
SiRdltalk
:dmrs

John Pugh and Paul Whte

CnrlsronUniWdQ b llm Ob@t P@

NGSPrrtrliarrtimrsAd&q Board
Tom Atwmrd, Ohiact Design

Franqois Bwrcilhmr, 02 Tdmologies

GradV Booth, Rational

Gnorgs BoswordI, Oigitsllr

Adsls Goldbsrg, PmcPlscs S@ems

Tom Inva, IBM

Bwtrsnd Mevm, ISE

Msilir Paga-.lones, Wayfand SVstnms

Clifl tlaaves, IBM

~ame Swoustrup, ATbT Bnll labs

Oave Thomas, Object TnchnologV htamational

‘HE SMAUW flspotrr EdfiorialBosrd
Jim Anderson, Oigi!alk

Adele Goldberg, ParcPlam .S@sms

Reed Phillips, Krrowladoe Systems Corp.

Miks TaVlor, Oigitalk

Owe Tfwrrras, Ckjact Tmhnoltqv In@madonal

;olumnists
Kant Beck, Firsr Clsss %dtvmra

Juanita Ewing, Oigiialk

Greg Hendlay Knowlsdge S@msCarp

Tim HowaIII, RothWall Intamational

Ed Klimas, Linea Engineering Inc.

Alan Knight, The Objecr PBople

William Kohl, FlothWBll Internaiiwral

Mark Lmanz, Hattaras SOhwwq Inc.

Eric Smhh, Knowlndge Systams Corp.

Flehacca Wmfs.Gmch, Oigitalk

;IGSPUBLICATIONSGFtOU~INC.
Richard P, Friedman, Founder h Group Publishm

Iilitorial/Production
Krisdrra Jmrkhadar, Mromging Edtnr

Sussn Culligan, Pilgrim Road, ltd., Design

Sath J. Hookev, Production Editor

Margarat Cnnti, Advertising Production Coordinstm

TanVa Trnwell, Editorial Assislant

Brian Siebar, cover illustrstirm

circulation
Bmce Shriver, Jr., circulation Oiractmr

John R. Wmgler, Cirudatian Manager

Kim Maureen PErmay, Cirwlation Ana~st

Mvartising/Marfrating
ShirJsy SsK Oiractor 01 Sales

Gary hrtie,MVErtiSiIIgManagsr, East Coast/Canada/Europe

Michael W. pack Advertising Sales Assistant

Salas ffepmstntative Oiann FUNW & Associates, ~st coast

40S.255,2991 (V), .IOB.255.2992 (i)

Sarah Hamiltnn, Oiractor of Promotions and Research

Cnran Polner, Promotions Grsphic Oesignw

klminiatration
Margherita R. Mmrclt Gnneral Manager

David Charwrpaul, Accounting Manager

Jamas Amemrvar, Bookkeeper

Michelle Wstins, Spatial Assistant to the Puldishsr

Shannon Smith, AdminisiMive Assistant

HSIGS
I1uBLIcArIc)Ns

‘ublishers nfJOURNAL OF OBJECT-ORIENTED

‘ROGUAMMING, OBJECT MAGAZINE, C++ REPURT,

MALLTALK fiPORT, THE XJOUUNAL, REPORT ON

)BJECTANALYSIS & DESIGN, OBJECTSIX EUROPE,

)IRECTCIRYOF OnJECT TECHNOLOGY, and OBJEKT

PEKTRUM (Germany)

October 1994

October 1994 VO14 N02

Features

Persistent object management using the 4
ParcPlace Binary Object Streaming Se~ice
Michael Chnstiansen
MsualWorksV3malltalk includes BOSS, a facili~ that allows arbitra~ structures of objects
to be written to, and retrieved from, a file stream. Intended for applications that do not
wish to utilize a database, BOSS lets developers manage their objects on disk in a rela-
tively straightfomvard manner, Michael provides a tour through BOSS’ facilities and pr~
sents an example of iks use.

Object transfer between Smalltalk VMS 11
7imy White, Dwight Deugo, and Joe LRur
This article describes an application of BOSS, providing an implementation that allows
multiple Smalltalk processes to send and receive information through the use of UNIX
sockets. How BOSS streams can be used to transmit arbitrary objects is shown.

Columns
Smalltalk Idioms Simple Smalltalk testing 16
Kent Beck
Creating proper testing frameworks for Smalltalk applications has
historically proven to be a difficult task, which has often been carried
out using brute force techniques rather than a well-organized
approach. Kent introduces a testing strategy and framework for
addressing the testing problem.

Tha bast of 19
comp.lang.smalltalk More performance tips
Alan Knight
Continuing with last month’s theme, Alan provides more insight into
how the various implementations of Smalltalk have made optimization
to improve efficiency, and the impact this has on application developers,

Getting Real Exceptional power and control 21
Juanita Ewing
In her last article, Juanita discussed the issues in making use of return
values as a mechanism for controlling the execution of an application.
This month she goes to the next step and describes how to make
effective use of SmalltalkWs exception handling mechanism.

Project Practicalities When the worst happens 25
Mark Lorenz
Recove~ from a fatal crash in Smalltalk is dealt with in many dif-
ferent ways, depending both on the vendor’s built-in facilities
along with available third-party tools. Mark surveys many of these
approachs and describes them step-by-step.

Departments
Editors’ Corner 2
Book review: DISCUSSING SMALLTALK, reviewed by Mary Dunn 28
Recruitment 30

TIM .%mllmlhRepnrr[lS3N# I0567WB) is published9 times a par, mmdhlq em?pl in M,vApr, Jul~Aug, andNnv+c. Publishedbv SIGS Pubkalions Inc.,11 Wesl
23rd St. 3rd Fknr, Naw YodLNY 1001U.0 Capqriahl1994 by SF3S Publkntions.All righmmswmd. Itnpmducdnn01lhis mnminl by .Iecrrcmictransition,)lnmm❑r
anvtirmtid willhntianl~das atilllul violtinn ofIhn US kpyrighl h md is HadI pmhibti. Maturklmmyk n+rndwnd whh Eqwess~iss+nn km the publishet
Mailsdfirsr Unsa.CanE4aPmi IntemaiionnlpublicationsMnil Pmducr%18sAgreementNo. 2903Ba.
Subxriptim rslm 1 vw la ikwesl domasli< $7a; Fmign rmd Canada,$114.To submirwd+, L4E~ smd nlmmmk filesm diskto ihc 5dirx+sti Sa5 Mmduvlmds
Drne #50a, OUuwa,~ario I(2C3N2, Cannd&m via Inknml m slrqmt@ri@rpqAe.rm.ca. Pralmmd formatshs figuresareMacm 00S EPS,71F,or GIFfnrmaix Alwwa
smd a pqwr wv cdpournwnusmipt includingmmm.ready cnpinsof your RUUM8[loserm@ut is ho].
FUS7MAS7ER Send nddresschnngm and wbsrnprion ❑rdersto TJMSmsNtalkl18pDa P.0,Box 2027,bnghome, PA 19047.hr .servicsm currenlsubsxiptimrs call
215.7E5.5W 215.785.S073 Iran).PO097S@psilintuom[~mnil).PMN7E0 IN 17iEUNrlEO S7ATE3

1

We have been writing over the past

few issues about what has been

happening in the Smalltalk mar-
ketplace and community, discussing the
activities in new products and the plethora
of conferences that are dealing with the issue
of Smalltalk. The one area that we have for
the most part neglected over the last while is
the role played by what we call hard-core
Smalltalk users, or the “Smalltalk gurus” that
are out there. Smalltalk allows for that
unique echelon of programmer to really
shine, which is always a pleasure to watch.
In fact, we have the pleasure to work with a

few people who have this innate ability to

make code appear on the screen that just
works and yet is built in such an elegant
fashion—it’s like watching a maestro con-

ducting a symphony. It’s not that all lan-
guages don’t have their gurus, it’s just that
unlike most languages where gurus often

generate code quickly but which is often
difficult for others to understand, SmaUtaIk

gurus tend to generate things that appear to
be obvious approaches—they make it very
understandable for all of us,

It is difficult to isolate what techniques are
being employed by excellent Smalltalk pro-

grammers that allow them to write such ele-

gant code. We are constantly asked for good
rules of thumb when it comes to program-

ming techniques that will allow people to best
utilize the powers offered by SmalltaJk. While
it’s obvious no one has the definitive answer
to thk, here are a few observations we’ve

made.

1. Code walktioughs are a must, and they
must have bite. Everyone must push each
other to do a better job,

2. Whiie it seems a trivial point, choosing
meaningful names saves an enormous
amount of browsing time. And don’t allow
abbreviations, they make using a library
ve~ dficult. What’s more, what inevitably

gets abbreviated away is whether some-

thing is singular or plural and it’s thk little
piece of information that makes all the
difference in the world. Finally on thk
theme, why is it so many people are
choosing to add prefixes and suffixes to
their class names, and even their method
2

names? Whale recognizing the name space

problem that exists in Smalltal~ it makes
a library more difficult to use.

3. Complete the libra~. Don’t just write for

yoursel~ but think of how others may use

the library in the future. Two simple
examples that have always struck us are

“why the class Date has a method “today,”

but not “tomorrow” or “yesterday.” The

other is the problem of dhTerent possible

spellings for the same message. Why, for

example, is the method “sqrt” in the

library, but not “squareRoot”?
4. Consolidate, Good Smalltalkers will tell

you they throw away up to half of what

they write — thk has to be seen as a

healthy thing and encouraged,

5. Allow play time. The best way we’ve seen
to understand Smalltalk is to build some

tools for it. The skills to be gained are far

more important than the tools themselves.

Related to this topic, an issue that we have
raised in passing a few times, which we have
never thoroughly seen addressed, is the issue
of project management for Smalltalk projects.
We all know the development process is dras-
tically different because of the flexibility and
productivity possible with Smalltalk- But to
managers who are new to thk whole process,
thk can pose a frightening prospect. Just how

does one know how far along a project is? Is
it on budget? Are there still ‘gotchas” left in a
project that haven’t been fleshed out yet? We
need managers with real experience to weigh
in on this topic.
And finally just a quick note about the

OOPSLA conference being held this month
in Portland. As many of you are aware,

OOPSLA is the main object-oriented confer-
ence and was instrumental in making
objects, and Smalltalk in particular, a main-
stream development language. We certainly
have a fond spot for the conference that has
traditionally been different from all the
other conferences in that it has always had a

very strong Smalltalk presence and highly
technical personnel staffing the exhibit
booths. For those of you going to the con-
ference, drop by and say hello.

Enjoy the issue.

JOHN PUGH

PAUL WHITE
The Smalltalk Report

I

STEPINTOTHEFUTUREWITHTll[COMPANY
THATIIIFINIIIOBJECTT[CIIHO1OINSERVICES

When object oriented programming was in its infancy, such as American ManagementSystems,GECapitalCorporation,IBM,

KnowledgeSystemsCorporationwas alreadyputting it to work in com- NorthernTelecom,ThePrudential,SouthernCaliforniaEdisonandSprint,

panics like yours.Today,we’re positionedto take you into the future of the STAPis a total immersion,project-focusedprogramthat compresses

object technology in ways that no other companycan. VAth the most six to ten monthsof learningexperienceinto four to sixweeks.

complete range of services in the

industry, KSCcan assure your suc-

cessful object transition everystep of

the way. Classroominstruction, pro-

ject-focused apprenticeships, and

consultingare all part of our exclusive

commitment to object technology

services.

t’‘\‘ Once you’ve made the deci-.,

~sion to moveto objecttechnology,you

want to get the benefitsas quicklyas

possible. KSCoffers a complete cur-

riculum of classroom education, at

your site or in our corporate training

facility. Thesecourseshelpyou estab-

lish a firm foundation in object tech-

KSC can also tackle your

object technology projects head-on

with the most experiencedanalysts,

designers and programmers in the

business. You can outsource the

entire job, or use our consultants to

lend expertiseto your own develop-

mentgroup.

In addition to our service

offerings, KSC is a distributor of

third party tools such as ENVY”/

Oeveloper, the premier Smalltalk

team developmentenvironment,

If you’re ready to step into

the future of object technology,call

the one companythat will lead you

nologyconceptsandSmalltalkprogramming. there—Knowledge Systems Corporation, 919-481-4000, Or email:

Tocut monthsoff your transition time, we’ve developedan exclu- salesinfooksccary.corn. 4001 Weston Parkway, Cary, North Carolina

sive SmalltalkApprenticeProgram(STAP).Already provenin companies 27513.

Is
KHOWIEllllESYSTEMSCORPORATION

!119”4tll” 4111111

ENVY is a rnnisleredtradwnmk d ObjeclT8chnologt Intertmtia.d l.c.

Persistent object management using the
ParcPlace Binary Object Streaming Service

Michael Christiansen
M oving information between Smalltalk images can be
accomplished using the fileIn: / fileOuk and
storeOn: / readFrom: operations provided by

Object, Class, and other support classes. Information is written
in ASCII format as Smalltalk expressions that, when read and
evaluated in through a fileIn: or readFrom: operation, recreates
the original classes and instances in the target image.

Although these operations work fine for moving source code

between images, they are not well suited for moving arbitimy
structures of objects. There are problems with thk approach. 1,2
These problems include:

● The storeOm mechanism cannot deal with circular refer-
ences. Without special assistance the operation can get

caught in an infinite loop when two objects mutually refer-
ence each other.

- To read an expression requires the presence of the Smalltalk
compiler, which is offen stripped from commercial releases
of a product.

● No facilities are provided for controlhg the depth of the
copy of arbitrary object structures being copied to the file.

. ASCII representations are bulky and slow to read and write
from the file.

P~cPlace ObjectWorks and VisualWorks provide the Binary
Object Streaming Service (BOSS), which allows one or more
structures of arbitrary objects to be stored and later retrieved
from a file.

The materials described in this article were developed during

the development of Cellular Performance Management System
(CPMS), a cellular network planning, configuration, and perfor-
mance management system. We have applied BOSS as a tempo-

rary solution to our persistent storage needs until such time as a
true object-oriented DBMS can be selected and integrated. This
article is intended as a tutorial in the use of this facil@ as

described in the ParcPlace manuals, and includes our experi-
ences and the problems we have addressed during thk effort.

BINAIIY OBJECT STREAMING SEllVICE

BOSS is a facility provided by ParcPlace Smalltalk that allows
arbitrary structures of objects to be written to, and later
retrieved from, a fde stream. Objects are stored in an internal
binary format that is more compact and faster to retrieve than
is the use of expressions described above.

GeneraUy BOSS allows the user to write a representation of

an object into an archive that includes the object’s class iden-
tifier and its instance variables. These variables, themselves
objects, are represented and stored. This process is repeated in a
4

depth-first transversal until the entire tree, rooted with the
original root object, has been stored in the archive file.

This process of transversing, or tiring, the members of a sin-
gle root object and storing each in turn in a BOSS archive is simi-
lar to making a deep copy of the object. But the depth%rst ~ans-
versal of the root object is bounded by certain conditions under

which the further tracing of an encountered object is h&d. For

example, if an encountered object being traced is an immediate
value (an integer, string, etc.) its value is stored and the trace goes
no further. Also, if an encountered object has -alreadybeen traced
and stored in the archive, a reference to the stored object is
archived in place of the object in its current context.

There are classes whose instances receive special treatment
when encountered during the tracing operation. These classes

include all class objects and certain global variables. For exam-
ple, Smalkalk and Processor are recorded symbolically in an

archive when encountered during a trace.
Aother class of objects that cannot be placed into a BOSS

archive are those whose contents only have meaning within the
image being executed and that cannot be exported. Examples of
these context-sensitive objects include OSHandle,

GraphicsHandle, and other objects whose states are tied to the
executing image rmd to the virtual machine’s interface to the
underlying operating system, window management system, and
network Attempting to export an instance of these objects

results in an exception.
BOSS provides a protocol that is similar to Stream. A root

object and the objects it references are stored as a single unit

that is maintained by the BOSS arckve. Root objects are

aPPended tO ~ ~~lve s~eam ~d me retrieved from the
stream in the same order in which they were appended. Each
root object appended to the stream is referred to as an c@-ct
.rtructure. It is not necessary to understand the internal format
of the multiple object structures that are appended to, and
retrieved from, a BOSS archive, but it can be important to
understand how Boss identifies and maintains the individual
object instances within the object structure and how instances
are referenced between structures within the same archive.

These issues will be discussed throughout this reticle.
Each binary representation of an object is stored and refer-

enced by an index. Each unique object instance is assigned an
oly>ctindex within the archive. The object index is similar to

the value returned by Object>>asOop except that the scope of
the BOSS object index is limited to the scope of the BOSS

archive and is unique within the archive.
An instmce of BinaryObjectStomgethat maintains two
The Sma[ltalk Report

BusinessGraphics,NewforSmalltalW
WidgetKitT”/Business Graphics
brings industry-leading business graphics
to Smalltalk/V@,The 11 major types of
charts and graphs are as easy to use as
WindowBuilder- Pro/V. WidgetKit/
Business Graphics (WK/BG) has high-
performance DLLs*, Smalltalk wrappers
that integrate the controls into Digitalk’s
SubPane hierarchy, and Smalltalk classes
that allow you to build the UISusing the
controls interactively in WlndowBuilder
Pro/V. With WK/BG you’ll quickly build
powerful charts and graphs that communi-
cate information the way your users want
to see it.

Printing, Fonts, Colors, and More
WK/BG provides printing for all charts via
a programmatic interface. Appropriate
charts have autoscaling if desired. You
control fonts, colors, titles, labels, legends,
justification, fill patterns, line styles,

● 00 And
WidgetKit~/Professional brings
proven and powerful spreadsheet DLLs to
Small talk/V. And the spreadsheet power is
as easy to use as WindowBuilderT”Pro/V.
WldgetKit/Professional (WKPro) consists
of the FarPoint Professional DLLs,
Smalltalk wrappers that integrate the
controls into Digitalk’s Subpane hierarchy,
and Smalltalk classes that allow the
controls to be placed and edited interac-
tively in WindowBuilder Pro/V. WKPro
enables you to quickly build solid,
powerful, reusable, and maintainable UIS
for your Smalltalkm applications.

Graphical Widgets
WKPro includes graphical controls to
display pictures
(BMP, PCX, &
GIF) in spread-
sheet cells or
separately,
Animation too.

ChartTypas in WI(MG (partial)

mm=J~ :ag:-[-:::”:”,-

,“==--- . . -=3 or %

scaling, identifying symbols, grids, ticks,
scroll bars, and more at development or
run time.

No runtime fees are required for applica-
tions developed with WK/BG. Includes

complete documentation, full source, and
free support to registered users for the first
90 days.

Spreadsheets
!

<

Harold Lmwaod 15-FEE-1909 ,@

High-Powered Spreadsheets
You get a spreadsheet similar to Micro-
soft’s Excel’”: formulas, drag and drop, and
row and column resizing. There are 11 cell
types, control of color, formatting, multiple
selection, and locking. The spreadsheets
have printing, load, and save capability.
The functionality is factored into a
hierarchy of 7 classes. Choose the one
that’s right for your app.

Virtual Spreadsheets Too
WKPro includes virtual spreadsheet
capability that enables you to load only the
visible data.

I
NEw! For win.mmmmmmm!$495
NEW! For Win32$495

For 0S/2 (1Q95)
1 1

WdgetKiWBusiness Graphics requires WindowBuilder Pro/V.
‘underlying functionality for Win and Win32 is Pinnacla

Graphics Server, for 0S/2 is Preaantation Graphics SDK. WK/BG
is compatible with Team/V’ and ENVVa/Oavaloper. Support
subscription available.

File System Widgets and More
WKPro also includes DirectoryList,
DriveList, FileList, and DirectoryFileList
controls. You get input validation widgets
for the cell types. Use them for spread-
sheet cells or by themselves. UIS built with
WKPro are portable to all the supported
platforms.

No Runtime Fees
No runtime fees for applications developed
with WKPro. It includes complete docu-
mentation, full source, and free support to
registered users for the first 90 days.

NM! For win........ $395
NEW! For Win32 .,.. $395

For 0S/2 $495 (1Q95)

WdgetKit/professional requiras WndowBuildar ProN. All the

DLL functionality of FarPoint Professional is packagad for easy

usa in WnbowBuilder Pro/V WKPm ia compatible with Team/W

and ENVV’/Oavaloper. SupporI subscription availabla.

SHARE

aE 2 Objectshare Systems, Inc.
5 Town& Country Village, Suite 735

3
San Jose, CA 95728-2026

Call to order today (408)970-7280
Fax 408-970-7282

8 ~ CompuServe 76436,1063
or call for free information, 9 AM to 5 PM PS~ M-F

30-dav monev-back auarantea
INcm 0 Objectshare Spatems Inc. 1594

Precise metrics
for advanced 00

development.

● Metricscollectionlociliiy for Smrrlltolkopplicotionsdevelopment

● SupportsVisuolWorlu,Smolltoll@ forWhdows,Win32s,WindowsN1

● Completegrophicaluserinterface ● FullysupporhEnvy(optionol)

.bjedSpaceTM
-- SPECIALISTS IN OBJECT TECHNOLOGY

PRODUCTS .TI?AINING .CONSULTING .MENTORING .AUDITING

Formore information call 1-800-OBIECT-1,Emnil: info@o~ectspoce.com

Cwiihl Obietfiwwln(.IBIV94.Mnomei ordlrodnmoikm ha P.WN 01tirnrres~miwmme,.
Id@it@idonaries of associationsbetween objectsand indexes the

writdfap and the readerMap.The vnitdfap maintains the aeeodation
of object-> irrdex.Thie tile is uedwhile the archiveis being mn-
StTuctedin detaminin g ifa newlyreferencedobject has alreadybeen

titten irLtothe srcbive.Ifit has, the object’sobject index iswritten in
it’splaceand the ~ of that object is ended On the other M if the
okject is not present in the writerMa~ an index is created and added to
the IderctityDictionary.Then the newiyreferencedobjectis lraced and
its mnten~ added to the archive.The readerMapmaintains the associ-
ationof index ~ object in the wcbive.When an esisting archiveis

- the readerhfapis built up 6nm its contents.
Another useful detail of BOSS internals is the manner in

which objects, classes, and class versions are represented. Every
object stored in the archive is recorded with its size, class, and
identity hash value, along with the binary data and references
that define its current st;te. An object’s class is also recorded

I OrderedCollection A OrderedCollection

12345

Fiuura1.
6

with the object the first time the class is encountered when
building the archive. Information recorded about the class
include its clan version number.When the object is restored, the
version number of an archived object’s class is compared to the
version number of the class present in the image. If the class

version number recorded in the archive for the object does not
match the class currently present in the image, BOSs cannot
restore the object, and a sigmd is raised. Mechanisms have been
provided in BOSS to deal with this situation and are desuibed

in the section Clas~Vemioning.
In review, each object instance is stored only once in the

mchive and all references to any object rue implemented
through the object’s unique BOSS object index. In the collec-
tions shown in Figure 1, collections A and B store instances of
the objects drawn below them. Both collection instances share
object instances 2, 3, and 4. When collection A is stored in an
archive, BOSS stores both the collection and its object instances
in a object structure appended to the achieve stream. Wkhln the
object structure, collection A and instances 1,2, 3, and 4 are

assigned indexes and are stored in Boss binary representation.
A side effect of thk operation is that the writerMap maintained

by the BinaryObjectStorage instance is updated with these five
objects and their indexes. When Collection B is stored, it is also

aPPended aSan object struc~e. The coUection iS traced as a
root object, and itself and the objects it maintains are examined

and stored as instances in the structure only ~they are not cur-

rentlypresent. Because instances 2, 3, and 4 are already present in
the archive, only instance 5 and Collection B are stored as
instances and assigned unique indexes. When the structure of
Collection B is restored from the archive, it will share the
instances of objects 2,3, and 4 with Collection A—as it should.

This technique of referencing objects through unique
indexes within the archive is instrumental in ensuring that the
original structure of the set of stored objects is preserved when
the archive is later restored. Indexing also eliminates problems
with respect to cycles in the references between objects. If while

examining the structure of an object being traced, BOss deter-
mines that a referenced object is already present in the archive,
it records its presence in the structure using its index and does
not further examine this already present object.

There are some caveats and limitations of BOSS’sability to

store and retrieve the original structure of the objects stored in
an archive. These are described in later sections of this article.
But first an example is presented to demonstrate how BOSS is

aPPfied bYthe USer.

APPLYING BOSS

BOSS implements a protocol that is a subset of Stream. BOSS
operates by appending and retrieving object structures, and the
root object they maintain, from a file stream instance:

aStream:= (Filenamenamed:aFileNanre)writeStream.
An archive is created for a given WriteStream as in:

aBOSS:=BinaryObjectStorageotiew: aStream

The odtmr method initializes the stream by writing an identi@-
ing header and BOSS version number at the head of the stream.

aBOSS:=BinaryObjectStorageonO[d:astream.

The onOld: method allows the user to read or append to the
stream. BinaryObjectStorage verifies that the stieam is a BOSS
The Smalltalk Report

The complete
Smalltalk interface

to TCP/lP.

● SupportsSmolltolk/V for Windows, Win32s, Windows NT

● Monoges the TC~lP asynchronouseventnotificationsystemtionsporently

● More then 40 clossesrepresenting011ospectsof TC~lP programming

●3jedSpace”
_ SPECIALISTS IN OBJECT TECHNOLOGY

PROD UCTS. TRAIN ING. CONSULTING -M ENTORING-AUDITING

Formorsinformation(all 1-BOO-OBJECT-1,Emoil:in[o@o~ectspoce.com
archive through the stream’s header and BOSS version. BOSS
then scans the entire stream to determine the next object index
to be assigned in the archive. The stieam is then reset to a posi-
tionju.rt after the BOSS header. If you wish to append data to

the stream, you must set the fle pointer to the end of the
stream with the following

aBOSSsetToEnd.
As mentioned earlier, the stream maintained by BOSS contains
a series of object structures. Each object structure is appended
to the stream with the following

sBOSSnextht anObject.
The stream position operations performed by BOSS are per-
formed on the object structures it maintains. Operations like
position:, reset, and setToEnd place the stream’s position refer-
ence at the beginning of an object stiucture within the stream’s
contents. For example, the object structure at the stream’s cur-
rent position reference can be retrieved using the following.

anObject:=sBOSSnext.
Naturally once thk operation completes, the stream’s position
reference is located at the next object structure appended to
the stream.

It is the responsibility of the user to ensure that each root
object retrieved is restored into the correct context within the
image being manipulated. For example, if the developer is

archiving three global variables as individual root objects in the

arclive, it is necessary that the application retrieve and re-
assign these objects in the same order in which they are

appended to the archive.
One exception to this explicit assignment of a restored root

object’svalue is that of class objects appended to the archive with

Binary0bject5torage>>nextPutClasses: and retrieved with
BOSS>>nextC1.asses.Class objects archived and restored with these
methods are automatically registered with the system dictionary

Collections of objects to be appended to the archive can be
managed in one of two ways. A collection that is appended to a
stream as an object is retrieved as a collection with all its mem-
bers intact. But if the user wishes to archive the contents of a
collection as a series of object structures, then the following
method is applied:

aB0SSnextPuUULaCollection.
In the above code fragment, each member of the collection is

appended as a separate object structure as in the fo~ovving
aCoUeciiondo: ~itemI aBOSSnextput item].

A common practice is for arAapplication to organize a set of the
set of objects that are to be persistently stored in a file as a col-
lection. This collection of objects is smhived using the
BOSS>>nextPut: operation. The entire collection can then be
retrieved in a single BOSS>>next operation. This process is
demonstrated in the following example,

EXAMPLE APPLICATION

In thk example, we have an application that maintains a collec-
tion of Employee instances as defined by the following:

Objectsubclass: #Employee

instanceVariables:‘name ssn deparhnent’

classVaciables:‘‘

...

Suppose that thk application maintains several dictionaries of
Employee, each collection representing the employees for a sin-
gle company, And that each company dictionary is keyed on
the social security number of the employee.

If we manage each company dlctiona~ as a global variable

(e.g., AcmeWidget and JacksHydraulics), each collection instance
can be sepruately archived and retrieved with the following

(BinacyOb]ectStorage
onliew:(Filenamenamed:‘acmewidget.bos’)writeSheam)

nextput AcmeWidget;
close.

If thk operation were repeated for each global variable main-
taining a company employee dictionary, then we would have N
separate files, each containing the Employees of a single compa-
ny. When each dlctiona~ is restored to its global variable, each

of its employees is also restored.
aBOSS:= BinaryObjectStorage

onOld:(Filenamenamed: ‘acmewidget.bos’)writeStream).

AcmeWidget:=aBOSSnext.

aBOSSclose.

But a problem arises if it is possible for two or more companies
to share a single instance of an employee. In this case, the pre-
vious example destroys these semantics when each company is
retrieved from its separate archhe. This is because BOSS creates
a unique instance of the common employee in each company
employee dictionary.

Thk issue is illustrated in Figure 2. In the upper portion,

each of the two employee dictionaries shares the same instance
of the employee, as indicated by its unique SSN across all
7

Now! Automatic Documentation
For SrnalltalkJV Development Teams — With Synopsis

Development Time Savings
~~YllO@S produceshigh quality class documentation

automatically. With the combination of Synopsis and Coding Documentation
Smalltalk/V, you can eliminate the lag between the Without
production of code and the availabili~ of documentation. Synopsis

A A

Srarl Finish

Synopsis for Smalltalk/V
Documentation

● Documents Classes Automatically
With

● Provides Class Summaries and Source Code Listings Synopsis
● Builds Class or Subsystem Encyclopedias A A

● Publishes Documentation on Word Processors
.Sart Finish

● Packages Encyclopedia Files for Distribution products Supported:

● Supports Personalized Documentation and
Coding Conventions

Digitalk Smalltalk/V
OTI ENVY/Developer for SmalltaWV
Whsdows: $295 0S/2: $395

Dan Shafer, Graphic User Interfaces, Inc.:

“Every serious Smalltalk developer should take a ~ Synopsis Software
close look at using Synopsis to make documentation 8609 Wellsley Way,RateighNC27613
more accessible and usable,” Phone 919-847-2221 Fax 919-847-0650
—

1

Employee Dictionary A Employee Dictionary B

Employee
SSN: 123-45-6789

Employee Dictionary A Employee Dictionary B

&&
Employee Employee

SSN: 123-45-6769 SSN: 123-45-6769

Figurs2.

instances of Employees: But once each dictionary has been
stored and retrieved for separate BOSS archives, unique
instances of Employee are present in each dktionmy.

Thk example demonstrates the importance of mchiving
8

—

objects in a manner that allows Boss to note and maintain the
true relationships between the object instances being stored. If

instead one wished to maintain the membership of an employ-
ee in two or more companies, then each company would need
to be stored in the same archive, as in the following

*tream:= (Filenamenamed aHleNarrre)writeStrearo.
aBOS:=BinaryObjectStorageOS-LNW.aStream.

sBOSnesrtPut:AerneWidget.

aBOSnextpub J acksHydrautics.

sBOSclose.

Or perhaps a better implementation would maintain all

instances of company employee dictionaries in a single global

dictionary Companies, keyed on each company’s name. In thk

case, all dictionaries could be archived and restored with the

following

(BinaryObjectStorage

ordtew (Filenamenamed: companydict.bos’)writeStream)

nefiPuk CompanyEmpkryees;

close.

aBOSS:=BinaryObjectStorage

onOld:(Filenamenamed:companydict.bos’)write.%eam).
CompanyEmployees:=aBOSSnext.
aBOSSclose,

In either implementation, an Employee instance maintained
by two or more company dictionaries will share a common
object index in the BOSS archive and will be restored as a sin-
gle Employee instance present in all interested dictionaries.

These examples demonstrate how BOSS can be applied to
The Smal[talk Report

storing and restoring a collection of arbitrary object instances
and the relationships they share. The following section
describes how to deal with retrieving objects whose class

definition has been modified.

CLASSVEIISIONING

A problem arises when an object is to be retrieved from an
archive whose class has been modified and is no longer com-
patible with the format of the archived object. For example,
suppose in our example Employee class, we added an instance
variable ‘age’,as in the following

Objectsubck #Employee

instanceVariables:‘name ssn age department’

classVsriables:‘‘

...

Now Employee instances that are currently stored in a BOSS
archive ace incompatible with the current class definition. Boss
detects this incompatibility when the object is retrieved from
the archive by comparing the class format stored with the

object in the BOSS object structure with the current format of
the class as defined in the image.

BOSs provides a mechanism that allows the class itself to
handle thk situation. If the class defines the class method

binaryReaderBlockForVersion:forrnati, thk method will be
called when the BOSS detects a difference between the format
of the class of the object in the archive and the format of the
class present in the image. This method is expected to return
a block that will convert an instance of the old version into
the new version.

For example:

EmployeeclassmethodsFocBOSS
binaryReaderB[oclrForVersionver forma~fmt

I emp I

(ver = ‘Employee3/93’) We: [

‘[:oldVers I

emp := Employeenew

Mm (oldVersak 1) ;

deparhnenb (oldVersak 2) ;

age 99. “methodof obtaining age needed!”

oldVersbecome: emp]].

Asuper binaryReaderBlockForVersioruver forma’cfsnt.

This code fragment demonstrates several interesting facets of

this BOSS facihv. First, note that the version argument ver is
used to determine the version of the object’s class stored in the
archive. This version information is provided by the class
through the following class method

binaryRepresentationVersion

“Employee6/94’.
In our example, the older class version is identified by the
string ‘Employee 3/9 3’ but could be any immediate value.

The information maintained about an object’s class in the
BOSS archive includes the value returned by this class method
if the method is present in the class definition. Our example is
only checking for a single class version. But if the class has
been updated two or more times, each different class version
could be handled by a different block returned from
October 1994
binaryReaderBlockForVersion:fonnak. The forrnak argument is
normally not used and is not described here.

The block returned from binaryRea...ion: fnrmak should
expect a single argument. For pointer-type objects (like

BOSS was developed to
provide a service

whereby large numbers
of objects can be

persistently stored
andlor moved between

images. It is not
intended to replace a
database or general

pu~ose persistent object
management system.

Y
Employee), the arWment wiU contain an array of instance vari-
ables from the archived object. For byte-type objects, the argu-
ment passed to the block will be a byte string of the archived
object’s contents. In either case, the block is responsible fon
1. Creating an instance of the new class
2. Assigning instance variables from the array to the correct

instance variables of the new object or copying the contents
of the byte string into the new object

3. Assigning default values for instance variables not present in
the old format, and, finally

4. The object referenced by the block argument (array or byte
string) is converted into the new object using the become:
method.
In review, BOSS provides a mechanism for detecting ver-

sioning differences between the class of objects maintained in
an archive and the class currently maintained in the image.
Thk mechanism is implemented in the class method
binaryReaderBlockForVersion:Fonnah. Thk method is expected
to determine the class version of the object maintained by the
archive and returns a block that will be applied to converting
the old version object into the new version. The value returned
from the class method binaryRepresentationVersion is used to
identi~ the class version of every object stored in the archive.
Any class that expects to utihze BOSS should define this
method in anticipation of the class being modified.

BOSS PERFORMANCE e OPTIMIZATION

When creating or retrieving an archive, BOSS can exhibit poor
performance when many tbourandsof objectsare being main-
tained in the archive. The reason for this poor performance is
the maintenance of the writer and reader maps: the identity
dictionaries hoMing the associations between index and object
in the archive. Normally, every object that is stored in the
9

srchlve is assigned an index that is maintained by these maps.

Each time an object is added to the archive, the writer map is
checked to see if the object is already present in the archive
(see the section Binary Object Streaming Service). Although
thk check is quite fast, when the arclive is maintaining a hun-
dred thousand or more objects, the archival process can be per-
ceived by the user as being slow.

For example, an application where we employed BOSS to
save several large object structures involved storing more than
330,000 objects. The time to save these objects into an archive

was more than 22 minutes on an HP715/33 workstation. The
archive file size was approximately 1.8 MBytes. The time to

restore this archive from file was 9 minutes. In another situa-
tion we experienced a 7-minute delay when saving a structure
with more than 157,000 objects and required 3 minutes to

restore the archive. Thk latter examples was executed on a
HP720/60 workstation. Even though these archkd operations—
are intended to be applied infrequently, we wanted to see how
we might improve on thk time. Note that an archive involving
less that a 1O-K objects can be archived in less than 1 minute.

Fortunately, BOSS allDWSthe user to make a tradeoff
between archival time and storage space requirements. Because
of the bottleneck in manipulating an archive-exist search for
objects in the writer and reader maps, Bo SS down the user to
specifj ranges of indexes to be forgotten. This reduces the—
search space when adding a new object to the atchlve.

This mechanism is implemented in the following methods:

BOSS>>forgetIntervak anhterval.

BOSS>>forgetIntewaL anhterval excluding: ardndex.

The first version of d-k method allows the user to ignore the
given interval of object indexes. The second version allows the
user to speci@ an interval of object indexes to forget excludlng
the root object referenced by arhdex.

The index of an object can be obtained using BOSS>>
indexOf anObject. Alternatively, the next index to be assigned
to an object can be retrieved using BOSS>> nextIndex. The
following code fragment allows the user to forget the interval
of a root object and all its chdd objects tier storage:

start:= sBOSSnestlndex.

aBOSnexLPukanObject.

aBOSforgetIntervaL (start to: (aBOSnextlndex - l)).

There are two potential problems with this mechanism. Both
arise because an object in a forgotten interval will be rewrit-
ten into the archive as a new instance if it is re-encountered
during the archival process. Storing the object multiple times
increases the size of the archive. It also causes two references
to the same object to be split into two instances when the
index of the first reference has been forgotten. This situation
is similar to our Employee example in the previous section. It
is important to find a partitioning of objects to be archived
so that references to the same object will either not be split
or, if the split occurs, it will not matter to the semantics of
the application.

When ths process was employed in ow larger archive
10
(330-K object archive) we were able to find three partitions of

1OO-K objects, roughly dividing the archive by thirds. We were
able to reduce our archhml time from 22 to 15 minutes or to 5
minutes for each 1OO-Kobject partition. In terms of the space
tradeoff, size of the archive increased by less than 1OO-Kbytes.
In the case of our smaller archive we were able to find a parti-
tioning of the 150-K objects into 100 archival units. Wkh this

use of the forgeff ntervah feature we were able to reduce the
archival time from 9 to under 1 minute.

CLOSING CONSIDEFiATfONS

ParcPlace Smalltidk’s Binary Object Steaming Services
allow the user to persistently store arbksry structures of objects
to a file stream. In an operation similar to a deep copy, the user
is able to store and retrieves the structure of a root object plus
any objects reachable from the root. Archked object structures
are retrieved from the archive using the stream-like protocol
provided by the class BinaryObjectStorage.

BOSS was developed to provide a service whereby large
numbers of objects can be persistently stored and/or moved
between images. It is intended to address the shortcomings of
the storeOn: / readFrom: operations, That is, the representation

applied by BOSS is more compact that applied by storek:, and
~e stru~re of the objects re~chable fro-m the root object can
bean arbitrary graph including cycles.

BOSs is not intended to replace a database or general pur-

pose persistent object management system. It lacks transac-
tions and concurrency control, and objects cannot be accessed

using a key or index. An object retrieved from a Bos S archive
must be explicitly assigned to the correct context within the
application.

when applying BOSS it is important to find the correct par-
titioning of root objects. Too large a root forces the entiie
structure to be retrieved from secondary storage when only a
small portion of the overfl structure is needed. BOSS is most

efficient when storing large sets (1,000-30,000) of objects in
each root structure as opposed to storing and retrieving many
smti, single-object instances. However, because BOSS main-
tains an internal index for every object it manages, an archiving—
operation can get slow when the archive gets very large (> -
75,000 to 100,000+ objects). To address this problem, the ser-
vice provides mechanisms for restricting the size of the index
table that will speed up operations on hwge archives. ~

flefmencas
1.OBJECTWORKSSMALLTALKUSEFIISGUIDE,Chapter 27, Binary object

streaming service, ParcPlace System, Inc.

2. Vegdahl,S.R.Movingstructuresbetween Smslltrdkimages,

PIiOCEEDINCSOFTHEACM CONFERENCE ON OBJECT-ORIENTED

PROGRAMMING,SYSTEMS,LANGUAGES,ANDAPPLICATIONS,Portland

OR, 1986, PP. 466-471.

Michael Christisnsenworks at Ball Northarn Rasearah,Richardson,TX,

wlrara he ia dsvalopingcellular telecommunicationsnetwork performance

snalysis, amtfiarrratims,and managements~atems. Ha is currently

davalopingSmaNtalk implamarrtrrtionsof diatributadnatwork mansgament

services, as dafinedby CMISE and 0S1 standards. Ha can be reachedby

amail at miksc@matronet.com.
The Smalltalk Report

Object transfer
betweenSmalltalk Vl?+ls
Tony White, Dwight Deugo, and Joe Ulvr
UNIX sockets enable UNIX processes to transfer data
between one another, and are often used to implement

client-sewer relationships, where a client process
sends requests to a server’s address at one end of a socket and
the server waits for them to arrive at the other end.

There are rMerent types of sockets depending on the UNIX

version being used, The two main types of sockets are stream
sockets and datagram sockets. Stream sockets provide continuous

two-way byte-stream communication, and datagram sockets
transfer fixed, maximum length packets of information. There are
four steps to sending and receiving information across a socke~

1. create a new socket,
2. open a connection across it,
3. open a communication stream on the connection, and
4. transmit the information.

In ObjectWorks\SmaUt~ a socket can be used to tiansfer

data from a Smalltalk process to other UNIX processes, includ-
ing another Smalltslk process on a different virtual machine
(VM). This faciJity is implemented by six standard
ObjectWorks\Smalhlk classes:

■ UnixSocketAccessor
“ IPSocketAddress
=SocketAddress
=UDSocketAddress
“ Extema[Connehon
● ExtemalReadAppendStiearn.

To find out how to use a socket in Objectworks\Smalltslk one
should begin by browsing the class UnixSocketAccessor.1 Thk
class provides methods for creating sockets and several example

methods describing how to use them.
When the sending and receiving processes do not share a

common representation, it is convenient for them to transfer
data in a standard format, such as a byte-stream or freed length

packets. This format can then be decoded by the receiving
process to one that is more suitable. However, when the send-
ing and receiving processes are Smrdltalk processes, thk

aPProach is inconvenient- There is o~Y one “format” in
Smalltslk an object. Therefore, Smalltalk processes should be
able to send and receive any arbitrarily complex object over a
socket without being forced to format or decode it from a byte-
stream or a sequence of fixed-sized packets.

In this article we discuss how the Binary Object Streaming
Service (BOSS)l and sockets2 can be used to provide such a mech-

anism. ‘l%e second section de=ibes how to incorporate BOSS
October 1994
with a socket in order to mansmit arbimrily complex objecis The
third section describes a client-semer architecture that uses OLU
approach for transmitting complex objects. The fourth section
contains a comparison of the BOSS-based approach with a string-
based approach. The fifth section concludes with a discussion of
our approach’s benefits smdlimitations.

AN INTERFACE FOR THE TRANSMISSION OF COMPLEX OBJECTS

A stiing-based approach to the transmission of complex objects
between SmaUtalk VTVISis to use the storeOn: method to create
a stiing representation of the object, transmit that to the receiv-
ing process over a socket, where the evaluate: message is sent to

the Compiler class with the received string as the argument.
Thk approach has the dual disadvantages of spending
significant amounts of time tirmsforming and compiling the
original object to and from a string object.

We describe another approach, implemented in the

l’ransporthtexface class, that provides a transport mechanism
avoiding these drawbacks through the use of BOSS streams, rather
than raw character streams. The TransportTnterface class supports
asynchronous, nonblocking I/O and can be used in a client-server

framework for communication between SmaUtalk VMs.
Applications requking Smslkallc-to-SmaUtalk object exchange

can create a server TransportInterface by using the newAtYorh
class method. This method creates a “listening” socket that can be
used to wait for client connections. A client Transporihtefice

can be generated by using the class message newAtHosLporh. If
the client request is success~ the initialization of the comection
between client and server occurs when the setupInterface mes-
sages are sent to the l’ransportlnterhce objects. Examples of client

and server interfaces are shown in Listing 1 in the elms methods
-pleClient and exampleSemer respectively.

The setupInterface message performs several important

iimctions. First, an ExtemalCormection is created for the inter-
face and the newly created socket is associated with both input
and output directions (sockets being bidirectional communica-
tion entities). Second, the stream associated with the interface
is initialized as being an ExternallleadAppend stiea~ again
reflecting the bidkectional nature of socket I/O. Third, a
SharedQueue is created. This is used by the application for writ-
ing on the socket. Finally, read and write processes are created
for the Tmnspotinterface objeti the readprocessbop and
writeProcessLoop methods providing the process functionahty.
BOSS streams are required for both reading and writing. They
are initialized during the first read or first write on the socket.
Objects transferred via the TransportInterface class are then
11

I

Approach ~~n Median
B#tring

Experiment Experiment

BOSS-based 9 ms 9 ms

String-based 3636 ms 430 ms

written to and read from the socket using the BOSS nextPuk
and next methods respectively, Using these methods allows
objects to be written to and read from the socket directl~ with-
out any user-provided encoding.

Once setup, asynchronous input is handled by the
readProcessLoop code that is now executing inside of a process
generated for the interface. Referring now to the readObject
method, the process remains blocked (by the sending of the
message readWait) in the next method of BOSSReader und
input is available on the socket. When input is avsdable, the
readProcessLoop process is signaled, the physical read completes,
and the object is returned by the BOSSReader next method. If
the object received is nil, it implies that the remote end of the
connection has closed its end of the socket interface, and, in this
situation, the local end closes its socket interface. When non-nil,
dependents of the TransportInterFace are advised of the snivsl of
the object using the changed:witi message-the aspect being
#socketI O.Hence, it is possible to broadcast the received object
to multiple application-level objects by having hem be depen-
dents of the TransportInterface object.

Applications sending objects over the interface use the
TransportInterface nextpuk message. Thk method does not
write on the socket, but on the shared queue. As shared queue

writes are nonblocking, the write—from the point of view of
the application process-will also be nonblocking. The physical
write-of the object to the socket is performed by~he -
writeProcessLaop code that is also executing inside of a process
generated for the interface. Referring now to the
nexWutDirectly message sent in the writeProcessLoop method,
the writeProcessLoop process is blocked until something is writ-
ten to the shared queue. Once an object has been written to the
shared queue, the writeProcessLoop process is signalled, the next
method completes and the nextputl)irectly message is sent to
the TransportInterface, This method performs the physical
write to the socket that may also blo~ possibly because the
socket is full. However, once output can be written to the sock-
et, the write process will be signaled, the object is written in
BOSS format to the socket and the write process returns to
waiting for another object to write at the shared queue,

Applications receive objects sent over the TransporUnterface
by intercepting update:withfrom: messages and performing
specisl processing when the aspect is #socketIO.

Sending the close message to the TransportInterface object
causes the read and write processes to be terminated and the
socket to be closed. When the socket closes, dependents of the
TransportInterface arc sent a changed message with the
#closedSocket as aspect,

Thk architecturewith processes for reading and writing
of objects to the socket-provides for asynchronous communi-
12
cation and nonblocking 1/0 as seen by the application

object(s) using the TransporUnterface.

CLIENT-SEWER ARCHITECTURE

While the previous section has indicated how a basic connec-
tion can be made between two UNIX processes, and how BOSs
can be used to simpli~ the exchange of complex objects

between Smalltalk VMs, communication often occurs within a
client-server architecture. The Smalltalldntefice,
SmaUtallcClient and SmalltalkSemer classes shown in Listings
2–4, respectively along with the previously described
TransportInterface class, provides a set of classes that can be
used in the construction of client-server applications.

The Smalltalklnterface class is an abstract class. It provides
support for common client-semcr behavior. For example, the
close method closes the Transpotinterface, the update:with:frorn
method provides special processing of the #socketIO sspect of
changes, and the nextputom method sends an object on a

specific Transpotinterhce, Two instance variable~pplication
and callback~ used to store the application object and
method to whkh the received object is to be dispatched,

An instance of a SmaM.AkClient is generated by sending the
newAtHost:port: message to the class SmalhalkClient. If a con-
nection to a server on the requested host and at the appropriate
port can be established, a correctly initialized SmaUtalkClient

object is returned. Once successfully created, objects can be sent
to the server by sending the nexthk message to the

SmalhaUcClientobject. When communication is no longer
required, sending the close message to the SmalkalkClient
object closes the underlying TransportInterface.

An instance of a SmalkaUcSeweris more complicated than a
corresponding SmaUtallcClientinstance because of the require-
ment to listen for new client-server connections. A listener

process is created to perform thk task. The listener process
code-found in the method listenerProcessLoop:-remains
blocked within the code executed by the accept message until a
new client requests a connection. At thk time the listener process
is signaled and a new TransportIntefice is created and added to

the list of chents supported by the SmaUtalkSemer.What might

aPPe~ s~nge about he SeIVerSOCketCOdesegMent in the
method listenerProcessLoop: is that the original socket is not
used for the two-way communication. Its sole purpose is to
accept connections at a specific port. Once a connection is estab-
lish~d by the socket, it ~-mms ~other socket, called childsocket

in the aforementioned code, to use for two-way communication.

RESULTS

To demonstrate the efficiency of the BOSS-based approach, we
ran two experiments. The first one transmitted a 500x500

image, with all bits set, from a client to a server, which
responded with a ByteString of 20 characters. The second
experiment transmitted a 10,000 random character ByteString
from a client to a server, which responded with a ByteSting of

20 characters. Each experiment ran 101 times, and the total
time for a client to send and receive the objects was recorded.

We ran the first experiment using our Boss-based approach
contrasting it with the string-based approach described at the

beginning of the second section. However, since the second
The Smalltalk Report

Hhe 405 El Camino Real, #106
Menlo Park, CA 94025, U.S.A.

Mmalltalk
voice: 1-415-854-5535

fa: 1415-854-2557

E&ore
email: info@smalltalk.com

compu.rerve: 75046,3160

. .. devoted exclusively to Smalltalk products,

Send For Our Free Catalog!
The Smalltalk Store carries over 75
Smalltalk-related items: compilers, class
libraries, books, and development tools. If
we don’t have what you need, we’ll look for
it. Give us a call or send us an email - we’ll
put you on the mailing list and send you a
copy of our combination newsletter-catalog.

Developers: Do you have a product
that might be useful to Smrdltalk,

v

\\
1/)/

VisuaL4ge or Parts programmers?
The Smalltalk Store call sell or \ll/

\ ‘/1/

\/ ‘1publish your software for you. Ask \J=/
for our Developer’s Kit,

— —

Objects
Everywhere!

Why settle for hybrid implementations when
you can have the real thing? JumpStart is the
leading provider of solutions and training
programs for pure object systems using
Smalltalk and the Gem Stone(’m)ODBMS. We
also specialize in deploying IBM Smalltalldtm)
and VlsualAge@m)applications.

Ask about our Corporate Educators Program.

Manufacturing
ProcessControl
Network Management
Pharmaceutical

I
Client-Server IS Systems

a
(:tii%d.Sewce Pam.msWJ:

—

experiment involved transmitting only strings, the storeOn: at a
client end and compiler evaluation at the server end of the
string-based approach were removed. Table 1 describes the

median timing results of these experiments.
Table 1 shows that for large objects, like an image, our

aPProach ~ns 404 times fast% and, when sen~% onlY Strings!
it still ran 47 times faster than the string-based approach.

One of the major gabs in efficienq is a result of the BOSS-

based approach not having to compile a stiing to regenerate the
object. On the server end, it becomes a very expensive operation
for the compiler to parse a string representing a very large object,
and on the client end it is also an ~ensive operation to generate

the definition for an object in the form of a string. Even if these
tasks are removed and we only transmit strings as in the seeond
experiment, the BOSS-based approach is sfl faster!

CONCLUSIONS

There arc other approaches one can use to transmit complex
objects between Smalltalk VMs.

For example, one approach is to use HP’s Distributed
Smalltal~s where the ability to pass objects between VMs is
built into the architecture. Another is to use ENVl?%vapper,4
which is a high speed object Ioaderh-deader that provides a
method of storing and retrieving objects between all supported

virtual machines and platforms. However, if one does not have
these software packages available, our approach provides an ele-
gant, inexpensive and efficient method of object transmission.

Our approach is not without its limitations. One is that the
October 1994
class definitions of the transmitted objects must exist at the
receiving end of the socket. Another is that class and metaclass
objects can not be transmitted. Both of these limitations are a
result of a chicken-and-egg situation. One cannot make use of
a class until it exists, and, even if you attempt to transmit the
class information, the class has to be defined before one can
refer to it. Naturally, objects that do not have a BOSS represen-
tation cannot be transmitted using this approach.

We have described a simple, easy-to-use, interface between
SmaUtalk VMs that can be used to send objects over sockets
without user-provided enecdng. The interface provides asynchro-
nous, nonblocking 1/0 in a client-server fhrnewor~ and, through
simple experimentation, it has been shown to be considerably
more efficient when compared to string-based encodings. ~

tisfsrsnces
1.

2.

3.

4.

ParcPlace Systems,Inc. OBJECTWOnKS\SMALLTALKUSER’SGUIDE-,ch.

7,1992.

ParcPlace Systems, Inc. OBJECTWORKS\SMALLTALKUSER’SGUIDE,ch.

23,1992:234.

Hewlett-Packard Company HP DISTIUIIUTEDSMALLTALKREFERENCE

GUIDE,1993.

Object Technology International, Inc. ENVY/SWAPPERHICH-SPEED

OEJECTLOADER/UNJ-OADERMANUAL,Release3.50,1993.

TonyWhite is a memberof the ComputingResearshLrrbat BeIf-Northern

Rasaarch.Ha can ha reschadst fialLNotiarn fiasaarch in Ottswa, ON,

Canada,at 613.765.4279, or by amail at arpw@bnr.ca.
13

Dwight Oeugois a consultantwith The ObjectPeople.Ha can ba

rsaclwd at llw Object Paople,Ottawa, ON, Carradn,at 613.225.6012, or

by nmail at dwight@Of@ctPeoplo.orr.csr.

Joo Ulvr iss third-yearelectrical wsgirreorfnastudent at tho University

of Waterloo, Wsstwfoo,ON, Canada.Ha can ba raachadby amail at

jhrlw@elsctrical.watstsr.uwstarfoo.cs.

:laas: TransporLlnterface
;uperclass:Model
natsnce variables: -socket connecbon .sheambossWritebossRead
“eadprocesswriteprocesswritellreue - class variable: -‘
)ooLDichonarieK‘‘
:ategory ‘SmalltaUc-Interface’

kansporthcterfaceinstance methods

fnitilize-release’

:lose
self closeRea&closeWrite;closeStrearn;closeSocket.

:loseRead
/e~:osJ nomil

iff’rue:
[sProcess:= readProcess.
aprocess== ProcessorativeProcess

ifl’rue: [[sell close] fork]
ifFalse: [

readRocess :=N1
aprocessterminate]]

:loseWrite
I aprocess I
writeprocesanottfil

ifl’rile
[aProcess:=writeprocess.
al%ocess= Processorativeprocess

ifl’rue: [[seti close] fork]
ifFalse: [

writeprocess:= N1
aprocessterminate]]

loseStieam
I a,%earrr I
sheam notlfil

ifTs-ue
[aStream:= *earn.
stream:= nil.
seLfchanged: #closedSocket.
aStream close]

loseSocket
I aSocketl
socket notNil

WI’rue:
[ssocket:= socket.
socket :=nil.
SSocketclose]

messageprocessing’

eadprocesshop
I delay I
delay:= Delayforkfilliseconds:self class rinseout.
[socket successful]wlrle’hue: [

selfprocessObject.
delaywait]

niteProce&.oop
I delay I
delay:= Delayforlfilliseconds: self class timeout.

[socket successful]while’hue: [
14
self nextPutDirectly.sewwrite~ueue next.
delaywait]

‘private’

processObject
I anObject I
rmObject:=self readObject.
anObjectisNil

ifhue: [self close]
ifFalse: [self changed: #socketIOwith: anObject]

‘speaalised IO’

nextpufi anObject
selJwriteCtueuenesrtt%t anObject.

nextPutDirectly anObject
(stream isKindOESheam)

ifllue: [UnixSocketAccessorerrorReporterpeerFaukSignal
handle:

[exception I
seti close.
exception return]

do:
[seLfbossWriteislhl ifhm [selfbossWriteInik sheam].
selfbossWritenextpuk anObject.
stream commit]]

readObject
sheanc atEnd ifFals.e:[UnixSocketAccessorerrorReporter

peerFaultSignal
handle [:exce@on I exception return]
do

[selfbossReadisNilifl’rcre:[selfbossReadInik self stream].
‘seti bossReadnerct]].

“Nl

‘private initialization’

bossReadInik a.%eacn
self bossRead: (BinacyObjectStorageonOldNoScarraStream).

bossWriteInih aStieam
selfbossWrite:(BinaryObjectStorageonliew aSbeam).

setuphrtecface
self setupInterfaceOrc self socket

setupIrcterfaceOn:aSocket.
self sockeh aSocket.
self cormefiom ExtemalCormectionnew.
self cormefion input: aSockeu outputi aSocket.
seLfshearn self connection readclppend.%eanr.
selfreadprocess:([selfreadproceed.mp]forkAkProcessorachmpriorily- I).
selfwritdkocees ([selfwritepmcessbop]forkAkProcessoracbvepriori~- 1).
selfwriterlreue: SharedQueuenew.

Tmnsportlnterfsce class methods

‘instance creation’

newAtHoskaHost port aPortNumber
UnixSocketAccessorerrorReporterpeerFault5ignal

handle:
[exception I

Dialogwarn: -Serverat port number ‘ ,
aPorOhrrnberprint.%ing , ‘ not running on host’,
SI-fost,‘ .’.’’nil]

do:
[“self newon: (UnixSocketAccessornewTCPclientToHosti

aHost port: aPortNumber)]

newAtPorkaPortNunrber
I Ssocket I
OSEnorHoldererrorReporterinvalidArgumentsSignal

handle:
[exception I

Dialogwarm ‘Server at port number ‘ ,
The Sma[ltalk Report

continued on page 31

O

aPortNumberprintstcircg,- cannot be created.’.
“nil]

do:
[aSocket:=UnixSocketAcce.ssornewTCPserverAWortaportlhmrber.
asocket listenFo~ self queueSise.
‘self new socket asocket; yourselfj

wswOrraSocket
‘self new setupInterfaceOruaSocket

class constants’

tieout
-100.

peue.sise
%1

examples’

mampleclient
I aClient I
aclient:= self newAtHosk‘locallcost’port 3603.
aClientnotlW ifltw [

aClient
setupInterFace;
addDependenk SocketMsgReceivernew.

aClientnextpuh ‘Hello from the client’.
(DelayforSeconds:1) wait.
aCLientclose]

!rcampleSewer
I aClientInterfaceaServer I
aServer:= self newAtPork 3603.
aserver notllil WI’rue[

aclienffnterface:= selfnewom aServersocket accept.
aclientl nten%ceaddDependenk SocketMagReceivernew.
aClientInterfacenextPut: -HeUofromserver’.
(DelayforSeconds: 1) wait.
aClientlnterface close.
a%rver close]

:iass:SmaUtaUrhterface
:uperclass:Model
nstance variables: ‘application callJack transport -
:Iassvariables: ‘‘
loolDictionaries:‘‘
:ategory ‘SmaUtaUr-Interi%ce’

;hnalltalklntecfaceinstance methods

inilialise-release’

:Iose
self transport close.
seIftranspork nil.

updating’

lpdate: a.symbolwiti anObjectFrom:aSender
asycobol==#socketIO

ifl’rue: [(self application respondsTo:self callback)
ifTrue [self application perforcmself callbackwith: anObject].
dependents update: asymbolwith anObjectfrom. aSender]

ifPalse:
[super
update: asymbol
with anObject
from aSender]

specialized IO’

~extpukanObjecton: a’hansportlnterface
aTranspoctInteri%cenextputi anObject.

inalkallrhterface class methods
ctober 1994
‘examples’

exampleClientAtPorLaPort
I aClient I
aclient:= SmaMallrClientnewAtHosk‘localhost’port aPort.
aCLientnotNilWI’rue:[

atlient
application: atient;
callback #caUbackMethod;
nerrtputi ‘HeUofrom client’;
nextput (OrderedCoUecbonwith ColorValueblack witlv 2.9);
nextpuk ‘I am done’.

(DelayforSeconds:6) wait.
aClientclose]

exampleSemerAtPorkaPort
I aServer I
aserver := SmaWdlrServernewAtPorLsport.
aServernotNil ifl’rcre:[

aServerapplication aServer;callback #caWbackMethod]

‘cleanup’

release
self allhcstances do: [:a.%ndkalldnterface IaSmalltalkInterfaceclose],
ObjectMemoryglobalGarbageCoUect.

class: SmaUtallcClient
superclass: Smalltalkhterface
instance variables: ‘‘
classvariables: ‘‘
pooillictionaries: ‘‘
category -Smalkall-Interface’

SmaUtallcClientinstance methods

-speciahsed IO’

nextput anObject
self nextputi anObjectOKselfhanspoct.

‘updating’

update: a$mbol wittu anObjectfrom aSender
asymbol ==#closedSocket
ifl’rua [self close]

ifpalse: [super update: asymbolwith: anObjectfrom: aSender]

SmalltaUrClientclass methods

‘inskoccecreation’

newAtHost:aHost pork aPort
I anInterface aTransportI
allanspork :=TransportInterfacenewAtHo~ aHost port: aPort.
‘aTransport notNil

ifl’rue: [
anInterface := self new.
(anInterface transporL aTransport)setupInterface.
aTransportaddDependent anInterface]

ifPalse: [nil].

class: SmaUtaUrServer
superclass: Smalkalldnterface
instance variables: ‘listenerprocess interfaces ‘ classvariables -‘
poolllictionaries: ‘‘
category ‘SmaUtall-Interi%ce’

SmaUtaUrServerinstance methods

‘private’

closehcterfaces
(interfaces respondsTo:#do:) ifhre: [
15

Simple
Smalltalk

KENT BECK testing
You can’t argue with inspiration (or deadlines). I started

to write the final column in the sequence about using

patterns for design, but what came out was this. lt

describes some work I have been doing with a framework that
takes the tedium out of vvriting tests. 1’11get back to the pat-
tern sti in the next issue.

SmsIltalk has suffered because it lacks a testing culture. This
column describes a simple testing strategy and a framework to
support it. The testing strate~ and framework are not intended. . —.
to be complete solutions, but, rather, are intended to be starting
points from which industrial strength tools and procedures can

be constructed.
The article is divided into four sections:

- Philomphy.Describes the phdosophy of writing and running
tests embodied by the framework. Read this section for gen-
eral background.

● Framework. A literate program version of the testing frame-
work. Read this for in-depth knowledge of how the frame-
work operates.

● Example. An example of using the testing framework to test
part of the methods in Set.

● Cookbook.A simple cookbook for writing yow own tests.

PHILOSOPHY

The most radical philosophy espoused here is a rejection of
user-interface-based tests. In my experience, tests based on user
interface scripts are too brittle to be useful. Testers spend more

time keeping the tests up to date and tracking down false fail-
ures and false successes than they do writing new tests.

My solution is to write the tests (and check results) in
Smslltalk. Although thk approach has the disadvantage that
your testers need to be able to write simple Smalkslk programs,
the resulting tests are much more stable.

Failurss and errors

The framework distinguishes between failures and errors. A
failure is an anticipated problem. When you write tests, you
16
check for expected results. If you get a different answer, that is
a failure. An error is more catastrophic it indicates an error
condition that you didn’t check for.

Unittasting

I recommend that developers write their own unit tests, one per
class. The framework supports the writing of suites of tests,
whkh can be attached to a class. I recommend that all classes
respond to the message testSuite, returning a suite containing

the unit tests. I recommend that developers spend 25–50% of
their time developing tests.

Integrationtasting
1 recommend that an independent tester write integration tests.

Where should the integration tests go? The recent movement
of user-interface frameworks to better facilitate programmatic
access provides one answer-drive the user interface, but do it
with the tests. In VisualWorks (the dialect used in the imple-
mentation below), you can open an ApplicationModel and

begin stuffing values into its ValueHolders, causing all sorts of
havoc, with very little trouble.

Running tasts

One final bit of philosophy. It is tempting to set up a bunch of
test data, then run a bunch of tests, then clean up. In my experi-

ence, thk procedure always causes more problems hat it is
worth. Tests end up interacting with one another, and a failure
in one test can prevent subsequent tests from running. The test-
ing ilamework makes it easy to set up a common set of test
data, but the data will be created and thrown away for each test.

The potential performance problems with this approach should-
n’t be a big deal, because suites of tests can run unobserved.

FRAMEWORK

The smallest unit of testing is the TestCase. When a TestCase

runs, it sets up its test data, runs a test method, then discards
the test data. Because many cases may want to share the same
test data, TestCase chooses which method to run with the
instance variable selector, which will be pefiormed to run the
test method.

class:TestCase
superclass:Object
instance variables: selector

classvariable: FailedChecMignal

TestCases are always created with a selector. The class method

selector: ensures thk.
TestCaseclass>>selecto~asyrrrbol

‘self new setselecto~ a$nnbol

TestCase>>setSelectora$nnbol

selector:= a$nrrbol

The simplest way to run a TestCase is just to send it the message

run. run invokes the set up code, performs the selector, then

runs the tear-down code. Notice that the tear-down code is run

regardless of whether there is an error in performing the test.

TestCase>>run

self setUp.

[selfperforrnTest]

vahmNorvOrOnUnwindDo:[self tearDown]!
The Smalltalk Repoti

Subclasses of TestCase are errpected to create and destroy test

fktures in setUp and tearDown, respectively. TestCase itself pro-
vides stubs for these methods that do nothing:

TestCase~>setUp
‘Runwhatwercodeyouneed to get readyfor the test to run.”

TestCase~>tearDown
“Releasewhatwer resources you used for the test.”

PerformTest just performs the selectoc
TestCaae~~erformTest

self perform selector

A single TestCase is hardly ever interesting once you have got-
ten it running. In production, you will want to run suites of
TestCases. Aggregating TestCases is the job of the TestSuite:

Class:TestSuite
super class: Object

instance variables: name testCases

When a TestSuite is created, it is initiahzed to prepare it to

hold TestCases. TestSuites are also named, so you can identi@

them even if you have, for example, read them in from sec-

ondary storage:
TestSuiteclase>rwmed:aStcing

“selfnewsethne: aString

TestSuite>>setName:a.shing
name:= aShing.
testCases:=OrderedCollectionnew

TestSuites have an accessing method for their name in anticipa-
tion of user intefiaces that will have to display them:

TestSuite>>name
“name

TestSuites have protocol for adding one or more TestCases:

TestSuite>>addTestCaae:aTestCase
testCasesadd aTeatCase

TestSuite>>addTestCases:aCollection
aColle&ondo: [:each I selfaddTestCaseeach]

When you run a TestSuite, you’d like all of its TestCases to run.

It’s not quite that simple, though. Running a suite is different
from running a single test case. For example, if you have a suite
that represents the acceptance test for your application, after it
runs, you’d like to know how long the suite ran and which of
the cases had problems. This is information you would like to
be able to store away for fhture reference.

Te.stResuk solves this problem. Running a TestCase just exe-
cutes the test method and returns the TestCase. Running a
TestSuite, however, returns a TestResult that records the infor-
mation described above- the start and stop times of the run, the
name of the suite, and any failures or errors:

Class:TestResult
superclass:Object
instancevariables:startTimestopllmetestNamet%ilureserrors

When you run a TestSuite, it creates a TestResult, which is time
stamped before and after the TestCases are run:

TestSuite>Xon
I result I
result:= selfdefauM’estResult.
result start.

self run: result.

result stop.

“result
October 1994
The default TestResult is constmcted by the TestSuite:

TestSuite>>defaultTestResuk
‘self dei%ultTeatResuMlasstest self

TestSuite>>defaultTestResuMlass
‘TestResuh

A TestResult is always created on a TestSuite:
TestResultclass>>testiaTest

“selfnewsetTest:aTest
TestResul@>setTestaTest

testName:=aTestname.

failures:=OrderedCollefionnew.

errors:=OrderedCollectionnew
TestResults are timestamped by sending them the messages
start and stop:

TestResul*>start

sttie :=DatedateAndTinwNoW
TestResulb>stop

stopl%ne:=DatedateAndTimeNow

When a TestSuite runs for a given TestResult, it simply runs
each of its TestCases with that TestResult

TestSuite>~run:aTestResult
testCasesdo: [:each I eachrum aTestResuk]

Because the selector run: is the same in both TestSuite and
TestCase, it is trivial to construct TestSuites which contain other
TestSuites, instead of or in addition to containing TestCases.
When a TestCase runs for a given TestResult, it should either
silently run correctly, add an error to the TestResult, or add a

failure to the TestResult. Catching errora is simple-use the
system-supplied errorSignal. Catching failures must be support-

ed by the TestCase itself Fkst, we need a SignaL
TestCaseclas->initialize

FailedCheckSigml:=selferrorSignalnewsignal
notierString: ‘Checkfailed -‘;

nameclass: self message: #checkSignal

Now we need a way of accessing it
TestCase>>failedCheckSignal

‘FailedCheckSignal

Now, when the TestCase runs with a TestResult, it must catch

errors and failures and inform the TestResult, and it must run

the tearDown code regardless of whether the test executed cor-

rectly. This results in the ugliest method in the framework

because there are two nested error handlers and

valueNowOrOnUnwindDo: in one method:

TestCase>~rurraTestResuk

self setUp.

[self errorSignal

handle: [:esr I aTestResukerro~ ex errorSting ti. sew

do: [self failedCheckSigml

handle: [:ex I aTesLResukfailure: ex errorStiing im selfl

do: [selfperformTest]]]

valueNowOrOnUnwindDo:

[self tearDown]

When a TestResult is told that an error or failure happened, it
records that fact in one of its two collections. For simplicity,
the record is just a two element array but it probably should
be a first-class object with a time stamp and more details of
the blowup:

TestResulb>erroca.stringin: aTestCase
17

errors add: (Arraywith: aTestCasewitlu aSh’ing)

TestResul&>faihuc aShing im aTestCase

failures add (Arraywith aTestCasewith: XYzirrg)

The error case gets invoked if there is ever an uncaught error

(for example, message not understood) in the testing method.

How do the fadures get invoked? TestCase provides two meth-
ods that simpliij checking for fdure. The first, should: aBIoek,

signala a failure if the evaluation of aBlock returns false. The

second, shouldnt: aBlock, does just the opposite.
should:aBlock

tilock value ifTalse:[self failedCheckSignalraise]

shouldrmfllOCk

aBlockvalue Whua [self failedCheckSignalraise]

Testing methods wiU likely run some code, then check the

results inside should: and shoukink blocks.

EKAMPLE

Okay that’s how it worka, but how do you use it? Here’s a short
example that tests a few of the messages supported by Sets.
First we subclass TestCase, because we’ll always want a couple
of interesting Sets around to play with:

Class:SetTestCase
superclass TestCase

instancevariables:emptyfull
Now we need to initialize these variables, so we subclass setUp.

SetTestCase>>setUp

empty:= Set new.

full:= Set viiti #abc rvith: 5

Now we need a testing method. Let’s test to see if adding an

element to a Set really works:

SetTestCaae>>testAdd

emptyadd: 5.

self should: [emptyincludes: 5]

Now we can run a test case by evaluating:

(SetTestCaseselector #testAdd) run.

Here’s a case that uses shouldnt:. It reads ‘after removing 5

from W, full should include #abc and it shouldn’t include 5.”

SetTestCase>>testRemove

full remove: 5.

self should [fullinchrdex#abc].
selfshouldnk [fullincludes:5]

Here’s one that makes sure an error is signaled if you try to do
keyed access:

SetTestCase>*stIllegal
selfshould [selferrorSignal

handle: [:ex I true] do: [emptyak 5. false]]

Now we can put together a TestSuite.
I suite I

suite:= TestSuitenamed: ‘SetTesta’.

suite addTestCase:(SetTestCaseselecto~ #testAdd).

suite addTestCase:(SetTestCaseselecto~ #testRemove).

suite addTestCase:(SetTestCaseselectoc #testIllegal).

‘suite

Figure 1 showa an Object Explorer picture of the suite and of
the TestResult we get back when we run it.

The test methods shown above only cover a fraction of the
18
\

SetTestCaser
selector #testiHegal

ufull

empty

==7
startTime #(26 August 19942:09:00 am)

stopTime #(26 August 19942:09:01 am)

testName I
failuresOrderedCollection ()

errorsOrderedCollection ()

Figurs 1.

functionfllty in Set. Writing tests for all the public methods in
Set is a daunting task. However, as Hal Hddebrand told me
after using an e~lier version of this i%rnework, “If the underly-
ing objects don’t work, notlsing else matters. You have to write
the tests to make sure everything is working.”

COOKBOOK

Here are simple steps you can follow to write your own tests:
1. Scope the tests. Decide whether you want to test one object

or several cooperating objects. Subclass TestCase, prei%ring
the name of your test scope.

2. Create test ilxture. Find a few configurations of your objects
that will exercise the code you want to test. Add an instance

variable to your TestCase subclass for each configuration.
Override setUp to create the configurations.

3. Write the test methods. Write a method for each distinct
test you want to perform. Use should and shouldnt wher-

ever you can check for comect or incorrect results. As you
write each method, test it by creating an instance of your
TestCase subclass and sending it nm.

4. Create the suite. Write a method in one of the classes you
are testing that collects all of the TestCases into a TestSuite
and returns it.

CONCLUSION

This column has presented the philosophy and implementation
of a simple testing stiate~ for Smalltalk. The strate~ has the
advantages that it is simple, lightweight, and produces tests that
are stable. It is not complete or perfect, but it’s a whole lot better
than no programmatic tests at all. As ahvays, if you have com-
ments, plesse pass them on to me at
70761 .1216@compuserve.com. q
The Smalltalk Report

1

ALAN KNIGHT

More
performance

●

tips
I n retrospect, I wish I’d chosen a different topic for this
article. I’ve just returned from ParcPlace’s first user confer-
ence, and from listening to Alan Kay’swonderfhl keynote

speech- Alan Kay doesn’t talk about performance optimization,
except perhaps as one of those petty concerns that prevent us
seeing the truly new and exciting ideas. Listening to him talk
can make you uncomfortably aware of just how unimportant
the problems you’re working on sre in the larger context. As he
so diplomatically put it, “All thk crap you’re writing code for is
meaningless.”

This isn’t exactly inspirational material for a column on per-
formance optimization, but perhaps there’s a lesson here.

Performance optimization is a detail. It’s easy to get csrried
away with optimization, particularly micro-optimizations.
Basicslly optimization is fun. Thhking about application issues

can be a lot less fun, particularly if it involves contact with
those icky users. In the long run, however, it’s application issues
that will dominate. They may even dominate performance,

Another ParePlace conference attendee, whose name I didn’t
catch, commented that the biggest optimization for an opera-
tion is realizing that you don’t need to do it at sjl.

That being said, it’s nice if the operations you do need can
run efficiently, and what follows are a few more tips for achiev-

ing this.

EXPLOITING SYSTEM LOOPHOLES

As we all know, in Smalka.lk everything is an object, and all
operations are accomplished by sending messages to objects. At
least it looks that way. In fact, there are a number of situations
where the system “cheats” to improve efficiency. Most of the
time you don’t need to worry about these situations, but it can

be very helpful to know about them when you’ re trying to
optimize for performance.

INLINED MESSAGES

There is a small set of messages which are not implemented
as message sends, but are instead “inlined.” The compiler
replaces the message send with code to perform the operation
October 1994
directly. Whale the exact set of messages replaced thk way
varies with the implementation, there are some which are

almost always included.

Identity

One of the most important inlined messages is the== (double-
equrds) identity test. Equality testing is implemented by a mes-
sage send, but the identity test is always a direct comparison of

object pointers (you couldn’t change it if you tiied). Thk is the
reason that things like IdentityDictionary and IdentilySet are
faster than Dictionaries and Sets. You have to be careful how-
ever, that an identity test is really what you want. Usually you
really want equrdity, and use identity as a substitute when you
know they’re the same for the objects in question. Identity tests
on certain system classes are.almost always safe:

.hnalllntegec Snyvar==3

symbol: mode == #debug

UndeiinedObjecb result == nil
Others are definitely not safe, and can get you in a lot of hard-
to-debug trouble

string: mode == ‘debug’

Numericsother than Srrdlnteger arg == 1.0

In particular, if you have a class where there is an equali~ oper-
ation dtierent from identity, you probably want to thhk very
carefully before using identity tests.

When using symbols, you should also be careful that you

aren’t paying the cost of the lookup in the conversion to symbol
form, The expression aShing asSyrnbol is doing a lookup in a
very large hash table, and can have significant overhead if you’re

doing it many times.

Controlstructuresandblocks
Thereareseveral basic contiol stictures that are almost always
inked. This includes conditionals (ifTrue:, ifFalse:, etc.), while
loops (whde’lhe: etc.), Boolean operations that take a block
(and, or:) and indexed iteration (to:do:). These control structures

are particularly important, because in addition to the message,
the associated block is irdined as well. This can often make a
much larger performance difference than just one message send.

BLOCKS

Blocks are a very important mechanism in Smsllt~ and an
important feature that many static 00 languages are missing.
Since they are used to implement all of Smslltalk’s control
structures, they occur very frequently, and it’s worthwhile to
understand their performance characteristics. P~cPlace
Smalltalk does the most optimization based on block types,
categorizing them as follows

Full blocks
These blocks can read and assign to temporary variables in the
method context, and can contain a return. Thk requires trans-

forming the method context into a real object (instead of a
stack-based pseudo-object). For example, take the following
(very inefficient) code fiagmen~

I aHugeStig I

aHugeShing := Stig new.

SmaUtaUrkeys do: [:each I aHuge$zing := aHugeShing, each,].
19

conh”noed O?lpage 32
Copying blocks

These blocks can read temporary variables in the method con-
text, but cannot assign to them or contain a return. It can read
ador assign to instance variables of self The name comes
from the fact that this can be implemented by copying the

Don ‘t use isKindOfi, Itk
not just slow, it h the

wrong thing to do.

appropriate values into the block avoiding direct references to
the method context in which the variables appear. The method
context can therefore stay on the stack.

I afieam I
aSheam:=WriteS+xeamon: Stringnew.

Smalltalkkeys do: [:each I astream nextPutAlb each].

Clean blocks

These do not refer to variables except block arguments and
globals. This is a very restrictive form, since it doesn’t even
allow references to sel~ or to instance variables. Because of the
restrictions, this can be compiled as a simple flmction, which is
much more efficient than the more general block forms.

I a.%eamI
aSbeam:=Writefieam on: Stig new.
SmaWalAkeys injeti aStream h-to: [:sum :next I

sum nextPutilk next].

Inlkwdblocks
These blocks have no restrictions on what they can do, but must
be a literal block used as an argument to one of the inked con-
trol structures described previously. Because of the way that they

are used, the compiler knows enough to remove the block
entiiely and directly embed the code within the method.

I keyStieamd-IugeSbing I

keystream:= ReadStreamon Smalhalkkeys askray.

aHugeString := Wing new.

[keyStreamatEnd] whileFalse:[

aHugeStig := aHugeStsing, keyStreamnext].

Examplablockoptimization
These different block types me a mixed blessing. While they

allow significant performance optimizations in some cases, they
require some sophktication to understand. It’s also hard to
know exactly where they would be worthwhde, since block
overhead is usually hard to spot in a profiler. One example of a
performance optimization would be to re-implement deteck

for SequenceableCollecdons. The default implementation is the
inherited one from Collection:
20
detect: aBlockifNone:exceptionBlock

self do: [:each I (aBlockvalue: each) itTrue: [neach]].

“exceptionBlockvalue

The ifhue: block is irdined into the do: block since iflkue:
always irdines literal blocks. ‘Ilk makes the do: block full, since
it now contains a return. This can be quite inefficient, but there’s
no obvious way of getting around it. We need to return before
we’ve finished the loop, since that’s the essence of detect For
general collections there isn’t a very clean way to do this, but we

know that SequenceableColleciions can be addressed by index,
and that to: do: irdines its argument. This allows us to write:

detect aBlockiflIone: exceptionBlock

I to: self size do: [:i I

I each I

each:= self at i.

(aBlockvalue: each) ifltue: [Aeach]].

“exce@onBlock value.

Now the only “real”blocks are the ones passed in by the user,
and the efficiency should be considerably improved. Because this
small ugliness is hidden inside the implementation of a standard

system method, it shouldn’t sffect the quality of our other code.
This is also a good example of a more general optimization

technique, exploiting restrictions in subclasses. General classes
Iiie Collection need to provide very general methods. If we
know that a subclass doesn’t require the full generahy, we can
exploit that knowledge to provide a more efficient implementa-
tion. In this case, the knowledge we’ve used is that do: can be
implemented just as efficiently using to:do: and at: for srray-
based sequenceable collections, and that all the sequenceable

collections in the base image are array based.
This can get us in trouble if our assumption is violated, If

we added non-array based implementations of sequenceable
collections (e.g., self-balancing trees) at: could be a relatively
expensive operation. This could easily make our “optimized”
implementation less efficient than one based on do:. We would
need to ensure that each type of collection used the appropriate
deteti implementation.

othar implementations

One problem with block optimization is that they’re usually not
portable. Digitrdk’sblocks are implemented quite clit%ercndythan
what is described previously,with fewer opportunities for opti-
mization. Whale I am not as familiar with the detds of DIgitslk’s
blocks, they appear to have only the full and inLinedvarieties.
They are also less general (they don’t allow block locals, and block
arguments are turned into variables in the method scope). I’m not
sure, but these limitations may allow them to be implemented
more efficiently than ParcPlace-style fidl blocks. In any case, there
are fewer options in SmaUtaWV for these subtle optimization.

IBM seems to do some very odd stuff with blocks. I say

seems, because I haven’t seen any of their implementation doc-
umented, and am guessing based on the code that is visible.
IBM, like Digitalk, appears to only distinguish fidl and irdined
blocks, but they also have a number of nonblock objects that

can impersonate commonly used clears blocks. For example, the
default sortBlock
The Smalltalk Report

JUANITA
EWING

Exceptional
power and

control
In my last column, I discussed return values, and the use of
specialized return objects. A return statement is only one

mechanism that controls exit semantics and values. Another

mechanism, an ex&emely powerful one, is exceptions. Exceptions

provide flow control that cross and encompass methods.

The examples in this column are from the SmaUtaUr/V

exception hanrlhng system. Objec~orks\Smalltalk also has an

exception handling system, so 1 will point out equivalent

expressions during the discussion. We will also use the return

object example from the last column as an example of how to

add exceptions to an existing subsystem, includlng some archl-

tectural suggestions.

SIMPLE USE OF EXCEPTIONS

With an exception handling system, a developer can control
how exceptional situations manifest themselves. In most
Smslltalk systems, exceptions manifest themselves as errors,
resulting in a walkback or error notifier. Exception handling
gives developers the ability to control the manifestation of emors
i%omlow-level code, so they don’t bubble up to the end user.

The basic premise of an exception handling system is sim-
ple errors cause exceptions. Client code can ignore exceptions,
which triggers the default action for the exception, or client
code can handle the exception by performing a special action.
Clients must designate which sections of code are protected
from the default action of an exception.

To protect sections of code, the code must be placed in a
bloclq and sent the message on:do:. The first argument to the

message is the exception the developer wishes to handle. The
second argument is the handler block, which is the code to be
executed in case of an error. The handler block optionally has
a block argument, which is the exception that was raised. In
Objectworka\Smalltalk, the equivalent exception handling
capabili~ is invoked by sending the message handle: do: to an
exception.

The following method isAtive uses exception handling in a
October 1994
straight forward manner. The code makes sure that file errors
do not interfere with the test for the existence of the info file,
by placing the test in protected block. It invokes protected exe-

cution with the message omdo:. The argument to the om.do:
message specifies the exception FileError.The handler block

contains the special action that is executed if a FileError is raised
during execution of the protected block. If there are file errors
accessing the info file, we assume the fle does not exist, and
exit from the method with a return value of false. In thk
method, the handler block does not have an argument, which is
the simpler form of the handler block

isActive
‘Answer-e> ti there is akeadyan infofilein the receiver’s

directory”

“[self infoFileerrists]

om FileError

do: [“false]

The on:do: statement in the iwlfive method handles the

exception FileError and all of the exceptions derived from
FileError. Unrelated exceptions are not handled in this state-
ment. In the Macintosh implementation of Smslltalk/V, the
FileError hierarchy looks like thk:

FileError
DirectoryNotFound
EndOffile
FileDoesNotExist
VohuneNotFound

These derived exceptions are specific kinds of file errors. In
SmalltallcW, exceptions are implemented as classes, so you can
use standard browsing tools to examine and edit the exception
hierarchy.

EXAMPLE DESCRIPTION

Our example from the last column used an operation that had
several different return values, requiring the client to execute
conditional code or perform a kind of case statement in order
to use the result of the operation. We rearchltected the solution
for our example, ending up with a specialized return object.
The specirdized return object could be queried to determine the
success of the operation, and included more queries to deter-
mine if an exceptional condition had arisen.

Here is the description of our example operation:
■ It might not succeed.
“ The operation has a second chance of success—it can be

retried with some input ignored.
“If the operation fails, it might be because of an internal

error, or because an external function failed. For debugging
purposes, it is desirable to distinguish between the two.

■ Another effect of the operation is the creation of an
OrderedCoUetion of strings containing result data from the
operation.

The invocation of the operation using a specialized return
object (simplified slightly from the previous column):

invokeOperation
“hvokethe operationWlthPoorInterface.Return a

collection of strings if the operation succeeded. If it failed return

an empty collefion.”
21

I result I

result:= self operationWithPoorInterface.

result wassuccessful

WI’rue:[selfnonsuccess.

-YesuktigCollection].

result wasDatignored

ifTrue: [selfnoMyDataIgnored.

‘YesultstrirrgCollection].

self no&rro~ result errorMessage.

“OrderedCollecbonnew

With the goal of simpli$ing the interface to the specialized

return object, we can rewrite this invocation using exceptions.

Although the initial version of the invocation does not have as

much capability as the original version, we will improve on the. .
exception version of the invocation as thk article progresses.
Here is the simple initial version:

tikeOperation
“Jnvokethe operationWithPoorInterface.Returna

coUetion of strings if the operation succeeded.

Return an empty colletion on faihcre.n

I result I

[result:= self operationWithPoorInterface]

occ OperationWithPoorInterfaceError

do: [: errceptionI
selfno@Erro~ exception errorMessage.

“OrderedCollecbonnew].

self notifySuccess.

-YesultstringCoUetion

In this version the operation is performed whale protected from
errors, using the on: do: message. If no errors occur, we execute
the code after the on:do: message, which notifies the user of

success and returns the result. If an error does occur, we notify
the user of an error.

WHY IS THIS ARCHITECTURE BEllER?

The main difference between the example invocation with
exceptions and without exceptions is the use of the on:do:
message and the number and kind of messages sent to the spe-
cialized result object. The original invocation contained queries
to the return object about errors. The new version does not
contain queries about errors. The original specialized return
object had information about two things: error conditions and
operation results. With exception handling mechanisms, we

can move the information about errors to the exception object.
This partitioning of responsibilities results in more under-
standable and reusable code.

Though it is not so obvious by analyzing the client code, the
developer has better control mechanisms with exception han-
dling. The basic capabilities of the exception handling system
allows the developer to elegantly handle errors generated at a
low level. This is extremely important for complex operations.
Behind the original implementation there was specird purpose
code containing specialized calls to low level operations that
prevents low level errors from bubbling up to the user. The spe-
cialized invocations are eliminated by using exception handling.
22
HOW DO WE USE SPECIALIZED EXCEPTIONS?

Because exceptions in Smalltalk/V are implemented as classes,
it is easy to extend the exception Kleratchy using the same
mecha~sms used for erctending the class hierarchy. If you have

a need for specialized exceptions, then you should create an
extension of the exception hierarchy. It is convenient to root all
related exceptions at a single exception. Thk allows clients to

write simple code to catch all related exceptions.
Most developers create a set of exceptions for each subsys-

tem. This simpliies the interface between subsystems by pro-

viding a consistent and extensible way to pass error and- -
notifications between subsystems.

Most systems have different exceptions for different kinds of

errors because the client needs to distinguish between kinds of
errors. When you are designing your hierarchy, for example, you
might want to group resumable exceptions together. Mter ana-
lyzing our example operation, we decide to use an exception
hierarchy like this:

Error
OperationWithPoorInterfaceError

PoorInterfaceExtemaMror
PoorInterfaceFileError
PoorInterfaceResourceError

PoorInterfaceIntemalError
PoorInterfaceMissingInputDataError
PoorInterEaceUncomputibleError

PoorInterfaceConRidingDataError

We want to distinguish between internal and external errors

because the operation can be reattempted after an internal

error. ln this hierarchy, we make the distinction explicit by cre-

ating an exception hierarchy for each kind of error.

Why do we root ou exception hierarchy at Error? One rea-

son is that we want to inherit the appropriate behavior. One

indicator of behavior is the default action of an exception. Here

are the high level exceptions in the system, along with their

default action:

Exception-open a wallcback

Error-open a waUrback

Notification-no action

Warring-open a warning message dialog

The errors we generate from our example are serious problems,

not just warnings or notifications. That makes Exception and

Error potential derivation roots of our example exceptions

because they have the appropriate default action: opening a
walkback

Of these two possibilities, we choose to derive our new
exception from Error. We choose Error because it fits the stan-
dard way to catch all errors—an omdo: statement handling
Error. The alternative is to catch all errors by handling
Exception, but that combines catching errors and notifications.

It is rare to want to treat notifications like errors!

EXTENDING EXCEPTIONS

In addition to creating new exceptions, the SmaUtalk/V excep-
tion system also has the capability of extending exceptions by
addhg behavior or state. It is good practice to limit extensions
to your own exception classes, so that your extensions do not
colhde with modifications made by the vendor.
The Smalltalk Report

Let’s return to our invocation of the operationWithPoor-
Interface. The retry mechanism is convenient for allowing the

end user to control thk operation. Once we have determined
the set of exceptions for our operation, we also want to imple-

ment a new message to determine if the operation can be
retried. If the error is internal the end user is notified that he
can retry the operation.

invokeOperation

‘Invokethe operationWlthPoorInterface.Retom a

coUectionof strings if the operation succeeded. If it failed attempt

a reby after user con6nnation. Return an eropw collection on

failure.”

I result I

[result:= self operation’AWIWoorInterface]

on: OperationWithPoorInterfaceError

do: [: exception I

(exception canRebyOperationand:

[self canIgnoreData])

ifllue [selfno~Re&yPossible: exception

errorMessage]

ifpalse: [selfnotffyErroc exce@on

errorMessage].

“OrderedCollecIionnew].

self nonsuccess.
“result stigCoUetion

The message sent to the exception to determine whether the
operation can be retried, canRei@lperation, is a nonstandard

message. It must be implemented by a specialized exception

hierarchy.

We implement the message canRehyOperation at two differ-

ent spots in our exception hierarchy. At the top, in the exception

OperationWithPoorInterfaceError, we implement

canRet@peration to return false. For PoorInterfaceIntemalError,

we implement canRe@Operation to return true.

De~elopers can add state to exceptions, if necessary, by
adding instance variables. The state inherited from Error
includes an error message, but various other exceptions con-
tain specisk.ed information. For example, the exception

MessageNotUnderstood has state for the message which is not
understood. In our example exception hierarchy, we could add
state to the confecting data error,
PoorInterfaceConRictingDataError, to describe which data are
conflicting.

HOW ARE EXCEPTIONS GENEFIAIID?

Our example showed us how to handle exceptions. We also
need to know how to generate exceptions at the appropriate
times. In our original example, the specialized return object con-
tained error ircformation.when we use exceptions, we need to
replace code that stuffed error information into the specialized
return object by code that raises exceptions instead. Let’s exami-
ne a code fragment that used the specialized return object

extemalEnor:=selfextemalOperation.
externalError>0

ifl’me: [aPoorInterfaceResulterrorCode:exterrd%ror.
%PoorInterfaceResult].

Instead of sending messages to the return object, we need to
rework this code fragment to raise an exception. The default
October 1994
way to raise an exception is to send the message signrd or sig-
s-d to an exception. Our reworked code looks like thk:

extemalError:=selfextemaloperation.
errtemalError>0

ifl’rue: [PoorInterfaceExtemalErrorsigm~ (seLf

errorMessage:exterrca&or)].

The signal message raises an exception. The signal: message
raises arcexception accompanied by a descriptive message.

Other exceptions have specialized instance creation message

appropriate for their extended state.
From one error, we can create another kind of error. To do

this, we handle the first error, and from the handler block raise
another error. In this code fragment, we catch a file error, and
raise a specialized fle erroc

[fileStieam := self createTempomryFile]

on: FileError

do: [exception I

PoorInterFaceFileErrorsigmk exception message]

FINER CONTROL

There are a variety of ways to exit from an exception handler,
each providing a different form of finer control. Exit mecha-
nisms include resume, return, pass and retry. Some or all of
these mechanisms are extremely useful with multiple exception

handlers, but can rho be useful with a single exception han-
dler. All of these mechanisms are invoked by sending messages
to the exception inside the exception block Of these mecha-
nisms, we will discuss retry and resume in detail.

The retry mechrmism is used to re-evsluate the protected

blo~ the receiver of the on:do: message. It is invoked by send-
ing the exception the message retry. There is a variation of retry
that allows an alternate block of code to be evaluated. It is
invoked with the message retryusing: and takes the alternate
block as it’s argument. In Objecmvorks\SmaUtalk, the retry
mechanism is invoked with the message restart.

We again come back to our specialized return object examp-
le. Our original example included information describing
whether the operation had been attempted again. The client
had no control over the re-attempt. With exceptions, we can
improve the invocation of the operation by moving the retry
control to client. With the retry mechanism incorporated, the
invocation looks like this:

invokeOperation

“Invokethe operationWithPoorInterface.Return a

colledion of sh-ingsif the operation succeeded. If it failed attempt a

retry tier user co-tion. Return an empty collection on hilure,”

I result I

[result:= self operationWithPoorInterface]

on OperationWW@oorInterfaceError

do: ~ exception I

(exception canRetryOperationand: [seU

canIgnoreData])

ifllue: [self confirsnIgnoreData

ifl’rcw [self ignoreData.

exception retfy]].

“Can’tre~

seMno~l%ror exception errorMessage.

‘OrderedCoUectionnew].
23

selfnoli&.Success.

‘result shirrgCollection
If queries indicate data can be ignored, then the operation is
retiied by ending the message retry to the exception. We con-
tinue to make use of extensions to query the exception.

Here is an example using the retry mechanism from the
Macintosh version of SmaUtalk/V. One of the classes that
manages memory, AbstractMemoryHeapPolicy, has a method
that is used to allocate heap memory. If the allocation fails,
indicated by the exception MacNotEnoughMemory, then a low
memory action is performed to attempt to recover space and
the allocation is retried.

Ab~actMemocyHeapPolicy
do aBlockrequiringHeapBytes:estimatedHeapBytes

‘Evaluate<aBlock>after verifyingthat there is enough room on the

heap to allocate <ebatedHeapBytes>. Perform

lowHeapMemoryAction:if there isn’t enough room.

Simplifiedfor example.”

“(self roomOrWeapFor:etitedHeapBytes)

ifl’rue:

[aBlock

on: MacNotEnoughMemory

do:

[:ex I

(self lowHeapMemoryAdiomesbmatedHeapBytes)

*e: [ex re@]]]

The other control mechanism I want to spend some time dis-
cussing is resume. Resume is a control mechanism that tells the
exception handler to “keep going.” Only resumable exceptions
can be resumed.

MtiWindow

close

‘Timeto close the receiver. Checkwith the model, don’t

close if it doesn’twant tom

I allowclose I

allowllose := true.

[selfbiggerEvent #aboutToClose]

om VetoA&on

do: [:ex I alhmvtlose:= false. ex resume].

allowclose

ifltlce

[self closeWindow]

In the close method, the aboutToClose event is sent to all
objects that have registered an interest in the event. If any of

the registered objects want to disallow closing, they signal a
veto by raising the VetoAcbon exception. But, the processing
shouldn’t stop because of a veto. Each registered object must
receive the aboutToClose event. The code is designed to handle
this requirement it notes the veto by setting the allovflose
Boolean to false, and proceeds to finishing informing registered
objects about the intent to close by resuming the protected
block. Mer the protected block is completely executed,
24
informing the entire set of registered objects of the intent to

close, the window is closed if no object has vetoed the close.

WHICH ERRORS SHOULD YOU CATCH?

When handling errors, a good rule of thumb is to handle the
most specific error that is appropriate. Specific handling is usu-
ally better than general handling, especially during development.

A common mistake is to write code that inappropriately
handles the exception Error. More than one developer has been
mystified by the cause of an exception, only to discover that
their code catches all errors, including MessageNotUnderstood, a
subclass of Error. In this case, generalized error handling cov-
ered up a coding mistake.

ENSUFIED EXECUTION

Another mechanism, built on exceptions, is the ability to ensure
execution of some code. This mechanism requires placing pro-
tected code in a block, and the code whose execution must be
guaranteed in another block- Ensured execution will execute
the ensured code no matter what happens, even if a return

expression or an error terminates the protected block early.
This mechanism is particularly useful in cases that must

reset state or that must be protected against inconsistencies. For
example, this mechanism can ensure that a file will be closed
after reading data from it. Smalltalk/V uses the message
ensure:, whkh is sent to a block containing protected code and
has the guamntee block as its argument, The
Objec~orks\Smalltalk equivalent is valueNowOrOnUnwindDo:.

This errample is from the Macintosh version of Smalltalk/V.
The method fiUwithColor: uses ensured execution to make sure
the background color is reset to its previous value. The back-
ground color will be reset from the guarantee block even if the
erase operation from the protected block signals an error.

GraphicsTool

lilt geometricObject
withColocfillColor
“Fillthe insideof a <geomticObje@ withthe given<fillColoP.The
locationofthe receiveris not affected.”

I backgroundColorI
backgroundColor:=sellbackColor.
[selfbackColorfillColor.
geomeh_icObjecteraseOn:selfj

ensure [selfbackColocbackgroundColor]

Another related mechanism is on? that guarantees execution of
some code in case of an error. This code is executed ordy in the
case of abnormal termination, such as with an error. The
SmaUtallW message to invoke thk mechanism is if(htailed:.
The Objectworks\SmalltaUc equivalent is onUnwindDo:.

CONCLUSION

Exception handling is a power-fldmechanism for controlling
errors and notications, Even simple applications can benefit from
ensured execution and handling predefine exceptions. Complex

applications can benefit from specialized exceptions. Each subWs-
tem in the application should define specialized exceptions that
are part of the public interface of that subsystem. ~
The Smalltalk Report

MARK LnRENZ

When the
worst

happens
T hk article could be entitled “Making a smooth recov-

ery.” It derds with those times when lightning hits the
building, your dog trips over the power cord, your kid

plays with that interesting button on the power strip, or (as

recently happened for me) you jump on a beta and/or newly
released platfon-n. In other words, when your simulated world
of objects comes crarkng down around youKankles, what’s the
best way to pickup the pieces?

flECOVEMNG WITH ENVY

ENVY~eveloper is a mulh-user development environment for
Smrdltalk. It is used with VisualWorks from ParcPlace,
SmaUtalk/V from Digitalk, and VisualAge from IBM. ENVY
keeps most changes in a server-based database, generally in a
file named WAGER.DAT. Changes come in the form of edi-

tiom and vemiorn.An edition is a component that is still being

worked on. A version is an edition that has been released for

public consumption and can no longer be directly changed
(although another edition of it may be created).
Recovering with ENVY is a relatively painless mukistep process.

1. Make image consistent Thk action is unfortunately
placed in different places in dHerent versions of ENVY.It is
however always cascaded as a submenu under System.

“ In VlsualWorks, it is found on the popup menu for the

ApplicationManager applications pane.

● In Smslltalk/V, it is found on the Transcript’s ENVY menu.
=In Vkm.lAge, it is found on the Transcript’s Smalitalh

tad menu.

The make image consistent action looks for inconsistencies
between the editions on the server and those in the image.
Results appea in the Transcript. Warnings and errors should
be dealt with as documented in the manual. Informational

messages can be deleted. Dependkg on the version of ENVY,

you may also get one or more pop-up windows detailing the
inconsistencies found and allowing Load alternative actions to
resolve them.
2. Available classes: This action is available from the Classes

menu in the Application Manager.* It lists classes that are not
loaded in the image, but are part of another edition of the

aPP~catic’n. classes can be miss% if You crashed titer creating
a class, but before saving your image. Check this for each appli-

cation you were working on that may have missing classes and
reload them into your image.

3. More recent editions: This action is also available from the
Cla~~esmenu in the Application Manager. It lists any editions

that have a time stamp later than the one loaded for any of the
. . .

apphcatlons classes. Check thk for each application YOU were

working on before you crashed, loading later editions as needed.

At this point, you should be recovered from your crash. This
is a good time to save your image.

If your image is corrupt and cannot be run, you should start
from a fresh image and load from your configuration map, fol-
lowing the steps above to recover your work in progress. If you

don’t have a configuration map, then you’ll have to load appli-
cation versions by hand... dealing with configuration maps is a
subject for another entire article.

tlECOVERINGWITHTEAM/V
Team/V is a multi-user development environment for
SmaUtsWV. It uses the PVCS librmy system for storage of pack-

ages in disk files of the form <package name~.PKV or the file
system to store flat files of the form qackage name>.PKG.

Recovey using Team/V is also a relatively painless process.
1. Migrate packages: ky packages that have been commit-

ted will have need to be “migrated” to the latest version of the

code in the shared library. This is done from the packages menu.

2. Recovery from the change log Changes that have not
been committed will not be in the library so you will have to
retrieve them from the change log. Thk is similar to the section
on “vanilla” Smalltslk for SmaUtalk/V, with the difference that

Team/v information will slso be logged. You will only file in
the code changes and not the Team/V logged messages.

3. Reassignment to packages Unfortunately the changes you
install from the change log that are for new classes and methods
will not be automatically assigned to a package. Fortunately you
can do thk through direct action drag and drop from the tem-
porary “stream” package to the desired package(s).

4. Cleanup: Delete any tempora~ packages created for

change log installs. Update any package browsers from the
packages menu,

RECOVERING WITH “VANILLA” SMALLTAlK

The Smalltalk environment itself has some safeguards built into
it. The different vendors’ versions work somewhat differently.

Smalltalk/V
SmalhslldV uses a file called CHANGE.LOGthat has
modifications to the environment logged to it in such a way
that you can recover from it. The format of the changes is
called chunk format. Chunks are groupings of text delineated
by exclamation points (“!”).

● Again, the different versions allow access to the Applicdion Manager from diFfwwri places, You can

bring up ths Application Msnager from ths Manage applications option of the ENVY [VisualWwhs or

Smalltalk/V) m Smalltalk tools (Visualrlge) menus.
25

The following example taken from one of my change logs
illustrates the types of irsfiormation kept in this file.

“defie clses”

HornBaseBrowsersubclass:#HomModelBrowser
instanceVariableNames:“
classVariableNames:”
poolDiclionaries:“!

“evaluate”
HornModelBrowseresarnple!

!HornTopPaneclassmethods!

fileMenu

“Public- return the Pilemenu for my browsersto use”

“MEL3/1/93 @JHatterasSoftware,Inc. 1993. Allrights reserved.”

.,.

‘menu! !

“evaluate”

HornTopPaneclass removeSelecton#smaUtalkMenu!

!HomTopPanemethods !

buildMenuBar

“Private- Createthe menus that make up the menu bar.”

“MEL3/1/93 OHatteras Software,Inc. 1993. AUrighta reserved.”
... ! !

To recovem From Smallt~ open the file with your changes in
it. You may have to force the entire fle to be read into the
workspace browser.

● Place the cursor at the bottom of the file.
■ Bring up the Find dialog. Enter “image,” choose “back-

wards,” and press Enter.
■ Page forward, deleting any “evaluation” lines you don’t want

to execute again.
DPlace the cursor at the beginning of the line after the “image

saved” line.

■ Select the text from thereto the end of the file.
“ Fde the selected text into the image.

VisualWorks

VisualWorks has a different way of dealing with change con-
trol. As you make changes, they are put into a change log
named VISUAL.CHA.VkualWorks provides a browser that sepa-
rates the types of changes that are logged, allowing better vievv-
ing in some ways. It does not allow you to view only the
changes since the last image save, however.

InstalLng the changes is usually done via the browser’s menu
options, instead of through selections in the change log itself
using a workspace.

SUMMARY

We have taken a look at disaster recovery when using

Smalltalk. We’ve seen that, although it takes some effort to
26
EsCodeGsnarariOn :

EsParslnu ill.21

“ u..PU& Pih. .

1EWkiioiamm &
ElBaseTools ebtJU “... . .
EtResowceSavlrM ;.!!%

Figure 1. ENVY Application Managar menu.

II EIle Edtt Snsarttark II

It
,~u~,

hwlnvantOryVlew atsamplal H
lkwProducWiewmattroda1 ,,
weeteVlewe

*

Figure 3. An ersampla Smalltalk change log.

Figura 4. VisualWorks changes browser.

recover, Smalltalk allows for relative safety when using it to
develop applications. Groupware for Smalltalk makes the sit-
uation even easier to handle, Of course, you can safeguard
yourself even fhrther by frequent image saves, commits/ver-
sioning to the repositories, and regular archival backup and
off-site storage. ~

References
1.

2.

3.

ENVY/DEVELOPERUSEISMANUAL,Object Ted-mologyInternational,

1993.

TSAM/V USEItMANUAL,Digitalk Incorporated, 1993.

OLiJECTWOnKSSMALLTALKUSER’SGUIDE,PamPlace Systems Inc.,

1992.
The Smalltalk Report

SMA1lTAIK

w~
Q@

41 th

eral~

Finally, a ‘S shall~alh

vendor-independent
conference dedicated to all
Smalltalk users. Focusing on the
practical application of SmaIItaIk in its

“-

Discovering
Smalltalk

Reviewe(by

Mary Dunn

Wilf LaLonde

Benjamin Cummings

Redwood City, CA

ISBN 0-8053-2720-7

1994
continued on flage .72
w ilf LaLonde is an author and educator whose
name will be famihar to many readers of TH E

SMALLTALK REPORT. His latest book

DISCOVERING SMALLTALK, aims to provide an introduction to

the Smalltalk language, environment, and class libra~, and to

the major concepts of object oriented development. His educa-

tional philosophy is that learning is best done through experi-

mentation and discovery. Hence, the book is organized as a

process of discovery, plunging first into examples of actually

doing some simple things in the Smalltalk environment, and

then proceeding from basic to complex topics. The basis for the

text is SmaUtalk/V for Window, the final chapter introduces

user interface development using Object Share’s

WindowBuilder in its examples.

The intended audience is “those who have never programmed

before,” as well as those who know other programming lan-

guages. It is designed for use in a fist course in object oriented
programming. In the preface, LaLonde discusses his academic
curriculum and where thk book is used in sufficient detail to be
useful as a guide to educators. Outside of the classroom, I found
the book to be a good vehicle for an information systems profes-
sional learning Smdltrdk through self-study. It would be especial-
ly effective following some introductory reading on O-O, such as
David Taylor’s OBJECT ORIENTATION: A MANAGER’S GUIDE.

I have a background in corporate information systems rather

than in the academic sector. I am currently managing a project

to introduce object-oriented technology to our company which

includes a first project using Smalltalk/V and WindowBuilder.

I have done some research into object orientation and tilcen a

course in Smalltalk and O-O analysis/design but had not used
Smalltalk prior to reading this book.

The s~cture of the book provides a sound i%mework for
28
Iesming Each chapter explains what it will cover and why and
ends with several sections that reitiorce learning. Throughout
the text, important facts and ideas are enclosed in bordered boxes
to capture the reader’s attention, I found the index a bit sparse,

but I could locate most topics using the table of contents.

Discovering Smalltalk begins with a brief introduction to

computers, Windows, and Smalltalk The coverage of basic com-
puter, mouse, and Windows concepts seemed likely to be too lit-
tle if the reader needed it and in the way if not. (1 suspect the lat-
ter would be the more typical case.) We learn about Smalltalk
messages, receivers, and selectors through simple text manipula-
tion and calculations in the Workspace. Browsers are introduced

by using them, and we move onto methods, classes, and debug-
gers. From here on, we see more examples of code and discussion

of how Smalltalk works. The concept of inheritance and class
hierarchies follows. Collections merit theti own chapter, intro-
ducing the collection classes and how to create and process them.

At this point we take a different tack to consider evolution-
ary analysis and design techniques (primarily Class-
Responsibility-Helper analysis and Use Cases). This discussion
points out the interrelationship of analysis, design, and pro-
gramming inherent in O-O development. I was glad to see this

included in a textbook that is intended to teach a programming
language. The integration of analysis, design, and coding has
significant implications for information systems professionals,
many of whom have “grown up” as either “analysts” or “pro-
grammers” and need to round out their skills to be effective O-
0 developers. This brief presentation of analysis/design skills
and iterative development makes this a richer book, especially
for the reader who is learning through self-study.

The next chapter gives us a fairly extensive look at the

Smalltalk class library and its operations. The author has us try
different ways of coding methods, thus reinforcing the experi-
ment-and-refine method of development while introducing us
to the fimdarnental classes and methods in Smalltalk.

Suggestions for firther exploration are made so that we gain
confidence at learning through browsing. The basic structure
and object interaction in the user interface of a Windows appli-

cation are introduced very briefly in the final chapter.
The “discove~” method requires tolerance for incomplete

understanding early in the process of learning, which maybe
uncomfortable, espechlly for the reader learning through self-
study. The author helps us through reminders of where we’d
seen a concept before and gives assurances that we’d revisit it
later on. Early in the book, this reader would have appreciated
more definition than was provided when topics were first intro-
duced (selector and part, for example). However, I must admit
that I did develop an experiential understanding of the con-
cepts as I proceeded. Throughout the book LaLonde offers
observations and hints based on his experience; these are espe-
cially valuable as the topics become more advanced,

The integration of doing with learning is notably effective.
If reading fails to convey an idea, then the example that faith-
fully follows usually succeeds. I was grateful for the extensive
use of figures showing Smalkalk transcripts, browsers, code
examples, etc., since it allowed me to make progress in the book
even when I was not able to be hands-on with Smalltalk while
The Smalltalk Repod

objekt=orientiertesProgrammieren—.———.-...— —-—.—.

OOP ’95
MU NC HEN

Moving Forward with Object Technology

foR INJOBHATIONONEXHIBITINGORA~ENDINGOOP’95FEATURING[++World(0t4TAtT:
(lntheU\A) SIGS(onfwenceslInc,.,.,.,v,21L2hl.7S15..,f,Z12,2WS78

(lnGwmany) SIGS[onkrenc~sGmbH.,.,..v.089.9S7.9Sll...f.089.957.9115

Don’tMi
Most

objectTechnology
&(++ (onference!

Here’sWhatProminmt
GermanPublicationsSaid
AboutOOP’9L

“OOP ’94: A lot of new
exhibitors with new
products...”

—Computerwoche, Nr. 7,
February 18, 1994

“For companies who want to
give further education to their
employees by participating in
a conference or who are
making important buying
decisions... it is the only
alternative.”

4X Magazin,March, 1994

“The most important thing for
the attendees was the quantity
and the quality of the talks
and the seminars,. .It was a
positive experience in contrast
to mass-events like Cebit.,.
For sofiware developers it is
recommended to visit this
conference.”

—mc Magazin@
Computerpraxis;Jan. 1994

Spamoredbr

~= Presentdby

V’-. ~SIGS4% CO NFF.RI!NCES

conti”nut-djom page 15

QfEzzEI
ODBTalk
Open Databose Connectivity
Solution for Smalltafk
A class library for ODBC

■ Windows 16-bit $199
■ Win32a/NT 32-bit $299
■ PARTS for ODBC $199

introductory pn”ce until
Dec 31/94

Socktdk
Client Server Development
Solution for Smahdk
A class library for Windows
Sockets Development

■ Windows 16-bit !3199
■ Win32sfNT 32-bit $299

Available from these distributors:

N. America: The %naWlk Store
tel: (415) 854-5535

fax: (415) 854-2557

N. America Computer Semites (Amp
tel: (212) 819-0122

fax: (212) 819-0147

Europe: ObjectSolutions GmbE
tel: +41-1-946-0408

fax: +41-1-946-0191

Europe: micado SoftwamChnsult
tel: +49-2242-871-450
fax: +49-2242-871 -455

O

interfaces do: [:aTransportInterface I al’ransportlnterfaceclose]].
interfaces:= niL

stophtening
~anoce:oJess notiil

ifllue:
[aProcess:= listenerF70cess.
ListenerProcess:=nil.
aprocessterminate].

‘ircitifiz+release’

:Iose
super close.
seHstoptistecring.
self closeInterfaces.

‘client access’

~ddClienLaTransportTntecface
self interfaces add: al’ranspotinterface.
aTransportInterfaceaddDependent self.

:emoveClienkaTransporLlnterface
seti interhces remove: aTransportMerface iftibsenk ~dust don’t

:aren].
a’hanspotinterface removeDependentiself.

‘messageprocessing’

istener~ocesd.oop: aPortNomber
I ctildSocket nefient I
tianspoct:= TransportInterfacenewAtPoct aPortNumber.
[transport not.liil]whilellum [

childsocket:= tiansport socket accept.
childSocketidiil

ifpalse
[newClient:= TransporLlnterfaceneworr childSocket.
self addClientinetilient]]

‘updating’

lpdate asyrnbolwith anObjectfrom. aSender
asymbol ==#closedSocket

ihre: [seti removeClientiaSender]
iffake: [super update: asymbolwith: anObjectfrom: aSender].

$maMalkServerclass methods

‘instance creation’

~ewAtPorbaPortNumber
I aServer I
aServer:= self new.
“aServer interfaces: OrderedCollectionnew

Iistenerprocess:
([aServerlistenerprocesskop aPortNumber]
forkAtProcessor activeRiori~ - 1);
yourself.
Asia/Pacific: Cybenlyne Systems

tel: +61-2-955-9788
fax: +61-2-955-291 3

or contact Ken Khdlay at WC
tel: (416) 787-5290
fax: (416) 787-9214

ctober 1994 31

STrn511talk
is seeking e~ert reports, tuton”als,

and technical papers. Articles
should be instructive, product

neutra~ and technical.

Editorial topics include:

● Applications
“ Project management
D Tools
“ language issues

To submit papers,discussstory ideas,
or request Writers’ Guidelines, contact:

John Pugh and Paul White, Editors,
THE SMALLTALK REPORT

855 Meadowlands Dr. #509J
Ottawa, ON K2C 3N2
613.225.8812 (V), 613.225.5943 (f)

I streport@objectpeop Ie.on.ca

CallforWriters

continuedjom page 28

32
continuedj-om page 20

[:a :b I a<= b]

appears to be transformed by the compiler into an object with
the method

value:a value:b
‘a<=b

I’m not sure exactly what the performance benefits of this

approach me, but it makes block optimi~tions even trickierJ
since you need to know which particular blocks are supported
in this way to optimize.

A HAPPY ENDING

There are many more areas of performance optimization that I
have not yet even begun to talk about, so there maybe more
forthcoming on this topic in the future, including arithmetic and
graphks operations, as well as some well-known performance hits
(e.g., Don’t use isKindOF..It’s not just slow, it’s the wrong thing to
do). For the moment, I’m way past deadline and running out of

space. I opened thk two-pm-t series with a quote from Bill Punch
(punch@cps.msu.edu) who was looking to optimize some
SmaUtslk code. I’m happy to say that the results were satisfactory

Using the acquired wisdom of the net, we have re-tuned our

application M* some pretty wonderful results. There Me
lots of ways to show this, but baaed on my home machine

(NeXT, 32Mb, ParcPlace VW) we showed the following

improvements (same test case shown):

Original June code: 42 seconds

1st speed fix: 27 seconds
2nd speed fix: 20 seconds

3rd speed fix: 15 seconds

All thk for three to four hours of effort, most spent trying

to figure out the profiler and what it was telling us. Same

code on our SpUc 20/50 (32 Mb, ParcPlace VW) runs in

under 3.5 seconds with some copious output. In particular,
we are now showing that TextCollector> >show is taking

something like 25% of the run time. That is, our code is
running in comparable time to how fast VW can pump out

the results. We’re pretty happy with that!

How did we do that? The main net advice is the use of

the Profiler from the Advanced Programmers Kit (APOK).

We hadn’t used it much before but will from now on. We

found a number of “holes” in our code that we fixed.

The other oft offered advice is on “growing” collections. We

found some overhead in that as well and remedied it.

THE USUAL BUGS

One of the problems with taking information off the net is its
short lifespan relative to the delays involved in publication. By
the time the information on the Smalltalk standardization
rnaihng list was published (THE SMALLTALK REPORT,

July-August 1994) it was already out of date. Requests for sub-
scriptions, which should be of the form:

subscribex3j20yrnrr-ernd-address

should now be sent to listservt?qks ,com, and submissions to
the mailing list now go to x3j20@qks,com. Problems with the

list should be addressed to postmaster@ qks.com. ~
reading. The book accompanied me to the porch when pleasanl
weather beckoned and to the dentist’s waiting room when
necessi~ dictated. Such portability is no small benefit to one
learning on one’s own time.

Code examples did get lengthy as LaLonde had forewarned

in the preface. However, through the numerous and fidly real-

ized examples, we become farrihar with Smalltalk code almost

subconsciously as examples build from chapter to chapter. In

addition, the examples will serve as models after one has

finished the book. The technique provides solidification and

extension of understanding over the course of the book. In fact,
the flow of the book in itself constitutes a demonstration of
0-0s iterative style of development.

Confession being good for the soul, I must admit that I
actuzlly dld not do the exercises at the end of the chapters. The
good news for potential self-study readers like me is that the
book worked anyway. I feel that I have landed firmly on the
shores of Smalltalk and can p roceed inland with the mind-

map provided by DISCOVERING SMALLTALK. Q
The Smalltalk Report

	By Article Title
	Discovering Smalltalk -- Book Review
	Exceptional power and control
	More performance tips
	Object transfer between Smalltalk VMs
	Persistent object management using the ParcPlace Binary Object Streaming Service
	Simple Smalltalk testing
	When the worst happens

	By Author Name
	Beck, Kent
	Christiansen, Michael
	Deugo, Dwight
	Dunn, Mary
	Ewing, Juanita
	Knight, Alan
	Lorenz, Mark
	Ulvr, Joe
	White, Tony

	By Topic
	Book review
	comp.lang.smalltalk
	Getting Real
	Project Practicalities
	Smalltalk idioms

