Smalltalk

R E P O R 7T

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS Publications Advisory Board
Tom Atwood, Object Dasign
Frangois Bancilhon, 05 Technologies
Grady Boach, Retional
Gearge Boswaorth, Digitalk
Adele Goldberg, ParcPlace Systams
Tom Love
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reevas, IBM
Bjarne Straustrup, ATGT Bell Labs
Dave Thamas, Object Technology International

Tue Smawtalk Reponr Editorial Board
Jim Anderson, Digitalk
Adela Goldberg, ParcPlace Systems
Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digitalk
Dave Thomas, Object Technology ¥ntenational

Columnists
Kem Beck, First Class Software
Juanita Ewing, Dipitalk
Greg Hendley, Knowledge Systems Corp.
Tim Howard, RothWell International
Ed Klimas, Linea Engineering Inc.
Alan Knight, The Dhject People
William Kohl, RothWell Imernatianal
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rebacca Wirfs-Brock, Digitalk

SIGS PUBLICATIONS GROUP, INC.
Richard P. Friedman, Founder & Group Publisher

Editorial /Production
Kristina Joukhadar, Managing Editor
Susan Culligan, Pilgrim Road, Lid., Design
Seth J. Baokey, Production Editor
Margaret Comti, Advertising Production Coordinator
Dan Olawski, Editorial Production Assistant
Brian Sieber, caver design

Circulation
Bruce Shriver, Jr., Circulation Director
John R. Wengler, Circulation Manager
Kim Maureen Penney, Circulation Analyst

Advertising/Marketing

Gary Portie, Advertising Manager, East Coast/Canada,/Europe

Kristine Viksnins, Advertising & Exhibit Sales

Michael W. Peck, Advertising Sales Assistant

Sales Representative: Diane Fuller & Associates, West Coast
408.255.2991 {v), 408.255.2992 (f)

Sarah Hamilton, Director of Promotions and Research

Caren Polner, Senior Graphic Designer

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Senior Accounting Manager
James Amenuvor, Business Manager
Michele Watkins, Special Assistant 10 the Publisher
Shannon Smith, Administrative Assistant

BWSIGS

PUBLICATIONS

Publishers of JournaL oF OnjecT-ORIENTED
ProGgraMMmiING, OrjecT MAGAZINE, C++ RePORT,
SmaLLtALk REporT, THE X JoUuRNAL, REPORT ON
Osjeet ANaLysis & DesigN, Orjects in Eurork,
Directory oF Osject TEcHNOLOGY, and OsjeECT
SpekTRUM (GERMANY)

November-December 1994

Table of Contents

November-December 1994 Vol4 No3
Features

Improving dependency notification 4
Bobby Woolf

Smalltalk is being used more and more in large commercial applications. Bobby Woolf
examines how VisualWorks has enhanced the framework with objects that make depen-
dency notification more efficient. Understanding these extensions can help developers
improve the code they write and make better use of code generated by VisualWorks.

A quick peek under the covers
of IBM Smalltalk 12

Steven G. Harris & Hal Hildebrand

With the introduction of VisualAge, IBM entered the Smalltalk arena to compete with
established vendors. Steve and Hal show how the newcomer is faring well against tried-
and-true products, and sometimes surpassing them.

A trace logger 18

Alec Sharp & Dave Farmer

Alec takes a look at a mechanism for logging trace information about entry into methods,
and data sent to and received from an external device. Logging is controlled via a set of
dynamically changeable logging parameters.

Columns

Project Practicalities Collection protection 21
Bob Brodd

Using the private variable protection technique presented by Bob Brodd
retains the benefits of accessor methods while minimizing their draw-
backs. It also prevents unintended changes to other objects’ variables.

The best of 23
comp.lang.smalltalk Literals

Alan Knight

How to create an array of points in a method? Alan Knight takes this
FAQ to some extremes. Some solutions aren’t what you might use,
but they elucidate some of the murky areas of Smalltalk.

Smalltalk ldioms Simple Smalltalk testing 26
Kent Beck

Architectural prototypes should communicate simplicity. Kent Beck
shows how a little bit of code can go a long way in advancing a project

that’s getting bogged down in discussions about design abstractness.

Departments

Editors’ Corner 2
Recruitment 30
Product Announcements 31

The Smalttalk Report (ISSN# 1056-7976) is publizhed 3 1imes a year, monthly encept in Mar—Apr, July—Aug, and Nov—Dec. Published by SIGS Publications Inc., 71 West
23rd Su, 3rd Floar, New York, NY 10010. © Copyright 1994 by SIGS Publications. All rights resarved. Repraduction of this material by elecironic iransmigsion, Xerox or
any other method will be treated as a willful violetion of the US Copyright Law and is Ratly prohibited. Meterial may be reproduced with express permissian from the publishec
Mailed Firsi Class. Canada Post Imernational Publications Mail Product Sales Agreement No. 250J86.
Subscription rates 1 yeer (3 issues): domestic, $79; Canada end Mexico, $104, and Foreign, 5119. To submit erticles, pleass send electronic files on disk 1 the Editors at
885 Meadowlands Drive #509, Otwa, Ontario K2C 3N2, Canada, ar via Internet 1o sireport@objectpenple.on.ca. Preferred formats for figures ars Mac or DOS EPS, TIF or
GIF formats, Always send a paper copy of your manuscript, indluding camera-ready copies of yaur ligures (laser autput is fing).
POSTMASTER: Send address changes and subscription orders m: The Smalltalk Repart, PO. Box 2027, Lanphorne, PA 18047, For service on current subscriptions call
215.785.5996, 215.785.6073 (tax), PO0976@psilink.com {email). PRINTED IN THE UNITED STATES.

1

Editors’ Corner

ell, we're just back from Digitalk’s
Developers Conference in Irvine,
CA. This is their third such gath-

ering, and had quite a different feel to it than
their previous two. Most notable was the lack
of marketing effort on their patt. They
seemed more intent on allowing their devel-
opers to describe what’s coming up in their
long-awaited 3.0 product. This release repre-
sents a major shift for Digitalk, as they are
planning on releasing their Parts Enterprise
product on all their supported platforms at
once. Digitalk users will find in this release
some new features that should prove useful, as
well as the cleaning up of many things from
their earlier products. A few comments made
that might be of interest to you from their
senior staff:
» they state they will go public in 1995
» they are bundling their Parts, Smalltalk/V,
and their Team/V products
* they plan to stop selling these as separate
products sometime in the near future
* they don’t plan to support their 16-bit ver-
sion of the product in the future
* they are trying to put together a third-
party Partners program
As we saw in early August at ParcPlace’s Users
Conference, and again this week with Digitalk,
both these companies are targeting almost
exclusively the Fortune 500 companies, and
setting their price point for their products at
the high end of the scale. This, coupled with
1BM’s Smalltalk and VisualAge targeting 2
similar market, seems to leave a major void in
the marketplace for a low-end Smalltalk prod-
uct. Neither QKS’ Smalltalk nor Enfin’s prod-
uct offerings seem to be heading in this direc-
tion either. It would be nice to see a Smalltalk
that might lack all the connectivity and glitz of
these mainstream Smalltalks, but nonetheless
fully supports the Smalltalk language and

library. This would certainly allow for students
and basement hackers to try Smalltalk, which
in the long run can only help everyone in the
Smalltalk marketplace. Time will tell if some-
one steps forward to fill this niche.

It’s fascinating to see the interest in design
patterns becoming more and more prevalent
each month, The upcoming OOPSLA confer-
ence features a number of different presenta-
tions that will deal with this topic from a vari-
ety of viewpoints. Also, new books are coming
to the market shortly that will describe the
use of patterns, and the list of people dis-
cussing the topic on the Internet is also grow-
ing. Certainly, Kent Beck has been using this
publication to further all of our understanding
on the topic, and your feedback attests the
popularity of his columns.

It seems to us that the approach offered by
patterns offers the promise of group members
to be able to articulate succinctly their ideas
with one another, and to raise the level of
understanding of everyone in the group. I
know we are very interested in how we might
be able to exploit patterns, both with the work
being done by ourselves internally, as well as
in our teaching. In fact, it is in this area that
we might see a real win with this approach.
We as teachers might be able to explain,
through patterns, approaches to software
development which have traditionally been
difficult to articulate. We think it represents a
very interesting area that we would like to see
many of you explore for yourselves.

We hope you'll find this month’s line-up
of articles to be useful and stimulating.
Certainly Bobby Woolf’s article this month
on the evolution of MVC provides some
insight into the manner in which this much
talked about but not well understood archi-
tecture has come about.

Enjoy the issue.

= |

PAUL WHITE

The Smalltalk Report

Introducing Argos

The only end-to-end object development and deployment solution

An integrated object modeling tool provides model-driven

All object models are managed in a shared repusitory,
supporting team development and traceability

development for enterprise-wide applications
‘ __.lL . A L. ri: '_‘1 : i .:;.
=2 | (Bl R] M A i 71
i R Name Description Number [!-
o D . - L I ©Of Persons
!‘ - . g Iﬂ ot lDemo ¢ Finance Where the money ia...[0 . l‘é A
Smalitatic Projacts Domaird Culture Fngmeenmg Whernes Ihe money do & & {"" .
= - ram Main i b5 Authorizatio ChangePool [.%
I LE R : e
Tutortsl Holp Tools Poole e o — LJ ql= 1
L 3 4 - e
‘ ¥ @ ! é ‘ ¥ ' ;q:;la " it .. a Person Browasr l ‘E I' IassTool
oo _J_cmen || seve | g _|puim e : [e = Jile
maga _ . MaritaiStatus | single :I A ?
% (zzeem | roopere L

¥

Employes
salaryHislory: inlegerDalaSeries,

Crrrr—— R
L — o

okl

| M. wm - ch."., S | =

Production

|

EEE%@;

Fl
H

A
i

2
®

a

i
"

Bar Charl

c
2
&

il

Nov I Dec Wl Oct [Sep 1232567891011
WJsn .

Powerful drag and drop “enzymes” make application
development intuitive

|

Comprehensive set of widgets, including business
graphics, multimedia, and others make application

development easy and powerful

VERSANT Argos™ is the only application development
environment (ADE) that makes it easy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Smalltalk
code generation that ensure synchronization between your
models and applications. Powerful because Argos supports
full traceability and workgroup development through a shared
repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VERSANT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT

The Database For Objects ™

name: aiphaNumarfg
numberOfPersons.

iption: texl

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks®.

Find out why 3 of every 4 customers who've scen Argos
purchase it to deliver their business-critical applications in
weeks rather than years. If your organization needs objects
today, let us prove it to you with Argos.

s today at
NT, ext. 416

via e-mail at

or
info@versant.com

contact

1380 Willow Road * Menlo Park, CA 94025 = (415) 329-7500

©1994 by Versant Obiject Technology. VERSANT, VERSANT Argos and The Database For Objects are rademarks of Versamt Object Technology Corporation. All other copany rames and logos are registered rademarks of the individual companics.

Improving dependency

notification
Bobby Woolf

he changed:/update: protocol in Smalltalk allows a par-

ent object to transparently notify its dependents of

changes in the parent’s state. However, the notification
process is inexact, for all notifications are processed by all depen-
dents. Although the framework itself is highly object oriented,
the case staternents the dependents must implement are not.

VisualWorks has significantly enhanced the framework with

DependencyTransformers and ValueModels, objects that make
dependency notification more efficient to execute and easier to
maintain. Even programmers who are not aware of these exten-
sions are using them through the code that VisualWorks auto-
matically generates. By understanding how these extensions
work, developers can improve much of the code they write and

make better use of the code that VisualWorks generates.

THE CHANGED:/UPDATE: PROTOCOL

The changed:/update: protocol is a mechanism all objects have
for notifying each other of changes in themselves. It is a weak
style of collaboration that the source object hardly even realizes
it’s participating in. When two objects are defined as having a
strong collaboration, each must explicitly know about the other
and must support the other through a relatively complex inter-
face. As an alternative, the changed:/update: protocol provides
a simple interface through which all objects can collaborate by
exchanging simple information in one direction only.

The information conveyed is that the source in the collabora-
tion is notifying its targets that its state has changed; the targets
in this relationship are called dependents, and the source is called
(for lack of a better word) a parenz. As Smalltalk’s implementa-
tion has matured, the understanding of the role of the dependent
has changed somewhat. Increasingly, a target in a dependency
relationship is thought of as registering its interest in the source,
an interest that may or may not be a dependency. In any event,
the targets are still called dependents, although the phrases “reg-
ister dependency on” and “express interest in” are used inter-
changeably. Thus far, VisualWorks does not appear to recognize
any other kind of interest than dependency for a target to have.

Because the dependents are hidden from the parent by its
changed protocol, it knows neither how many dependents it has
nor what their types are; all a parent knows is that at any time, it
has some number of dependents and they are each some type of
Object. This forms a very weak collaboration that essentially
hides dependents from their parents. For example, in the model-
view-controller framework (MVC), the view and controller know
what their model is but not vise versa. This is accomplished by
making the view and controller dependents of the model; the

4

model informs its dependents when it changes (in case it has any
dependents), then the view and controller receive this update,
and then they reretrieve their values as they wish. The responsi-
bility for keeping the view in sync with the model lies completely
with the view; the model doesn't even know the view exists, it
just knows that periodically it’s being queried for its state.

This framework is ideal for modeling the dependencies
between any group of objects, not just model-view-controller
clusters. Real world objects often require that other objects
react when one changes. To encapsulate the one, it should not
be aware of the effects it has on the others. The dependency
framework does this well, which is one of the primary reasons
Smalltalk is such a good language for modeling real world
objects and their interdependencies.

All objects handle dependents, but subclasses of Model handle
them more efficiently. In fact, the only difference between a
Model and an Object is how efficiently it is able to handle its
dependents. So if an object’s class would normally be a direct
subclass of Object, but it notifies its dependents often, it will do
so more efficiently if its class is a subclass of Model The reverse is
also true: If an object rarely notifies its dependents and its class is
a direct subclass of Model, its class can just as easily be a direct
subclass of Object with no significant decline in performance.

Figure 1 shows the messages in the changed:/update: pro-
tocol.

SPECIFYING WHAT CHANGED

Ordinarily it is not enough for a parent to simply notify its
dependents that it changed. The dependent usually needs to
know not only that the parent changed somehow but also
exactly what part of the parent changed. That way, if the part is
something the dependent is interested in, it can react; other-
wise, the dependent can ignore the notification.

For convenience, the parts of an object’s state are often
organized into aspects. An aspect is a single value (an object)
stored within the container object. It is retrieved and set via
getter and setter messages sent to the container, and it notifies
its dependents (via its container) when it changes. For an aspect
named aspect, the convention for its getter selector, setter selec-
tor, and update value is aspect, aspect:, and #aspect.

An aspect usually corresponds to an instance variable of the
same name in the container, but this is not a requirement. Some
aspects are virtual in that they act like the public access for an
inst var, but their implementation actually delegates to other
aspects and/or behaviors within the container. Also, not all
aspects have setters; these provide access to values that may be

The Smalltalk Report

With software design taking on new dimensions almost daily, you
can't afford to make your transition to object technology a hit or miss
operation. Choose the training specialists who can help you keep up with
the changes as they happen — Knowledge Systems Corporation.

Knowledge Systems Corpor-
ation offers the most comprehensive
classroom education program avail-
able, including Smalltalk courses for
ParcPlace, IBM and Digitalk dialects.

Our materials are based on over eight
years experience in applying object
technology. All KSC instructors under-
go a rigorous certification process and
have practical experience in real-
waorld application development.
KSC CLASSROOM
EDUCATION COURSES
* Manager's Introduction to Object-
Oriented Technology
» Object-Oriented Analysis and
Design
e Introduction to Object-Oriented
Programming in Smalltalk/V
s Introduction to Object-Oriented Programming in VisualWorks
* Introduction to Object-Oriented Programming in IBM Smalltalk

* Advanced Programming in Smalltalk/V

* Advanced Programming in IBM Smalltalk

* Bridge Course from Smalltalk/V to VisualWorks

All KSC courses are offered at the client site or our new training

center in Cary, North Carolina.
Courses are structured so that stu-
dents spend more than half their
classroom time in hands-on program-
ming activities. To maximize actual
programming time, all classes have a
ratio of one student per machine.

KSC has a proven histary

with companies such as American

| Management Systems, GE Capital
Corporation, IBM, Northern Telecom,
The Prudential, Southern California
Edison, and Sprint. Our classroom
education, apprentice programs and

8 development services offer our cus-

| tomers a total solution to real busi-
ness problems.

To put your object technology
transition on target, call the Smalitalk training specialists at Knowledge
Systems Corporation, 919-481-4000. Or email: salesinfo@ksccary.com.
4001 Weston Parkway, Cary, North Carolina 27513,

~
KNOWLEDGE SYSTEMS CORPORATION

§19-481

-4000

Dependency Notification

The parent sends inself changed...
Each dependent receives update:... :

Fiqure 1. Messages in the changed:/update: protocal.

Figure 2: An example of dependency relationships.

queried but not altered. If an aspect’s value cannot be changed,
whether and how it notifies its dependents is irrelevant.

An aspect’s update value refers to how the parent can specify
to its dependent what aspect has changed. If the parent has a
couple of aspects, one of which is area, dependents who are
only interested in that particular change will listen for the
update value #area and ignore the others.

THE ORIGINAL PROTOCOL

Back in Objectworks 2.5, the usefulness of the dependency
framework and its changed:/update: protocol was almost
equaled by its implementation difficulties. The difficulties
included the following:

* Every method that changed an aspect in a parent object ought
to send out an update, just in case the parent had a dependent
on this aspect. Because any object can have dependents, every
object should be implemented as though it might be a parent.

* Every dependent object had to implement one or more varia-
tions of update:. This method had to test for every aspect value
its object is interested in. Unfactorable, it quickly became a
lengthy case statement. The list format usually obscured which
aspect values were expected to be sent by which parent(s).

* Every dependent was notified of every change, even though
each often ignored the majority of the updates its parents sent.

* The traceability between senders of an update and its listen-
ers was very low. Assuming the update values were symbols,
the Smalltalk standard, the &rowse senders command would
show most (but not necessarily all) the senders and listeners
but would also mix into the list any methods that sent mes-
sages with the same name as the update (such as the getter

6

for the update’s aspect). Even with this list, matching a par-

ticular sender to its listeners was difficult at best,
In a small application implemented in a few months by one per-
son, this lack of traceability between a sender of an update and
its listeners was usually not a problem; the code didn't show the
relationship, but the developer already had it in his head.

However, if an application was large and required a team of
developers a year or more to create and still more developers to
maintain, this lack of traceability would cause a maintenance
disaster. Over time, such a system would become filled with
parents sending out updates that no one ever listened for and
dependents testing for updates that were never sent—at least,
not to them. This extraneous code brought no value to the sys-
tem and in fact added to its code bulk and slowed its execution
efficiency. Yet, such code was difficult to isolate and remove
because a developer had difficulty “proving” that the code was
unnecessary. Therefore, it would be better to leave it in than to
risk adding subtle but significant bugs to the system.

An example
Having said that the traceability between an update’s sender
and listener(s) is low, here’s an example.

Say part of a system has two parent objects, the first with
aspectl and aspect2, the other with aspect2? and aspect3 (they
duplicate the name of one of the aspects). The system also has
a dependent object that is dependent on both parents and
which listens for both parents’ aspects.

The four setter methods for the two parents look like this
example for aspect1:

aspect1: newValue

"Set the value of aspect1 to newValue."

aspect1 := newValue.

self changed: #aspect1
The dependent object will make itself a dependent of both par-
ents:

initializeParent1: parent1 parent2: parent2

"Initialize the receiver to use its parents

parent1 addDependent: self.
parent? addDependent; self.

The dependent object’s update:... implementor will look like this:
update: anAspect
"Standard."

anAspect == #aspect1 ifTrue: [<a little code>].
anAspect == #aspect? ifTrue: [<a lot of code>].
Figure 2 shows the objects in this example.
There are several problems with this implementation:

* Changed notification for aspect3 is being sent, even though
no one is listening for it.

* The dependent will receive notification of changes to
aspect3 and process them, only to finally ignore them.

* It is not clear from the update: method what objects are
expected to be sending these changed aspects; the developer
must locate initializeParent1:parent?: to find this information.
Using update:with:from: might help, but is usually not required
to make the mechanism work, and so it is often not used.

The Smalltalk Report

% The Difference Between Success and Failure in IBM Smalltalk >

WindowBuilder™ Pro
is an interactive tool that
lets you build polished

user interfaces fast in Smalltalk from
Digitalk and IBM. WindowBuilder Pro
(WBPro) saves you from the job of
building Uls in code. It helps simplify

%rFor most Smalltalk/V programmers,
WindowBuilder Pro/V is a survival tool—
the difference between success and failure.®

— Milan Sremac, President,
Medical Software Systems

WINDOWBUILDER PRO/NV

maintenance and increase consistency.

Like VB, with Real Objects

Select controls from a palette. Place and
edit them interactively. Integrate the
controls with your app easily. Build
composites of controls to create your own
reusable UI components. Place and edit
them in WBPro just like the native controls.
Get portability of your Uls across all the
supported platforms of a Smalltalk family.
Includes autosizing, automatic alignment,

control of fonts, menus, colors, and more. availability.

S Objectshare Systems, Inc.

5 Town & Country Village
Suite 735

San Jose, CA 95128-2026
Fax 408-970-7282
CompuServe 76436,1063

@«
&
m
2
@

Building user interfaces is easy

High-Level Controls for WBPro

When you use the high-level add-on
controls like spreadsheets, business
graphics, and others, your apps will be
more powerful and polished. And you'll
save even more time and effort. Inquire
about specific offerings and platform

No runtime fees are required for applications developed with
WBPro. Free support for the first 90 days.

All products include complete documentation. Support

subscription available. WindowBuilder Pro/V is compatible with
Team/V. Code generation in IBM Smalltalk is totally Motif
compliant. © Objectshare Systems, Inc. 1934 |

For Digitalk WWiRl...cseecunemerencesmsnences $295
SmalltallyV Win32 .

% Unless you're totally comfortable with the Motif AP,
a taol like WindowBuilder Pro is the difference
between success and failure in IBM Smalltalk. ®

— Gordon Sheppard, Senior Technologist
American Management Systems

WINDOWBUILDER PRO

For 1BM 0S/2 std. eorveremenrmenens $495
Smalitalk Teamoooceveeeenene $695
Windows std. $495

Call to order (408) 970-7280

or call for free info. 3 AM to 5 PM PST, M-F
30-day money-back guarantee

VisualAge

Spreadsheets, business graphics, and other high-level
components are easy to add to your VisualAge™ based
applications.

WidgetKit™/Professional has powerful spreadsheets
and more. You get virtual spreadsheets, multi-column list
boxes, table editor, graphic viewers for BMP, PCX, and
GIF, input validation, file system widgets, and more.
WidgetKit/Professional for visualAge Windows . . . $795.

WidgetKit/Business Graphies has versatile graphs and
charts. You get bar, pie, area, line, gantt, high-low-close,
scatter, and more basic types. Options include 2-D and
3-D, fonts, colors, control of printing, and more.
WidgetKit/ Business Graphics
for VisualAge Windows . . . $795. for VisualAge 05/2. .. $795.

No run-time fees for applications, 30-day money-back guarantee,
90 days free support.

Call (408) 970-7280 9 amto5PM PST, M-F

SHARE

5 Objectshare Systems Inc.
. 5 Town & Country Village, Suite 735
8 San Jose, CA 95128-2026
INC. fax 408-970-7282, cis 76436,1063

Smalltalk/V

Programming tools for Smalltalk/V® win ~ Win32 052
WindowBuilder™ Pro/V

Interactive Ul builder for Smalltall/V,

Save time, simplify maintenance. $295 $395 $495

Add high-level controls to WindowBuilder Pro/V

Subpanes/V for WBPro/vV
Table panes, columnar list box, drag

and drop, bitmap pane, and more $235

$235 8235

WidgetKit™/CUA’91 for WBPro/v
Full CUA’91 controls - - $295

WidgetKit/Professional for WBPro/v

Spreadsheets, tables, validation, graphic

viewers, virtual spreadsheet, and more $395 8395 -
WidgetKit/Business Graphics for WBPro/v

Pie, line, area, gantt, high-low-close,

2-D and 3-D graphs, printing and more 3495 §495 -
No run-time fees for applications, 30-day money-back guarantee,
90 days free support.

5

a
=}

Call (408) 970-7280 9 amto5PMPST, M-F

SHARE

Objectshare Systems Inc.

. 5 Town & Country Village, Suite 735
San Jose, CA 95128-2026

INC. fax 408-970-7282, cis 76436,1063

"THE OBJECT PEOPLE

Your Smmiectlltalk Xxperts

Education & Training

Smalltalk/V
VisualWorks
VisualAge
ENVY/Developer
Analysis & Design
Project Management
In-House & Open Courses

Project Related Services

Object Immersion Program
Project Mentoring
Custom Software Development
Legacy Systems
GUT’s, Databases
Client-Server

The Object People Inc. 509-885 Mceadowlands Dr., Ottawa, Ontario, K2C 3N2
Telephone: (613) 225-8812 FAX: (613) 225-5943

Smalltalk/V i aregistered erademark of Digirall, Tnc. VisualAge 16 a registered trademark of 1BM.
VisuadlWorks iy a trademark of ParcPlace Svstems Ine. ENVY i a registered trademark of OTT Ine.

* The update: implementor is effectively a case statement; this
is a procedural structure that is discouraged in Smalltalk, not
to mention the fact that it is inefficient to execute.

* The update blocks are buried inside the update: method and
are unavailable for reuse. (However, some developers have
discovered a kludgy backdoor for accessing these blocks:
The object can send update: to itself (which is very uncon-
ventional!), providing the appropriate parameter to activate
the desired block. Then the poor maintenance person must
look for senders of a changed aspect not only in the parent
objects but in the dependent as well!)

Perhaps the worst problem, one that makes this kind of collab-
oration especially difficult to maintain in legacy code, is the
following:

* It is unclear which sender of aspect? the dependent is listen-
ing for; the source is ambiguous. As implemented, the depen-
dent is listening for that aspect from either parent (and in fact
any parent that sends it}—but was that by design? The origi-
nal developer could have clarified this by testing the from:
parameter (in update:with:from:), but that wasn't necessary to
make the code work, so he or she didn't do that test.

As the system's requirements change, the parent objects will be
redesigned and refactored and the dependents’ interests will
have to be reevaluated. When making these enhancements,
maintaining the dependency relationships will require inordi-
nate time and effort as well as significant guessworlc

Analysis

The basic problem with implementing dependencies in this
fashion is that one large complex object is made a dependent
directly of another large complex object. One cannot easily tell
how many of the parent’s aspects the dependent requires. If the
two are redesigned such that the dependent no longer requires
one (or two, or 10) of the parent’s aspects, does it still need to .
be a dependent of the parent? This kind of guesswork when
maintaining code is fertile ground for introducing bugs, ones
that in this case are subtle and difficult to isolate.

A BETTER WAY: DEPENDENCYTRANSFORMERS
VisualWorks 1.0 introduced a new object,
DependencyTransformer, which is a substantial improvement to
the dependency framework. A DependencyTransformer acts as
a bridge between the parent object and the dependent object.
It listens for exactly one update value from exactly one parent;
when it receives that update, it runs a specified method in its
sole target, the dependent. In this way, the update being lis-
tened for is factored out of the dependent object and a one-to-
one relationship is established between the update that a par-
ent sends out and the method that should subsequently be run
in the dependent.

This solves many of the problems (although not all) that the
old framework had:

* Dependents no longer have to implement update:...; it is
already implemented in DependencyTransformer to listen for
the specified update value. Instead, the dependent imple-
ments the method to be run when the update occurs, a
method often named aspeczChanged. This is not only more
intuitive but is reusable as well.

November—December 1994

* The update: method does not contain a case statement, just
a single test.

* The dependent is only notified of the change for which it
wants to listen, The DependencyTransformer must still
process every update the parent issues, but because it is only
listening for one aspect, it can quickly determine whether
the aspect received is the correct one.

* When the dependent has multiple parents, it is clear which
one is expected to be sending the update: It's the one at the
source of the DependencyTransformer doing the listening. If
the dependent wants to listen for the same update from two
parents, it will specifically use two DependencyTransformers.

Thus, the use of DependencyTransformers makes dependents
updating more encapsulated and the code used to implement
it more traceable and easier to maintain. This comes at the
expense of a layer of indirection between the parent and
dependent—a small price for a better factored set of collabo-
rating objects.

An example
Here’s an example of the increased traceability
DependencyTransformers provide.

This will revisit the example above, where a system has two
parent objects with aspects 1-2 and 2-3, respectively, and a
dependent object that is' dependent on both parents and that
listens for two of its parents’ aspects.

The four setter methods for the two parents look like the
example above.

The dependent object will make itself a dependent of the
parents with this code:

initializeParent1: parent1 parent2: parent2

"Initialize the receiver to use its parents."

parent1

expressInterestIn: #aspectl

for: self

sendBack: #aspect1Changed;

expressInterestIn: #aspect2

for: self

sendBack: #aspect20fParent1Changed.
parent?

expressInterestIn: #aspect2

fot: self

sendBack: #aspect20fParent2Changed.

Each send of expressInterestIn:for:sendBack: creates a
DependencyTransformer whose source is the receiver and whose
target is the for: parameter (usually self). It listens for the
update value specified by expressInterestIn: and sends the mes-
sage specified by sendBack: to the target.

The dependent object will implement methods
aspectlChanged, aspect20fParentiChanged, and
aspect20fParent2Changed to be the code that was in the
update blocks:

aspect1Changed

"aspect1 changed. Update the receiver."
<a little code>

Dependency Notification

jt e
e

I fi 2
kR

Figure 3. An example of dependency relatianships using DependencyTransformers.
aspect20fParent1Changed
"aspect? changed in Parent1.
Update the receiver."
self aspect2Changed.
<code particular to aspect? in Parent1>

aspect20fParent2Changed
"aspect2 changed in Parent2.
Update the receiver."
self aspect2Changed.
<code particular to aspect2 in Parent2>

aspect2Changed
"aspect? changed. Update the receiver."
<a lot of code, applicable to Parents 1 and 2>
Figure 3 shows the objects in this example.

Notice that there is no ambiguity as to which parent object
the dependent object expects to send aspect2. Also, if the
dependent no longer has to listen for aspect? in Parent?, the
code to register that interest will be removed. When the last
interest in a parent is removed, the object will automatically no
longer be dependent on that parent.

However, even with DependencyTransformers, certain prob-
lems with the dependency framework still remain:

* Every method that changes a parent object’s state is still
obligated to send out an update.

* Every dependent is still notified of every change, although
DependencyTransformers factor the necessary testing for bet-
ter encapsulation.

* The traceability between senders of an aspect and its listen-
ers is better but still not perfect. Using “browse senders” still
produces a bewildering list of possibilities. Each of the par-
ent’s update values still act as a vague conduit from the part
of the parent’s state that is changing to the
DependencyTransformer which is listening for the change.

Analysis
DependencyTransformer is a major step in the right direction,
reducing or eliminating many of the shortcomings of the origi-

10

nal dependency framework, but others still remain. The prob-
lem is that the parent object is still one large complex object
with numerous aspects; yet, each DependencyTransformer is
only interested in a single aspect. Thus, a
DependencyTransformer needs a way to be a dependent of just
one single aspect in a parent, not the entire parent object.

AN EVEN BETTER WAY: VALUEMODELS AND
DEPENDENCYTRANSFORMERS

The ValueModel framework was introduced in Objectworks 4.x
primarily to implement a structure through which any solitary
value in the system could be isolated and given the generic
aspect value. However, a helpful bonus of ValueModels is that
they provide a convenient place to register all of the dependen-
cies of that value. In fact, since the ValueModel controls the
access to setting the value, it is ideally positioned to inform
dependents when the value is changed. Thus, when a parent
object uses ValueModels to store its aspects, whenever those
aspects’ values change, the parent object does not have to take
responsibility for notifying its dependents; the ValueModels
will do that. Thus, DependencyTransformers factor the respon-
sibility of listening for updates out of the dependent, and
ValueModels factor the responsibility of issuing updates out of
the parent.

ValueModels and DependencyTransformers work hand in
hand. Because the only update value a ValueModel ever sends is
#value, that’s the only one its DependencyTransformers ever
have to listen for. Thus, the difference between two
DependencyTransformers on a single ValueModel is the depen-
dents they update and the messages they send to do so.

To register dependency on a ValueModel’s value, a dependent
sends it onChangeSend:to:, specifying itself as the target. This
creates a DependencyTransformer between the ValueModel and
the dependent. This DependencyTransformer is not connected
to the parent object with its many aspects; it’s connected direct-
ly to the aspect itself. Thus, the only time that it receives an
update is when the value changes, so checking to make sure the
aspect is the correct one is merely a formality (it’s always
#value), and it tells the dependent to update.

Thus, using ValueModels and DependencyTransformers
together eliminates the problems with simply using a
DependencyTransformer alone:

* The methods that change a parent object state are not
obligated to send out updates if those parts of state are
stored in ValueModels.

= The only dependents that are notified when a value changes
are those of that particular value; thus, no one is informed
who is not interested.

* The traceability between an object’s aspect and one of its
dependents is a very clear bridge between the two objects.
Look at the sender of onChangeSend:to: (usually in the
dependent’s implementor of #initialize...) and it will explain
everything: what value is being listed to, what method will
be run when the value changes, and what object is the
dependent that contains that method.

* Even at run time, the traceability is clear: One can inspect
the ValueModel and its list of dependents (which are
DependencyTransformers) and see what the targets of the

The Smalltalk Report

DependencyTransformers are. This is even easier to do

using First Class Software’s ObjectExplorer. No guesswork

is required.
Thus, a combination of ValueModels and DependencyTransformers
eliminate all the problems of the original dependency framework.
The dependencies are set up in one place and execute efficiently.
The setup shows direct traceability between the aspect being
monitored and the result in the dependent, taking the guesswork
out of maintenance. The dependency implementation reflects the
design exactly.

An example

Here’s an example showing the increased traceability
ValueModels and DependencyTransformers provide. Revisiting
the standard example, there is a system that has two parent
objects with aspects 1-2 and 2-3, respectively, and a dependent
object that is dependent on both parents and which listens for
two of its parents’ aspects.

The four setter methods for the two parents look a bit dif-
ferent now because the parents store their aspects in
ValueModels. Using aspect1: as an example gives the following:

aspect1: newValue

"Set the value of aspect1 to newValue."
self aspect1Holder value: newValue

aspect1Holder
"This method was generated by UIDefiner."
~ aspect1Holder isNil
ifTrue: [aspect1Holder := nil asValue]
ifFalse; [aspect1Holder]
The dependent object will make itself a dependent of the par-
ents with this code:
initializeParent1: parent1 parent2: parent2
"Initialize the receiver to use parentObject."

parent1 aspect1Holder
onChangeSend: #aspect1Changed
to: self.

parent1 aspect2Holder
onChangeSend: #aspect20fParent1Changed
to: self.

parent2 aspect2Holder
onChangeSend: #aspect20fParent2Changed
to: self.

Each send of onChangeSend:to: creates a DependencyTransformer
whose source is the receiver (a ValueModel) and whose target is
the to: parameter (In fact, this example shows that the to: para-
meter is pretty redundant, because it seems to always be self).
Because the source is always a ValueModel, the update value
being listened for is always #value. The message to be sent to the
target is specified by the parameter of onChangeSend:.

The dependent object will implement methods
aspect1Changed, aspect20fParent1Changed,
aspect20fParent1Changed, and aspect2Changed as before.

Figure 4 shows the objects in this example.

Notice that the parent objects never send themselves
changed:; the ValueModels (accessed via the messages

November-December 1994

Figure 4. An example of dependency relationships using ValueModels and
DependencyTransformers.

aspecfHolder) do that for them. And the senders of
onChangeSend:to: in initializeParent1:parent2: tell the developer
everything he needs to know about what the dependencies are.

Analysis
All the problems of the original dependency framework have
been solved:

* Setter methods aren't required to send out updates.

* Dependents don't have to implement update:....

* Only dependents who care about a particular change are
notified.

* The traceability between parent aspects and their depen-
dents is quite clear when inspecting either the static code or
the run time objects.

Systems using this extended dependency framework run more
efficiently and are easier (and safer) to maintain.

CONCLUSIONS

The dependency framework from Objectworks 2.5 is good,
and it still works for small one person projects. But
VisualWorks has extended it with ValueModel and
DependencyTransformer to make it much better, especially for
the large commercial applications for which Smalltalk is
increasingly being used. Because the new framework is a
superset of the old one, developers can continue to use the old
one when desired; they can also use just parts of the new one
(just ValueModel or just DependencyTransformer). The best
results, however, are produced by using both parts of the new
framework. It will factor the changed:/update: code more
effectively, execute updates more efficiently, and be easier and
safer to maintain for the life cycle of the code. Not bad for a
couple of classes that many developers don't even realize
they're using. @

Bobby Woolf is a Member of Technical Staff at Knowledge Systems Corp.,
whers he is developing techniques for applying Smalltalk to large software
projacts. He has also been a Software Engineer at Ascent Logic Corp.,
where he gained considerable experience maintaining the complex
dependency relationships in its large scale Smalltalk application, RDD-100.
Comments are welcome at wool{@acm.org.

11

A quick peek under the covers

of IBM Smalltalk

Steven G. Harris and Hal Hildebrand

uct into the Smalltalk marketplace with somewhat less

than a roar. The initial release was available only under
05/2, which has limited its appeal to many potential end users.
Over the last several months, we have been actively involved in
using and evaluating the upcoming release of 1BM Smalltalk,
the foundation on which VisualAge is built. As we write this
article, the product is still in Beta testing. It runs under
Windows and OS/2, and we feel that, from many points of
view, it is going to cause the roar that was missing before.

So what's the big deal? Actually, it's not just one 4ig deal, it's
a lot of /i#tle deals that add up to something that makes die-
hard Smalltalkers like us sit up and take notice. First, IBM has
separated the VisualAge visual programming environment from
the base 1BM Smalltalk produect. It is a separate application,
which can be loaded into the base image—use it if and when
you want it. Second, IBM has established a formal program
that actively encourages third-party suppliers—the first off the
mark will be ObjectShare’s WindowBuilder, coming soon to an
IBM Smalltalk platform near you. Last, IBM Smalltalk is pretty
hot stuff technically, and this characteristic of the product is the
subject of this article.

As we are not doing a product review, we'll limit our recom-
mendations to the following statement (sure to warm the hearts
of 1BM marketers everywhere): IBM Smalltalk is definitely
worth taking a serious look at. Now, on to the show.

What's in this thing? How is it different from the Smalltalk
products we've all come to know and love? We'll concentrate on
the two most important areas: the class library and the develop-
ment environment. We will provide comparisons with
ParcPlace’s VisualWorks product and Digitalk's Smalltalk/V,
because we are intimately familiar with them.

IBM released VisualAge some time ago, entering this prod-

THE CLASS LIBRARY
‘Wherever possible, IBM has chosen to use industry standards for
developing their class library. Because the ANSI standard process
(already in progress for Smalltalk) moves at glacial speed, they
have made heavy use of the Blue Book (Goldberg and Robson)
as well as of IBM’s own proposed standard for Smalltalk, often
called the Red Book. Where things get more interesting, howev-
er, is IBM's usage of POSIX.1 for their file interface classes, X-
Windows for the graphics subsystem, and OSEMotif for widgets.
As shown in Table 1, they define a number of major subsystems
and attempt to adhere to a standard in each.

Of course, programmers who are Smalltalk-fluent in essen-
tially any dialect have very little learning curve to get started.

2

Those that are familiar with POSIX.1, X-Windows, and
OSEMotif get to leverage their existing expertise, cast in 2 nice
Smalltalk framework. People who know nothing about
POSIX.1, X-Windows, or OSFMotif certainly aren’t any worse
off than they would be learning the VisualWorks or
Smalltalk/V protocols. On the other hand, if you are already
familiar with Windows and OS/2 programming to the degree

| you need to be to do low level Smalltalk/V graphics work, or if

you already know everything there is to know about
ValueModels and the UIBuilder framework in VisualWorks,
you won't find a great deal of commonality in these areas with
IBM Smalltalk. The way that 1BM Smalltalk has implemented
the interface to the windowing and graphics subsystems makes
it easy to pick up a book on programming X and Motif inter-
faces and apply it directly to programming the IBM imple-
mentation. Finally, documentation that exists before the
release of the system.

It is also worth mentioning that many of the classes in these
subsystems have been prefixed with an abbreviation of the sub-
system name. For example, all the widget classes begin with Cw,
which stands for Common Widgets. This approach helps you
keep the modularity of the image in mind, but it does take
some getting used to. It’s also nice to see Smalltalk vendors
practicing what they preach in regard to prefixing class names
to avoid name-space conflicts.

Base classes
What we would think of as the Smalltalk base classes, IBM
groups into the Common Language Data Types and Common
Language Implementation subsystems. There should be very
few surprises for any Smalltalk programmers in these areas.
IBM's class hierarchy approaches the VisualWorks class library
in terms of sheer numbers of classes and built-in richness.
Perhaps ironically, IBM has chosen to adhere to the Blue
Book and X Windows convention of the Point 0@0 being at
the upper left corner of the screen, » increasing to the right,
and y increasing downward. This choice was made to facilitate
portability in spite of the fact that the OS/2 Presentation
Manager usage is different. Digitalk’s current releases match
the convention of the host windowing system, requiring usage
of messages like rightAndDown: instead of simply +, as + is not
consistent between the Windows and O5/2 implementations.
ParcPlace goes with the Blue Book. From a cross-platform
compatibility point of view, the impact of this decision goes a
long way to keeping hair out of your hands and on your head,
where it belongs.

The Smalltalk Report

IBM Smalltalk uses block contexts as does Digitalk
Smalltalk, while ParcPlace uses block closures. This means
that blocks that should be “clean” (i.e., no references to the
outer context) are not treated as a special case, and thus, IBM
Smalltalk does not provide a speed advantage for using them.

Following Object Technology International’s approach in
ENVYDeveloper, IBM Smalltalk uses a single instance of
SystemConfiguration class (called System) as a central point for
information on how the image is configured and for funneling
startup and shutdown messages. The original ENV¥/Developer
approach has been extended to include information on what
subsystern types are installed, opening up the potential for inte-
gration with other products.

IBM’s process model essentially follows the Blue Book
approach. If you’re comfortable with forking lightweight
Smalltalk processes, you should feel at home here. They also
provide an implementation of the Delay class (like ParcPlace)
that allows you to impose delays based on the system real time
clock. In Smalltalk/V, it is extremely difficult to implement
delays that don't lock up the system. In IBM Smalltalk, as in
VisualWorks, you can delay the entire user interface for as long
as you like and still have the system behave as it should. The
value of this subtle point goes a long way when programming
with multiple Smalltalk processes.

Graphics subsystem
The graphics subsystem is complete and well implemented,
covering all the necessary graphics operations used by the host
graphics system. The IBM Smalltalk common graphics subsys-
tems let you:

* define drawing attributes such as line widths or styles

through the use of graphics contexts
» perform drawing operations such as drawing lines, arcs, text
strings, and polygons

* manipulate colors

* manipulate fonts

* manipulate two-color bitmaps and multicolor pixmaps
IBM Smalltalk’s graphic subsystem is based on X Windows, and
it provides the same functions as the XLib C calls in that stan-
dard. This strategy results in a standard documented interface for
dealing with the graphics capability of the host system regardless
of whether you are on a Windows, OS/2, or AIX platform. IBM
Smalltalk uses a well-documented strategy for converting the
various types of objects and function calls used by XLib into the
equivalent Smalltalk objects and methods. The upshot of this
approach is that you can pick up any book that deals with X
Windows and start using IBM Smalltalk graphics right away.

Table 1

Windowing subsystem
As in the graphics subsystem, IBM has chosen to base their
window interface on another industry standard, OSF/Motif.
The windowing subsystem is known as the common widgets
subsystem in IBM Smalltalk. This subsystem allows the devel-
oper to
* create individual widgets (or controls), including buttons,
lists, text menus, and dialog boxes
* create compound widget structures by combining individual
widgets
» specify the positioning of widgets relative to each other
* program actions to occur in response to user actions
1BM Smalltalk again uses a standard translation strategy for
converting OSFMotif C types and functions to Smalltalk class-
es and methods. Like the common graphics, you can easily find
documentation of these interfaces at your local bookstore.
The widget interface is event driven, and the hierarchy is
designed in two pieces. The CwWidget hierarchy defines the
common interface to the system. The implementation hierar-

It’s also nice to see
Smalltalk vendors
practicing what they preach
in regard fo prefixing class
names to avoid name-space

conflicts.

chy, under OSWidget, is the low-level interface to the host
operating system. Thus, unlike VisualWorks, IBM Smalltalk
actually uses the underlying host resources for windows,
menus, fonts, and such, while maintaining a platform-inde-
pendent interface. IBM Smalltalk maintains the look and feel
of the host system, as well as the speed inherent in host oper-
ating system supported functions. The clean implementation
helps make IBM Smalltalk’s user interface feel snappy in spite
of a relatively slow virtual machine.

The implementation includes some wonderful goodies for
the developer, including a full implementation of form wid-
gets, which provide extremely powerful positioning mecha-
nisms. Row and column widgets simplify some common oper-
ations dealing with rows and columns of other widgets. Of
course, the usual list of suspects is also available: pop-up
menus, list boxes, buttons, and labels. The event mechanism
and callback system implemented in the widgets also follows
the OSEMotif approach.

File system

IBM Smallealk Subsystem Industry Standard

IBM Smalltalk's Common File System provides low-
level protocols based on the POSIX.1 standard. They

Common Language Data Types

Common Language Implementation
Common Process Model Smalltalk-80 Blue Book
Common File System
XWindows

OSF/Motif

Common Graphics
Common Widgets

Smallealk-80 Blue Book and IBM Red Book
Smalltalk-80 Blue Book and IBM Red Book

POSIX.| and Smalltalk-80 Blue Book

have included the necessary framework for dealing
with files in a platform independent manner. The
approach has to deal effectively with the usual killer
minutiae such as line endings varying between plat-
forms, platforms that have no concept of drive versus
those that do, and so on. ParcPlace has been doing
this stuff for some time, and the 1BM Smalltalk

November-December 1994

13

IBM Smalltalk

approach in this area is no great surprise. In VisualWorks, for
example, you would send the named: message to Filename class
to instantiate a platform-specific kind of Filename object that
can then be used to obtain a Stream on the file. In IBM
Smalltalk, you would use a CisFileDescriptor to write platform-
independent code that handles platform-specifics for you auto-
matically.

IBM Smalltalk also provides a variety of file sharing and
region-locking facilities based on the POSIX.1 style. Since
these types of operations are not supported uniformly across
platforms, they offer the ability to determine whether the lock-
ing you want is supported. For example, note that

CfsFileDescriptor supportsLockType: FMDLOCK

will return true or false depending on whether the platform
supports exclusive mandatory locks. Platform-specific file errors
are available to you if you need them, but most people will use
the subset of POSIX.1 error constants available via the CfsError
class to handle problems in a platform-independent manner.

Exception handling system

‘We happen to be big believers in the value of a robust excep-
tion handling system, or EHS. As long as you use an EHS to
handle exceptions and not to handle the kind of things that
happen all the time, it is an absolutely invaluable part of a
Smalltalk programmer’s tool kit. IBM provides an EHS with
IBM Smalltalk that is similar to the VisualWorks EHS in style.
Smalltalk/V follows the approach described by Christophe
Dony in ECOOP ‘88, where exceptions are treated as first class
objects; i.e., each exception is an instance of some subclass of
ExceptionalEvent. ParcPlace and IBM take a slightly different
approach to achieve the same result: each exception is an
instance of a single class. Where IBM Smalltalk differs from
VisualWorks is that IBM Srnalltalk provides a default handler,
which is a block of code that is evaluated if the exception is not
handled. We provide a thumbnail comparison in Table 2.

The asterisk in Table 2 that indicates the lack of Unwind
Protection for IBM is there because this feature is not present
in the Beta release (it may be added in the final release).
Unwind protection requires nonlocal returns to be properly
handled by the virtual machine. For example, critical sections
implemented by Semaphores usually require unwind protection.
No matter how the critical section terminates, you want to sig-
nal the semaphore. The syntax for critical sections in both
VisualWorks and 1BM Smalltalk is aSemaphore critical: aBlock.
If you happen to return from the block (1., [... some code ...
~self]), the semaphore will never be signaled without unwind
protection. Both Smalltalk/V and VisualWorks implement this

behavior correctly.

Interface to other languages

1BM Smalltalk provides two interfaces to other languages:
platform functions and primitives. Platform functions are simi-
lar to Smalltalk/V’s Externallnterface class (for interfacing to
DLL’s) and VisualWorks' ExternalLibrary interface (used for
both DLL’s and statically bound code for platforms that do not
support DLL’s). The C calling convention is the only one cur-
rently supported by IBM Smalltalk, and it supports the stan-
dard C types you would expect.

Platform functions do not require you to write any code
other than the Smalltalk code used to access the external rou-
tines. IBM Smalltalk provides two approaches for defining
platform functions. In the first approach, you create an
instance of a platform function using protocol in the
PlatformFunction class. The instance of PlatformFunction that
you obtain can be sent messages and treated as any other
Smalltalk object. You use the instance of PlatformFunction by
sending it messages appropriate to the number of arguments
used (i-e., call, callWith:, callWith:with:, etc.). The number of
arguments in the call must match the number of arguments in
the platform function.

The alternate method of calling a platform function allows
you to inline external function calls directly in methods. The
syntax, which is the same syntax as PlatformFunction, is embed-
ded in the body of a method, similar to primitive functions. An
example is the following:

send: msg to: id

<c: int32 'message’ :sendTo int32 int32>

~self primitiveFailed
This example invokes the function sendTo in the library mes-
sage. This approach differs from the VisualWorks and
Smalltalk/V approaches, since platform functions can reside in
any class of the system, not in subclasses of a particular class.
Quite useful and extremely slick.

Primitives

Like VisualWorks, IBM Smalltalk supports a rich wser primitive
interface. A user primitive is code that is written in C, typically
for performance reasons. This code, unlike a platform or exter-
nal function, directly manipulates objects and is written for
exactly that purpose. Like external functions, primitives can be
inlined in methods on any class in the system, and IBM
Smalltalk provides syntax to access primitives in any shared
library (DLL) by name or number. From the C side of things,
you have access to the context of the virtual machine, who the
receiver of the message was, and to the objects passed to the
primitive method.

Functions that are available inside a user primitive are
impressive. Like VisualWorks, but unlike Smalltalk/V, 1BM
Smalltalk provides functions for object allocation, sending mes-
sages to Smalltalk objects from inside of primitives, and pro-

Table 2.

Feature IBM Digitalk ParcPlace

Exceptions as |st Class Objects No Yes No

Unwind Protection No* Yes Yes

General Usage [block] when: exception do: [handler] [block] on: exception do: [handler] exception handle: [handler] do: [black] l
14 The Smalitalk Report

Automatic Documentation - Easier Than Ever

Synopsis produces high quality class documentation
automatically. With the combination of Synopsis and
Smalltalk/V, you cut development time and eliminate the
lag between the production of code and the availability
of documentation.

Synopsis for Smalltalk/V

+ Documents Classes Automatically

« Provides Class Summaries and Source Code Listings
« Builds Class or Subsystem Encyclopedias

» Publishes Documentation on Word Processors

« Packages Documentation as Encyclopedia Files or
as Help Files for Distribution

« Supports Personalized Documentation and
Coding Conventions

Working with Synopsis is easy. Install Synopsis and see
immediate results ——- without changing a thing about the
way you write Smalltalk code!

With Synopsis for Smalltalk/V Development Teams

Development Time Savings

Coding Documentation

Without '
Synopsis A .

Start Finish

Documentation
With
Synopsis
A A

Start Finish

Products: Synopsis for Smalltalk/V and Team/V

Synopsis for ENVY/Developer
Environments: Windows, Win32, 0S/2

Pricing: Smalltalk/V $295, ENVY $395
Site licenses available.

Synopsis Software
8912 Oxbridge Court, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

tecting objects from garbage collection. In addition, IBM
Smalltalk provides several other useful functions, including
determining the version of the virtual machine and explicitly
invoking both the scavenger and garbage collector from inside
of primitives.

IBM Smalltalk also provides a nice interface for dealing with
asynchronous messages (i.e., interrupts). Because interrupts can
happen at any time, the Smalltalk virtual machine must be pro-
tected from this behavior and interrupted only at certain check
points when the virtual machine is prepared to process inter-
rupts. IBM Smalltalk provides a queue of interrupts that is
polled by the interpreter at various times.

Because the interrupt handler could become active at any
time (i.e., when the virtual machine is garbage collecting), nor-
mal objects cannot be used in asynchronous messages. To han-
dle this situation, IBM Smalltalk allows objects to become fixed,
meaning that they do not move during garbage collection. This
approach means that direct references to fixed objects remain
valid and can be passed off to external functions or primitives
without worrying about their being moved around during
garbage collection.

Finalization

One of the difficulties with dealing with host system resources
in Smalltalk has been the finalization of these resources.
Finalization is the process of determining when an object is
no longer referenced in Smalltalk and is receiving a
notification of that fact. Current releases of Smalltalk/V leave

November—December 1994

finalization to the programmer. VisualWorks has a rich final-
ization model, providing the programmer with such things as
WeakArrays and WeakDictionaries. IBM Smalltalk provides a
simpler approach to finalization. If you need to be notified
when a particular object is about to go to the great heap in
the sky, simply send it the message onFinalizeDo:
selectorOrNilOrMessage. When the receiver is about to become
garbage, the action supplied by the selectorOrNilOrMessage is
performed. If the argument is nil, the message finalize is sent
to the receiver. If the argument is a Symbol, then the receiver
is sent the message corresponding to the symbol. If the argu-
ment is a Message, then the receiver is sent the message (a
selector and arguments).

THE DEVELOPMENT ENVIRONMENT

It is often difficult for Smalltalk programmers to mentally sepa-
rate the differences between the Smalltalk language, the class
library, and the development environment. Let's face it, though:
if all you had was the language and a workspace, you would not
be a happy Smalltalker. Rather than talk about specific tools,
we will concentrate on what 1BM is supplying for application
development, cross-platform development, and deployment of
Smalltalk applications. We'll take a little side trip to discuss a
new gizmo, TrailBlazer, IBM’s shot at improving the basic
Smalltalk browsers.

Application management architecture and team development
OTT's ENVY/Developer application management architecture is

15

IBM Smalltalk

provided with 1BM Smalltalk. Interestingly enough, they pro-
vide a separation between the single-user version and the Team
version, while maintaining the same ENVY concepts in both.
The primary difference between them is that the single-user
version uses the standard Smalltalk change log/list approach,
while the team version uses a central ENVY repository. In fact,
if you have ENVY/Developer, you can connect your Smalltalk/V,
VisualWorks, and 1BM Smalltalk images al/ z0 the same source
code repository.

Let’s do a brief discussion on the application management
architecture. ENVY users will find nothing new. For a more com-
plete discussion of ENVYDeveloper, see the October 1992 issue of
Tre SmMaLLTALK REPORT. We will simply present it as a well-
known fact that you cannot do serious Smalltalk development, or
have a hope of reuse, without some way to group together the class-
es and methods that comprise your application. In other words, you
need some way to cut across the class hierarchy to identify and
maintain the parts that make up your application. ParcPlace uses
class categories in their base VisualWorks product to accomplish
this goal to a limited degree, and in Smalltalk/V, you can purchase
TEAMA. You can also buy ENVYDeveloper as an add-on to either
ParcPlace’s or Digitalk’s base image environment.

Applications and subapplications (classes in the image) are
the basis for application management in IBM Smalltalk. All
classes must be defined as part of some application. There are
many applications provided in the base 1BM Smalltalk image, a
number of which correspond directly to the subsystems we've
been talking about. In addition, classes that are defined in one
application can be extended in another, so that the application-
specific extensions you might add to something like String are
localized to your application without affecting the Kernel appli-
cation definition and methods. Related applications can also be
grouped together into a configuration map,
which often corresponds to a single deliv-
erable software product.

Prerequisites are a central part of appli-
cation management in the ENVY environ-
ment, Prerequisites can be somewhat of a
religious issue, so we'll try to stay out of it.
It would probably be fair to say that
nobody likes prerequisites, but if you feel
they are necessary, you better have tools to
deal effectively with them. In ENVY, they
are used to enforce the existence in your
image of one application before another
that depends on it can be loaded from the
library. IBM Smalltalk also extends the use
of prerequisites to configuration maps, a
welcome addition. Load order of classes
within an application s all handled auto-
matically—prerequisites have nothing to do
with things at a class level.

The Team version of 1BM Smalltalk
comes with the full arsenal of configuration
management tools of ENVY/Developer.

software components, from classes, to applications and subap-
plications, to configuration maps, are subject to strict version
control. Once a component has been versioned, you must create
a new edition to be able to change it or any of the components
that it contains. The development environment and use of the
ENVY repository then let you load configuration map, applica-
tion, and class versions without wondering whether that bug
you fixed last week is still fixed. Of course it is, because you ver-
sioned it!

Cross-platform development

IBM has done a nice job of providing a Smalltalk with com-
pletely portable code between platforms, but which uses host
widgets. ParcPlace goes one step further in portability but at
the expense of not using host widgets currently. In
VisualWorks, you do your development under Windows, save
image, put your image on an OS/2 or UNIX machine, and you
are up and running. Smalltalk/V in its current release (2.0) is
not quite source-level compatible between platforms
(Windows, O5/2, and Mac). Some porting is required in
almost all cases, although it is usually not too tough. Upcoming
Smalltalk/V releases should eliminate the problem.

In I1BM Smalltalk, it doesn’t matter much which platform
you do your development on. If you keep to the common class-
es and don’t go diving into places you're not meant to go, you
will be able to move simply to another platform.

Here's how you do it: Because you must organize your code
into applications, you simply have to start up a virgin image for
the other platform and load your application from the library
into the image. ENVY provides ways to handle platform-
specific code loading within your application if you require it,

too. Then, you're up and running on that platform. Eric
Claiberg at ObjectShare, who has been working on the
‘WindowBuilder version for IBM Smalltalk, reports having

These tools enforce the concept that all

16

Figure 1. TrailBlazer.

The Smalitalk Report

never to change a single line of code between the Windows and
05/2 versions—and ObjectShare does some pretty obscure
low-level graphics operations in their work.

TrailBlazer—an improved browser?
IBM provides 2 new browser called TrailBlazer with their
Smalltalk . Despite the fact that there is no documentation for it
in the Beta product, we still found it to be a useful tool; this says
something significant about it. The idea is to combine a number
of the normal browsers into one window, as shown below:
Figure 1 shows something like the Smalltalk/V class hierar-
chy browser or a VisualWorks hierarchy browser. The drop-
downs at the top let you choose what you want to appear in the
list. By default, if you open the IBM Smalltalk classes browser,
the list on the far right would be blank. We chose to view

The choice of POSIX.1, X Windows,
and OSF/Motif standards for the file
system, graphics, and widgets in the
system will appeal both to developers
and to corporafte decision makers

Messages Sent in it by selecting it from the drop-down menu.
As you might expect, the list shows all messages that are sent in
Object’s instance method addDependent:. When you select a
message in the list, the TrailBlazer shifts all the lists over one
slot to the left and shows Local Implementors on the right.
Senders are usually what you're after when you look at the mes-
sages in a method, but you don't get another window on your
screen. The thick bar under the lists shows (using a blue color)
which three slots you are viewing out of the trail you've gone
down. To go back to the original three lists (with classes on the
left), you just have to click in the bar.

Okay, it's not perfect. It takes some getting used to. The
Beta version has some bugs. However, we found we could get
our work done at least as effectively with it, but without hav-
ing to track through 10 different windows at any given time. If
you don't like it, IBM lets you use the standard ENVY-style
browsers, which most Smalltalkers feel pretty comfortable
with, ENVY experience or not.

Application deployment

It often feels as though application deployment strategy is one
of Smalltalk’s dirty—and certainly well kept—secrets. The
usual ParcPlace approach is simply to carve away, or strip, all
the classes and methods you do not need from the base image
before deploying. Digitalk nicely separates development classes
from base classes via DLLs, which helps somewhat, and they
allow you to build object libraries to which you can bind in
runtime. ENVYDeveloper users under Digitalk Smalltalk/V
Windows and OS/2 (but not WIN32) have had the hwury of
using the ENVY Packager. The concept here is that because the
image is built from applications, you should be able to build
one from scratch by specifying the applications you want in it
and leaving out the ones you don't want. To build a really small

November—December 1994

image, you need some more refined tools, too, and these are
part of the Packager.

Not too surprisingly, you get the Packager as part of IBM
Smalltalk, The result is that you have a tool to help you deploy
a real Smalltalk application that uses as little footprint as pos-
sible, and you can track via ENVY’s configuration-management
facilities to see just how you did it.

What else is interesting?

The virtual machine is a byte code interpreter and does not
use dynamic compilation as do ParcPlace and Digitalk (in
their WIN32 and OS/2 releases). Consequently, IBM Smalltalk
is slower than either of these other products on almost any of
the standard Smalltalk benchmarks you might use. However,
because of the clean architecture and implementation of the
graphics and the use of host widgets, the user interface doesn’t
feel slow at all. IBM says, “We're working on it.” As the adage
recommends, make it wor# first, then make it work right, then
make it work fasz. It already works right, so we'll have to wait
a little while for it to work faster.

The Beta release under OS/2 and Windows comes with a
50 Mb ENVY library, chock full of things. No wonder it’s dis-
tributed on CD! The library includes many examples that will
be a valuable aid to those for whom X Windows and 0SEMotif
are new, even if they are expert Smalltalkers. Apparently, IBM
is considering providing the full documentation set on the CD
as the standard way to distribute it.

With such a large class library, it seems a shame that so much
source code is missing. In the Beta release, no source code is pro-
vided for the compiler, common widget, OS widget, and the
common graphics subsystems. The lack of source could limit the
usefulness of these very useful areas of the class library and pre-
vent further specialization and host operating system integration.
It is possible that the situation may change for the final release.

CONCLUSIONS

IBM has entered the Smalltalk market with a product that
compares well with the established vendors in most areas and
is in some ways superior. The choice of POSIX.1, X Windows,
and OSFMotif standards as the basis for the file system,
graphics, and widgets in the system will no doubt have appeal
both to developers and to corporate decision makers, The
primitive and C language interfaces are innovative and provide
extremely useful functions for developers. The system uses host
widgets on all platforms and shows good user-interface speed
in spite of a relatively slow virtual machine. In addition, IBM
bundles the team version of the product with the application
management and team development tools of ENVY/Developer.
All these factors combined show that IBM has placed itself in
a position to be reckoned with, not just from a marketing
point of view, but from a technical point of view as well. @

Steve Harris and Hal Hildebrand founded Polymorphic Software, Ine., in
March 1993. Since that time, Polymorphic has released Tensegrity, an
object-oriented datahase for Smalltalk, as well as other Smalltalk tools and
frameworks aimed at increasing developer productivity and reducing time-
to-market of Smalltalk applications. They can be reached at 76010,3075 on
CompuServe or at loki@polymorf.win.net on the Internet.

17

A trace logger

Alec Sharp & Dave Farmer

his article describes our implementation of a TraceLog

mechanism that we have found useful in the develop-

ment and support of our product. We describe various
features of the TraceL.og and show some of the code. Embedded
in the code in i#afics are explanations of some of the more inter-
esting aspects of the code. We also take detours on occasion to
go over things that we found interesting, and that may be useful
to the reader. This is rather like the way we developed the
TraceLog, following a basically straight path, but taking little
detours now and then as something aroused our curiosity.

Our current product consists of a lot of UNIX processes
running in the background, each one with a specialized task to
perform. Each is forked by a single parent process and com-
municates with other processes via standard UNIX IPC mecha-
nisms (sockets and shared memory). Once running they con-
tinue until sent a signal from the parent. We are writing new
functionality for the product in Smalltalk, using ObjectWorks
4.1 from ParcPlace.

Our initial model of the TraceLog was that sending a
SIGUSRI signal to our Smalltalk UNIX process would toggle
“packet tracing.” When packet tracing is enabled, we print to a
log file all data that is sent to a serial device and received from
the device. This ability is very important to our support people
in helping track down problems at customer sites.

We immediately decided to extend the model to allow us to
trace entry into methods, and to support the logging of debug
statements from within a method. We extended the model fur-
ther as we needed new capabilities for our own debugging, as
we thought of fun enhancements, and as we came across ideas
and features that we thought would make for a slick demo of
the TraceLog.

Here’s a listing of the parameter file that we now use to con-
trol logging; anything after a # is 2 comment. If the file does
not exist, then at startup, logging is off, and when a user sends
a SIGUSR1 signal, packet tracing is toggled:

TraceLlog parameter file.

.

f#resetLogFile # Open a new, empty log file

stackDepth: 1 # 0 means show whole stack for
each method

traceDebug: true # Trace Debug statements?

traceEnter: true # Trace Entry to methods?

tracePackets: true # Trace packets to and from device?
showTimestamp: true # Show time of each logged message?
showSource: false # Show source code?

18

Include or exclude specified classes. Format is:

includeClass: <classname>

exclude(Class: <classname>

An include list takes precedence over an exclude list.
If there are no lists, all classes are logged.

exit # Exit from parameter file processing

excludeClass: LmSocket

excludeClass: LmOutput

excludeClass: ChannelManager
When we read this file, we ignore comments and blank lines.
All other lines are treated as Smalltalk code and executed using
the perform:withArguments: method, shown later. The exit
staternent in the file causes the exit message to be sent and this
stops us reading any more of the file. So, in this example, none
of the excludeClass: messages will be sent. If the exit was miss-
ing or commented out, the excludeClass: method adds the
specified class to a Set. We have two Sets, classesToInclude, and
classesToExclude, both initialized to nil. If classesToInclude is
not nil, classesToExclude will be ignored.

Rather than show all the code, we will just show some of
the key points, and leave it to the reader to fill in the gaps. To
start, let’s go over how we set up our signal handler and check
to see if we've received a signal. Our signal handler is written in
C, and so we use the CPOK extensions; our C interface object is
stored in a pool variable called CInterface.

We are limited by the ability of C and Smalltalk to commu-
nicate with each other—Smalltalk can eall C, and if you want
to, the C function could immediately eall back into Smalltalk.
However, a C function cannot call Smalltalk asynchronously;
L.e., a C function can only call Smalltalk if it was first called
from Smalltalk. The problem is one of memory locations shift-
ing around under you. So the way we do this is to have our sig-
nal handler modify a Smalltalk heap variable, then check this
variable every time our product gets a new request to process.
WEe set up the signal handler in the initialize method of one of
our application objects.

initialize

self ptaTraceReset: 0 gcCopyToHeap.
CInterface initLogSignalHdlr: ptrTraceReset.
checkTraceReset
"Check to see if the signal handler has been invoked. If so, reset
the trace mechanism."

The Smalltalk Report

self ptrTraceReset contents = 1
ifTrue:
[ptrTraceReset contents: 0.

Note that for performance, after sending reset, we set the a pool
dictionary variable, Trace, to true if tracing is on. Our instance
of the TraceLog has been stored in the pool variable Log.
Log reset.
Trace := Log traceEnter or: [Log traceDebug]]
Here's how we open and read the parameter file. Once the file
is open, we loop through it. As we loop through, if we come
across a line saying exit, the exit method returns true, termi-
nating the loop and preventing the rest of the file being read.
readParameterFile
| stream file |
file := self parameterFileName.
file isReadable
ifTrue:
[self tracePackets: false.
stream := file readStream.
self loopThroughFile: stream.
stream close]
ifFalse:
["If there is no readable parameter file,
we should simply toggle packet tracing"
self tracePackets: self tracePackets not].

loopThroughFile: aStream
| line exit |
exit := false.
[aStream atEnd or: [exit = true]]
whileFalse:
Why do we explicitly test exit against tTue, rather than simply say-
inig or: [exit]? Because it'’s easier to allow the methods we perform to
return self rather than requiring them to return false, and you can’t
say or: [exit] #f exit is not a Boolean.
[line := aStream upTo: Character cr.
exit := self processLine: line].
For each line we read, we strip off any comments: comments
start with a #. Then we break the line into white space sepa-
rated words. The key part is that each line is in valid Smalltalk
syntax so we can simply perform the line, using the first word
as the selector and the rest of the words as the arguments. We
wrap the perform in a general exception handler so that we
trap any errors—specifically: selector is unknown, and the
number of parameters is incorrect for the selector. Here's the
code that processes each line.
processLine: aLine
| array |
array := (aLine copyUpTo: $#) asArrayOfSubstrings.
array size > 0
ifTrue:
[Object exrorSignal
handle: [:ex | self logMsg:
‘Invalid line: ', aLine]
do: [*self perform: (amay at: 1) asSymbol
withArguments: (array copyFrom: 2
to: array size)]]

November—December 1994

Objects
Everywhere!

Why settle for hybrid implementations when
you can have the real thing? JumpStart is the
leading provider of solutions and training
programs for pure object systems using
Smalitalk and the GemStone™ ODBMS. We
also specialize in deploying IBM Smalitali*™
and VisualAge®™ applications.

Ask about our Corporate Educators Program.

Manufacturing

Process Control
Network Management
Pharmaceutical
Client-Server IS Systems

Certified Service Partners with:

919.460.1583

SERVIO

Copyright 1994, © JumpStart Systems, Inc.

Let's take a couple of detours here. The perform: family of
selectors (perform:, perform:with:, ..., perform:withArguments:)
allow you to dynamically create messages in your code. The
perform: family are messages to which Object responds.
Regardless of which one you use, eventually
perform:withArguments: is sent, with an array of size zero or
greater, and a primitive is invoked.

The perform family can help eliminate the need for a
switch/case statement or the need for multiple [conditional]
ifTrue: [block] statements. For example, in our application, we
get back status codes from a serial device. We could check each
possible value and do something like:

statusCode = '0027' ifTrue: [*do something].

statusCode = '0028' ifTrue: [*do something].

statusCode = '0029' ifTrue: [*do something].

However, we can eliminate this checking for matches very sim-
ply. Instead, we create methods called message0027, mes-
sage0028, etc., then we do:

Object messageNotUnderstoodSignal

handle: [:ex | handle invalid statusCode]

do: [self perform: ('message’, statusCode printString) asSymbol].
An alternative way to do this last piece of code is to see if we
understand the message.

selector := (‘message’, statusCode printString) asSymbol.

(self respondsTo: selector)

ifTrue: [self perform: selector]
ifFalse: [handle invalid statusCode].
In terms of performance, handle:do: is marginally faster when

19

A Trace Logger

the message is understood, but in our timings it was about
seven times slower than the respondsTo: technique when the
message was not understood. We feel that the handle:do: tech-
nique is more elegant though.

The other detour is to take a look at the message
asArrayOfSubstrings. This is 2 message that we added to the
system class String. Here's the code; note that it uses
findFirst:startingAt:, which we also added to String by an easy
extension to findFirst: —

asArrayOfSubstrings

| first last collection |

collection := OrderedCollection new.

last := 0.

[first := self findFirst: [:ch | ch isSeparator not]
startingAt: last + 1.

first ~=0]

whileTrue:
[last := (self findFirst: [=ch | ch isSeparator]
startingAt: first) - 1.

last < 0 ifTrue: [last := self size].

collection add: (self copyFrom: first to: last)].

~Array withAll: collection.

Back to the TraceLog, We have two functions that log entry
into methods. Here are examples of them.

Trace ifTrue: [Log enter].

Trace ifTrue: [Log enter: 'here is some value in string form'].
The enter method simply sends self enter: nil. So let's look at
the enter: method:

enter: aString

| context currentDepth |

traceEnter ifFalse: [*self].
Next we pop the context until we are no longer in the TraceLog object.
A context kngws what object it is in (the receiver), what message was
recetved, and what object sent the message (the sender). So we can
migrate out through the senders of messages until we find a sender that
is not our TraceLog instance; i.e., not self. The variable thisContext s
classified as a special variable, along with self and super and contains
information about, surprise, the current context. It can be interesting to
put a self halt i a method and inspect thisContext.

context := thisContext sender.

[self = context receiver]

whileTrue: [context := context sender].
The reason for popping the context is that we may be called from the
enter method, and we dont particularly want to record TraceLog as
the class that is trying to log a message. What we end up with is the
class from which the enter or enter: message was sent. Once we
know this class, we can check to see if it is gne of the classes we want
to log. The code that checks whether to log a class is listed after this
method .
(self logThisClass: context)
ifTrue:
[currentDepth := 0.
(self logFile) cr; cr; nextPutAll: 'Enter’.

self imestamp,
aString notNil ifTrue: [(self logFile) nextPutAll: aString].

20

We now stay in a loop, printing out the method we are in then pop~
ping the stack, until either we are at the end of the stack, or we have
satisfied the stack depth condition in the parameter file.
[context notNil
and: [context receiver notNil
and: [currentDepth < self stackDepth
or: [self stackDepth = 0]]1]
whileTrue:
[(self logFile) cr; nextPutAll: context printString.
Here, we print the source code of the method we are in, assuming
the parameter file tells us to do so, i.e., we print the source code for
the context. We haven't found it particularly useful, but it makes an
impressive demo. Interestingly, it will show the source code even if
the sources are not available. It does this by decomposing the byte-
codes and using t1, 12, etc., for the variable names.
self showSource
ifTrue: [(self logFile)
cr;
nextPutAll: context sourceCode].
Now get the cantext of the sender of the message that generated the
context being printed.
. context := context sender.
currentDepth := currentDepth + 1].
self logFile flush]

Here’s the code that checks to see if we should print trace infor-
mation for the current method. Le., is the class of the object
which sent the message one of the classes we should be logging?
logThisClass: aContext
| thisClass |
(self classesToInclude isNil
and: [self classesToExclude isNil])
ifTrue: ["true].
The next line looks rather strange. What we are doing is taking
the context of the method that sent the enter or enter: message and
getting its class. aContext receiver printString = 'a Thing' #f #5e
message was sent by an instance of Thing, and "Thing” if it was
sent from the class Thing. aContex receiver class printString =
'Thing' if the message was sent from an instance of Thing, and
Thing class’ if it was sent from the class Thing. So the line we
bave ensures that we end up with Thing’, whether the sender is a
class or an instance method.
thisClass := aContext receiver class printString
copyUpTo; Character space.
self classesToInclude notNil
ifTrue: [*self classesToInclude includes: thisClass]
ifFalse: [*(self classesToExclude includes: thisClass) not]
‘What is the final outcome of all this code? Here's an example
of the log file, showing output from enter, enter:, and debug:,
with stackDepth set to 1, and with showTimestamp set to true.
‘We don't print the date because if logging is on, the first thing
logged is the date and the list of trace parameters in effect.
Enter(2:26:57 pm):
LmInput>>getRequestUsing:

Debug(2:26:57 pm): acs=0, vsn="RB1400'
LhMoveRequest(LhRequest)>>initialize:

continued on page 32

The Smalltalk Report

Project Practicalities

Collection
== oo Protection

‘ ‘ 0 accessor or not to accessor?” A good question, but
one that I answered for myself five years ago. My
mentors used them exclusively and I have been

addicted to them ever since. My question is not should I use

them or not, but how can I use them safely?

THE PROS

I suppose at first I used accessor methods without a whole lot
of thought. Now I have five years of Smalltalk under my belt
and I have experienced the good, the bad, and the ugly sides of
accessor methods. When I add up all the pluses and minuses
though, the pluses win out. Here are the main reasons why I
like the following accessor methods.

* Robustness of the system under development. Accessor
methods allow me to use laissez—faire initialization tech-
niques. This makes my objects more resilient since variables
(instance, class, class instance) initialize as needed. The
advantages of this technique include the following:

1.Initial values for variables are defined in a single loca-
tion. This removes the chances for (re)initializing vari-
ables improperly (that is, other methods of the object
can set the variable to nil instead of to an object of a
particular type). Additionally, if you decide to change the
type of object held by a variable, you only have to make
the change in a single location.

2.Objects held by variables ate not created until they are
needed, if ever.

* Facilitation of business rules and access control. System
requirements may include actions that must take place when
object states change. These include security restrictions that
may make variable access restricted in certain circumstances.
Accessor methods can support these types of requirements.

* Less coupling. Changes to variable storage types should not
affect the class’ methods or its subclasses’ methods.

THE CONS
I understand that there is a concern that providing and dlindly

Bol Brodd is Vice President of Products at Hatteris Software, Inc., a company
that specializes in helping other companies vse object technology effectively. He

welcomes questions and comments via email at 730213235 compuserve.com or
by phane at 919.319.3816.

November-December 1994

using accessor methods violate the encapsulation benefits of
object-oriented systems. One of the biggest mistakes I have
made (and seen many others make) is to manipulate the con-
tents of another objects variables instead of letting the object
manage it on its own. This usually occurs with variables that
are of the Collection types, but occurs with other object types
as well.

A typical example is when an object gains access to another
object’s instance variable that contains a collection and simply
adds an object to it, or removes one from it. Lets say we have a
HierarchicalObject class that has an instance variable children
that holds a collection of its immediate descendants. A typical
get accessor method for children might look like the following:

HierarchicalObject Class
children
"Answer my collection of direct descendents”
(children isNil)
ifTrue: [children:= OrderedCollection new].
~children

At this point, lets assume that the only task to perform when
adding a child is to add it to the children collection. The
Clients of this class might write the following code to do so:

aHierarchicalObject children add: child.

This may be acceptable for the current implementation, but it
becomes a difficult situation if there are specific tasks that
must occur when adding and removing children. For example,
lets say HierarchicalObject's implementation changes so that it
includes an instance variable parent to hold its immediate
ancestor. Whenever a child is added to a parent, the parent of
the child also needs to be set. Now Clients must change their
code to look like;

aHierarchicalObject children add: child.
child parent: aHierarchicalObject

The behavior of the object ends up dispersed among other
objects in the system. The object that owns the children has no
control over its own variables. This is a complete violation of
encapsulation and a potential maintenance nightmare as well.
"This of course could be avoided if the children collection is not
accessible to Clients.

A SOLUTION
The optimal way to solve this problem is for the Smalltalk ven-
dors to support the nation of public and private variables and
methods in ways similar to C++. In the meantime, how do we
gain the benefits of accessor methods without suffering the typ-
ical abuse that is associated with them? One solution is a tech-
nique I am developing for use in our designs at Hatteras
Software, Inc. that we call collection protection. The name is a
litle misleading as the technique applies to protection of all
state data for an object, but collections are the most abused.
The technique provides for the use of accessor methods but
reduces the chances of accidental encapsulation abuse. It does
so by using 2 combination of public and private methods. Here
are the key points to collection protection:

21

Database Solution for Smalltalk/V
A class library for ODBC Database Access

ODBC 2.0 support

B Automatic class generation

B Native data type support

B online help, source included, no runtime fees

Available for Winl16, Win32s, Win-NT, OS/2 and PARTS
"... simple but elegant ..." - Australian Gilt Securities

sw~ IR
ODBTalk

Client Server Solution for Smalltalk/V
A class library for Windows Sockets Development

® UDP and TCP Sockets

B Synchronous and asynchronous support

u sample code for remote disk browser app

u online help, source included, no runtime fees

Available for Winl16, Win32s, Win-NT

Tel: 416-787-5290

Fax: 416-797-9214
CompuServe: 73055,123
Internet: lucc@tor.hookup.net

Consulting Services
Tad e Sl duipn

CLIENTSERVE

DEVELOPER
Call for Papers!

CLIENT/SERVER DEVELOPER is a new publication commit-
ted to helping programmers, developers and technical
managers understand C/S technology. We are now
actively seeking manuscripts on the following:

Operating Systems ® Databases ¢ Programming Languages ®
Object Technology and Reuse ® C/S Application Design
Methodologies and Tools e Software Engineering
Methodologies ® Pre-Packaged C/S Applications ¢ Business
Process Re-Engineering ® Project Management in a C/S
Environment ® Metrics and Testing ® Multimedia

To submit an article or request author guidelines,
contact:

Thomas 0'Flaherty, Editor

411 West End Avenue, Suite 2B

New York, NY 10024

Phone: 201.801.0050 Fax: 201.801.0441

Published by SIGS PUBLICATIONS, Inc.

22

Project Practicalities

The private method

Kent mentions in his article that simply making accessors private
is not a sufficient solution to solve the encapsulation problem
because “anyone can invoke any method (and will, given enough
stress).” I agree with this staternent. After all, making a method
private is nothing more than placing the word private at the
beginning of the method comment and when available, placing
the method in a private protocol. I cannot keep up with my own
classes private and public methods, much less anyone elses!

Once I realized this, I began thinking about ways to make
private accessor methods obviously private. First I tried using
the prefixes public- and private- for appropriate protocol
names. This is very useful, but it does not make it obvious
when referencing the method in code. I then pursued different
ideas for naming the private accessor methods so that they
were somehow different from others. I thought about using pri-
vate as a prefix for each private accessor method name. This
was certainly obvious, but is rather cumbersome and does not
read well. Then I tried some other variations such as a prefix of
basic, which is used in some of the base Smalltalk code. This is
better, but as noted, it is being used for another purpose.

I was convinced that this was the best way to solve the
problem, so I tried several other prefixes until I stumbled upon
the word my. It seemed too simple at first, but the more I
thought about it, the prefix my seemed like a reasonable solu-
tion. As it turns out, my works because it reads both naturally
and unnaturally. Take 2 look at the following code that uses the
example of a Store that has employees:.

Store class
myEmployees
"private - Answer my collection of employees”

(“employees isNil)
ifTrue: [employees := OrderedCollection new].
~employees

myEmployees: aCollection
"private - Seth my collection of employees to aCollection”
employees := aCollectionOfEmployees

My reads naturally when an object is accessing its own variables
because the object does indeed own the variables. My is an
appropriate term for this frame of reference. For example, an
object wants to access its own collection of Employee objects
through its accessor method named myEmployees. A method
within the object doing this would look something like:

list addAll: self myEmployees
On the other hand, my reads very unnaturally when code in
another class tries to access the object’s variables through its
private accessor methods. A method within another class doing
this would look something like:

list addAll: anotherObject myEmployees

In this case, the meaning of the statement becomes confusing.
continued on page 32

The Smalltalk Report

The best of comp.lang.smalltalk

ALAN KNIGHT

Literals

he discussion this tirne starts with a simple, commonly
asked question, and takes it to extreme lengths. While
many of the proposed solutions aren’t things you would
use in practice, they illustrate some interesting Smalltalk tech-
niques and areas of confusion.
The question is how to create an array of points in a
method, The obvious:
#(6@3 12@4 13@79)
won't work, It yields an array of integers and symbols, like this:
#EH@I12H@4134@T9)
The numbers in the expression are properly interpreted, while
the @ operators turn into symbols. Clearly, the compiler needs
more detailed instructions. How about if we use brackets to tell
the compiler how to group the numbers and operators:
#((6@3) (12@4) (13@79))
Unfortunately, this doesn’t work either. It gives us an array con-
taining three subarrays, each of which contains two integers
and a symbol:
#(#(6 #@ 3) #(12 #@ 4) #(13 #@ 79))

POINTS AREN'T LITERALS
The real answer is that you can’t do this directly. The Smalltalk
compiler treats certain “literal” strings specially, and creates
objects at compile-time which are embedded into the compiled
code. This literal syntax is very important, since it would other-
wise be awkward to generate many of these objects. Advanced
readers can think about how to generate numbers if there were
no literal syntax. It’s awkward, but certainly possible, and I'll
discuss it briefly at the end of the column.

Some examples of literals are

3 (an Integer)
3.14159 (a Float)
3.1415926535898d (a Double)
$b (a Character)
'hello world' (a String)
#helloWorld (a Symbol)
[ObjectMemory quit] (a Block)

#(2 aSymbol #aSymbol 'a String’) (an Array containing other literal objects)

Alan Itnight is a consultant with The Object People. He can be reached at

613.225.8812, or by email as lmightacm.orqg.

November—-December 1994

Of these, we are most interested in the last one, creating a liter-
al array. Note that “words” (anything that would be a legal vari-
able name) inside a literal array are treated as symbols, whether
or not they have a # in front of them. That's why the @ sign
was turned into a symbol in the previous examples.

The other important thing to note is that points are not one
of these literal constructs. When I write 4@10 in my Smalltalk
code, it’s not interpreted as a literal point, but as two literal
integers and a message send. The operator @ is treated exactly
the same as the operator + in 2+2. Both are messages sent (at
runtime) to numbers which generate a new object.

WHAT CAN WE DO?
If we can't make a literal array of points, then what’s the easiest
way to create a non-literal array of points. There are quite a
few, but for small arrays the easiest one is obvious.
Array with: 6@3 with: 12@4 with: 13@79
Unfortunately, that only works on arrays with four or fewer cle-
ments. For larger arrays we could make smaller arrays and con-
catenate them:
(Array with: 6@3 with: 12@4 with: 13@79 with: 14@7) ,
(Array with: 7@33 with: 9@13).
but concatenation is expensive if the arrays start getting large.
We could create an OrderedCollection instead, since that’s easy,
and we can always convert it to an array if we really require an
array and are willing to pay the cost of conversion:
(OrderedCollection new: 3)
add: 6@3;
add: 12@4;
add: 13@79;
yourself "or asArray"
If we want to avoid the cost of conversion, we could always use
a stream. Streams are most commonly used for strings, but they
work with fine arrays:
WriteStream on: (Array new: 3)
nextPut: 6@3;
nextPut: 12@4;
nextPut: 13@79;
contents

Transforming the literals
All these mechanisms are pretty simple, but we're getting fur-
ther and further away from the clear, simple literal syntax. We
can get closer to that by using valid literal syntax and then
transforming the results. Alan Reider
(alanreider@sensenet.com) suggests two possible forms:

#(10 78 90) with: #(45 10 34) collect: [:x:y | x @ ¥y]
This requires us to define a with:collect: method, similar to the
common with:do: iterator. The with:do: method iterates over
matching collections, executing its argument block with corre-
sponding elements from both collections. The with:collect:
method does the same thing, but also accumulates the results.
While this is an interesting technique, for this case it doesn't
seem as clear as the alternative using the normal collect:
method:

#((10 45) (78 10) (90 34)) collect: [:each | each first @ each last]
Rather than creating a literal array of points, this creates a liter-
al array of two-element arrays of integers and then at runtime,

23

The best of comp.lang.smalltalk [§

builds a collection of points based on the arrays. This is quite
readable, since the x and y coordinates are kept close together.

Performing literals

If we start making use of some of Smalltalk’s meta-facilities, we
can get very close to the literal form. Bjérn Eiderbick
(bjorne@cyklop.nada.kth.se) suggests making use of the per-
form: facility. Since the “@” operator is interpreted as a symbol,
we can get Smalltalk to send it as a message. In fact, this will

1 like going around the image
changing the class of objects
Just to see who objects. ”

let us write an almost literal array using any expression that has
only binary selectors and literal constants:

|sw]

s:=#(10@45 78@10 90@34 67 @ 12 98 *2 34 + 44) readStream,

w := WriteStream on: Array new.

[s atEnd] whileFalse:

[w nextPut: (s next perform: s next with: s next)].

w contents
By converting this code into appropriate instance methods, and
adding a facility for handling nested arrays, the syntax can be
made very simple:

#(10@45 (90@34) (67@12 (1@1 2@3) 99@100) 98*2 34+44 (1+2))

convert

Use the compiler

Of course the ultimate in metafacilities and general solutions is
to invoke the compiler. Alan Lovejoy (lovejoya@netcom.com)
suggests:

(#('44@122' '18@54") collect: [:string | Compiler evaluate; string])
which can also be given a more convenient syntax by defining
appropriate evaluation methods for strings and collections. While
it's certainly clear that we're creating points, this is extremely
inefficient and is also not allowed in a normal application (Most
Smalltalk vendors don't allow you to include the compiler in a
run-time system). This can be made somewhat more efficient
and less general, as suggested by Bjérn Eiderbick:

#('10@45' '78@10' '90@34') collect: [:x | Point readFromString: x]
(Note that readFromString: is Parcplace-speciﬁc.)

Change the compiler
One step beyond using the compiler is changing the compiler
so that it does generate the literals you want. Eliot Miranda
(eliot@ircam.fr) writes:
I modified the 2.3 compiler to evaluate expressions in { }s at
compile time. So you could write for example:
{Array with: 10@14 with: 12@16 with: 14@16) at: index

24

Within { }s self is bound to the class in which the code is
compiled. Alas, the ParcPlace 4.0 compiler doesn’t remem-
ber the class, so I never bothered to implement it in 4.0.

It took about four hours to do. The major tweak is to

include all the literals in all the compile-time expressions in

the resulting method so that e.g., browsing senders still

works even though they don't occur in the compiled code.
This, however, is a little bit beyond the ability of the average
Smalltalk programmer. I know it would take me more than
four hours.

If you're lucky, though, someone else will have modified the
compiler for you. Users of GemStone and SmalltalkAgents are in
luck, as both of these dialects apparently have a construct like this,
although they both build the array at runtime instead of compile-
time (compiler optimizations may change that for specific cases).

Class changing
By this time, the discussion had become something of a con-
test. Jan Bottorf (janb@netcom.com) writes:

It seems amazing how many different ways we have come

up with to do this simple thing. Maybe we should have cat-

egories: the clear source code people, the highest perfor-
mance people, the most encapsulated people, the special
compiler people.
He also contributed a particularly sneaky mechanism, using one
of the lesser-known features of ParcPlace Smalltalk:

#((10 45) (78 10) (90 34)) collect:

[:each | each changeClassToThatOf: 0@0]
Yes, that’s right, you can actually change the class of an object.
It breaks encapsulation horribly, since you are responsible for
knowing that the number of instance variables match, and
understanding the mapping between them. If you're careful, it's
a very powerful technique that can do all kinds of nifty stuff
(gq.v. THE SmALLTALK REPORT, 2(9):4 and THE SMALLTALK
RePoRT, 2(6):13). Used in an undisciplined way, it can cause
some extremely confusing bugs. Anything that changes literals
in a compiled method is likely to be confusing.

Nevertheless, this is a very powerful technique. Jeff McAffer
(jeff@is.s.u-tokyo.ac.jp) proposes a fairly structured way of
using it, the “self-initializing method.” The first time it's called,
it actually modifies its own internal storage so that it can return
the computed result without extra computation the next time.
Given the level of system hacking involved, I'm not sure this is
really better in practice than caching the array of points in a
class variable. It is, however, an extremely neat hack, and points
the way to some of the amazing things that can be achieved by
exploiting Smalltalk’s reflective capabilities.

Unfortunately, <the previous solution> has two drawbacks.

1) #collect creates another array. Since you are already bash-

ing the sub-arrays why even bother to #collect:. Just run

through and change the class and voila, an Array of points.

2) If this is in a method it will only work once since it hacks

and bashes the class of the literal elements. Well, OK, in

this case the second run will just change a bunch of Points
to be Points but that is wasteful.

To address these, I propose a self-initializing method as

follows:

continued on page 30

The Smalltalk Report

Register and receive
a FREE copy of Borland's
new Delphi product—
a $495 value.

January 12-13 NEW YORK
January 17-18 WASHINGTON, DC
January 19-20 CHICAGO
January 23-24 SAN FRANCISCO

The Client/Server Applications Tour is a
2-day training and education event making
E(/ stops in 4 cities across the U.S. All classes are
g objective and product neutral. The tour is

designed to provide attendees with practical
guidelines to assess and develop realistic
Breakfast goals for their own client/server projects.

Registration/Breakfast

Divided into a technical and management
track, this seminar offers practical solutions
for implementing a client/server architecture
within corporate environments. Whether you
are a software manager or part of the techni-
cal development team, you'll walk away from
h thés_e two days of intense training with a

* - complete framework for implementing and
managing client/server solutions which meet
your particular business needs.

Who Should Attend
Anyone exploring the corporate benefits
of client/server technology, including:
* Programmers

* Developers

* Designers

* Software Engineers

* System Analysts

* Project Managers

* Project Leaders

- CIOs

* MIS

Morning Classes: C/S in the Real World

45—11:45 Morning Classes: C/S Overview

0:45-11:45

Luncheon & Borland Presentation | |m:45—iz45 ~Eunichiéon & Borlard Pi
2:00—4:00 Afternoon Classes:
Strategic Considerations in the
Transition te C/S

45145 Bor)
2:00—4:00 Afternoon Classes:
Making the Change to
Client/Server

4:00—5:00 4:00—5:00

Presented by:

e

CONFERENCES

Co-sponsored by:

Borland
CLIENTSERVER

DEVELOPE

Smalltalk Idioms

Architectural
Prototype:

Television

KENT BECK

Remote Control

ow, where was I? Oh, yes. Last issue I talked about

my philosophy of testing and presented a framework

that supported writing unit and integration tests. But
before that, I was talking about how to use patterns. I have
spent a couple of issues designing the software to run a televi-
sion and remote control, using patterns to guide every design
decision. Here are the CRC descriptions of the objects we
found, and the patterns that created them:

By the time I have this many objects designed, especially with
clients who aren't really familiar with objects all the way through
implementation, I find that most people’s understanding of the
design is so vague as to be actively dangerous. Everyone is think-
ing of a different implementation (or trying hard not to think of
any implementation at all). It is about at this point that I like to
write a quick sketch of the architecture in Smalltalk to bring
everyone's focus back to something concrete.

Sometimes I call this a “spike,” because we are driving a
spike through the entire design. We are not searching for com-
pleteness. Instead, we want to illustrate the kinds of responsi-
bilities accepted by all the major objects in the system. Because
people variously associate “spike” with volleyball, railroads, or
dogs, I have begun using “architectural prototype” to describe
this implementation.

What does all this architectural prototype stuff have to do
with patterns? I have two answers. First, Architectural
Prototype is a pattern, but at a completely different level than
most of the patterns I have discussed in this column. See
below for the pattern itself. The second answer is a bit more
complicated. I never design objects without wanting to see
them implemented. Especially with designs guided by pat-
terns, I find that the translation of the design into code is both
straightforward and enlightening.

PATTERN: ARCHITECTURAL PROTOTYPE
When do you put design ideas into code?
In the beginning, programmers just sat down and wrote their
code. Any preparatory work was either entirely mental, or
I(ent Becl has heen discovering Smalltallc idioms for eight years at Tektronix,
Apple Computer, and MasPar Computer. He is the founder of First Class Software,

which develops and distributes reengineering products for Smalltall.. He can be
a i at First Class Software, P.O. Box 226, Boulder Creek, CA 95006-0226, or

at 408.338.4649 (phone), 408.338.3666 (tax), 707611216 (Compuserve).

scratched on the back of sheets of line printer paper.
Experience soon showed that while this approach worked for
smart people working on small projects, larger team efforts
required coordination before coding to avoid the enormous
costs of revising already running code to match data structures,
resolve names, and ensure reliable computations. Software engi-
neering has a nearly unbroken record of pushing more and
more work “up front,” before coding begins.

The urge to resolve all possible issues before coding rests on
good economics. The later in development a problem is discov-
ered, the more it costs. A dogmatic adherence to “design first,
then code” ignores two very important issues.

First, the goal of “up-front” development is to set up clear,
effective, concise communications between the members of the
teamn. A good design creates a shared vocabulary and mindset
among the people who will have to implement, manage, and
use the resulting system. Design notations both help and hin-
der this process. Because they are abstract, they encourage dis-
cussing essentials without descending into unimportant imple-
mentation details. That abstraction cuts both ways, though.
The meaning of design documents are subject to human inter-
pretation. It may be months before it is apparent that a team’s
understanding has diverged.

Second, code is no longer the boat anchor it used to be.
Modular development supported by a modern, object-oriented
language, and programming environment results in code that is
less expensive to write and easier to modify, even late in devel-
opment, than were the products of earlier generations of pro-
gramming languages. The cost curve supporting “design first,
then code,” has changed.

Together, these two points demonstrate that early coding is
both necessary, to overcome the vagueness of design notations,
and practical, because doing so will not invoke inordinate costs.

What code should you write early? The same constraints
apply to early code that apply to early design. You'd like to
make decisions with far reaching effects. Big decisions are the
ones that will are most important to communicate early. You'd
like to avoid making decisions with small effects. Their pres-
ence in the code will obscure the important points you are
exploring.

Implementation a systern when you have enough objects
that their interaction is no longer obvious to everyone. Use
simple algorithms and data structures. Implement only a single
variation where there will be many in the final system.

You may also need an Interface Prototype to aid in commu-
nication with users.

THE TELEVISION PROTOTYPE

The goal in an architectural prototype is to demonstrate and
communicate the architecture as simply as possible. I was talk-
ing to Ward Cunningham the other day and he said, “My job
is to write five method classes.” That is exactly what I am talk-
ing about.

The user interface to an architectural prototype should be
extremely simple. If you can run it from a Workspace, so much
the better. The goal of the prototype is not to demonstrate a
whizzy interface, but communicate from programmer to pro-
grammer. User interface code is some of the hardest to get and

The Smalltalk Report

February 21-24, 1995
O Park Central

New York, NY

ALLTALK

SOLUTIONS

Whel'e 4 II ¢

h
Finally, a is esh';alk

vendor-independent a I ,
conference dedicated to all t a I
Smalltalk users. Focusing on the k
practical application of Smalltalk in its

dialects, Smalltalk Solutions ‘95 is an opportunity

for the entire Smalltalk community to network, share innov-
ative strategies and programming tips, and stay up-to-date on
the latest tools and techniques.

Learn from the Smalltalk Experts
The educational program has been designed in conjunction
with the Technical Conference Chair John Pugh, editor of The
Smalltalk Report. The 4-day conference offers over 30 inten-
sive classes ranging from beginner to advanced, all taught by
expetienced and well-respected Smalltalk experts.

You'll come away with new insights on language advances,
usage tips, project management, analysis and design tech-
niques, and insightful, practical applications. Specific class
tracks focus on Team Programming, Analysis and Design,
User Experiences/Case Studies, Technical Features, and
Management Issues.

The latest Smalltalk products will be displayed in the
Smalltalk Solutions ‘95 Exhibit Hall, where you'll have a
chance to demo the leading Smalltalk products, and receive
an up-close, hands-on comparison. Don’t miss this chance
to see Smalltalk in action.

Smalltalk Solutions *95 is presented by SIGS Conferences, spon-
sor of over 7 conferences world-wide, including Object Expo,
Object Expo Europe, and C++ World.

WSIGS

For information on attending
Smalltalk Solutions ‘95, please
contact the SIGS Conferences Registrar:

PHONE: 212.242.7515
email: sigsconf@ix.netcom.com SMALLTALK EVENT!

DON'T MISS

Precise metrics
for advanced 00
development.

« Metrics collection facility for Smalltalk applications development
« Supports VisuolWorks, Smalltalk/V for Windows, Win32s, Windows NT
» Complete grophical user interfoce ~ « Fully supports Envy (optional)

@bjceciSpace”

g SPECIALISTS IN OBJECT TECHNOLOGY

ProbucTs-TRAINING - CONSULTING -MENTORING * AUDITING
For more information call 1-800-0BJECT-1, Email; info@objectspace.com

Copyright DbjectSpacs, e, ©1994, AY names ond Irademarks are the property of rheir respeciive awners.

Smalltalk Idioms

keep clean. Any interface you don’t need will detract from the
primary purpose of the prototype.

REMOTE CONTROL
For the television prototype, we will start on the remote control
side. Recall that we have:

Object Responsibilities

Keyboard create Events from keystrokes
RemoteControl read keyboard Events
EventStream read and write Events
InfraredStream read and write bytes

Figure 1 summarizes the Smalltalk objects I came up with and
their relationships:

Keyboard
control D¢
RemoteControl
stream
EventStream
stream \
InfraredStream

We will start processing by sending character: aCharacter to
the Keyboard to simulate the Keyboard noticing that a button
has been pressed.

Keyboard>>character: aCharacter

control event: (Event on; aCharacter)
Creating an Event sets its character and timeStamp.

Event class>>on: aCharacter

~self new setCharacter: aCharacter

Event>>setCharacter: aCharacter
character := aCharacter.
timeStamp := Time now
The RemoteControl doesn't try to process the Event, it just
passes it along to its other half inside the television:
RemoteControl>>event:
stream nextPut: anEvent
The EventStream lives to transform Events to and from bytes. I
picked the simplest format I could think of, storeString. All
objects can produce a storeString, which when compiled results
in an equivalent object:
EventStream>>nextPut: anEvent
anEvent storeOn: stream.
~anEvent
T’ll defer the implementation of InfraredStream for a moment,
since it is the trickiest piece of code and the least interesting
architecturally.

TELEVISION

On the television side, we have the following objects:
Object Responsibilities
TelevisionControl map Events to commands
Television change channels
EventStream read and write Events
InfraredStream read and write bytes

In the television, the EventStream and InfraredStream will be
reading rather than writing as they were in the remote control.

Figure 2 1s a picture of the objects in the Television.

We will start processing by sending the TelevisionControl the
message “poll.” This interface (and Keyboard>>character: used
above) let us defer decisions about how control really works.
Decisions like polling versus interrupts are important, but don't
affect a well-factored architecture that much:

TelevisionControl>>poll

stream atEnd
ifFalse: [self event: stream next]
Getting the next Event from the EventStream is accomplished
by compiling the characters in the InfraredStream.

(TelevisionControl

stream

televisich’\) EventStream

\ stream
N

InfraredStream

Television

Figure 1. Objects in the Remote Control

28

Figure 2. Objects in the Remote Control

The Smalltalk Report

Table 1.

EventStream>>next
~Compiler evaluate: stream upToEnd | Object
Again, we will defer discussing Event

InfraredStream until later. The atEnd
test for EventStream delegates to the

InfraredStreant: EventStream—Read and write Events
EventStream>>atEnd InfraredS Read and wrie b
~stream atEnd nfraredStream—Read and wrile bytes

TelevisionControls respond to an
Event by sending the channel:

Keyboard—Create events from keysirokes
RemoteControl—read keyboard events

TelevisionControl—Map user input fo commands
Television—Change channels

Pattern

Event

Objectified Library

Obsjects from the User's World,Half Object
Formaiting Stream

Objectified Library

HalfObject

Objects from the User's World

anInteger message to the Television:
TelevisionContrel>>event: anEvent
television channel: anEvent digit
Events find their digit by getting the digitValue of their character:
Event>>digit
~character digitValue
Finally, Televisions just print the channel to the transeript to
show that they have received the message:
Television>>channel: anInteger
Transcript cr; show: 'Channel: ', anInteger printString
Figure 2 shows the effect of executing the prototype. The
Keyboard has been sent character: 2. The TelevisionControl has
been sent “poll.” The new channel has been printed on the
transcript.

InfraredStream

1 promised to talk about how InfraredStream was implemented.
We are trying to simulate two address spaces talking over an
infrared beam. The implementation of the infrared protocol
iso't interesting to the architecture, so we can simulate simply

[

A channet 2,
;*Ef%“éf &{’i%f%%f'r

+

Keyhoard TelevisionControl
character: $2| |poli

Figure 3. Executing the prototype.

InfraredStream
characters

N

InfraredStrey/
characters

OrderedCollection

without worrying about how correct it is (although later we
might want to take into account communication errors).

The trick is to have both InfraredStreams share a common
OrderedCollection. The collection will contain the characters that
have been written to one beam that haven't yet been read by the
other. Figure 4 shows how the two streams look when they are
connected.

Writing to an InfraredStream puts the character on the end
of the collection:

InfraredStream>>nextPut: aCharacter

characters addLast: aCharacter.
~aCharacter
Reading takes the first character off of the collection:
InfraredStream>>next
~characters removeFirst
The atEnd test tests whether the collection is empty:

continued on page 32

Figure 4. Streams sharing a Collection.

November—December 1994

The complete
Smalltalk interface
to TCP/IP.

« Supports Smalltalk /V for Windows, Win32s, Windows NT
« Manages the TCB/IP asynchranous event notification system fransparently
« More than 40 closses representing oll aspects of TCP/IP programming

@®bceciSpoce™

smaw. SPECIALISTS IN OBJECT TECHNOLOGY

PRODUCTS - TRAINING - CONSULTING - MENTORING - AUDITING
For more information call 1-800-0BJECT-1, Email: info@ubiecispace.com

Copyright ObjeciSpute, Inc. ©19%4. All nomes and (rademarks are the praperty of their respaciive awners.

29

For information on advertising in the Recruitment Section, contact
Michael W. Peck at 212.242.7447

Compuler

SMALLTALK/OOP

Birmingham, AL

For more than 20 years, American Management Systems Inc.
(AMS) has led the way in the application of leading-edge informa-
tion technology for our client base of Fortune 500 companies and
public sector organizations, Today, our reputation as an industry
mnovator is stronger than ever.

Continued growth has created immediate opportunities in

Birmingham, Alabama for qualified object ortented program-
mers, designers, and architects.

Requirements include 1+ years of experience in one or more of
the following:

e Smalltalk
» Envy/Developer
o ODBMS

Experience with Windows or UNIX is a plus.

We offer a competitive compensation and benefits package and
career growth opportunities. For immediate consideration, please
send your resume in confidence to; Dept. SR- 9411, AMS
Two Chase Corporate Drive, Suite 105, Bi am,AL
35244. An Equal Opportumty Employer M/F/D

==

AMERICAN MANAGEMENT SYSTEMS, INC.

» C++
* O0A/00D

Software
Professionals

USAIr, a recognized leader in the airline industry, seeks the
followmg experienced software professionals for its Opera-
tions Research Department in n, (just out-
side of Washington, DC). This organization develops high
impact decision support systems for all divisions of the airline.

OBJECT-ORIENTED PROGRAMMER/
ANALYSTS

Yield Management Applications
Design and develop programs in Smalitalk. rience devel-
oping client/server aj Sp&, lications using relational databases
under UNIX and M dows strongly preferred.

OBJECT-ORIENTED PROGRAMMER/
ANALYST

Customer Services Applications
Design, develop and su;tvﬁ)on tems to support a variety of
projects. Expenence st communications software,
GUI design, and object- oriented analysis required.

For conmderatlon, please send a resume with cover letter, in-

uding salary history and academic GPA (recent graduates
nlso send a copy of transcript), making sure to clearly indi-
cate position of interest, to SAlr Employee Relations/IS
Recruitment, 3800 N. Liberty St. Winston-Salem, N.C,
27105. EEO Employer. Prmcipals only, please.

USAIr

|
The best of comp.lang.smalltalk

continued from page 24

someClass>>#someSelector

| point array |

point := 0@0.

array := #((10 45) (78 10) (90 34)).

amray first class == Point ifFalse: [

1 to: array size do: [|
(array at: i) changeClassToThatOf: point]].

-.. Taore code here ...
Note that if you are really offended by self-modifying meth-
ods you can modify it yourself manually using the above
code (slightly modified) as a Doit on the CompiledMethod.
Personally, I like going around the image changing the class
of objects just to see who objects. ;-)

NUMBERS WITHOUT LITERALS

In this same spirit of interesting intellectual exercises that may
not be useful in practice, here is the promised discussion on
creating numbers without using literals.

30

Normally, numbers are created either as literals, or as the result
of operations on other numbers. It’s not possible to just send new
to a numeric class. For one thing, the result is not well-defined. I
tried sending basicNew to Float anyway, just to see what would
happen. On all the implementations I tried, this gave values that
were unpredictable, but very, very small (less than 1.0e-20). So:

Float basicNew truncated
seemed like a plausible way to get zero. Unfortunately it isn't
very reliable (since I have no idea where those numbers come
from) and very platform-dependent.

It was only after I had tried this out on a couple of plat-
forms that I thought of the much more obvious:

Object new size
which should give zero reliably on any platform. Given zero,
the rest is easy. I can get one exploiting the simple mathermnati-
cal fact that anything raised to the power zero is one.

| one zero |

zero := Object new size.

one := zero raisedToInteger: zero.

Given one and zero, I can use basic arithmetic operations,
asFloat, and asDouble to get any other numbers I want. Q@

The Smalltalk Report

Product Announcements |

Product Announcements are not reviews.
They are abstracted from press releases provided by
vendors, and no endorsement is implied.

Vendors interested in being included in this feature
should send press releases to THE SMALLTALK REPORT,
Product Announcements Dept., 885 Meadowlands Dr., #509
Ottawa, ON K2C 3N2, Canada,
613.225.8812 (v), 613.225.5943 {f).

Polymorphic Ships FastObjectFiler

for Smalltalk/V

Polymorphic Software Inc. has announced the availability of
FastObjectFiler, a tool that allows developers to save objects to
disk. FastObjectFiler offers performance improvements of up
to two orders of magnitude over Digitall’s native ObjectFiler
utility, allowing Smalltalk programmers to use the convenience
and ease-of-use of ObjectFiler to solve persistent object stor-
age problems.

FastObjectFiler is implemented as a subclass of ObjectFiler,
5o it retains compatibility with existing files, and allows the
developer to plug it right in to existing applications. Externally,
the utility looks the same. However, internally, Polymorphic has
re-engineered ObjectFiler’s object traversal scheme, realizing
substantial performance improvements in the process. The
result is an ObjectFiler with performance that does not degrade
when saving larger, more complicated objects.

FastObjectFiler is now shipping for Digitalk's Smalltalk/V
2.0 for Windows, Smalltalk/V 2.0 for OS/2, and Smalltalk/V’
2.0 for Win32.

Polymorphic Software Inc., 1091 Insuctrial Rd., Ste. 220,
San Carlos, CA 94070, 415.592.6301 (v), 415.592.6302 (f),
75010,3075 on CompuServe

ParcPlace introduces VisualWorks
Business Graphics package

ParcPlace Systems, Inc. (Nasdaq: PARQ) announced the avail-
ability of VisualWorks Business Graphics, a new data presenta-
tion tool for building and incorporating charts and graphics
into VisualWorks applications.

Fully integrated with VisualWorks, the Business Graphics
package will bring a variety of presentation capabilities to cor-
porate developers. Point-and-click editing makes the Business
Graphics toolset easy to use and yields accurate data represen-
tation with minimal effort. Developers can choose from a wide
variety of chart types, including: bar, band, line, and pie styles.
ParcPlace Systems, Inc., 999 E. Arques Avenue, Sunnyvale,
CA 94086-4593, 408.481.9090 (v), 409.481.9095 (f)

Easel and Computer Systems Advisers
form strategic partnership

Easel Corporation has announced a joint development agree-
ment with Computer Systems Advisers, Inc. (CSA). Under the
agreement, Easel and CSA will jointly develop a bidirectional
bridge between Easel’s Smalltalk-based Object Studio applica-
tion development tools and CSA’s SILVERRUN modeling hub.

November-December 1994

The planned bridge will enable IS developers to share
models and specifications between Object Studio applications
and SILVERRUN, providing the necessary foundation for the
design and development of both the client and server compo-
nents of applications. The bridge will link Object Studio
object-oriented applications with the installed base of relation-
al databases modeled and maintained by SILVERRUN.

The bridge will also make it possible to develop an initial
design of a data model in SILVERRUN, which could then be
reflected in an Object Studio object model for client/server
application development. Conversely, an object model created
in Object Studio could be reflected in SILVERRUN's data
model for generating databases. In addition, the bridge will
allow changes in both the application and in the database to be
reflected in the corresponding models. This will include exist-
ing databases that can be reflected in the models through
SILVERRUN's reverse engineering facilities.

Easel Corp., 25 Corporate Drive, Burilington, MA 01803,
617.221.2100 (v), 617.221.6899 (f)

Hewlett-Packard Co. announces release
3.0 of HP Distributed Smalltalk
Hewlett-Packard Company announced version 3.0 of its HP
Distributed Smalltalk development environment. This new
release enables programmers who work with local or remote
Smalltalk code to develop and deploy portable applications
rapidly beyond the traditional client/server paradigm.

Distributed Smalltalk release 3.0 provides the speed and
flexibility necessary to move beyond typical client/server archi-
tectures to true distributed enterprise application development.
For example, it allows developers to encapsulate or surround
existing data with a distributed object layer to provide commu-
nication between the existing data and applications developed
with Smalltalk. This approach extends the life span of legacy
systems while providing developers with the software reuse
productivity gains of working with objects.

Release 3.0 is built on and extends ParcPlace’s VisualWorks
Smalltalk environment to create a distributed development
environment, Distributed Smalltalk release 3.0 provides classes
of objects that communicate over a network using an Object
Request Broker (HP's implementation of the Object
Management Group’s CORBA 1.1 specification). It includes a
number of distributed programming tools, such as a browser,
debugger, interface repository, sample applications, and other
utilities. HP’s new release is available bundled with
VisualWorks or on a standalone basis.

Hewlett-Packard Co., 3404 E. Harmony Road, mailstop 81,
Ft. Collins, CO 80525, 408.447.4722 (v), 303.229.2180 (f)

MathPack: Mathematical classes for
Smalltalk

MathPack from GSoft is a mathematical software package
designed to assist engineers and scientists in mathematical com-
putations using Digitalk’s Smalltall/V or ParcPlace’s Smalltalk-
80. With MathPack, a Smalltalk application is defined as a
coherent set of Smalltalk classes and methods that solve specific
mathematical problems. Mathpack contains over 120 mathemat-
ical classes and over 850 methods written entirely in Smalltalk.

31

Project Practicalities] Smalltalk Idioms

continued from page 22

It looks as though I am asking anotherObject for my own list of
employees. Because this statement is unnatural and confusing,
developers will avoid using it improperly!

The public accessor methods
The public (get) accessor method name matches the name of
the variable and answers a cgpy of the contents of the variable:

employees
"public - Answer is a list of my employees"
~self myEmployees copy

Clients access the collection through this method. Of course,
they can do what ever they want to the collection because it is
only a copy and will not affect the original collection.

There is no public set accessor method (i.e., employees:).
Instead, define methods that provide necessary behavior for the
object such as addEmployee:. These methods can manipulate
the object’s variables as needed.

CONCLUSIONS

The use of the private variable protection technique described
here retains the benefits of accessor methods while minimizing
their drawbacks. It does not keep the Clients’ code from
invoking the private methods, since they are not truly private,
but will help keep unintended changes to other objects’ vari-
ables from occurring.

In a future article, I will explore a framework of methods
that are useful to create to compliment the key collection pro-
tection methods described in this article. I will also look into
uses of collection protection for variables that contain objects
other than Collections. §

Reference
1. Beck, K. To accessor or not to accessor? THE SMaLLTALK REPORT, 2(8).

continued from page 29

InfraredStream>>atEnd
~characters isEmpty
Finally, upToEnd returns an OrderedCollection by default. We
need it to return a String, because the result will be compiled
by the EventStream. We can do this by overriding
contentsSpecies.
InfraredStream>>contentsSpecies
AString

CONCLUSION
The architectural prototypes I've done for paying clients have
been bigger than the television prototype presented here. Yours
likely will be larger, too. The key point to remember is that you
should write an architectural prototype to bring design discus-
sions back down to earth. Whenever the abstractness of design
is causing people to talk past each other, or fear of making con-
crete, “could-be-proven-wrong” decisions is slowing progress, a
little bit of code goes a long way towards advancing the project.
In the next issue I will begin to discuss how patterns can be
used to document reuse. §

Product Announcements

continued from page 31

MathPack provides classes for mathematical objects such as
complex numbers and functions, radicals, decimal fractions,
linear algebra, polynomials, rational functions, trigonometric,
logarithmic, exponential, and special functions, with symbolic
and numerical differentiation and integration, root finding,
contour plots, splines, Bezier curves, and 2-D and 3-D plot-
ting. In the statistical class, the following methods are avail-
able: average, standard deviation, variance, Chi-square test,
F-test, Kolmogorov-Smirnov test, t-test, analysis of variance,
Kendall-tau, regression analysis, general least-squares fitting,
and random number generation. The Digital Signal processing
class provides the basic functions for Fourier transform spectral
methods, particularly the transformation of discretely sampled
data, data filtering, and power spectrum estimation.

GSoft, 13918 Notley Road, Silver Spring, MD, 20904-1122,
301.384.9325 (v), 301.384.8325 (f)

32

A Trace Logger

continued from page20

Enter(2:26:57 pm): LhMoveRequest (acs=0, vsn="RB1400')
SharedQueuePacket>>queueYourselfUsing:

Enter(2:26:57 pm): acs: 0
ChannelManager>>sharedQueuneForAcs:

Enter(2:26:57 pm):

Channel>>processPacket:
And how useful is this whole scheme? In our development,
we keep the logger active whenever we are running the prod-
uct and debugging our work. Since we don't have a user inter-
face that gives us visual clues as to what is happening, we find
it very convenient to scan through the log file to see what was
going on in our product if we see 2 problem. The other
option is to add self halt messages in judicious places, which
we also do, but we’ve often found it quicker to see what was
happening internally by looking at the log file. When the
product is shipped to customer sites, this will be the only
information that the support people have to help track down
the causes of problems.

All in all, we've found our TraceLog class to be very useful.
More than that, it was a lot of fun to create, and gave us an
opportunity to learn some very interesting Smalltalk features.Q

Alec Sharp is an Advisory Software Engineer at StorageTek. He is the
author of Software Quality and Productivity. He can be reached at
alec_sharp@stortek.com. Dave Farmer is a Senior Software Engineer at
StorageTek. He can be reached at david_farmer@storetek.com. They both
work on the Unix Storage Server softwars, which manages connections to
networked hosts and drive the StorageTek family of Robotic Tape Libraries.

The Smalltalk Report

	By Article Title
	A quick peek under the covers of IBM Smalltalk
	A trace logger
	Collection protection
	Improving dependency notification
	Literals
	Simple Smalltalk Testing

	By Author Name
	Beck, Kent
	Brodd, Bob
	Farmer, Dave
	Harris, Steven G.
	Hildebrand, Hal
	Knight, Alan
	Sharp, Alec
	Woolf, Bobby

	By Topic
	comp.lang.smalltalk
	Project Practicalities
	Smalltalk idioms

