwTimestamp set to true.

We don’t print the date because if logging is on, the first thing

logged is the date and the list of trace parameters in effect.

Enter(2:26:57pm):

LmInput>>getRequestUsing:

Debug(2:26:57pm): acs=O,vsn=’RB1400’

LhMoveRequest(LhRequest)>>initislism
The Smalltalk Report

Collection
protection❑ OE ERoDD
~~ -O accessor or not to accessor?” A good question, but. .

1 one that I answered for myself five years ago. My

mentors used them exclusively and I have been

addicted to them ever since. My question is not should I use

them or not, but how can I use them safely?

THE PROS

I suppose at first I used accessor methods without a whole lot

of thought. Now I have five yesm of Smalltalk under my belt

and I have experienced the good, the bad, snd the ugly sides of

accessor methods. When I add up all the pluses and minuses

though, the pluses win out. Here are the main reasons why I

like the following accessor methods.

● Robustness of the system under development. Accessor

methods allow me to use laissez-faire initialization tech-

niques. Thk makes my objects more resilient since variables

(instance, class, class instance) initiahze as needed, The

advantages of this technique include the following

1. Initial values for variables are defined in a single loca-

tion. Thk removes the chances for (reinitializing vari-

ables improperly (that is, other methods of the object

can set the variable to nil instead of to an object of a

particular type). Additionally if you decide to change the

type of object held by a variable, you only have to make

the change in a single location.

2. Objects held by variables are not created until they are

needed, if ever.

“ Facilitation of business rules and access control. System

requirements may include actions that must take place when

object states change. These include security restrictions that

may make variable access restricted in certain circumstances.

Accessor methods can support these types of requirement.

“ Less coupling. Changes to variable storage types should not

fiect the class’ methods or its subclasses’ methods.

THE CONS

I understand that there is a concern that providing and J/ind~

I

using accessor methods violate the encapsulation benefits of

object-oriented systems. One of the biggest mistakes I have

made (and seen many others make) is to manipulate the con-

tents of another objects vmiables instead of letting the object

manage it on its own. This usuaUy occurs with variables that

arc of the Collection ~es, but occurs with other object types

as well.

A typical example is when an object gains access to another

object’s instance variable that contains a collection and simply

adds an object to it, or removes one from it. Lets say we have a

HierarchicalObject class that has an instance variable children

that holds a collection of its immediate descendants. A ~icsl

get accessor method for children might look like the following

HierarehicalObjectWas
children

“Answermy coUecfionof direct descendants”
(children iaNil). ,

ifhe: [children:= OrderedCoUecbonnew].
‘children

At thk point, lets assume that the only task to perform when

adding a child is to add it to the children collection. The

Clients of thk class might write the following code to do so:

...
aHierarchicalObjectchildren add: child,

...
This may be acceptable for the current implementation, but it

becomes a dficult situation if there are specific tasks that

must occur when addhg and removing children. For example,

lets say HierarchicalObject’s implementation changes so that it

includes an instance variable parent to hold its immediate

ancestor. Whenever a child is added to a parent, the parent of

the child also needs to be set. Now Clients must change their

code to look like:

...
aHierarchicalObjectchildren add: child.

child parenk aHierarchicalObject

...
The behavior of the object ends up dkpersed among other

objects in the system. The object that owns the children has no

control over its own variables. This is a complete violation of

encapsulation and a potential maintenance nightmare as well.

This of course could be avoided tithe children collection is not

accessible to Clients.

A SOLUTION

The optimal way to solve thk problem is for the Smalltalk ven-

dors to support the notion of public and private variables and

methods in ways similar to C++. In the meantime, how do we

gain the benefits of accessor methods without suffering the typ-

ical abuse that is associated with them? One solution is a tech-

nique I am developing for use in our designs at Hatteras

Software, Inc. that we call collectionprotection. The name is a

little misleading as the technique applies to protection of all

state data for an object, but collections are the most abused.

The technique provides for the use of accessor methods but

reduces the chances of accidental encapsulation abuse. It does

so by using a combination of public and private methods. Here

are the key points to collection protection:
21

Database Solution for SmalhWV
A class library for ODBC Database Access

■ Ol)13C2.0 SUppOti
~Q@~ ■ Automatic class gcmration

ODBTdk ■ NstivedatalypeBllfl@

■ online help,sourceincl~ no runtimefees

Availeble for Win16, Win32s, Win-NT, 0S/2 and PARTS

‘!.. simpk buf ekgmrt ...”- Auetratiarr Oilt Securities

Client Server Solution for SmaWaWV
Aclass library for Windows Sockets Development

■ IJDP endTCP Sookets

M*LRB
■ Synchronousaudasphmnoue support

Socktalk ■ samplecode for mnote disk browsu app
■ ordinc help, source included, no rundme feee

Available for Win16, Win32s, Win-NT

~= ~~~-z~tilp.n.

Call for Papers!

CLIENT/SEFIVEFlDEVELOPERis a new publication commit-
ted to helping programmers, developers and technical
managers understand C/S technology. We are now
actively seeking manuscripts on the following:

Operating Systems ● Databases ● Programming Lnguages ●

Object Technology and Reuse ● C/S Application Design
Methodologies and Tools . Software Engineering

Metiodoiogies . Pre-Packaged C/S Applicatrnrrs ● Business

Process Re-Engineering ● Project Management in a C/S
Environment ● Metrics and Testing ● Multimedia

To submit an article or request author guidelines,
contact

Thomas O’Flaherly, Editor
411 West End Avenue, Suite 2B
New York, NY 10024
Phone: 201.801.0050 Fax: 201.801.0441
The private mathod

Kent mentions in his article that simply making accessors private

is not a sufficient solution to solve the encapsulation problem

because “anyone can invoke any method (and will, given enough

stiess).” I agree with this statement. After all, making a method

private is nothing more than placing the word private at the

beginning of the method comment and when available, placing

the method in a private protocol. I cannot keep up with my own

classes private and public methods, much less anyone ekes!

Once I reahzed thk, I began thhdcing about ways to make

private accessor methods obviously private. Fkst I tried using

the prefixes public- and private- for appropriate protocol

names. This is very usefid, but it does not make it obvious

when referencing the method in code. I then pursued different

ideas for naming the private accessor methods so that they

were somehow different from others. I thought about using pri-

vate as a prefix for each private accessor method name. This

was certainly obvious, but is rather cumbersome and does not

read well. Then I tried some other variations such as a prefi of

buric, which is used in some of the base Smalltalk code. This is

better, but as noted, it is being used for another purpose.

I was convinced that thk was the best way to solve the

problem, so I tried several other prefixes until I stumbled upon

the word my. It seemed too simple at first, but the more I

thought about it, the prefix my seemed like a reasonable solu-

tion. As it turns out, my works because it reads both naturatly

and unnaturally. Take a look at the following code that uses the

example of a Store that has employees:.

Store ctass
myEmployees

“private- Answermy collection of employees”

(‘employees isliil)
ifTrue: [employees:= OrderedCollectionnew].
“employees

myhnpbyees: aCollecrion
“private- Seth my colletion of employeesto aCollection”
employees:= aCollectionOfEmpbyees

My reads naturally when an object is accessing its own vmiables

because the object does indeed own the variables. My is an

aPPmPriate term for this frame of r’efe~nce” For flamPleJ an
object wants to access its own collection of Employee objects

through its accessor method nsmed myEmployees. A method

within the object doing this would look something like:

....
list addAll:seti myEmp@ees

...

On the other hand, my reads very unnaturally when code in

another class tries to access the object’s variables through its

private accessor methods. A method within another class doing

this would look something like:

...

list addAILanotherobject myEmpkyees

...

In this case, the meaning of the statement becomes confising.
continued on page 32

The Smalltalk Report

ALAN KNIGHT Literals
T he discussion this time starts with a simple, commonly

asked question, and takes it to extreme lengths. While

many of the proposed solutions aren’t dings you would

use in practice, they illustrate some interesting Smalltalk tech-

niques and areas of confision.

The question is how to create an array of points in a

method, The obvious:

#(6@312@4 13r@79)

won’t work. It yields an array of integers and symbols, like thk:

#(6#@312#@413#@79)

The numbers in the expression are properly interpreted, while

the @ operators turn into symbols. Clearly, the compiler needs

more detailed instructions. How about if we use brackets to tell

the compiler how to group the numbers and operators:

#((6@3) (12@4) (13@79))

Unfortunately this doesn’t work either. It gives us an array con-

taining three subarrays, each of which contains two integers

and a symbol:

#(#(6 #@3) #(12 #@4) #(13 #@ 79))

POINTSARENT LITERALS

The real answer is that you can’t do this directly. The Smalltalk

compiler treats certain ‘literal” strings specially, and creates

objects at compile-time which are embedded into the compiled

code. This literal syntax is very important, since it would other-

wise be awkward to generate many of these objects. Advanced

readers can think about how to generate numbers if there were

no literal syntax. It’s awkward, but certainly possible, and I’ll

dkcuss it briefly at the end of the column.

Some examples of literals are

3 (an Integer)

3.14159 (a Float)

3.1415926535898d (a Double)

$b (a Character)

‘helloworld’ (a String)

#helloWorld (a Symbol)

[ObjectMemoryquit] (a Block)

#(2 asynrbol#aSymbol‘aString’)(SOArraycent.airingotherliteral objects)
November-December 1994
Of these, we are most interested in the last one, creating a liter-

al array. Note that “words” (anythhg that would be a legal vari-

able name) inside a literal array are treated as symbols, whether

or not they have a # in front of them. That’s why the @ sign

was turned into a symbol in the previous examples.

The other important thing to note is that points are not one

of these literal constructs. When I write 4@I0 in my Smalltalk

code, it’s not interpreted as a literal point, but as two literal

integers and a message send. The operator @ is treated exactly

the same as the operator+ in 2+2. Both are messages sent (at

runtime) to numbers which generate a new object.

WHAT CANWE DO?

If we can’t make a literal array of points, then what’s the easiest

way to create a non-literal array of points. There are quite a

few, but for small arrays the easiest one is obvious.

Arraywith: 6@3 with: 12@4 with 13@79

Unfortunately that only works on arrays with four or fewer ele-

ments. For larger arrays we could make smaller arrays and crm-

catenate them:

(Arraywith: 6@3 with: 12@4 with: 13@79with: 14@7) ,

(Arraywith: 7@33 witi 9@13).

but concatenation is expensive if the arrays start getting large.

We could create an OrderedCollecbon instead, since that’s easy,

and we can always convert it to an array if we really require an

array and are willing to pay the cost of conversion:

(OrderedCollectionnew 3)

add 6@3;

add: 12@4;

add 13@79;

yourself “orashra~

If we want to avoid the cost of conversion, we could always use

a stream. Streams are most commonly used for strings, but they

work with fine arrays:

WriteStreamon: (Arraynew 3)

nextPuti 6@3;

nextPuk 12@4;

nextPu~ 13r@79;

contents

Transformingtha Iiiarals

All these mechanisms are pretty simple, but we’re getting fur-

ther and flu-her away from the clear, simple literal syntax. We

can get closer to that by using vahd literal syntax and then

transforming the results. Alan Reider

(alanreider@sensenet.tom) suggests two possible forms:

#(10 78 90) witk #(45 10 34) collecti [:x :y I x @y]

This requires us to define a with: colleck method, similar to the

common with do: iterator. The with: do: method iterates over

matching collections, executing its argument block with corre-

sponding elements from both collections. The with: collecti

method does the same thing, but also accumulates the results.

Whale this is an interesting technique, for this case it doesn’t

seem as clear as the alternative using the normal coUect:

method:

#((10 45) (78 10) (90 34)) collech [:each I each fist@ each last]

Rather than creating a literal array of points, this creates a liter-

al array of two-element arrays of integers and then at runtime,
23

continued on page 30
builds a collection of points based on the arrays. Thk is quite

readable, since the x and y coordinates are kept close together.

PerformingIiterskr

If we start making use of some of Smalltslk’s meta-facilkies, we

can get very close to the literal form. Bjorn Eiderback

(bjorne@@lop.nada.kth.se) suggests making use of the per-

form: facility. Since the “@” operator is interpreted as a symbol,

we can get Smalltslk to send it as a message. In fact, thk will

h
Ih!kegoing around the image
changing the Ass of objects

jmt to see who objects.

Y

let us write an almost literal array using any expression that has

only binary selectors and literal constants:

Iswl

s := #(10@45 78c Q1O 90@34 67 @ 1298 ‘2 34 + 44) readStream,

w:= WriteStreamon Arraynew.

[s atEnd] whileFalse:

[wnextpuk (s next perhm-m:s next with: s neat)].

w contents

By converting this code into appropriate instance methods, and

addhg a facihw for handling nested arrays, the syntax can be

made very simple:

#(10@45 (90@34) (67@12 (l@l 2@3) 99@100) 98”2 34+44(1+2))

convert

IJsathe compiler

Of course the ultimate in rnetafacihties and general solutions is

to invoke the compiler. Alan Lovejoy (lovejoya@netcom.tom)

suggests:

(#(’44@122’‘18@54’)collect: [:string I Compilerevaluate: sh’ing])

which can also be given a more convenient syntax by defining

appropriate evaluation methods for strings and collections. While

i~; ce;airdy clear that we’re creating points, this is extremely

inefficient and is also not allowed in a normal application (Most

Smslltalk vendore don’t allow you to include the compiler in a

run-time system). This can be made somewhat more efficient

and less general, as suggested by Bjom Eiderbaclc

#(’10@45’‘78@10’‘90@34’) collect: [:x I Point readFromSting: x]

(Note that readFrornString: is ParcPlace-specific.)

Changethe compiler

One step beyond using the compiler is changing the compiler

so that it does generate the Iiterals you want. Eliot Miranda

(eliot@karn.fr) writes:

I modified the 2.3 compiler to evaluate expressions in {]s at

compile time. So you could write for example:

[Arraywitk 10@14 wittu12@16 witi: 14@16] at index
24
WMin [)s self is bound to the class in which the code is

compiled. Alas, the ParcPlace 4.0 compiler doesn’t remem-

ber the class, so I never bothered to implement it in 4.0.

It took about four hours to do. The major tweak is to

include all the literals in all the compile-time expressions in

the resulting method so that e.g., browsing senders still

works even though they don’t occur in the compiled code.

This, however, is a little bit beyond the ability of the average

Smalltslk programmer. I know it would take me more than

four hours.

If you’re lucky, though, someone else will have modified the

compiler for you. Users of GemStone and SrnalkalkAgents are in

lu~ as both of these dialects apparently have a construct like this,

although they both build the array at runtime instead of compile-

time (compiler optimization may change that for specific cases).

Class changing

By this time, the discussion had become somethhg of a con-

test. Jan Bottorf fjanb@netcom.tom) writes:

It seems amazing how many diHerent ways we have come

up with to do this simple thing. Maybe we should have cat-

egories: the clear source code people, the highest perfor-

mance people, the most encapsulated people, the special

compiler people.
He also contributed a particularly sneaky mechanism, using one

of the lesser-known features of PsrcPlace Smalltalk

#((10 45) (78 10) (90 34)) collect

[:each I each chsngeClassToThatOfiO@O]

Yes, that’s right, you can actually change the class of an object.

It breaks encapsulation horribly since you are responsible for

knowing that the number of instance variables match, and

understanding the mapping between them. If you’re careful, it’s

a very powerful technique that can do all kinds of nifty stuff

(q.v. THE SMALLTALKREPORT,2(9):4 and THE SMALLTALK

REPORT,2(6):13). Used in an undisciplined way, it can cause

some extremely confusing bugs. Ar@hg that changes literals
in a compiled method is likely to be confiming.

Nevertheless, this is a very powerful technique, Jeff Mc/Wer

(jefl@is.s.u-tokyo, ac.jp) proposes a fairly structured way of

using it, the “self-initializing method.” The first time it’s called,

it actually modifies its own internal storage so that it can return

the computed result without extra computation the next time.

Given the level of system hacking involved, 1’m not sure this is

really better in practice than caching the array of points in a

class variable. It is, however, an extremely neat hack, and points

the way to some of the amazing things that can be achieved by

exploiting Smalltalk’s reflective capabilities.

Unfortunately ~e previous solutio- has two drawbacks.

1) #eoUect creates another array. Since you are already bash-

ing the sub-arrays why even bother to #colleck. Just run

through and change the class and voila, an Array of points.

2) If this is in a method it wiU only work once since it hacks
and bashes the class of the literal elements. Well, OK, in

thk case the second run will just change a bunch of Points
to be Points but that is wastefid.

To address these, I propose a self-initializing method as

follows:
The Smalltalk Report

45–lk45

:45+45
00–4:00

00–5:00

mMorning Classes C/S Overview

Llr@eoo 6 Sorfand Pr6Wntatbn

Afternoon ‘Ciasse5
Making the Change to
Client/Server

OCA I

:00-9:]0 Breakfast I

-

:45–[t4j Morning Clas: US in the Real World

:45+45 ~
.,,

:oo+oo Afternoon Classes:
Strategic Considerations in the
Transition to C/S

:00-5:00 QfiA I

TheClient/Server Applications Tour is a

z-day training and education event making

stops in 4 cities across the U.S. All classes are

objective and product neutral, The tour is

designed to provide attendees with practical

guidelines to assess and develop realistic

goals for their own client/server projects.

Divided into a technical and management

track this seminar offers practical solutions

for implementing a clientherver architecture

within corporate environments. Whether you

are a software manager or part of the techni-

cal development team, you’ll walk away from

these two days of intense training with a

coit@ete framework for implementing and

managing cIient/server solutions which meet

your particular business needs.

Who Should Attend
Anyone explorlng the corporate benefits

of clierttiserver technology, including

“ Programmers

“ Developers

“ Designers

QSoftware Engineers

mSystem Analysts

- Project Managers

I Project Leaders

“ CIOS
-MIS

Presented by

,SIGS

Co-sponsored by

Borland

KENT ❑ ECK

Architectural

Prototype:

Television

Remote Control
N OW,where was I? Oh, yes. Last issue I talked about

my ph~osophy of testing and presented a framework
that supported writing unit and integration tests. But

before that, I was talking about how to use patterns. I have

spent a couple of issues designing the software to run a televi-

sion and remote control, using patterns to guide every design

decision. Here are the CRC descriptions of the objects we

found, and the patterns that created them:

By the time I have this many objects designed, especially with

clients who aren’t redly familiar with objects all the way through

implementation, I find that most people’s understanding of the

design is so vague as to be actively dangerous. Everyone is think-

ing of a different implementation (or trying hard not to think of

any implementation at all). It is about at thk point that I like to

write a quick sketch of the architecture in Smalltalk to bring

everyone’s fo~ back to something concrete.
Sometimes I call this a “spike,” because we are clrhing a

spike through the entire design. We are not searching for com-

pleteness. Instead, we want to illustrate the kinds of responsi-

bilities accepted by all the major objects in the system. Because

people variously associate “spike” with volleyball, railroads, or

dogs, I have begun using “architectural prototype” to describe

this implementation.

What does all this architectural proto~pe stuff have to do

with patterns? I have two answers. Fkst, Architectural

Prototype is a pattern, but at a completely different level than

most of the patterns I have dkcussed in this column, See

below for the pattern itself The second answer is a bit more

complicated. I never design objects without wanting to see

them implemented. Especially with designs guided by pat-

terns, I find that the translation of the design into code is both

straightforward and edlghtening.

PAllERN: ARCHITECTURALPROTOTYPE

When do you put designidees into code?

In the beginning, programmers just sat down and wrote their

code. Any preparatory work w either entirely mental, or
26
scratched on the back of sheets of line printer paper.

Experience soon showed that while this approach worked for

smart people working on small projects, larger team efforts

required coordination before coding to avoid the enormous

costs of revising already running code to match data structures,

resolve names, and ensue reliable computations. Software engi-

neering has a nearly unbroken record of pushing more and

more work “up front,” before coding begins.

The ugc to resolve all possible issues before coding rests on

good economics. The later in development a problem is discov-

ered, the more it costs. A dogmatic adherence to “design first,

then code” ignores two very important issues.

First, the goal of “up-front” development is to set up clear,

effective, concise communications between the members of the

team. A good design creates a shared vocabulary and mindset

among the people who will have to implement, manage, and

use the resulting system. Design notations both help and hin-

der thk process. Because they are abstract, they encourage dis-

cussing essentials without descending into unimportant imple-

mentation details. That abstraction cuts both ways, though.

The meaning of design documents are subject to human inter-

pretation. It maybe months before it is apparent that a team’s

understanding has diverged.

Second, code is no longer the boat anchor it used to be.

Modular development supported by a modern, object-oriented

language, and programming environment results in code that is

less expensive to write and easier to modify, even late in devel-

opment, than were the products of earlier generations of pro-

gramming languages. The cost cm-ve supporting “design first,

then code,” has changed.

Together, these two points demonstrate that early coding is

both necessary to overcome the vagueness of design notations,

and practical, because doing so will not invoke inordinate costs.

What code should you write early? The same constraints

aPPIY tO earlY COde that aPPIY tO early design. You’d fike to
make decisions with far reaching effects. Big decisions are the

ones that will are most important to communicate early. You’d

like to avoid making decisions with small effects. Their pres-

ence in the code will obscure the important points you are

exploring.

Implementation a system when you have enough objects

that their interaction is no longer obvious to everyone. Use

simple algorithms and data structures. Implement only a single

variation where there will be many in the final system.

You may also need an Interface Prototype to aid in commu-

nication with users.

THETELEVISIONPROT~YPE

The goal in an archkectural prototype is to demonstrate and

communicate the architecture as simply as possible. I was talk-

ing to Ward Cunningham the other day and he said, “My job

is to write five method classes.” That is exactly what I am talk-

ing about.

The user interface to an architectural prototype should be

extremely simple. If you can run it from a Workspace, so much

the better. The goal of the prototype is not to demonstrate a

whlzzy interface, but communicate from programmer to pro-

grammer. User interface code is some of the hardest to get and
The Smalltalk Report

SMAUTAIK

Finally, a
vendor-independent
conference dedicated to all
Smalltalk users. Focusing on the -WJ

K
m-actical abdication of Smalltalk in its

Precise metrics
for advanced 00

development.

● Metrics collectionfarility for Smollttrlk opplicotions development

● SupportsVisuolWorks,Smalltolk/V far Windows,Win32s, WindowsNT

● Completegraphicoluserinterface ● FuIIYsupports Envy (Optianrrll

.bjedSpaceTM
_ SPECIALISTS IN OBJECT TECHNOLOGY

PEODUCTS -TRAINING-C• NSULTING -M ENCORING”AUDITING
FormoreinformationCOll1-EOO-OM[[T-1,E’moil:info@ob@dspote.tom

(DPVW ObietlS~m,lm. 01W4 A!Imm ondlmdmmh O. ho pmpwb d thrnfre@iJn awmm.
keep clean. Any interface you don’t need will detract from the

primary purpose of the prototype.

REMOTECONTROL

For the television proto~e, we wiI1 start on the remote control

side. Recall that we have:

Object Responsibilities

Keyboard create Events from keys~okes

RemoteContiol read keyboard Events

EventStream read and write Events

InfraredSheam read and write bytes

Figure 1 summarizes the SmaUtalk objects I came up with and

their relationships:

I

i I Keyboard I I

Figure 1. Objects in the Remote Control
28
We will start processing by sending character: aCharacter to

the Keyboard to simulate the Keyboard noticing that a button

has been pressed.

Keyboard>>chuaeter aCharacter

control evenh (Event on aCharacter)

Creating an Event sets its character and timeStamp,

Event class>>on: aCharacter

“self new setCharactec aCharacter

wen~>stifimacter: aCharacter

character:= aCharacter.

time.%amp:= Time now

The RemoteContiol doesn’t try to process the Event, it just

passes it along to its other hrdf inside the television:

RemoteCon~ol>>eventi

stream nextPuh anEvent

The EventStream lives to transform Events to and from bytes. I

picked the simplest format I could think of storeSb-ing. All

objects can produce a store.sting, which when compiled results

in an equivalent objec~

EventStream>>nextPutianEvent

anEvent storeOm~eam.

‘anEvent

I’ll defer the implementation of InfraredStream for a moment,

since it is the trickiest piece of code and the least interesting

architecturally.

TELEVISION

On the television side, we have the following objects:

Object ReJponsibilities

TelevisionControl map Events to commands

Television change channels

EventStream read and write Events

InfraredSheam read and write bytes

In the television, the EventStieam and InfraredStream will be

reading rather than writing as they were in the remote control.

Figure 2 is a picture of the objects in the Television.

We will start processing by sending the TelevisionControl the

message “poll.” This interface (and Keyboard>>characte~ used

above) let us defer decisions about how control really works.

Decisions like polhng versus interrupts are important, but don’t

affect a well-factored architecture that much:

TelevisionControb>poll

*earn atEnd

ifFalse: [seLfevent: stream next]

Getting the next Event from the EventStream is accomplished

by compiling the characters in the InfraredStieam.

[1 I I
TekvMonContiol

stream

television Y EventStream

InfraredStream

~
Figurs 2, Objectsin ths Rsmots Control
The Smailta[k Report

continued on page 32

——
Event.%earn>>next

“Compilerevaluate: stream upToEnd

Again, we will defer discussing

Infrared.beam until later. The atEnd

test for EventStream delegates to the

Infrarecl.%eam:

EventStrearm>atErrd

‘abeam atEnd

TelevisionControls respond to an

Event by sending the channel:

adnteger message to the Tekvisiom

TekvieionControl>>event:afient

tekviaion channeb anEvent digit

Tabls1.

object

Event

Keyboard-Create events from

~moteContro&read keyboard

Eventstream-Read and write

InfraredStrearn-Read and w

TekvisionConhol~ap user

Tekvision4hange channels

Events fid theii digit by getting the digitValue of their character

Event=digit

‘character digitValue

Finally Televisions just print the channel to the transcript to

show that they have received the message:

Tekvision>>channehanInteger

Transcripta; show ‘Channeh‘, arrInteger printString

Figure 2 shows the effect of executing the prototype. The

Keyboard haa been sent charactec Z. The TekvisionContiol has

been sent “poll.” The new channel haa been printed on the

transcript.

InfraredStream
I promised to talk about how InfraredSlxeam was implemented.

We are trying to simulate two address spaces talking over an

infrared beam. The implementation of the infrared protocol

isn’t interesting to the architecture, so we can simulate simply
~ Channel&

FiEura 3. Exscutingtheprototype.

1

InfraredStream Im
OrderedCoUection

InfraredStream

characters

Figure 4. Strsams sharing a Collation.

November-December 1994
without worrying about how correct it is (although later we

might want to take into account communication errors).

The trick is to have both Infrared%eams share a corrsrnon

OrderedColleclion. The collection will contain the characters that

have been written to one beam that haven’t yet been read by the

other. Figure 4 shows how the two stiams look when they are

connected.

Writing to an InfraredStream puts the character on the end

of the collection:

InfraredSheam>>nesrtPutiaCharacter

characters addLas&aCharacter.

‘aCharacter

Reading takes the first character off of the collection:

lnfraredStream>>nest

‘characters removeFirst

The atEnd test testa whether the collection is empty:
Paltern

Event

keystrokes Objectified library

evenk Ob@s km the User’s World,Half Ob@

Events Formatting Stream

rite bytes Ob@ified Library

input to commands Halk3b@t

Oqects from the User’s World
I

The complete
Smalltalk interface

to TCP/IP.

~ Supports Smolltolk/V for Windows, Win32s, Windows NT

● Monoges the TC~lP osyrrchronousevent notification systemironsporently

● More then 40 classes representing 011ospects of TC~lP programming

.bjeciSpaceTM
z SPECIALISTS IN OBJECT TECHNOLOGY

PPODUCTS STRAINING -CONSULTING .MENTORING -AUDITING
Formore information d l-EOO~BIECT-l, Emoil: inlo@o~ectspoce.tom

I
29

For information on advertising in the Recruitment Section, contact

Michael W. Peck at 212.242.7447

—

For more than 20 Yeara,AmericanManagement systems, Inc,
(Al&3)has ledthe wayin the appfiationofleadingedgeinfonna-
bontechnologyfor our clientbaseofFortune500 compssri~and
publicsector organizadons,Today,ourreputationas an industry
innovatoris stronger thanever.

Continued.growfhhas created immediateopportunitiesin
Birmi ham,Alabamafor qualided object oriented program-

?“mers, esrgners, and srchhxts.

Requirementsinclude1+years of experience in one or more of
the following

. Smalltafk ● C++
● Envy/Developer ● 00A/OOD
s ODBMS

Experience with Windowsor UNIXis a plus.

We offer a competitivecompensation and benedts package and
career growth opportunities.For immediateconsideration,please
send your resume in confidenu tm Dept SR-94~ 1, AMS,
Twu Chase Corporate Drive, Suite 105, B’ am, AL
35244. An Equal Opportunity Employer M/

continucdjhm page 24

Sofhwire
Professionals

USAir,,a recognized leader in
follomng experiencedsofhvsr
tions ResearchDepartment in
side of Washington,DC).This
impactdecisionsupport sys

OBJECT—ORIENTEDPROGRAMMIW
ANALYSTS

YieM ManagementApplicaliosts
Designand developprogramsin Smslltalk

T
rience devel-

opingclientkervera Iications usingrelation databases
~derHandM#&hdomstmn~y ~efemed,

OBJECT-ORIENTED PROGRAMMERI
ANALYST

CostomerSarvkes Applkatiosa3
Design,developand su
~o-&s.E~enencewE$Y22;C;sY$2~f
G~I desi~ and object-orientedsnsfysisrequired.
For consideration, ulease send a resume with cover letter. in-
cludingwhy bi&ry and academicGPA (recent graduates

L alsosend a copyof transcript , rrruk+rgwe to clearly ind-
Jtote position o~interes~to: SAir, Employee Ralsbsss/IS

menu MM N. Liberty5t., Wiidoss-SslerrssN.C,
EEOEmplc_ -- ‘_ --oyer.principalsonly,please.

US!r
—

someClass>>#someSelector

I poisstarray I

point :=o@o.
array:=#((10 45) (7B 10) (90 34)).

arrayfiat class==Pointffpalae:[

1 W amaysizedo: [:i I

(anrayati i) ehangeClassToThatOfipoint]].

... morecodehere ...

Note that ifyou are really offended by self-mod@ing meth-
ods you can modi~ it youreelfmanually using the above

code (slightly modified) as a Doit on the CompiledMethod.
Personality I like going around the image changing the class

of objects just to see who objects. ;-)

NUMBERSWITHOUTUTERALS

In this same spirit of interesting intellectual exercises that may

not be usefid in practice, here is the promised discussion on

creating numbers without using literals.
30
Normally nurnbere arc created either as Iiterals, or as the result

of operations on other numbers. It’s not possible to just send new

to a numeric class. For one thing, the result is not well-defined. I

tried sending basicNew to Float anyway just to see what would

happen. On all the implementations I tried, thk gave values that

were unpredictable, but very very small (less than l, Oe-20). So:

FloatbasicNewtruncated

seemed like a plausible way to get zero, Unfortunately it isn’t

very reliable (since I have no idea where those numbers come

from) and very platfiorm-dependent.

It was only after I had tried this out on a couple of plat-

forms that I thought of the much more obvious:

Objectnew size

which should give zero reliably on any platform, Given zero,

the rest is easy. I can get one exploiting the simple mathemati-

cal fact that anything raised to the power zero is one.

I one zero I

zero := Objectnew size.

one :=zero raisedToIntege~ zero.

Given one and zero, 1 can use basic arithmetic operations,

asfloat, and asDouble to get any other numbers I want. Q
The Smal[ta[k Report

Product Announcements ara not reviews.
They ara abstracted from press raleases provided by

vandors, and no endorsement is impliad.

Vandors interested in being included in this feature
should send press releasas to THE SMALLTALK REPORT,

Product Announcements Dept., 885 Meadowlands Dr., #509

Ottawa, ON K2C 3N2, Canada,

613.225.8812 (V), 613.225.5943 (f).

Polymo~hic Ships FastObjectFiler
for Smalltalk/V
Polymorphic Software Inc. has announced the availability of

FastObjectFiler, a tool that allows developers to save objects to

disk FastObjectFder offers performance improvements of up

to two orders of magnitude over Digitalk’s native ObjectFiler

utility, allowing Smalkalk programmers to use the convenience

and ease-of-use of ObjectFiler to solve persistent object stor-

age problems.

FastObjectFiler is implemented as a subclass of ObjectFiler,

so it retsins compatibility with existing files, and allows the

developer to plug it right into existing applications. Externally

the utility looks the same. However, internally, Polymorphic has

re-engineered ObjectFiler’s object traversal scheme, realizing

substantial performance improvements in the process, The

result is an ObjectFller with performance that does not degrade

when saving larger, more complicated objects.

FastObjectFiler is now shipping for Digitalk’s Smalkalk/V

2.0 for Windows, Smalltalk/V 2.0 for 0S/2, and Smalltalk/V

2.0 for Win32.

Polymorphic Softwara Inc., 1091 Insuctrial Rd., Ste. 220,

San Carlos, CA 94070,415.592.6301 (v), 415.592.6302 (f],

75010,3075 on CompuServe

PamPlace introduces VisualWorks
Business Graphics package
ParcPlace Systems, Inc. (Nasdaq PARQ) announced the avail-

ability of VisuslWorks Business Graphics, a new data presenta-

tion tool for building and incorporating charts and graphics

into VisurdWorks applications.

Fully integrated with VkualWorks, the Business Graphks

package will bring a variety of presentation capabilities to cor-

porate developers. Point-and-click editing makes the Business

Graphics toolset easy to use and yields accurate data represen-
tation with minimal effort. Developers can choose from a wide

vm-ietyof chart types, including bar, band, line, and pie styles.

ParcPlaca Systams, Inc., 989 E. Arques Avanua, Sunnyvale,

CA 94086-4593,408.481.9090 (V], 408.481.9095 (f)

Easel and Computer Systems Advisers
form strategic partnership
Easel Corporation has announced a joint development agree-

ment with Computer Systems Advisers, Inc. (CSA). Under the

agreement, Easel and CSA will jointly develop a bidirectional

bridge between Easel’s Smalltalk-based Object Studio applica-

tion development tools and CSA’SSILVERRUN modeling hub.

November-December 1994

The planned bridge will enable IS developers to share

models and specifications between Object Studio applications

and SILVERRUN, providing the necessary foundation for the

design and development of both the client and server compo-

nents of applications. The bridge will link Object Studio

object-oriented applications with the installed base of relation-

al databases modeled and maintained by SILVERRUN.

The bridge will slso make it possible to develop an initial

design of a data model in SILVERRUN, which could then be

reflected in an Object Studio object model for client/semer

application development. conversely, an object model created
in Object Studio could be reflected in SILVERRUN’S data

model for generating databases. In addition, the bridge wiU

allow changes in both the application and in the database to be

reflected in the corresponding models. Thk will include exist-

ing databases that can be reflected in the models through

SILVERRUN’S reverse engineering fac~lties.

Easal Corp., 25 Corporate Drive, Burlington, MA 01803,

617.221.2100 (V), 617.221.6899 (f)

Hewlett-Packard Co. announces release
3.0 of HP Distributed Smalltalk
Hewlett-Packard Company announced version 3.0 of its HP

Distributed Smalltalk development environment, Thk new

release enables programmers who work with local or remote

Smalltalk code to develop and deploy portable applications

rapidly beyond the traditional client/server paradigm.

Distributed Smalltalk release 3.0 provides the speed and

flexibility necessary to move beyond typical client/server archi-

tectures to true distributed enterprise application development.

For example, it allows developers to encapsulate or surround

existing data with a distributed object layer to provide commu-

nication between the existing data and applications developed

with Smalltalk. This approach extends the lie span of legacy

systems whale providing developers with the software reuse

productivity gains of working with objects.

Release 3.0 is built on and extends ParcPlace’s VkualWorks

Smalltalk environment to create a distributed development

environment, Distributed Smalltalk release 3,0 provides classes

of objects that communicate over a network using an Object

Request Broker (HP’s implementation of the Object

Management Group’s CORBA 1.1 specification). It includes a
number of distributed programming tools, such as a browser,

debugger, interface repository, sample applications, and other

utilities. HP’s new release is availablebundled with

VkualWorks or on a standalone basis.

Hewlett-Packard Co., 3404 E. Harmony Road, mailstop 81,

Ft. Collins, CO 80525,408.447.4722 (vI, 303.229.2180 (f)

MathPack: Mathematical classes for
Smalltalk
MathPack fmm GSoft is a mathematical software package

designed to assist engineers and scientists in mathematical com-

putations using Digitalk’s SmaUtaWV or ParcPlace’s Smalltalk-

80. Whh MathPa& a Smalltalk application is defined as a

coherent set of Smalltalk classes and methods that solve specific

mathematical problems. Mathpack contains over 120 mathemat-

ical classes and over 850 methods written entirely in Smslltalk-

31

continut-dfim page 22

conthucdj%m pagr 31

MathPack provides classes for mathematical objects such as

complex numbers and functions, radicals, decimal fractions,

linear algebra, polynomials, rational finctions, trigonometric,

logarithmic, exponential, and special fhnctions, with symbolic

and numerical differentiation and integration, root finding,

contour plots, splines, Bezier curves, and 2-D and 3-D plot-

ting. In the statistical class, the following methods are avail-

able: average, standard deviation, variance, Chi-square test,

F-test, Kolmogorov-Smirnov test, t-test, analysis of variance,

Kendrdl-tau, regression analysis, general Ieast-squues fitting,

and random number generation. The Digital Signal processing

class provides the basic flmctions for Fourier transform spectral

methods, particularly the transformation of discretely sampled

data, data filtering, and power spectrum estimation.

GSoft, 13918 Notley Road, Silver Spring, MD, 20904-1122,

301.384.8325 (V), 301.384.8325 (f)

32

I

I
I

corstinuedfom page 29

continut-djompagr20
Enter(2:26:57pm): LhMoveRequest (acs=O, vsn=’RB1400’)

Shared(lueuePack@>queueYourseIfUsirrg:

Enter(2:26:57 pm): acs: O

ChanneU4anager>>sharedQueueForAcs:

Enter(2:26:57 pm):

ChanneF>processPackek

And how usefi.d is this whole scheme? In our development,

we keep the logger active whenever we are running the prod-

uct and debugging our work. Since we don’t have a user inter-

face that gives us visual clues as to what is happening, we find

it very convenient to scan through the log file to see what was

going on in our product if we see a problem. The other

option is to add self halt messages in judicious places, which

we also do, but we’ve often found it quicker to see what was

happening internally by looking at the log file. When the

product is shipped to customer sites, this will be the only

information that the support people have to help track down

the causes of problems.

All in all, we’ve found our TraceLog class to be very useful

More than that, it was a lot of fin to create, and gave us an

opportunity to learn some very interesting SmaLkalk features. ~

Alsc Sharp is an Advisory Ssrftvmra EnUinoor at StsrraUeTek. He is the

author of Software Quality and Productivity. He can ba reached at

alec_sharp@atotiak.com. Dave Fanrrar is a Sanior Softwara Ersginaar at

StoragsTafr. Ha can be raschad at david_fsrrmar@storstefr.com. Thay bntb

wnrir on tha Unirr Stnraga Servar software, which managss connations to

natworked hosts and driva tha StorrrgeTak family of Robotic Taps Librarias,
It looks as though I am asking anotherobject for my own list of

employees. Because this statement is unnatural and confiming,

developers will avoid using it improperly!

llm publicaccassormathods

The public (get) accessor method name matches the name of

the variable and answers a copy of the contents of the variable

employees

“public - Arwwer is a list of my employees”

‘self myEmployeescopy

Clients access the collection through ths method. Of course,

they can do what ever they want to the collection because it is

only a copy and will not affect the original collection.

There is no public set accessor method (i.e., employees:).

Instead, define methods that provide necessary behavior for the

object such as addEmployee:. These methods can manipulate

the object’s variables as needed.

CONCLUSIONS

The use of the private variable protection technique described

here retoins the benefits of accessor methods whale minimizing

theit drawbacks. It does not keep the Clients’ code from

invoking the private methods, since they are not truly private,

but will help keep unintended changes to other objects’ vari-

ables from occurring.

In a fiture article, I will explore a framework of methods

that are useful to create to compliment the key collection pro-

tection methods described in this article. I will also look into

uses of collection protection for variables that contain objects

other than Collections. ~

Refarenca
1. Be+ K.To accessoror not to accrssor?THE SMWI-TALSSRZPORT,2(8).
InfraredStream>>atEnd

‘characters isEmpty

Finally upToEnd returns an OrderedCollection by default. We

need it to return a String, because the result will be compiled

by the EventStream, We can do this by overriding

contentsSpeaes.

InfraredStream>>contentsSpecies

“Stig

CONCLUSION

The archkectural proto~es I’ve done for paying clients have

been bigger than the television prototype presented here. Yours

likely wilf be larger, too. The key point to remember is that you

should write an architectural prototype to bring design discus-

sions back down to earth. Whenever the abstractness of design

is causing people to talk past each other, or fear of making con-

crete, “could-be-proven-wrong” decisions is slowing progress, a

little bit of code goes a long way towards advancing the project.

In the next issue I will begin to discuss how patterns can be

used to document reuse. ~
The Smallta[k Report

	By Article Title
	A quick peek under the covers of IBM Smalltalk
	A trace logger
	Collection protection
	Improving dependency notification
	Literals
	Simple Smalltalk Testing

	By Author Name
	Beck, Kent
	Brodd, Bob
	Farmer, Dave
	Harris, Steven G.
	Hildebrand, Hal
	Knight, Alan
	Sharp, Alec
	Woolf, Bobby

	By Topic
	comp.lang.smalltalk
	Project Practicalities
	Smalltalk idioms

