Smalltalk

=/ E P OO R T

Editors
John Pugh and Paul White
Carlaton University & The Ohject People

SIGS Publications Advisory Board
Tom Atwood, Object Design
Frangois Bancilhon, 05 Technalogies
Grady Boach, Rational
George Bosworth, Digitalk
Adsle Goldberg, ParcPlace Systems
Tom Love, IBM
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Cliff Reeves, IBM
Bjame Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology Intemational

Tue Smaurak Reront Editorial Board
Jim Anderson, Digitalk
Adele Galdberg, ParcPlace Systems
Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digitalk
Dave Thomas, Object Technology Intemational

Columnists
Kent Beck, First Class Software
Juanita Ewing, Digitalk
Greg Hendley, Knowledge Systems Carp.
Tim Howard, RothWell Inteational
Ed Kiimas, Linea Engineering Inc.
Alan Knight, The Object People
William Kohl, RothWall International
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rehecea WirfsBrack, Digitalk

SIGS PUBLICATIONS GROUP, INC.
Richard P. Friedman, Founder & Group Publisher

Editorial/Production
Kristina Joukhadar, Managing Editor
Susan Culligan, Pilgrim Road, Ltd., Design
Seth J. Boakey, Production Editor
Margaret Conti, Advertising Production Coordinator
Tanya Trowell, Editorial Assistant
Brian Sieber, cover illustratian

Circulation
Bruce Shriver, Jr., Circulation Director
John R. Wengler, Circulation Manager
Kim Maureen Penney, Circulation Analyst

Advertising/Marketing
Shirley Sax, Director of Sales
Gary Portie, Advertising Manager, East Coast/Canada/Europe
Michael W. Peck, Advertising Sales Assistant
Sales Aepresentative: Diane Fuller & Associates, West Caast

408.255.2991 (v), 408.255.2992 (f)

Sarah Hamilton, Director of Promotions and Research
Caren Polner, Promotions Graphic Designer

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Accounting Manager
James Amenuvar, Bookkeeper
Michelle Watkins, Special Assistant 1o the Publisher
Shannon Smith, Administrative Assistant

PSIGS

PUBLICATIONS

Publishers of JourNAL oF OrjecT-ORIENTED
Procramming, Orject Macazing, C++ ReponT,
SmarLraLk Rerort, THE X JounnaL, REPorT ON
OmnjecT ANALYsIS & DEsiGN, OBJECTS 1N EUROPE,
DirecTory oF Onject TECHNOLOGY, and OBJEKT
SeexTruM (Germany)

October 1994

Table of Contents

October 1994 Vol4 No2

Features

Persistent object management using the 4

ParcPlace Binary Object Streaming Service
Michael Christiansen

VisualWarks\Smalitalk includes BOSS, a facility that allows arbitrary structures of objects
to be written to, and retrieved from, a file stream. Intended for applications that do not
wish to utilize a database, BOSS lets developers manage their objects on disk in a rela-
tively straightforward manner. Michael provides a tour through BOSS' facilities and pre-
sents an example of its use.

Object transfer between Smalltalk VMs 11

Tony White, Dwight Deugo, and Joe Ulvr

This article describes an application of BOSS, providing an implementation that allows
multiple Smalltalk processes to send and receive information through the use of UNIX
sockets. How BOSS streams can be used to transmit arbitrary objects is shown.

Columns

Smalltalk Idioms
Kent Beck

Creating proper testing frameworks for Smalltalk applications has
historically proven to be a difficult task, which has often been carried
out using brute force techniques rather than a well-organized
approach. Kent introduces a testing strategy and framework for
addressing the testing problem.

Simple Smalltalk testing 16

The best of 19
comp.lang.smalltalk More performance tips

Alan Knight

Continuing with last month’s theme, Alan provides more insight into

how the various implementations of Smalltalk have made optimizations

to improve efficiency, and the impact this has on application developers.

Getting Real Exceptional power and control 21
Juanita Ewing

In her last article, Juanita discussed the issues in making use of return
values as a mechanism for controlling the execution of an application.
This month she goes to the next step and describes how to make

effective use of Smalltalk/V's exception handling mechanism.

Project Practicalities =~ When the worst happens 25
Mark Lorenz

Recavery from a fatal crash in Smalltalk is dealt with in many dif-
ferent ways, depending both on the vendor’s built-in facilities

along with available third-party tools. Mark surveys many of these

approachs and describes them step-by-step.

Departments

Editors’ Corner 2
Book review: DIScUSSING SMALLTALK, reviewed by Mary Dunn 28
Recruitment 30

The Smefhalk Repart (ISSN:# 1056-7978) is published 9 times a year, monthly except in Mar—Apr, July—Aug, and Nov—Dec. Published by SIGS Publicalions inc., 71 West
23rd St., 3rd Floar, New York, NY 10010. © Copyright 1994 by SIGS Fublications. All rights reserved. Reproduction af this material by electronic transmission, Xerox or
any other methad will b treated as a willtul vialation of the US Copyright Law and is Fatly prohibited. Material may be reproduced with express permission from the publishet
Maited First Class. Canada Past Infernational Publications Mail Product Sales Agreement No. 290386.

Subseription rates 1 year (3 issues): domestic, $79; Foreign and Canada, §114. To submit articles, please send alectronic files on disk 10 the Editors st 885 Meadowlands
Drive #5089, Ottawa, Orlario K2C 3N2, Cansda, or via Intemet to slreport@objecipeople.on.ca. Preferred formats for figures are Mac or DOS EPS, TIF, or GIF formals. Alwayy
sand a paper copy of your manuscript, including cemeraready copies af your figures (laser output is fina),

POSTMASTER: Send eddress changes and subscription orders to: Tha Smalltalk Report, P.O. Box 2027, Langharne, PA 19047. For service on current subscriptions call
215.785.5998, 215.785.6073 (fax), PO0976Epsilink.com (email). PRINTED IN THE UNITED STATES.

1

Editors’ Corner

e have been writing over the past
few issues about what has been
happening in the Smalltalk mar-

ketplace and community, discussing the
activities in new products and the plethora
of conferences that are dealing with the issue
of Smalltalk. The one area that we have for
the most part neglected over the last while is
the role played by what we call hard-core
Smalltalk users, or the “Smalltalk gurus” that
are out there. Smalltalk allows for that
unique echelon of programmer to really
shine, which is always a pleasure to watch.
In fact, we have the pleasure to work with a
few people who have this innate ability to
make code appear on the screen that just
works and yet is built in such an elegant
fashion—it’s like watching a maestro con-
ducting a symphony. It’s not that all lan-
guages don’t have their gurus, it’s just that
unlike most languages where gurus often
generate code quickly but which is often
difficult for others to understand, Smalltalk
gurus tend to generate things that appear to
be obvious approaches—they make it very
understandable for all of us.

It is difficult to isolate what techniques are
being employed by excellent Smalltalk pro-
grammers that allow them to write such ele-
gant code. We are constantly asked for good
rules of thumb when it comes to program-
ming techniques that will allow people to best
utilize the powers offered by Smalltalk. While
it’s obvious no one has the definitive answer
to this, here are a few observations we've
made.

1. Code walkthroughs are a must, and they
must have bite. Everyone must push each
other to do a better job.

2. While it seems a trivial point, choosing
meaningful names saves an enormous
amount of browsing time. And don't allow
abbreviations, they make using a library
very difficult. What’s more, what inevitably
gets abbreviated away is whether some-
thing is singular or plural and it’s this little
piece of information that makes all the
difference in the world. Finally on this
theme, why is it so many people are
choosing to add prefixes and suffixes to
their class names, and even their method

names? While recognizing the name space
problem that exists in Smalltalk, it makes
a library more difficult to use.

3. Complete the library. Don't just write for
yourself, but think of how others may use
the library in the future. Two simple
examples that have always struck us are
“why the class Date has a method “today,”
but not “tomorrow” or “yesterday.” The
other is the problem of different possible
spellings for the same message. Why, for
example, is the method “sqrt” in the
library, but not “squareRoot”?

4. Consolidate. Good Smalltalkers will tell
you they throw away up to half of what
they write — this has to be seen as a
healthy thing and encouraged.

5. Allow play time. The best way we've seen
to understand Smalltalk is to build some
tools for it. The skills to be gained are far
more important than the tools themselves.

Related to this topic, an issue that we have
raised in passing a few times, which we have
never thoroughly seen addressed, is the issue
of project management for Smalltalk projects.
We all know the development process is dras-
tically different because of the flexibility and
productivity possible with Smalltalk But to
managers who are new to this whole process,
this can pose a frightening prospect. Just how
does one know how far along a project is? Is
it on budget? Are there still “gotchas” left in a
project that haven't been fleshed out yet? We
need managers with real experience to weigh
in on this topic.
And finally, just a quick note about the
OOPSLA conference being held this month
in Portland. As many of you are aware,
OOPSLA is the main object-oriented confer-
ence and was instrumental in making
objects, and Smalltalk in particular, a main-
stream development language. We certainly
have a fond spot for the conference that has
traditionally been different from all the
other conferences in that it has always had a
very strong Smalltalk presence and highly
technical personnel staffing the exhibit
booths. For those of you going to the con-
ference, drop by and say hello.

Enjoy the issue.

PAUL WHITE

The Smalltalk Report

SIEP INTO THE FUTURE WITH THE COMPANY

. THAT DEFINED OBJEGT TEGHNOLOGY SERVIGES

When object oriented programming was in its infancy,

Knowledge Systems Corporation was already putting it to work in com-
panies like yours. Today, we're positioned to take you into the future of
object technology in ways that no other company can. With the most
complete range of services in the
industry, KSC can assure your suc-
cessful object transition every step of
the way. Classroom instruction, pro-
ject-focused apprenticeships, and
consulting are all part of our exclusive
commitment to abject technology
; _Services.
; Once you've made the deci-
= _/sion to move to abject technology, you
want to get the benefits as quickly as

possible. KSC offers a complete cur-

riculum of classroom education, at -

your site or in our corporate training

facility. These courses help you estab- §

lish a firm foundation in object tech-

such as American Management Systems, GE Capital Corporation, IBM,
Northern Telecom, The Prudential, Southern California Edison and Sprint,
the STAP is a total immersion, project-focused program that compresses
six to ten months of learning experience into four to six weeks.

KSC can also tackle your
object technology projects head-on

with the most experienced analysts,
: designers and programmers in the
* business. You can outsource the
entire job, or use our consultants to
lend expertise to your own develop-
B ment group.

In addition to our service
offerings, KSC is a distributor of
third party tools such as ENVY®/
Developer, the premier Smalltalk
team development environment.

If you're ready to step into
. the future of object technology, call

the one company that will lead you

nology concepts and Smalltalk programming. there—Knowledge Systems Corporation, 913-481-4000. Or email:

To cut months off your transition time, we've developed anexclu- salesinfo@ksccary.com. 4001 Weston Parkway, Cary, North Carolina

sive Smalltalk Apprentice Program (STAP). Already proven in companies 27513,

> ¢

KNOWLEDGE SYSTEM3 CORPORATION

§19-481-4000

REEEW:

of Object T

Persistent object management using the
ParcPlace Binary Object Streaming Service

Michael Christiansen

oving information between Smalltalk images can be

accornplished using the fileIn: / fileOut: and

storeOn: / readFrom: aperations provided by
Object, Class, and other support classes. Information is written
in ASCII format as Smalltalk expressions that, when read and
evaluated in through a fileIn: or readFrom: operation, recreates
the original classes and instances in the target image.

Although these operations work fine for moving source code
between images, they are not well suited for moving arbitrary
structures of objects. There are problems with this approach.1:2
These problems include:

* The storeOn: mechanism cannot deal with circular refer-
ences. Without special assistance the operation can get
caught in an infinite loop when two objects mutually refer-
ence each other.

« To read an expression requires the presence of the Smalltalk
compiler, which is offen stripped from commercial releases
of a product.

* No facilities are provided for controlling the depth of the
copy of arbitrary object structures being copied to the file.

* ASCII representations are bulky and slow to read and write
from the file.

ParcPlace ObjectWorks and VisualWorks provide the Binary
Object Streaming Service (BOSS), which allows one or more
structures of arbitrary objects to be stored and later retrieved
from a file. .

The materials described in this article were developed during
the development of Cellular Performance Management System
(cPMS), a cellular network planning, configuration, and perfor-
mance management system. We have applied BOSS as a tempo-
rary solution to our persistent storage needs until such time as a
true object-oriented DBMS can be selected and integrated. This
article is intended as a tutorial in the use of this facility as
described in the ParcPlace manuals, and includes our experi-
ences and the problems we have addressed during this effort.

BINARY OBJECT STREAMING SERVICE

BOSS is a facility provided by ParcPlace Smalltalk that allows
arbitrary structures of objects to be written to, and later
retrieved from, a file stream. Objects are stored in an internal
binary format that is more compact and faster to retrieve than
is the use of expressions described above.

Generally, BOsS allows the user to write a representation of
an object into an archive that includes the object’s class iden-
tifier and its instance variables. These variables, themselves
objects, are represented and stored. This process is repeated in a

4

depth-first transversal until the entire tree, rooted with the
original rost object, has been stored in the archive file.

This process of transversing, or fracing, the members of a sin-
gle root object and storing each in turn in 2 BOSS archive is simi-
lar to making a deep copy of the object. But the depth-first trans-
versal of the root object is bounded by certain conditions under
which the further tracing of an encountered object is halted. For
example, if an encountered object being traced is an immediate
value (an integer, string, etc.) its value is stored and the trace goes
no further. Also, if an encountered object has already been traced
and stored in the archive, a reference to the stored object is
archived in place of the object in its current context.

There are classes whose instances receive special treatment
when encountered during the tracing operation. These classes
include all class objects and certain global variables. For exam-
ple, Smalltalk and Processor are recorded symbolically in an
archive when encountered during a trace.

Another class of objects that cannot be placed into 2 BOSS
archive are those whose contents only have meaning within the
image being executed and that cannot be exported. Examples of
these context-sensitive objects include OSHandle,
GraphicsHandle, and other objects whose states are tied to the
executing image and to the virtual machine’s interface to the
underlying operating system, window management system, and
network. Attempting to export an instance of these objects
results in an exception.

BOSS provides a protocol that is similar to Stream. A root
object and the objects it references are stored as a single unit
that is maintained by the BOSS archive. Root objects are
appended to an archive stream and are retrieved from the
streamn in the same order in which they were appended. Each
root object appended to the stream is referred to as an object
structure. It is not necessary to understand the internal format
of the multiple object structures that are appended to, and
retrieved from, a BOSS archive, but it can be important to
understand how BOSS identifies and maintains the individual
object instances within the object structure and how instances
are referenced between structures within the same archive.
These issues will be discussed throughout this article.

Each binary representation of an object is stored and refer-
enced by an index. Each unique object instance is assigned an
object index within the archive. The object index is similar to
the value returned by Object>>as0op except that the scope of
the BOSS object index is limited to the scope of the BOSS
archive and is unique within the archive.

An instance of BinaryObjectStorage that maintains two

The Smalltalk Report

Business Graphles New for Smalltalk/V

WidgetKit™/Business Graphics
brings industry-leading business graphics
to Smalltalk/V®, The 11 major types of
charts and graphs are as easy to use as
WindowBuilder™ Pro/V. WidgetKit/
Business Graphics (WK/BG) has high-
performance DLLs*, Smalltalk wrappers
that integrate the controls into Digitalk’s
SubPane hierarchy, and Smalltalk classes
that allow you to build the Uls using the
controls interactively in WindowBuilder
Pro/V. With WK/BG you’ll quickly build
powerful charts and graphs that communi-
cate information the way your users want
to see it.

Printing, Fonts, Colors, and More
WXK/BG provides printing for all charts via
a programmatic interface. Appropriate
charts have autoscaling if desired. You
control fonts, colors, titles, labels, legends,
justification, fill patterns, line styles,

..And Spreadsheets

WidgetKit™/Professional brings
proven and powerful spreadsheet DLLs to
Smalltalk/V. And the spreadsheet power is
as easy to use as WindowBuilder™ Pro/V.
WidgetKit/Professional (WKPro) consists
of the FarPoint Professional DLLs,
Smalltalk wrappers that integrate the
controls into Digitalk’s Subpane hierarchy,
and Smalltalk classes that allow the
controls to be placed and edited interac-
tively in WindowBuilder Pro/V. WKPro
enables you to quickly build solid,
powerful, reusable, and maintainable Uls
for your Smalltalk/V applications.

Graphical Widgets

WXKPro includes graphical controls to
display pictures

(BMP,PCX, & =i

GIF) in spread- |8 o

sheet cells or

separately.

Animation too.

SWHISAS

Chart Types in WK/BG (partial)

» Bar 2-0&3-D,
horizontal, vertical,
simple, stacked

* Pie 2-D, 3-D, regular,
exploded

e« Area 20, 3-0, absofute
or %

o Line = Gantt

¢ High-low-close = Tape

® Log-linear = Bubble

* Scatter ¢ Polar

CompuServe 76436,1063

© Objectshare Systems Inc. 1994

scaling, identifying symbols, grids, ticks,
scroll bars, and more at development or
run time.

No runtime fees are required for applica-

. tions developed with WK/BG. Includes

complete documentation, full source, and
free support to registered users for the first
90 days.

r

i 904
21-JUL-1902
04-JUL-1949
22-DEC1912
12-SER-1954
15-FEB-1909
12-MAR-1956

83,434.23
59,834.00 =

EEESRL &R

High-Powered Spreadsheets

You get a spreadsheet similar to Micro-

" soft’s Excel™: formulas, drag and drop, and

row and column resizing. There are 11 cell
types, control of color, formatting, multiple
selection, and locking. The spreadsheets
have printing, load, and save capability.
The functionality is factored into a
hierarchy of 7 classes. Choose the one
that’s right for your app.

Virtual Spreadsheets Too

WXKPro includes virtual spreadsheet
capability that enables you to load only the
visible data.

WIDGETKIT/BUSINESS GRAPHICS

NEW! For Win $495
NEW! For Win32 $495
For OS/2 (1095)

WidgetKit/Business Graphics requires WindowBuilder Pro/V.
*Underlying functionality for Win and Win32 is Pinnacle
Graphics Server, for 0S/2 is Presentation Graphics SDK. WK/BG
is compatible with Team/V™ and ENVY®/Developer. Support
subscription available.

Too!

= ! File System Widgets and More

WKPro also includes DirectoryList,
DriveList, FileList, and DirectoryFileList
controls. You get input validation widgets
for the cell types. Use them for spread-
sheet cells or by themselves. Uls built with
WXKPro are portable to all the supported
platforms.

No Runtime Fees

No runtime fees for applications developed
with WKPro. It includes complete docu-
mentation, full source, and free support to
registered users for the first 90 days.

WIDGETKIT/PROFESSIONAL

NEW! For Win $395
NEW! For Win32 $395
For 0S/2........ $495 (1095)

WidgetKit/Professional requires WindowBuilder Pro/V. All the
DLL functionality of FarPoint Professional is packaged for easy
use in WinbowBuilder Pro/V. WKPro is compatible with Team/v™
and ENVY®/Developer. Support subscription available.

Objectshare Systems, Inc.

5 Town & Country Village, Suite 735
San Jose, CA 95128-2026

Fax 408-970-7282

Call to order today (408) 970-7280

or call for free information, 9 AM to 5 PM PST, M-F

30-day money-back guarantee

Precise metrics
for advanced 00
development.

» Metrics collection facility for Smalltalk applicotions development
« Supports VisualWorks, Smalltalk/V for Windows, Win32s, Windows NT
« Complete graphical user interface ~ « Fully supports Envy (optional)

@ bicectiSpoace”

s SPECIALISTS IN OBJECT TECHNOLOGY

ProDuUCTS -TRAINING -CONSULTING "MENTORING -AUDITING
For more infarmation call 1-800-0BJECT-1, Email: info@aobjectspace.com

Copyrigh ObjecrSpace, Inc. ©1994, All nomes ard Irademois a'e the praperty of their respactive awners.

Persistent Object Management

IdentityDictionaries of assodations between objects and indexes: the
writerMap and the readerMap. The writerMap maintains the association
of object -> index, This table is used while the archive is being con-
structed in determining if a newly referenced object has already been
written into the archive, If it has, the object’s object index is written in
it’s place and the trace of that object is ended. On the other hand, if the
object is not present in the writerMap, an index is created and added to
the IdentityDictionary. Then the newly referenced object is traced and
its contents added to the archive. The readerMap maintains the assoda-
tion of index -> object in the archive. When an existing archive is
opened, the readerMap is built up from its contents.

Another useful detail of BOSS internals is the manner in
which objects, classes, and class versions are represented. Every
object stored in the archive is recorded with its size, class, and
identity hash value, along with the binary data and references
that define its current state. An object’s class is also recorded

OrderedCollection A OrderedCollection B

Q

Figure 1.

with the object the first time the class is encountered when
building the archive. Information recorded about the class
include its class version number. When the object is restored, the
version number of an archived object’s class is compared to the
version number of the class present in the image. If the class
version number recorded in the archive for the object does not
match the class currently present in the image, BOSS cannot
restore the object, and a signal is raised. Mechanisms have been
provided in BOSS to deal with this situation and are described
in the section Class Versioning.

In review, each object instance is stored only once in the
archive and all references to any object are implemented
through the object’s unique BOSS object index. In the collec-
tions shown in Figure 1, collections A and B store instances of
the objects drawn below them. Both collection instances share
object instances 2, 3, and 4. When collection A is stored in an
archive, BOSS stores both the collection and its object instances
in a object structure appended to the achieve stream. Within the
object structure, collection A and instances 1, 2, 3, and 4 are
assigned indexes and are stored in BOSS binary representation.
A side effect of this operation is that the writerMap maintained
by the BinaryObjectStorage instance is updated with these five
objects and their indexes. When Collection B is stored, it is also
appended as an object structure. The collection is traced as a
root object, and itself and the objects it maintains are examined
and stored as instances in the structure only if they are not cur-
rently present. Because instances 2, 3, and 4 are already present in
the archive, only instance 5 and Collection B are stored as
instances and assigned unique indexes. When the structure of
Collection B is restored from the archive, it will share the
instances of objects 2, 3, and 4 with Collection A—as it should.

This technique of referencing objects through unique
indexes within the archive is instrumental in ensuring that the
original structure of the set of stored objects is preserved when
the archive is later restored. Indexing also eliminates problems
with respect to cycles in the references between objects. If while
examining the structure of an object being traced, BOSS deter-
mines that a referenced object is already present in the archive,
it records its presence in the structure using its index and does
not further examine this already present object.

There are some caveats and limitations of BOSS's ability to
store and retrieve the original structure of the objects stored in
an archive. These are described in later sections of this article.
But first an example is presented to demonstrate how BOSS is
applied by the user.

APPLYING BOSS
BOSS implements a protocol that is a subset of Stream. BOSS
operates by appending and retrieving object structures, and the
root object they maintain, from a file stream instance:
aStream := (Filename named: aFileName) writeStream.
An archive is created for a given WriteStream as in:
aB0SS ;= BinaryObjectStorage onNew: aStream
The onNew: method initializes the stream by writing an identify-
ing header and BOSS version number at the head of the stream.
aBO0SS := BinaryObjectStorage onOld: aStream.
The onOld: method allows the user to read or append to the
strearn. BinaryObjectStorage verifies that the stream is a BOSS

The Smalltalk Report

archive through the stream’s header and BOSS version. BOSS
then scans the entire stream to determine the next object index
to be assigned in the archive. The stream is then reset to a posi-
tion just affer the BOSS header. If you wish to append data to
the stream, you must set the file pointer to the end of the
stream with the following:

aBOSS setToEnd.

As mentioned earlier, the stream maintained by BOSS contains
a series of object structures. Each object structure is appended
to the stream with the following:

aB0SS nextPut: anObject.

The stream position operations performed by BOSS are per-
formed on the object structures it maintains. Operations like
position:, reset, and setToEnd place the stream’s position refer-
ence at the beginning of an object structure within the stream’s
contents. For example, the object structure at the stream’s cur-
rent position reference can be retrieved using the following:
anObject := aBOSS next.
Naturally, once this operation completes, the stream’s position
reference is located at the next object structure appended to
the stream.

It is the responsibility of the user to ensure that each root
object retrieved is restored into the correct context within the
image being manipulated. For example, if the developer is
archiving three global variables as individual root objects in the
archive, it is necessary that the application retrieve and re-
assign these objects in the same order in which they are
appended to the archive.

One exception to this explicit assignment of a restored root
object’s value is that of class objects appended to the archive with
BinaryObjectStorage>>nextPutClasses: and retrieved with
BOSS>>nextClasses. Class objects archived and restored with these
methods are automatically registered with the system dictionary.

Collections of objects to be appended to the archive can be
managed in one of two ways. A collection that is appended to a
stream as an object is retrieved as a collection with all its mem-
bers intact. But if the user wishes to archive the contents of a
collection as a series of object structures, then the following
method is applied:

aB0SS nextPutAll: aCollection.

In the above code fragment, each member of the collection is
appended as a separate object structure as in the following:
aCollection do: [:item| aBOSS nextPut: item].
A common practice is for an application to organize a set of the
set of objects that are to be persistently stored in a file as a col-
lection. This collection of objects is archived using the
BOSS>>nextPut: operation. The entire collection can then be
retrieved in a single BOSS>>next operation. This process is
demonstrated in the following example.

EXAMPLE APPLICATION
In this example, we have an application that maintains a collec-
tion of Employee instances as defined by the following:
Object subclass: #Employee
instanceVariables: ' name ssn department '
classVariables: '

Suppose that this application maintains several dictionaries of

October 1994

Employee, each collection representing the employees for a sin-
gle company. And that each company dictionary is keyed on
the social security number of the employee.

1f we manage each company dictionary as a global variable
(e.g., AcmeWidget and JacksHydraulics), each collection instance
can be separately archived and retrieved with the following:

(BinaryObjectStorage

onNew: (Filename named: 'acmewidget.bos') writeStream)
nextPut: AcmeWidget;
close.

If this operation were repeated for each global variable main-
taining a company employee dictionary, then we would have N
separate files, each containing the Employees of a single compa-
ny. When each dictionary is restored to its global variable, each
of its employees is also restored.

aBOSS := BinaryObjectStorage

onOld: (Filename named: 'acmewidget.bos') writeStream).

AcmeWidget := aBOSS next.

aBOSS close.
But a problem arises if it is possible for two or more companies
to share a single instance of an employee. In this case, the pre-
vious example destroys these semantics when each company is
retrieved from its separate archive. This is because BOSS creates
a unique instance of the common employee in each company
employee dictionary.

This issue is illustrated in Figure 2. In the upper portion,
each of the two employee dictionaries shares the same instance
of the employee, as indicated by its unique SSN across all

The complete
Smalltalk interface
to TCP/IP.

« Supports Smalltalk /V for Windows, Win32s, Windows NT
= Manages the TC/IP asynchronous event nofification system fransparently
« More than 40 classes representing all aspects of TCP/IP programming

@ bicciSooce”

. SPECIALISTS IN OBJECT TECHNOLOGY

PRODUCTS “TRAINING * CONSULTING *MENTORING -AUDITING
For more information call 1-800-0BJECT-1, Email: info@obijectspace.com

Copyright OkjectSpace, Inc. @1994. All nomes ond Ircdemerks ara e property of their respecive awrers.

Now! Automatic Documentation

Synopsis produces high quality class documentation
automatically. With the combination of Synopsis and
Smalltalk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

* Documents Classes Automatically

* Provides Class Summaries and Source Code Listings
* Builds Class or Subsystem Encyclopedias

* Publishes Documentation on Word Processors

* Packages Encyclopedia Files for Distribution

¢ Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

For Smalltalk/V Development Teams — With Synopsis

Development Time Savings

Coding Documentation

Without
Synopsis A .\

Start Finish

Documentation
With Coding [EEESTTTA
Synopsis
A A

Start Finish

Products Supported:
Digitalk Smalltalk/V

OTI ENVY/Developer for Smalltalk/V
Windows: $295 0OS8/2: $395

E‘ Synopsis Software
8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

Persistent Object Management

Employee Dictionary A Employee Dictionary B

Employee
SSN: 123-45-6789

Employee Dictionary A Employee Dictionary B

Ny N

SSN 123-45 6789 SSN 123 45 6789

Figure 2.

instances of Employees: But once each dictionary has been
stored and retrieved for separate BOSS archives, unique
instances of Employee are present in each dictionary.

This example demonstrates the importance of archiving

8

objects in 2 manner that allows BOSS to note and maintain the
true relationships between the object instances being stored. If
instead one wished to maintain the membership of an employ-
ee in two or more companies, then each company would need
to be stored in the same archive, as in the following:

aStream := (Filename named: aFileName) writeStream.

aB0s := BinaryObjectStorage onNew: aStream.

aBO0S nextPut: AcmeWidget.

aB0S nextPut: JacksHydraulics.

aBOos close.
Or perhaps a better implementation would maintain all
instances of company employee dictionaries in 2 single global
dictionary Companies, keyed on each company’s name. In this
case, all dictionaries could be archived and restored with the
following:

(BinaryObjectStorage

onNew: (Filename named: companydict.hos') writeStream)
nextPut: CompanyEmployees;
close.
aB0SS := BinaryObjectStorage
onOld: (Filename named: companydict.bos') writeStream).

CompanyEmployees:= aBOSS next.

aBOSS close.
In either implementation, an Employee instance maintained
by two or more company dictionaries will share a common
object index in the BOSS archive and will be restored as a sin-
gle Employee instance present in all interested dictionaries.

These examples demonstrate how BOSS can be applied to

The Smalltalk Report

storing and restoring a collection of arbitrary object instances
and the relationships they share. The following section
describes how to deal with retrieving objects whose class
definition has been modified.

CLASS VERSIONING
A problem arises when an object is to be retrieved from an
archive whose class has been modified and is no longer com-
patible with the format of the archived object. For example,
suppose in our example Employee class, we added an instance
variable 'age', as in the following:
Object subclass: #Employee
instanceVariables: ' name ssn age department '
classVariables: '

Now Employee instances that are currently stored in 2 BOSS
archive are incompatible with the current class definition. BOSS
detects this incompatibility when the object is retrieved from
the archive by comparing the class format stored with the
object in the BOSS object structure with the current format of
the class as defined in the image.

BOSS provides a mechanism that allows the class itself to
handle this situation. If the class defines the class method
binaryReaderBlockForVersion:format:, this method will be
called when the BOSS detects a difference between the format
of the class of the object in the archive and the format of the
class present in the image. This method is expected to return
a block that will convert an instance of the old version into
the new version.

For example:

Employee class methodsFor: BOSS
binaryReaderBlockForVersion: ver format: fmt
| emp |
(ver = "Employee 3/93") ifTrue: [
~[:oldVers |
emp := Employee new
ssn: (oldVers at: 1) ;
department: (oldVers at: 2) ;
age: 99. "method of obtaining age needed!"
oldVers become: emp]].

~ super binaryReaderBlockForVersion: ver format: fmt.

This code fragment demonstrates several interesting facets of
this BOSS facility. First, note that the version argument ver is
used to determine the version of the object’s class stored in the
archive. This version information is provided by the class
through the following class method:

binaryRepresentationVersion

~Employee 6/94'.

In our example, the older class version is identified by the
string 'Employee 3/93' but could be any immediate value.

The information maintained about an object’s class in the
BOSS archive includes the value returned by this class method
if the method is present in the class definition. Our example is
only checking for a single class version. But if the class has
been updated two or more times, each different class version

could be handled by a different block returned from
October 1994

binaryReaderBlockForVersion:format:. The format: argument is
normally not used and is not described here.

The block returned from binaryRea...ion:format: should
expect a single argument. For pointer-type objects (like

“ BOSS was developed to
provide a service
whereby large numbers
of objects can be
persistently stored
and/or moved between
images. It is not
intended to replace a
database or general
purpose persistent object

management system. ”

Employee), the argument will contain an array of instance vari-
ables from the archived object. For byte-type objects, the argu-
ment passed to the block will be a byte string of the archived
object’s contents. In either case, the block is responsible for:
1. Creating an instance of the new class
2. Assigning instance variables from the array to the correct
instance variables of the new object or copying the contents
of the byte string into the new object
3. Assigning default values for instance variables not present in
the old format, and, finally
4. The object referenced by the block argument (array or byte
string) is converted into the new object using the become:
method.

In review, BOSS provides a mechanism for detecting ver-
sioning differences between the class of objects maintained in
an archive and the class currently maintained in the image.
This mechanism is implemented in the class method
binaryReaderBlockForVersion:Format:. This method is expected
to determine the class version of the object maintained by the
archive and returns a block that will be applied to converting
the old version object into the new version. The value returned
from the class method binaryRepresentationVersion is used to
identify the class version of every object stored in the archive.
Any class that expects to utilize BOSS should define this
method in anticipation of the class being modified.

BOSS PERFORMANCE & OPTIMIZATION

When creating or retrieving an archive, BOSS can exhibit poor
performance when many thousands of objects are being main-
tained in the archive. The reason for this poor performance is
the maintenance of the writer and reader maps: the identity
dictionaries holding the associations between index and object
in the archive. Normally, every object that is stored in the

9

Pervsistent Objecl Management

archive is assigned an index that is maintained by these maps.
Each time an object is added to the archive, the writer map is
checked to see if the object is already present in the archive
(see the section Binary Object Streaming Service). Although
this check is quite fast, when the archive is maintaining a hun-
dred thousand or more objects, the archival process can be per-
ceived by the user as being slow.

For example, an application where we employed BOSS to
save several large object structures involved storing more than
330,000 objects. The time to save these objects into an archive
was more than 22 minutes on an HP715/33 workstation. The
archive file size was approximately 1.8 MBytes. The time to
restore this archive from file was 9 minutes. In another situa-
tion we experienced a 7-minute delay when saving a structure
with more than 157,000 objects and required 3 minutes to
restore the archive. This latter examples was executed on a
HP720/60 workstation. Even though these archival operations
are intended to be applied infrequently, we wanted to see how
we might improve on this time. Note that an archive involving
less that a 10-K objects can be archived in less than 1 minute.

Fortunately, BOSS allows the user to make a tradeoff
between archival time and storage space requirements. Because
of the bottleneck in manipulating an archive-exist search for
objects in the writer and reader maps, BOSS allows the user to
specify ranges of indexes to be forgotten. This reduces the
search space when adding a new object to the archive.

This mechanism is implemented in the following methods:

BOSS >> forgetInterval: anInterval.
BOSS >> forgetInterval: anInterval excluding: anIndex.

The first version of this method allows the user to ignore the
given interval of object indexes. The second version allows the
user to specify an interval of object indexes to forget excluding
the root object referenced by anIndex.

The index of an object can be obtained using BOSS >>
indexOf: anObject. Alternatively, the next index to be assigned
to an object can be retrieved using BOSS >> nextIndex. The
following code fragment allows the user to forget the interval
of a root object and all its child objects affer storage:

start ;= aBOSS nextIndex.
aBOS nextPut: anObject.
aBOS forgetInterval: (start to: (aBOS nextIndex - 1)).

There ate two potential problems with this mechanism. Both
arise because an object in a forgotten interval will be rewrit-
ten into the archive as a new instance if it is re-encountered
during the archival process. Storing the object multiple times
increases the size of the archive. It also causes two references
to the same object to be split into two instances when the
index of the first reference has been forgotten. This situation
is similar to our Employee example in the previous section. It
is important to find a partitioning of objects to be archived
so that references to the same object will either not be split
or, if the split occurs, it will not matter to the semantics of
the application.

When this process was employed in our larger archive

10

(330-K object archive) we were able to find three partitions of
100-K objects, roughly dividing the archive by thirds. We were
able to reduce our archival time from 22 to 15 minutes or to 5
minutes for each 100-K object partition. In terms of the space
tradeoff, size of the archive increased by less than 100-K bytes.
In the case of our smaller archive we were able to find a parti-
tioning of the 150-K objects into 100 archival units. With this
use of the forgetInterval: feature we were able to reduce the
archival time from 9 to under 1 minute.

CLOSING CONSIDERATIONS

ParcPlace Smalltalk’s Binary Object Steaming Services
allow the user to persistently store arbitrary structures of objects
to a file stream. In an operation similar to a deep copy, the user
is able to store and retrieves the structure of a root object plus
any objects reachable from the root. Archived object structures
are retrieved from the archive using the stream-like protocol
provided by the class BinaryObjectStorage.

BOSS was developed to provide a service whereby large
numbers of objects can be persistently stored and/or moved
between images. It is intended to address the shortcomings of
the storeOn: / readFrom: operations. That is, the representation
applied by BOSS is more compact that applied by storeOn:, and
the structure of the objects reachable from the root object can
be an arbitrary graph including cycles.

BOSS is not intended to replace a database or general pur-
pose persistent object management system. It lacks transac-
tions and concurrency control, and objects cannot be accessed
using a key or index. An object retrieved from a BOSS archive
must be explicitly assigned to the correct context within the
application.

When applying BOSS it is important to find the correct par-
titioning of root objects. Too large a root forces the entire
structure to be retrieved from secondary storage when only a
small portion of the overall structure is needed. BOSS is most
efficient when storing large sets (1,000-30,000) of objects in
each root structure as opposed to storing and retrieving many
small, single-object instances. However, because BOSS main-
tains an internal index for every object it manages, an archiving
operation can get slow when the archive gets very large (>
75,000 to 100,000+ objects). To address this problem, the ser-
vice provides mechanisms for restricting the size of the index
table that will speed up operations on large archives. ¢

References

1. OpjecTWoRxs SMaLLTALK Userss GuiDE, Chapter 27, Binary object
streaming service, ParcPlace System, Inc.

2. Vegdahl, S.R. Moving structures between Smalltalk images,
Proceepines oF THE ACM ConrERENCE oN OBJECT-ORIENTED
ProGRAMMING, SysTEMSs, LaANGUAGES, AND AprLicaTIONS, Portland
OR, 1986, pp. 466-471.

Michael Christiansen works at Bell Northern Research, Richardson, TX,
where he is developing cellular telecommunications network performance
analysis, configuration, and management systems. He is currently
developing Smalltalk implementations of distributed network management
services, as defined by CMISE and 0SI standards. He can be reached by
email at mikec@metronet.com.

The Smalltalk Report

Object transfer

between Smalltalk VMs

Tony White, Dwight Deugo, and Joe Ulvr

NIX sockets enable UNIX processes to transfer data

between one another, and are often used to implement

client-server relationships, where a client process
sends requests to a server’s address at one end of a socket and
the server waits for them to arrive at the other end.

There are different types of sockets depending on the UNIX
version being used. The two main types of sockets are stream
sockets and datagram sockets. Stream sockets provide continuous
two-way, byte-stream communication, and datagram sockets
transfer fixed, maximum length packets of information. There are
four steps to sending and receiving information across a socket:

1. create a new socket,

2. open a connection 4across it,

3. open a communication stream on the connection, and
4. transmit the information.

In ObjectWorks\Smalltalk, a sacket can be used to transfer
data from a Smalltalk process to other UNIX processes, includ-
ing another Smalltalk process on a different virtual machine
(VM). This facility is implemented by six standard
ObjectWorks\Smalltalk classes:

» UnixSocketAccessor

* IPSocketAddress

* SocketAddress

= UDSocketAddress

= ExternalConnection

* ExternalReadAppendStream.

To find out how to use a socket in Objectworks\Smalltalk one
should begin by browsing the class UnixSocketAccessor.! This
class provides methods for creating sockets and several example
methods describing how to use them.

When the sending and receiving processes do not share a
common representation, it is convenient for them to transfer
data in a standard format, such as a byte-stream or fixed length
packets. This format can then be decoded by the receiving
process to one that is more suitable. However, when the send-
ing and receiving processes are Smalltalk processes, this
approach is inconvenient. There is only one "format” in
Smalltalk: an object. Therefore, Smalltalk processes should be
able to send and receive any arbitrarily complex object over a
socket without being forced to format or decode it from a byte-
stream or a sequence of fixed-sized packets.

In this article we discuss how the Binary Object Streaming
Service (BOSS)! and sockets? can be used to provide such a mech-
anism. The second section deseribes how to incorporate ROSS

October 1994

with a socket in order to transmit arbitrarily complex objects. The
third section describes a client-server architecture that uses our
approach for transmitting complex objects. The fourth section
contains a comparison of the BOSS-based approach with a string-
based approach. The fifth section concludes with a discussion of
our approach’s benefits and limitations.

AN INTERFACE FOR THE TRANSMISSION OF COMPLEX OB.JECTS
A string-based approach to the transmission of complex objects
between Smalltalk VMs is to use the storeOn: method to create
a string representation of the object, transmit that to the receiv-
ing process over a socket, where the evaluate: message is sent to
the Compiler class with the received string as the argument.
This approach has the dual disadvantages of spending
significant amounts of time transforming and compiling the
original object to and from a string object.

We describe another approach, implemented in the
TransportInterface class, that provides a transport mechanism
avoiding these drawbacks through the use of BOSS streams, rather
than raw character streams. The TransportInterface class supports
asynchronous, nonblocking I/O and can be used in a client—server
framework for communication between Smalltalk VM.

Applications requiring Smalltalk-to-Smalltalk object exchange
can create a server TransportInterface by using the newAtPort:
class method. This method creates a “listening” socket that can be
used to wait for client connections. A client TransportInterface
can be generated by using the class message newAtHost:port:. If
the client request is successful, the initialization of the connection
between client and server occurs when the setupInterface mes-
sages are sent to the TransportInterface objects. Examples of client
and server interfaces are shown in Listing 1 in the class methods
exampleClient and exampleServer respectively.

The setupInterface message performs several important
functions. First, an ExternalConnection is created for the inter-
face and the newly created socket is associated with both input
and output directions (sockets being bidirectional communica-
tion entities). Second, the streamn associated with the interface
is initialized as being an ExtemalReadAppend strearn; again
reflecting the bidirectional nature of socket I/O. Third, a
SharedQueue is created. This is used by the application for writ-
ing on the socket. Finally, read and write processes are created
for the TransportInterface object; the readProcessLoop and
writeProcessLoop methods providing the process functionality.
BOSS streams are required for both reading and writing. They
are initialized during the first read or first write on the socket.
Objects transferred via the TransportInterface class are then

11

Object Transfer

Approach Median Median
Image ByteString
Experiment Experiment

BOSS-based 9 ms ? ms

String-based 3636 ms 430 ms

written to and read from the socket using the BOSS nextPut:
and next methods respectively. Using these methods allows
objects to be written to and read from the socket directly; with-
out any user-provided encoding.

Once setup, asynchronous input is handled by the
readProcessLoop code that is now executing inside of a process
generated for the interface. Referring now to the readObject
method, the process remains blocked (by the sending of the
message readWait) in the next method of BOSSReader until
input is available on the socket. When input is available, the
readProcessLoop process is signaled, the physical read completes,
and the object is returned by the BOSSReader next method. If
the object received is nil, it implies that the remote end of the
connection has closed its end of the socket interface, and, in this
situation, the local end closes its socket interface. When non-nil,
dependents of the TransportInterface are advised of the arrival of
the object using the changed:with: message—the aspect being
#socketI0. Hence, it is possible to broadcast the received object
to multiple application-level objects by having them be depen-
dents of the TransportInterface object.

Applications sending objects over the interface use the
TransportInterface nextPut: message. This method does not
write on the socket, but on the shared queue. As shared queue
wiites are nonblocking, the write—from the point of view of
the application process—will also be nonblocking. The physical
write of the object to the socket is performed by the
writeProcessLoop code that is also executing inside of a process
generated for the interface. Referring now to the
nextPutDirectly: message sent in the writeProcessLoop method,
the writeProcessLoop process is blocked until something is writ-
ten to the shared queue. Once an object has been written to the
shared queue, the writeProcessLoop process is signalled, the next
method completes and the nextPutDirectly: message is sent to
the TransportInterface. This method performs the physical
write to the socket that may also block, possibly because the
socket is full. However, once output can be written to the sock-
et, the write process will be signaled, the object is written in
BOSS format to the socket and the write process returns to
waiting for another object to write at the shared queue.

Applications receive objects sent over the TransportInterface
by intercepting update:with:from: messages and performing
special processing when the aspect is #socketl0.

Sending the close message to the TransportInterface object
causes the read and write processes to be terminated and the
socket to be closed. When the socket closes, dependents of the
TransportInterface are sent a changed: message with the
#closedSocket as aspect.

This architecture—with processes for reading and writing
of objects to the socket—provides for asynchronous communi-

12

cation and nonblocking I/O as seen by the application
object(s) using the TransportInterface.

CLIENT-SERVER ARCHITECTURE

‘While the previous section has indicated how a basic connec-
tion can be made between two UNIX processes, and how BOSS
can be used to simplify the exchange of complex objects
between Smalltalk VMs, communication often occurs within a
client-server architecture. The SmalltalkInterface,
SmalltalkClient and SmalltalkServer classes shown in Listings
2-4, respectively, along with the previously described
TransportInterface class, provides a set of classes that can be
used in the construction of client-server applications.

The SmalltalkInterface class is an abstract class. It provides
support for common client-server behavior. For example, the
close method closes the Transportinterface, the update:with:from:
method provides special processing of the #socketI0 aspect of
changes, and the nextPut:on: method sends an object on a
specific TransportInterface. Two instance variables—application
and callback—are used to store the application object and
method to which the received object is to be dispatched.

An instance of a SmalltalkClient is generated by sending the
newAtHost:port: message to the class SmalltalkClient. If a con-
nection to a server on the requested host and at the appropriate
port can be established, a correctly initialized SmalltalkClient
object is returned. Once successfully created, objects can be sent
to the server by sending the nextPut: message to the
SmalltalkClient object. When communication is no longer
required, sending the close message to the SmalltalkClient
object closes the underlying TransportInterface.

An instance of a SmalltalkServer is more complicated than a
corresponding SmalltalkClient instance because of the require-
ment to listen for new client-server connections. A listener
process is created to perform this task. The listener process
code—found in the method listenerProcessLoop:—remains
blocked within the code executed by the accept message until a
new client requests a connection. At this time the listener process
is signaled and a new TransportInterface is created and added to
the list of clients supported by the SmalltalkServer. What might
appear strange about the server socket code segment in the
method listenerProcessLoop: is that the original socket is not
used for the two-way communication. Its sole purpose is to
accept connections at a specific port. Once a connection is estab-
lished by the socket, it returns another socket, called childSocket
in the aforementioned code, to use for two-way cornmunication.

RESULTS
To demonstrate the efficiency of the BOSS-based approach, we
ran two experiments. The first one transmitted a 500x500
image, with all bits set, from a client to a server, which
responded with a ByteString of 20 characters. The second
experiment transmitted a 10,000 random character ByteString
from a client to a server, which responded with a ByteString of
20 characters. Each experiment ran 101 times, and the total
time for a client to send and receive the objects was recorded.
We ran the first experiment using our BOSS-based approach
contrasting it with the string-based approach described at the
beginning of the second section. However, since the second

The Smalltalk Report

405 El Camino Real, #106
Menlo Park, CA 94025, U.S.A.
voice: 1-415-854-5535

Sfax: 1-415-854-2557

email: info@smalltalk.com
compuserve: 75046,3160

he
malltalk
tore

... devoted exclusively to Smalltalk products.

Send For Our Free Catalog!

The Smalltalk Store carries over 75
Smalltalk-related items: compilers, class
libraries, books, and development tools. If
we don’t have what you need, we’ll look for
it. Give us a call or send us an email - we'll
put you on the mailing list and send you a
copy of our combination newsletter-catalog.

Developers: Do you have a product
that might be useful to Smalltalk,
VisualAge or Parts programmers?
The Smalltalk Store call sell or
publish your software for you. Ask
for our Developer’s Kit.

Objects
Everywhere!

Why settle for hybrid implementations when
you can have the real thing? JumpStart is the
leading provider of solutions and training
programs for pure object systems using
Smalitalk and the GemStone™ ODBMS. We
also specialize in deploying IBM Smalitalk®™
and VisualAge®™ applications.

Ask about our Corporate Educators Program.

Manufacturing

Process Control
Network Management
Pharmaceutical
Client-Server IS Systems

Certified Service Partners with:

experiment involved transmitting only strings, the storeOn: at a
client end and compiler evaluation at the server end of the
string-based approach were removed. Table 1 describes the
median timing results of these experiments.

Table 1 shows that for large objects, like an image, our
approach runs 404 times faster, and, when sending only strings,
it still ran 47 times faster than the string-based approach.

One of the major gains in efficiency is a result of the BOSS-
based approach not having to compile a string to regenerate the
object. On the server end, it becornes a very expensive operation
for the compiler to parse a string representing a very large object,
and on the client end it is also an expensive operation to generate
the definition for an object in the form of a string, Even if these
tasks are removed and we only transmit strings as in the second
experiment, the BOSS-based approach is still faster!

CONCLUSIONS
There are other approaches one can use to transmit complex
objects between Smalltalk VMs.

For example, one approach is to use HP’s Distributed
Smalltalk,3 where the ability to pass objects between VM is
built into the architecture. Another is to use ENVYSwapper,*
which is a high speed object loader/unloader that provides a
method of storing and retrieving objects between all supported
virtual machines and platforms. However, if one does not have
these software packages available, our approach provides an ele-
gant, inexpensive and efficient method of object transmission.

Our approach is not without its limitations. One is that the

October 1994

class definitions of the transmitted objects must exist at the
receiving end of the socket. Another is that class and metaclass
objects can not be transmitted. Both of these limitations are a
result of a chicken-and-egg situation. One cannot make use of
a class until it exists, and, even if you attempt to transmit the
class information, the class has to be defined before one can
refer to it. Naturally, objects that do not have a BOSS represen-
tation cannot be transmitted using this approach.

We have described a simple, easy-to-use, interface between
Smalltalk VMs that can be used to send objects over sockets
without user-provided encoding. The interface provides asynchro-
nous, nonblocking I/O in a client-server framework, and, through
simple experimentation, it has been shown to be considerably
mote efficent when compared to string-based encodings. @

References

1. ParcPlace Systems, Inc. OpjectWonxs\SmaLrTaLk User's GuiDg, ch.
7,1992.

2. ParcPlace Systems, Inc. OsJEcTWoRks\ SMaLrTaLx User's Guipg, ch.
23,1992: 234

3. Hewlett-Packard Company, HP DisTriBUTED SMALLTALK REFERENCE
Guipg, 1993.

4. Object Technology Intemnational, Inc. ENVY/Swaprer Hicu-SPEED
OnjecTt LoaDER /UNLOADER MaNuAL, Release 3.50, 1993.

Tony White is a member of the Computing Research Lab at Bell-Northern
Ressarch. He can be reached at Bell-Northern Research in Ottawa, ON,
Canada, at 613.765.4279, or by email at arpw@bnr.ca.

13

Dwight Deugo is a consultant with The Object People. He can be
reached at The Object Paople, Ottawa, ON, Canada, at 613.225.8812, or
by email at dwight@0hjectPaople.on.ca.

Joe Ulvr is a third-year electrical engineering student at the University
of Waterloo, Waterloo, ON, Canada. He can be reached by email at
jlulw@slectrical. watstar.uwaterloo.ca.

class: TransportInterface

superclass: Model

instance variables: ~socket connection stream bossWrite bossRead
readProcess writeProcess writeQueue - class variable: "'
poolDictionaries: ™'

category: "~ Smalltalk-Interface’

TransportInterface instance methods
" initialize-release’

close
self closeRead; closeWrite; closeStream; closeSocket.

closeRead
| aProcess |
readProcess notNil
ifTrue:
[aProcess := readProcess.
aProcess == Processor activeProcess
ifTrue: [[self close] fork]
ifFalse: [
readProcess := nil
aProcess terminate]]

closeWrite
| aProcess |
writeProcess notNil
ifTrue:
[aProcess := writeProcess.
aProcess == Processor activeProcess
ifTrue: [[self close] fork]
ifFalse: [
writeProcess := nil
aProcess terminate]]

closeStream
| aStream |
stream notNil
ifTrue:

[aStream := stream.
stream := nil.
self changed: #closedSocket.
aStream close]

closeSocket
| aSocket |
socket notNil
ifTrue;
[aSocket := socket.
socket = nil.
aSocket close]

" message processing'

readProcessLoop
| delay |
delay := Delay forMilliseconds: self class timeout.
[socket successful] whileTrue: [
self processObject.
delay wait]

writeProcessLoop
| delay |
delay := Delay forMilliseconds: self class imeout.

[socket successful] whileTrue: [

self nextPutDirectly: self writeQueue next.
delay wait]

" private’

processObject
| anObject |
anObject := self readObject.
anObject isNil
ifTrue: [self close]
ifFalse: [self changed: #socketIO with: anObject]

* specialized I0'

nextPut: anObject
self writeQueue nextPut: anObject.

nextPutDirectly: anObject
(stream isKindOf: Stream)
ifTrue: [UnixSocketAccessor errorReporter peerFaultSignal

handle:
[:exception |
self close.
exception return]

do:
[self bossWrite isNil ifTrue: [self bossWriteInit: stream].
self bossWrite nextPut: anObject.
stream commit]]

readObject
stream atEnd ifFalse: [UnixSocketAccessor errorReporter
peerFaultSignal
handle: [:exception | exception return]
do:

) [self bossRead isNil ifTrue: [self bossReadInit: self stream].
~self bossRead next]].
~nil

* private initializatjon'

bossReadInit: aStream
self bossRead: (BinaryObjectStorage on0ldNoScan: aStream).

bossWriteInit: aStream
self bossWrite: (BinaryObjectStorage onNew: aStream).

setupInterface
self setupInterfaceOn: self socket

setupInterfaceOn: aSocket.
self socket: aSocket.
self connection: ExternalConnection new.
self connection input: aSocket; output: aSocket.
self stream: self connection readAppendStream.
self readPracess: ([self readProcessLoop] forkAt: Pracessor activePriority - 1).
self writeProcess: ([self writeProcessLoop] forkAt: Processor activePriority - 1).
self writeQueue: SharedQueue new.

TransportInterface class methods
“instance creation'

newAtHost: aHost port: aPortNumber
UnixSocketAccessor errorReporter peerFaultSignal
handle:
[:exception |
Dialog wamn: " Server at port number ° ,
aPortNumber printString , * not running on host ~,
aHost, *.".~nil]
do:
[*self newOn: (UnixSocketAccessor newTCPclientToHost:
aHost port: aPortNumber)]

newAtPort: aPortNumber
| aSocket |
OSErrorHolder errorReporter invalidArgumentsSignal
handle:
[:exception |
Dialog warn: " Server at port number ~ ,

14

The Smalltalk Report

aPortNumber printString , = cannot be created.'.
~nil]

do:
[aSocket := UnixSocketAccessor newTCPserverAtPort: aPortNumber.
aSocket listenFor: self queneSize.

~self new socket: aSocket; yourself]

newOn: aSocket
~self new setupInterfaceOn: aSocket

" class constants'

timeout
~100.

queueSize
~1

* examples’

exampleClient
| aClient |
aClient := self newAtHost: “localhost' port: 3603.
aClient notNil ifTrue: [
aClient
setupInterface;
addDependent: SocketMsgReceiver new.
aClient nextPut: " Hello from the client'.
(Delay forSeconds: 1) wait.
aClient close]

exampleServer

| aClientInterface aServer |

aServer := self newAtPort: 3603.

aServer notNil ifTrue: [
aClientInterface := self newOn: aServer socket accept.
aClientInterface addDependent: SocketMsgReceiver new.
aClientInterface nextPut: ~Hello from server'.
(Delay forSeconds: 1) wait.
aClientInterface close.
aServer close]

class: SmalltalkInterface

superclass: Model

instance variables: " application callback transport *
class variables: ™'

poolDictionaries: '

category: * Smalltalk-Interface'

SmalltalkInterface instance methods
" initialize-release’

close
self transport close.
self transport; nil.

“updating'

update: aSymbol with: anObject from: aSender
aSymbol == #socketI0
ifTrue: [(self application respondsTo: self callback)
ifTrue: [self application perform: self callback with: anObject].
dependents update: aSymbol with: anObject from: aSender]
ifFalse:
[super
update: aSymbal
with: anObject
from: aSender]

" specialized 10'

nextPut: anObject on: aTransportInterface
aTransportInterface nextPut: anObject.

SmalltalkInterface class methods

* examples'

exampleClientAtPort: aPort
| aClient |
aClient := SmalltalkClient newAtHost: "localhost' port: aPort.
aClient notNil ifTrue: [
aClient
application: aClient;
callback: #callbackMethod:;
nextPut: “Hello from client";
nextPut: (OrderedCollection with: ColorValue black with: 2.9);
nextPut: "I am done'.
(Delay forSeconds: 6) wait.
aClient close]

exampleServerAtPort: aPort
| aServer |
aServer := SmalltalkServer newAtPort: aPort.
aServer notNil ifTrue: [
aServer application: aServer; callback: #callbackMethod:]

* cleanup’

release
self alllnstances do: [:aSmalltalkInterface |aSmalltalkInterface close].
ObjectMemory globalGarbageCollect.

Listing 3.

class: SmalltalkClient
superclass: SmalltalkInterface
instance variables: "'

class variables: ™'
poolDictionaries: "'

category: ~ Smalltalk-Interface'

SmalltalkClient instance methods
" specialized 10’

nextPut: anObject
self nextPut: anObject on: self transport.

“updating'

update: aSymbol with: anObject from: aSender
aSymbol == #closedSocket
ifTrue: [self close]
ifFalse; [super update: aSymbol with: anObject from: aSender]

SmalltalkClient class methods
“instance creation'

newAtHost: aHost port: aPort
| anInterface aTransport |
aTransport: := TransportInterface newAtHost: aHost port: aPort.
~aTransport notNil
ifTrue: [
anInterface := self new.
(anInterface transport: aTransport) setupInterface.
aTransport addDependent: anInterface]
ifFalse: [nil].

class: SmalltalkServer

superclass: SmalltalkInterface

instance variables: "listenerProcess interfaces * class variables: '
poolDicHonaries; ™'

category: " Smalltalk-Interface'

SmalltalkServer instance methods
*private’

closeInterfaces
(interfaces respondsTo: #do:) ifTrue: [

continued on page 31

October 1994

15

Smalltalk Idioms

Simple
Smalltalk
testing

KENT BeECK

ou can't argue with inspiration (or deadlines). I started

to write the final column in the sequence about using

patterns for design, but what came out was this. It
describes some work I have been doing with a framework that
takes the tedium out of writing tests. I'll get back to the pat-
tern stuff in the next issue.

Smalltalk has suffered because it lacks a testing culture. This
column describes 2 simple testing strategy and a framework to
support it. The testing strategy and framework are not intended
to be complete solutions, but, rather, are intended to be starting
points from which industrial strength tools and procedures can
be constructed.

The article is divided into four sections:

* Philosophy. Describes the philosophy of writing and running
tests embodied by the framework. Read this section for gen-
eral background.

* Framework. A literate program version of the testing frame-
work. Read this for in-depth knowledge of how the frame-
work operates.

* Example. An example of using the testing framework to test
part of the methods in Set.

* Cookbook. A simple cookbook for writing your own tests.

PHILOSOPHY

The most radical philosophy espoused here is a rejection of
user-interface-based tests. In my experience, tests based on user
interface scripts are too brittle to be useful. Testers spend more
time keeping the tests up to date and tracking down false fail-
ures and false successes than they do writing new tests.

My solution is to write the tests (and check results) in
Smalltalk. Although this approach has the disadvantage that
your testers need to be able to write simple Smalltalk programs,
the resulting tests are much more stable.

Failures and errors

The framework distinguishes between failures and errors. A

failure is an anticipated problem. When you write tests, you
Itent Becl has heen discovering Smalltalk wioms for eight years at Telitronix,
Apple Computer, and MasPar Computer. He is the founder of First Class Software,

which develops and distrihutes reengineering products for Smalltalk. He can be
reached at First Class Software, P.0. Box 226, Boulder Crerk, CA 95006-0226, or

at 408.338.4649 {phone), 408.338.3GG6 (fax), 707611216 (Compuserve).

check for expected results. If you get a different answer, that is
a fajlure. An error is more catastrophic; it indicates an error
condition that you didn’t check for.

Unit testing

I recommend that developers write their own unit tests, one per
class. The framework supports the writing of suites of tests,
which can be attached to a class. I recommend that all classes
respond to the message testSuite, returning a suite containing
the unit tests. I recommend that developers spend 25-50% of
their time developing tests.

Integration testing

I recommend that an independent tester write integration tests.
Where should the integration tests go? The recent movement
of user-interface frameworks to better facilitate programmatic
access provides one answer—drive the user interface, but do it
with the tests. In VisualWorks (the dialect used in the imple-
mentation below), you can open an ApplicationModel and
begin stuffing values into its ValueHolders, causing all sorts of
havoc, with very little trouble.

Running tests

One final bit of philosophy. It is tempting to set up 2 bunch of
test data, then run a bunch of tests, then clean up. In my experi-
ence, this procedure always causes more problems that it is
worth. Tests end up interacting with one another, and a failure
in one test can prevent subsequent tests from running. The test-
ing framework makes it easy to set up a common set of test
data, but the data will be created and thrown away for each test.
The potential performance problems with this approach should-

n't be a big deal, because suites of tests can run unobserved.

FRAMEWORK
The smallest unit of testing is the TestCase. When a TestCase
runs, it sets up its test data, runs a test method, then discards
the test data. Because many cases may want to share the same
test data, TestCase chooses which method to run with the
instance variable selector, which will be performed to run the
test method.
Class: TestCase
super class: Object
instance variables: selector
class variable: FailedCheckSignal
TestCases are always created with a selector. The class method
selector: ensures this.
TestCase class>>selector: aSymbol
~self new setSelector: aSymbol
TestCase>>setSelector: aSymbol
selector := aSymbol
The simplest way to run a TestCase is just to send it the message
run. run invokes the set up code, performs the selector, then
runs the tear-down code. Notice that the tear-down code is run
regardless of whether there is an error in performing the test.
TestCase>>run
self setUp.
[self performTest]
valueNowOrOnUnwindDo: [self tearDown]!

The Smalltalk Report

Subclasses of TestCase are expected to create and destroy test
fixtures in setUp and tearDown, respectively. TestCase itself pro-
vides stubs for these methods that do nothing:

TestCase>>setUp

"Run whatever code you need to get ready for the test to run."

TestCase>>tearDown

"Release whatever resources you used for the test."
PerformTest just performs the selector:
TestCase>>performTest
self perform: selector
A single TestCase is hardly ever interesting once you have got-
ten it running. In production, you will want to run suites of
TestCases. Aggregating TestCases is the job of the TestSuite:
Class: TestSuite
super class: Object
instance variables: name testCases
When a TestSuite is created, it is initialized to prepare it to
hold TestCases. TestSuites are also named, so you can identify
them even if you have, for example, read them in from sec-
ondary storage:
TestSuite class>>named: aString
~self new setName: aString
TestSuite>>setName: aString
name := aString.
testCases := QrderedCollection new
TestSuites have an accessing method for their name in anticipa-
tion of user interfaces that will have to display them:
TestSuite>>name
“name
TestSuites have protocol for adding one or more TestCases:
TestSuite>>addTestCase: aTestCase
testCases add: aTestCase
TestSuite>>addTestCases: aCollection
aCollection do: [:each | self addTestCase: each]
When you run a TestSuite, youd like all of its TestCases to run.
It’s not quite that simple, though. Running a suite is different
from running a single test case. For example, if you have a suite
that represents the acceptance test for your application, after it
runs, youd like to know how long the suite ran and which of
the cases had problems. This is information you would like to
be able to store away for future reference.

TestResult solves this problem. Running a TestCase just exe-
cutes the test method and returns the TestCase. Running a
TestSuite, however, returns a TestResult that records the infor-
mation described above- the start and stop times of the run, the
name of the suite, and any failures or errors:

Class: TestResult

super class: Object

instance variables: startTime stopTime testName failures errors
When you run a TestSuite, it creates a TestResult, which is time
stamped before and after the TestCases are run:

TestSuite>>run

| result |

result := self defaultTestResult.
result start.

self run: result.

result stop.

“result

October 1994

The default TestResult is constructed by the TestSuite:
TestSuite>>defaultTestResult
Aself defaultTestResultClass test: self
TestSuite>>defaultTestResultClass
~TestResult
A TestResult is always created on a TestSuite:
TestResult class>>test: aTest
~self new setTest: aTest
TestResult>>setTest: aTest
testName := aTest name.
failures := OrderedCollection new.
errors := OrderedCollection new
TestResults are timestamped by sending them the messages
start and stop:
TestResult>>start
startTime := Date dateAndTimeNow
TestResult>>stap
stopTime := Date dateAndTimeNow
When a TestSuite runs for a given TestResult, it simply runs
each of its TestCases with that TestResult:
TestSuite>>run: aTestResult
testCases do: [:each | each run: aTestResult]
Because the selector run: is the same in both TestSuite and
TestCase, it is trivial to construct TestSuites which contain other
TestSuites, instead of or in addition to containing TestCases.
‘When a TestCase runs for a given TestResult, it should either
silently run correctly, add an error to the TestResult, or add a
failure to the TestResult. Catching errors is simple—use the
system-supplied errorSignal. Catching failures must be support-
ed by the TestCase itself. First, we need a Signal:
TestCase class>>initjalize
FailedCheckSignal := self errorSignal newSignal
notifierString: 'Check failed -~ ';
nameClass: self message: #checkSignal
Now we need a way of accessing it:
TestCase>>failedCheckSignal
~FailedCheckSignal
Now, when the TestCase runs with a TestResult, it must catch
errors and failures and inform the TestResult, and it must run
the tearDown code regardless of whether the test executed cor-
rectly. This results in the ugliest method in the framework,
because there are two nested error handlers and
valueNowOr0nUnwindDo: in one method:
TestCase>>run: aTestResult
self setUp.
[self errorSignal
handle: [:ex | aTestResult error: ex errorString in: self]
do: [self failedCheckSignal
handle: [:ex | aTestResult failure: ex errorString in: self]
do: [self performTest]]]
valueNowOrOnUnwindDo:
[self tearDown]
When a TestResult is told that an error or failure happened, it
records that fact in one of its two collections. For simplicity,
the record is just a two element array, but it probably should
be a first-class object with a time stamp and more details of
the blowup:
TestResult>>error: aString in: aTestCase

17

Smalltalk Idioms

errors add: (Array with: aTestCase with: aString)
TestResult>>failure: aString in: aTestCase
failures add: (Array with: aTestCase with: aString)
The error case gets invoked if there is ever an uncaught error
(for example, message not understood) in the testing method.
How do the failures get invoked? TestCase provides two meth-
ods that simplify checking for failure. The first, should: aBlock,
signals a failure if the evaluation of aBlock returns false. The
second, shouldnt: aBlock, does just the opposite.
should: aBlock
aBlock value ifFalse: [self failedCheckSignal raise]
shouldnt: aBlock
aBlock value ifTrue: [self failedCheckSignal raise]
Testing methods will likely run some code, then check the
results inside should: and shouldnt: blocks.

EXAMPLE
Okay, that's how it works, but how do you use it? Here’s a short
example that tests a few of the messages supported by Sets.
First we subclass TestCase, because we’ll always want a couple
of interesting Sets around to play with:
Class: SetTestCase
super class: TestCase
instance variables: empty full
Now we need to initialize these variables, so we subclass setUp.
SetTestCase>>setUp
empty == Set new.
full := Set with: #abc with: 5
Now we need a testing method. Let’s test to see if adding an
element to a Set really works:
SetTestCase>>testAdd
empty add: 5.
self should: [empty includes: 5]
Now we can run a test case by evaluating:
(SetTestCase selector: #testAdd) run.
Here's a case that uses shouldnt:. It reads “after removing 5
from full, full should include #abc and it shouldn't include 5.”
SetTestCase>>testRemove
full remove: 5.
self should: [full includes: #abc].
self shouldnt: [full includes: 5]
Here's one that makes sure an error is signaled if you try to do
keyed access:
SetTestCase>>testIllegal
self should: [self errorSignal
handle: [:ex | true] do: [empty at: 5. false]]
Now we can put together a TestSuite.
| suite |
suite ;= TestSuite named: 'Set Tests'.
suite addTestCase: (SetTestCase selector: #testAdd).
suite addTestCase: (SetTestCase selector: #testRemove).
suite addTestCase: (SetTestCase selector: #testIllegal).
~suite
Figure 1 shows an Object Explorer picture of the suite and of
the TestResult we get back when we run it.
The test methods shown above only cover a fraction of the

18

TestSuite SetTestCase

name — 'Set Tests' selector #testAdd
1

t

gstCases SetTestCase

run \ selector #testRemove

SeiTestCase —l
selector #estillegal
full
empty

TestResult I

startTime #(26 August 1994 2:09:00 am)
stopTime #(26 August 1994 2:09:01 am)
testName

failuresOrderedCollection ()
errorsOrderedCollection ()

Figure 1.

functionality in Set. Writing tests for all the public methods in
Set is a daunting task. However, as Hal Hildebrand told me
after using an earlier version of this framework, “If the underly-
ing objects don't work, nothing else matters. You have to write
the tests to make sure everything is working.”

COOKBOOK
Here are simple steps you can follow to write your own tests:

1. Scope the tests. Decide whether you want to test one object
or several cooperating objects. Subclass TestCase, prefixing
the name of your test scope.

2. Create test fixture. Find a few configurations of your objects
that will exercise the code you want to test. Add an instance
variable to your TestCase subclass for each configuration.
Override setUp to create the configurations.

3. Write the test methods. Write a method for each distinct
test you want to perform. Use should: and shouldnt: wher-
ever you can check for correct or incorrect results. As you
write each methad, test it by creating an instance of your
TestCase subclass and sending it run.

4. Create the suite. Write 2 method in one of the classes you
are testing that collects all of the TestCases into a TestSuite
and returns it.

CONCLUSION

This column has presented the philosophy and implementation
of a simple testing strategy for Smalltalk. The strategy has the
advantages that it is simple, lightweight, and produces tests that
are stable. It is not complete or perfect, but it’s a whole lot better
than no programmatic tests at all. As always, if you have com-
ments, please pass them on to me at
70761.1216@compuserve.com. 9

The Smalltalk Report

More
performance
tips

ALAN KNIGHT

article. I've just returned from ParcPlace’s first user confer-

ence, and from listening to Alan Kay's wonderful keynote
speech. Alan Kay doesn't talk about performance optimization,
except perhaps as one of those petty concerns that prevent us
seeing the truly new and exciting ideas. Listening to him talk
can make you uncomfortably aware of just how unimportant
the problems you're working on are in the larger context. As he
so diplomatically put it, “All this crap you're writing code for is
meaningless.”

This iso't exactly inspirational material for a column on per-
formance optimization, but perhaps there’s a lesson here.
Performance optimization is a detail. It's easy to get carried
away with optimization, particularly micro-optimizations.
Basically, optimization is fun. Thinking about application issues
can be a lot less fun, particularly if it involves contact with
those icky users. In the long run, however, it's application issues
that will dominate. They may even dominate performance.
Another ParcPlace conference attendee, whose name I didn’t
catch, commented that the biggest optimization for an opera-
tion is realizing that you don't need to do it at all.

That being said, it’s nice if the operations you do need can
run efficiently, and what follows are a few more tips for achiev-

ing this.

In retrospect, I wish I'd chosen a different topic for this

EXPLOITING SYSTEM LOOPHOLES

As we all know, in Smalltalk everything is an object, and all
operations are acconplished by sending messages to objects. At
least it looks that way. In fact, there are a number of situations
where the system “cheats” to improve efficiency. Most of the
time you don't need to worry about these situations, but it can
be very helpful to know about them when you' re trying to

optimize for performance.

INLINED MESSAGES

There is a small set of messages which are not implemented
as message sends, but are instead “inlined.” The compiler
replaces the message send with code to perform the operation

Alan Inight is a consultant with The Ohject People. He can be reached at

613.225.8812, or by email as lunght: acm.org

October 1994

directly. While the exact set of messages replaced this way
varies with the implementation, there are some which are
almost always included.

Identity

One of the most important inlined messages is the == (double-
equals) identity test. Equality testing is implemented by a mes-
sage send, but the identity test is always a direct comparison of
object pointers (you couldn’t change it if you tried). This is the
reason that things like IdentityDictionary and IdentitySet are
faster than Dictionaries and Sets. You have to be careful how-
ever, that an identity test is really what you want. Usually you
really want equality, and use identity as a substitute when you
know they're the same for the objects in question. Identity tests
on certain system classes are almost always safe:

Smalllnteger: myVar ==
Symbol: mode == #debug
UndefinedObject: result == nil

Others are definitely not safe, and can get you in a lot of hard-
to-debug trouble:

String:

Numerics other than SmallInteger:
In particular, if you have a class where there is an equality oper-
ation different from identity, you probably want to think very
carefully before using identity tests.

When using symbols, you should also be careful that you
aren’t paying the cost of the lookup in the convetsion to symbol
form, The expression aString asSymbol is doing a lookup in a
very large hash table, and can have significant overhead if you're
doing it many times.

mode =="debug’
arg ==1.0

Control structures and blocks

There are several basic control structures that are almost always
inlined. This includes conditionals (ifTrue:, ifFalse:, etc.), while
loops (whileTrue: etc.), Boolean operations that take a block
(and:, or:) and indexed iteration (to:do:). These control structures
are particularly important, because in addition to the message,
the associated block is inlined as well. This can often make a

much larger performance difference than just one message send.

BLOCKS

Blocks are a very important mechanism in Smalltalk, and an
important feature that many static OO languages are missing.
Since they are used to implement all of Smalltalk’s control
structures, they occur very frequently, and it’s worthwhile to
understand their performance characteristics. ParcPlace
Smalltalk does the most optimization based on block types,
categorizing them as follows:

Full blocks
These blocks can read and assign to temporary variables in the
method context, and can contain a return. This requires trans-
forming the method context into a real object (instead of a
stack-based pseudo-object). For example, take the following
(very inefficient) code fragment:

| aHugeString |

aHugeString := String new.

Smalltalk keys do: [-each | aHugeString := aHugeString, each.].

19

The best of comp.lang.smalltalk

Copying blocks

These blocks can read temporary variables in the method con-
text, but cannot assign to them or contain a return. It can read
and/or assign to instance variables of self. The name comes
from the fact that this can be implemented by copying the

Don’t use isKindOf;, It’s
not just slow, it’s the
wrong thing to do.

appropriate values into the block, avoiding direct references to
the method context in which the vaniables appear. The method
context can therefore stay on the stack.

| aStream |

aStream := WriteStream on: String new.

Smalltalk keys do: [:each | aStream nextPutAll: each].

Clean blocks
These do not refer to variables except block arguments and
globals. This is a very restrictive form, since it doesn't even
allow references to self, or to instance variables. Because of the
restrictions, this can be compiled as a simple function, which is
much more efficient than the more general block forms.

| aStream |

aStream := WriteStream on: String new.

Smalltalk keys inject: aStream into: [:sum :next |

sum nextPutAll: next].

Inlined blocks
These blocks have no restrictions on what they can do, but must
be a literal block used as an argument to one of the inlined con-
trol structures described previously. Because of the way that they
are used, the compiler knows enough to remove the block
entirely, and directly embed the code within the method.

| keyStream aHugeString |

keyStream := ReadStream on: Smalltalk keys asArmay.

aHugeString := String new.

[keyStream atEnd] whileFalse: [

aHugeString := aHugeString , keyStream next].

Example block optimizations

These different block types are a mixed blessing. While they
allow significant performance optimizations in some cases, they
require some sophistication to understand. It’s also hard to
know exactly where they would be worthwhile, since block
overhead is usually hard to spot in a profiler. One example of a
performance optimization would be to re-implement detect:
for SequenceableCollections. The default implementation is the
inherited one from Collection:

20

detect: aBlock ifNone: exceptionBlock

self do: [:each | (aBlock value: each) ifTrue: [“each]].

~exceptionBlock value
The ifTrue: block is inlined into the do: block, since ifTrue:
always inlines literal blocks. This makes the do: block full, since
it now contains a return. This can be quite inefficient, but there’s
no obvious way of getting around it. We need to return before
we've finished the loop, since that’s the essence of detect:. For
general collections there isn’t a very clean way to do this, but we
know that SequenceableCollections can be addressed by index,
and that to:do: inlines its argument. This allows us to write:

detect: aBlock ifNone: exceptionBlock
1 to: self size do: [|
| each |
each = self at- i.
(aBlock value: each) ifTrue: [“each]].
~exceptonBlock value.

Now the only “real” blocks are the ones passed in by the user,
and the efficiency should be considerably improved. Because this
small ugliness is hidden inside the implementation of a standard
system method, it shouldn't affect the quality of our other code.

This is also a good example of a more general optimization
technique, exploiting restrictions in subclasses. General classes
like Collection need to provide very general methods. If we
know that a subclass doesn’t require the full generality, we can
exploit that knowledge to provide a more efficient implementa-
tion. In this case, the knowledge we’ve used is that do: can be
implemented just as efficiently using to:do: and at: for array-
based sequenceable collections, and that all the sequenceable
collections in the base image are array based.

This can get us in trouble if our assumption is violated. If
we added non-array based implementations of sequenceable
collections (e.g., self-balancing trees) at: could be a relatively
expensive operation. This could easily make our “optimized”
implementation less efficient than one based on do:. We would
need to ensure that each type of collection used the appropriate
detect: implementation.

Other implementations
One problem with block optimizations is that they’re usually not
portable. Digitalk’s blocks are implernented quite differently than
what is described previously, with fewer opportunities for opti-
mization. While I am not as familiar with the details of Digitalk’s
blocks, they appear to have only the full and inlined varieties.
They are also less general (they don't allow block locals, and block
arguments are turned into variables in the method scope). I'm not
sure, but these limitations may allow them to be implemented
more efficiently than ParcPlace-style full blocks. In any case, there
are fewer options in Smalltalk/V for these subtle optimizations.
IBM seems to do some very odd stuff with blocks. I say
seems, because I haven't seen any of their implementation doc-
umented, and am guessing based on the code that is visible.
1BM, like Digitalk, appears to only distinguish full and inlined
blocks, but they also have a number of nonblock objects that
can impersonate commonly used clean blocks. For example, the

default sortBlock:

continued on page 32

The Smalltalk Report

Exceptional
power and
control

JUANITA
EWING

n my last column, I discussed return values, and the use of

specialized return objects. A return statement is only one

mechanism that controls exit semantics and values. Another
mechanism, an extremely powerful one, is exceptions. Exceptions
provide flow control that cross and encompass methods.

The examples in this column are from the Smalltalk/V
exception handling system. Objectworks\Smalltalk also has an
exception handling system, so I will point out equivalent
expressions during the discussion. We will also use the return
object example from the last column as an example of how to
add exceptions to an existing subsystem, including some archi-
tectural suggestions.

SIMPLE USE OF EXCEPTIONS

With an exception handling system, a developer can control
how exceptional situations manifest themselves. In most
Smalltalk systems, exceptions manifest themselves as errors,
resulting in a walkback or error notifier. Exception handling
gives developers the ability to control the manifestation of errors
from low-level code, so they don't bubble up to the end user.

The basic premise of an exception handling system is sim-
ple: errors cause exceptions. Client code can ignore exceptions,
which triggers the default action for the exception, or client
code can handle the exception by performing a special action.
Clients must designate which sections of code are protected
from the default action of an exception.

To protect sections of code, the code must be placed in a
block, and sent the message on:do:. The first argument to the
message is the exception the developer wishes to handle. The
second argument is the handler block, which is the code to be
executed in case of an error. The handler block optionally has
a block argument, which is the exception that was raised. In
Objectworks\Smalltalk, the equivalent exception handling
capability is invoked by sending the message handle:do: to an
exception.

The following method isActive uses exception handling in a

Juanita Ewing is a senior staff member of Digitalk, inc. She has heen a project

leader for commercial object-oriented sollware projects, and 15 an expert in the
design and implementation of object-oriented applicalions, framewaorls, and sys-

tems. Previously, at Textronix Inc.. she developed class libranes for the first com-
mercial-quality Smalltalk-80 system. She can be reached via email at juanita - dig-
itallc.com or hy mail at Digitalle, Inc., 7585 SW Mohawl Drive, Tualatin, OR 97062.

October 1994

straight forward manner. The code makes sure that file errors
do not interfere with the test for the existence of the info file,
by placing the test in protected block. It invokes protected exe-
cution with the message on:do:. The argument to the on:do:
message specifies the exception FileError. The handler block
contains the special action that is executed if a FileErmor is raised
during execution of the protected block. If there are file errors
accessing the info file, we assume the file does not exist, and
exit from the method with a return value of false. In this
method, the handler block does not have an argument, which is
the simpler form of the handler block.
isActive
"Answer <true> if there is already an info file in the receiver's
directory”

~[self infoFile exists]
on; FileEmror
do: [alse]
The on:do: statement in the isActive method handles the
exception FileError and all of the exceptions derived from
FileError. Unrelated exceptions are not handled in this state-
ment. In the Macintosh implementation of Smalltalk/V, the
FileEmror hierarchy looks like this:
FileError
DirectoryNotFound
EndOfFile
FileDoesNotExist
VolumeNotFound
These derived exceptions are specific kinds of file errors. In
Smalltalk/V, exceptions are implemented as classes, so you can
use standard browsing tools to examine and edit the exception
hierarchy.

EXAMPLE DESCRIPTION
Our example from the last column used an operation that had
several different return values, requiring the client to execute
conditional code or perform a kind of case statement in order
to use the result of the operation. We rearchitected the solution
for our example, ending up with a specialized return object.
The specialized return object could be queried to determine the
success of the operation, and included more queries to deter-
mine if an exceptional condition had arisen.

Here is the description of our example operation:

* It might not succeed.

* The operation has a second chance of success—it can be
retried with some input ignored.

» If the operation fails, it might be because of an internal
error, or because an external function failed. For debugging
purposes, it is desirable to distinguish between the two.

* Another effect of the operation is the creation of an
OrderedCollection of strings containing result data from the
operation.

The invocation of the operation using a specialized return
object (simplified slightly from the previous column):
invokeQOperation
"Invoke the operationWithPoorInterface. Return a
collection of strings if the operation succeeded. If it failed return
an empty collection."

21

Getting Real

| Tesult |

result := self operationWithPoorInterface.

result wasSuccessful

ifTrue: [self notifySuccess.
~result stringCollection].
result wasDatalgnored
ifTrue: [self notifyDatalgnored.
~result stringCollection).

self notifyError: result errorMessage.

~OrderedCollection new
With the goal of simplifying the interface to the specialized
return object, we can rewrite this invocation using exceptions.
Although the initial version of the invocation does not have as
much capability as the original version, we will improve on the
exception version of the invocation as this article progresses.
Here is the simple initial version:

invokeOperation
"Invoke the operationWithPoorInterface. Return a
collection of strings if the operation succeeded.
Return an empty collection on failure."

| result |
[result := self operationWithPoorInterface]
on: OperationWithPoorInterfaceError
do: [: exception |
self notifyError: exception errorMessage.
~OrderedCollection new].
self notifySuccess.
~result stringCollection
In this version the operation is performed while protected from
errors, using the on:do: message. If no errors occur, we execute
the code after the on:do: message, which notifies the user of
success and returns the result. If an error does occur, we notify
the user of an error.

WHY IS THIS ARCHITECTURE BETTER?

The main difference between the example invocation with
exceptions and without exceptions is the use of the on:do:
message and the number and kind of messages sent to the spe-
cialized result object. The original invocation contained queries
to the return object about errors. The new version does not
contain queries about errors. The original specialized return
object had information about two things: error conditions and
operation results. With exception handling mechanisms, we
can move the information about errors to the exception object.
This partitioning of responsibilities results in more under-
standable and reusable code.

Though it is not so obvious by analyzing the client code, the
developer has better control mechanisms with exception han-
dling. The basic capabilities of the exception handling system
allows the developer to elegantly handle errors generated at a
low level. This is extremely important for complex operations.
Behind the original implementation there was special purpose
code containing specialized calls to low level operations that
prevents low level etrors from bubbling up to the user. The spe-
cialized invocations are eliminated by using exception handling.

22

HOW DO WE USE SPECIALIZED EXCEPTIONS?

Because exceptions in Smalltalk/V are implemented as classes,
it is easy to extend the exception hierarchy using the same
mechanisms used for extending the class hierarchy. If you have
a need for specialized exceptions, then you should create an
extension of the exception hierarchy. It is convenient to root all
related exceptions at a single exception. This allows clients to
write simple code to catch all related exceptions.

Most developers create a set of exceptions for each subsys-
tem. This simplifies the interface between subsystems by pro-
viding a consistent and extensible way to pass error and
notifications between subsystems,

Most systems have different exceptions for different kinds of
errors because the client needs to distinguish between kinds of
errors. When you are designing your hierarchy, for example, you
might want to group resumable exceptions together. After ana-
lyzing our example operation, we decide to use an exception
hierarchy like this:

Error

OperationWithPoorInterfaceError
PoorlnterfaceExternalError
PoorInterfaceFileError
PoorInterfaceResourceErmor
PoorInterfaceInternal Error
PoorInterfaceMissingInputDataError
PoorInterfaceUncomputableError
PoorlnterfaceConflictingDataError
‘We want to distinguish between internal and external errors
because the operation can be reattempted after an internal
error. In this hierarchy, we make the distinction explicit by cre-
ating an exception hierarchy for each kind of error.

Why do we root our exception hierarchy at Error? One rea-
son is that we want to inherit the appropriate behavior. One
indicator of behavior is the default action of an exception. Here
are the high level exceptions in the system, along with their
default action:

Exception—open a walkback

Error—open a watkback

Notification—no action

Warning—open a warning message dialog

The errors we generate from our example are serious problems,
not just warnings or notifications. That makes Exception and
Error potential derivation roots of our example exceptions
because they have the appropriate default action: opening a
walkback.

Of these two possibilities, we choose to derive our new
exception from Error. We choose Error because it fits the stan-
dard way to catch all errors—an on:do: statement handling
Error. The alternative is to catch all errors by handling
Exception, but that combines catching errors and notifications.
It is rare to want to treat notifications like errors!

EXTENDING EXCEPTIONS

In addition to creating new exceptions, the Smalltalk/V excep-
tion system also has the capability of extending exceptions by
adding behavior or state. It is good practice to limit extensions
to your own exception classes, so that your extensions do not
collide with modifications made by the vendor.

The Smalltalk Report

Let’s return to our invocation of the operationWithPoor-
Interface. The retry mechanistm is convenient for allowing the
end user to control this operation. Once we have determined
the set of exceptions for our operation, we also want to imple-
ment a new message to determine if the operation can be
retried. If the error is internal the end user is notified that he
can retry the operation.

invokeOperation

"Invoke the operationWithPoorInterface. Retum a
collection of strings if the operation succeeded. If it failed attempt
a retry after user confirmation. Return an empty collection on
failure."
| result |
[result = self operationWithPoorInterface]
on: OperationWithPoorInterfaceError
do: [: exception |
(exception canRetryOperation and:
[self canIgnoreData])
ifTrue: [self notifyRetryPossible: exception
errorMessage]
ifFalse: [self notifyError: exception
errorMessage].
~OrderedCollection new].
self notifySuccess.
~result stringCollection
The message sent to the exception to determine whether the
aperation can be retried, canRetryOperation, is a nonstandard
message. It must be implemented by a specialized exception
hierarchy.

We implement the message canRetryOperation at two differ-
ent spots in our exception hierarchy. At the top, in the exception
OperationWithPoorInterfaceError, we implement
canRetryOperation to return false. For PoorInterfacelnternalError,
we implement canRetryOperation to return true.

Developers can add state to exceptions, if necessary, by
adding instance variables. The state inherited from Error
includes an error message, but various other exceptions con-
tain specialized information. For example, the exception
MessageNotUnderstood has state for the message which is not
understood. In our example exception hierarchy, we could add
state to the conflicting data error,
PoorInterfaceConflicingDataError, to describe which data are
conflicting.

HOW ARE EXCEPTIONS GENERATED?
Our example showed us how to handle exceptions. We also
need to know how to generate exceptions at the appropriate
times. In our original example, the specialized return object con-
tained error information.When we use exceptions, we need to
replace code that stuffed error information into the specialized
return object by code that raises exceptions instead. Let’s exam-
ine a code fragment that used the specialized return object:

externalError := self externalOperation.

externalError >0

ifTrue: [aPoorInterfaceResult errorCode: externalError.
~aPoorInterfaceResult].

Instead of sending messages to the return object, we need to
rework this code fragment to raise an exception. The default

October 1994

way to raise an exception is to send the message signal or sig-
nal: to an exception. Our reworked code looks like this:
externalError := self externalOperation.

extemalError >0

ifTrue: {PoorInterfaceExternalError signal: (self
errorMessage:externalError)].
The signal message raises an exception. The signal: message
raises an exception accompanied by a descriptive message.
Other exceptions have specialized instance creation message
appropriate for their extended state.

From one error, we can create another kind of error. To do
this, we handle the first error, and from the handler block raise
another error. In this code fragment, we catch a file error, and
raise a specialized file error:

[fileStream := self createTemporaryFile]

on: FileError
do: [-exception |
PoorInterfaceFileError signal: exception message]

FINER CONTROL

There are a variety of ways to exit from an exception handler,
each providing a different form of finer control. Exit mecha-
nisms include resume, return, pass and retry. Some or all of
these mechanisms are extremely useful with multiple exception
handlers, but can also be useful with a single exception han-
dler. All of these mechanisms are invoked by sending messages
to the exception inside the exception block Of these mecha-
nisms, we will discuss retry and resume in detail.

The retry mechanism is used to re-evaluate the protected
block, the receiver of the on:do: message. It is invoked by send-
ing the exception the message retry. There is a variation of retry
that allows an alternate block of code to be evaluated. It is
invoked with the message retryUsing: and takes the alternate
block as it’s argument. In Objectworks\Smalltalk, the retry
mechanism is invoked with the message restart.

We again come back to our specialized return object exam-
ple. Our original example included information describing
whether the operation had been attempted again. The client
had no control over the re-attempt. With exceptions, we can
improve the invocation of the operation by moving the retry
control to client. With the retry mechanism incorporated, the
invocation looks like this:

invokeOperation

"Invoke the operationWithPoorInterface. Return a

collection of strings if the operation succeeded. If it failed attempt a
retry after user confirmation. Return an empty collection on failure."
| result |
[result := self operationWithPoorInterface]
on: OperationWithPoorInterfaceError
do: [: exception |
(exception canRetryOperation and: [self
canlgnoreData])
ifTrue: [self confirmIgnoreData
iffrue: [self ignoreData.
exception retry]].
"Can't retry”
self notifyError: exception errorMessage.
~OrderedCollection new].

23

Getting Real

self notifySuccess.

“result stringCollection
If queries indicate data can be ignored, then the operation is
retried by ending the message retry to the exception. We con-
tinue to make use of extensions to query the exception.

Here is an example using the retry mechanism from the
Macintosh version of Smalltalk/V. One of the classes that
manages memory, AbstractMemoryHeapPolicy, has a method
that is used to allocate heap memory. If the allocation fails,
indicated by the exception MacNotEnoughMemory, then a low
memory action is performed to attempt to recover space and
the allocation is retried.

AbstractMemoryHeapPolicy
do: aBlock requiringHeapBytes: estimatedHeapBytes
"Evaluate <aBlock> after verifying that there is enough room on the
heap to allocate <estimatedHeapBytes>. Perform
lowHeapMemoryAction: if there isn't enough room.
Simptlified for example."

~(self roomOnHeapFor: estimatedHeapBytes)
ifTrue:

[aBlock
on: MacNotEnoughMemory

do:
[zex |
(self lowHeapMemoryAction: estimatedHeapBytes)

ifTrue: [ex retry]]]

The other control mechanism I want to spend some time dis-
cussing is resume. Resume is a control mechanism that tells the
exception handler to “keep going.” Only resumnable exceptions
can be resumed.

MainWindow

close
"Time to close the receiver. Check with the model, don't
close if it doesn't want to."

| allowClose |
allowClose := true.
[self triggerEvent: #aboutToClose]

on: VetoAction

do: [:ex | allowClose := false. ex resume].
allowClose

ifTrue:

[self closeWindow]

In the close method, the aboutToClose event is sent to all
objects that have registered an interest in the event. If any of
the registered objects want to disallow closing, they signal a
veto by raising the VetoAction exception. But, the processing
shouldn’t stop because of a veto. Each registered object must
receive the aboutToClose event. The code is designed to handle
this requirement: it notes the veto by setting the allowClose
Boolean to false, and proceeds to finishing informing registered
objects about the intent to close by resuming the protected
block. After the protected block is completely executed,

24

informing the entire set of registered objects of the intent to
close, the window is closed if no object has vetoed the close.

WHICH ERRORS SHOULD YOU CATCH?
When handling errors, a good rule of thumb is to handle the
most specific error that is appropriate. Specific handling is usu-
ally better than general handling, especially during development.
A common mistake is to write code that inappropriately
handles the exception Error. More than one developer has been
mystified by the cause of an exception, only to discover that
their code catches all errors, including MessageNotUnderstood, a
subclass of Error. In this case, generalized error handling cov-
ered up a coding mistake.

ENSURED EXECUTION
Another mechanism, built on exceptions, is the ability to ensure
execution of some code. This mechanism requires placing pro-
tected code in a block, and the code whose execution must be
guaranteed in another block. Ensured execution will execute
the ensured code no matter what happens, even if a return
expression or an error terminates the protected block early.
This mechanism is particularly useful in cases that must
reset state or that must be protected against inconsistencies. For
exarmnple, this mechanism can ensure that a file will be closed
after reading data from it. Smalltalk/V uses the message
ensure:, which is sent to a block containing protected code and
has the guarantee block as its argument. The
Objectworks\Smalltalk equivalent is valueNowOrOnUnwindDo:.
This example is from the Macintosh version of Smalltalk/V.
The method fill:withColor: uses ensured execution to make sure
the background color is reset to its previous value. The back-
ground color will be reset from the guarantee block, even if the
erase operation from the protected block signals an error.

GraphicsTool

fill: geometricObject

withColor: fillColor

"Fill the inside of a <geometricObject> with the given <fillColor>. The
location of the receiver is not affected.”

| backgroundColor |
backgroundColor := self backColor.
[self backColor: fillColor.
geometricObject eraseOn: self]
ensure: [self backColor: backgroundColor]

Another related mechanism is ong that guarantees execution of
some code in case of an error. This code is executed only in the
case of abnormal termination, such as with an error. The
Smalltalk/V message to invoke this mechanism is ifCurtailed:.
The Objectworks\Smalltalk equivalent is onUnwindDo:.

CONCLUSION

Exception handling is a powerful mechanism for controlling
errors and notifications. Even simple applications can benefit from
ensured execution and handling predefined exceptions. Complex
applications can benefit from spedialized exceptions. Each subsys-
tem in the application should define specialized exceptions that
are part of the public interface of that subsystem.Q

The Smalltalk Report

Project Practicalities

When the

worst
happens

his article could be entitled “Making a smooth recov-

ery.” It deals with those times when lightning hits the

building, your dog trips over the power cord, your kid
plays with that interesting button on the power strip, or (as
recently happened for me) you jump on a beta and/or newly
released platform. In other words, when your simulated world

of objects comes crashing down around your ankles, what's the
best way to pick up the pieces?

MARK LORENZ

RECOVERING WITH ENVY

ENVY/Developer is a multi-user development environment for
Smalltalk. It is used with VisualWorks from ParcPlace,
Smalltall/V from Digitalk, and VisualAge from IBM. ENVY
keeps most changes in a server-based database, generally in a
file named MANAGER.DAT. Changes come in the form of edi-
tions and versions. An edition is a component that is still being
worked on. A version is an edition that has been released for
public consumption and can no longer be directly changed
(although another edition of it may be created).

Recovering with ENVY is a relatively painless multistep process.

1. Make image consistent: This action is unfortunately
placed in different places in different versions of ENVY. It is
however always cascaded as a submenu under Syster.

» In VisualWorks, it is found on the popup menu for the
ApplicationManager applications pane.
* In Smalltalk/V, it is found on the Transcript’s ENVY menu.
* In VisualAge, it is found on the Transcript’s Smaltalk
fools menu.

The make image consistent action looks for inconsistencies
between the editions on the server and those in the image.
Results appear in the Transcript. Warnings and errors should
be dealt with as documented in the manual. Informational
messages can be deleted. Depending on the version of ENVY,
you may also get one or more pop-up windows detailing the
inconsistencies found and allowing Load alternative actions to
resolve them.

Mark Lorenz is founder and president of Hatteras Software, Inc., a company that
specializes i helping other companies use object technology effectively. He wel-

comes guestions and comments via e-mail at 71214.3120« compuserve.com or
phanemail at 919.851.0993.

October 1994

2. Available classes: This action is available from the Classes
menu in the Application Manager.* It lists classes that are not
loaded in the image, but are part of another edition of the
application. Classes can be missing if you crashed after creating
a class, but before saving your image. Check this for each appli-
cation you were working on that may have missing classes and
reload them into your image.

3. More recent editions: This action is also available from the
Classes menu in the Application Manager. It lists any editions
that have a time stamp later than the one loaded for any of the
application’s classes. Check this for each application you were
working on before you crashed, loading later editions as needed.

At this point, you should be recovered from your crash. This
is a good time to save your image.

If your image is corrupt and cannot be run, you should start
from a fresh image and load from your configuration map, fol-
lowing the steps above to recover your work in progress. If you
don’t have a configuration map, then you’ll have to load appli-
cation versions by hand... dealing with configuration maps is a
subject for another entire article.

RECOVERING WITH TEAM/V

Team/V is a multi-user development environment for
Smalltalk/V. It uses the PVCS library system for storage of pack-
ages in disk files of the form <package name>.PKV or the file
system to store flat files of the form <package name>.PKG.

Recovery using Team/V is also a relatively painless process.

1. Migrate packages: Any packages that have been commit-
ted will have need to be “migrated” to the latest version of the
code in the shared library. This is done from the packages menu.

2. Recovery from the change log: Changes that have not
been committed will not be in the library, so you will have to
retrieve them from the change log. This is similar to the section
on “vanilla” Smalltalk for Smalltalk/V, with the difference that
Team/V information will also be logged. You will only file in
the code changes and not the Teamn/V logged messages.

3. Reassignment to packages: Unfortunately, the changes you
install from the change log that are for new classes and methods
will not be automatically assigned to a package. Fortunately, you
can do this through direct action drag and drop from the tem-
porary “stream” package to the desired package(s).

4. Cleanup: Delete any temporary packages created for
change log installs. Update any package browsers from the
packages menu,

RECOVERING WITH “VANILLA" SMALLTALK
The Smalltalk environment itself has some safeguards built into
it. The different vendors’ versions work somewhat differently.

Smalltalk/V

Smalltalk/V uses a file called CHANGE.LOG that has
modifications to the environment logged to it in such a way
that you can recover from it. The format of the changes is
called chunk format. Chunks are groupings of text delineated
by exclamation points (“!”).

* Again, the different versions aflow access ta the Application Manager from different places. You can
bring up the Application Manager fram the Manage applications option of the ENVY (VisualWorks or
Smalltalk/V) or Smalltalk tools (VisualAge) menus.

25

Project Practicalilies

The following example taken from one of my change logs
illustrates the types of information kept in this file.
"define class"

HomBaseBrowser subclass: #HomModelBrowser
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "1

"evaluate"
HomModelBrowser example!

!HomTopPane class methods!
fileMenu
"Public - return the File menu for my browsers to use"
"MEL 3/1/93 ©Hatteras Software, Inc. 1993. All rights reserved."

“menu! !

"evaluate"
HomTopPane class removeSelector: #smalltalkMenu!

'HomTopPane methods !
buildMenuBar
"Private - Create the menus that make up the menu bar."
"MEL 3/1/93 ©Hatteras Software, Inc. 1993. All rights reserved."

To recover: From Smalltalk, open the file with your changes in
it. You may have to force the entire file to be read into the
workspace browser.

* Place the cursor at the bottom of the file,

* Bring up the Find dialog. Enter “image,” choose “back-
wards,” and press Enter.

* Page forward, deleting any “evaluation” lines you don't want
to execute again.

» Place the cursor at the beginning of the line after the "image
saved” line.

» Select the text from there to the end of the file.

* File the selected text into the image.

VisualWorks
VisualWorks has a different way of dealing with change con-
trol. As you make changes, they are put into a change log
named VISUAL.CHA. VisualWorks provides a browser that sepa-
rates the types of changes that are logged, allowing better view-
ing in some ways. It does not allow you to view only the
changes since the last image save, however.

Installing the changes is usually done via the browser’s menu
options, instead of through selections in the change log itself
using a workspace.

SUMMARY
We have taken a look at disaster recovery when using
Smalltalk. We've seen that, although it takes some effort to

26

EmMathodLinking
EsCodeGeneration
EsDebuggerSuppor
EsParsing R1.21

EsWindowSyitem
EtBaseTools abt.R
EtResourceSaving
EtTools abt.R1.41

-94 07:19:43 AM) |

Figufe 1. ENVY Application Manager menu.

-

3 Hatteras Parsers
.{Old packages

[Team!V Repository; |-
| V#in Compatibiity -]

Figure 2. Team/V migrate applications dialog.

e smalltaly CivwININVMeMICHANGE Lo el
Fle Edit Smaltalk

"evaluate"
' saved on; Nov 5. 1993 22:31:33 anw™"|

"evaluate”
InvinventoryView example.l

InvProductView methods {
ateViews

Figure 3. An example Smalitalk change log.

hangeSet

i=|gure 4. VisualWorks chan;es browsérZ o

recover, Smalltalk allows for relative safety when using it to
develop applications. Groupware for Smalltalk makes the sit-
uation even easier to handle, Of course, you can safeguard
yourself even further by frequent image saves, commits/ver-
sioning to the repositories, and regular archival backup and
off-site storage. §

References

1. Exvy/DeveLoper User Manuat, Object Technology International,
1993.

2. Team/V User Manvar, Digitalk Incorporated, 1993.

3. OsjecrWonks Smacctack User's Guipg, ParcPlace Systems Inc.,
1992.

The Smalltalk Report

February 21-24, 1995

i Parvk

New York, NY

SMALLTALK

SOLUTIONS

Finally, a s s
vendor-independent a I I
conference dedicated to all talk

Smalltalk users. Focusing on the

practical application of Smalltalk in its

dialects, Smalltalk Solutions ‘95 is an opportunity

for the entire Smalltalk community to network, share innov-
ative strategies and programming tips, and stay up-to-date on
the latest tools and techniques.

Learn from the Smalltalk Experts
The educational program has been designed in conjunction
with the Technical Conference Chair John Pugh, editor of The
Smalltalk Report. The 4-day conference offers over 30 inten-
sive classes ranging from beginner to advanced, all taught by
experienced and well-respected Smalltalk experts.

You'll come away with new insights on language advances,
usage tips, project management, analysis and design tech-
niques, and insightful, practical applications. Specific class
tracks focus on Tearn Programming, Analysis and Design,
User Experiences/Case Studies, Technical Features, and
Management Issues.

The latest Smalltalk products will be displayed in the
Smalltalk Solutions ‘95 Exhibit Hall, where you'll have a
chance to demo the leading Smalltalk products, and receive
an up-close, hands-on comparison. Don’t miss this chance
to see Smalltalk in action.

Smalltalk Solutions *95 is presented by S5IGS Conferences, spon-
sor of over 7 conferences world-wide, including Object Expo,
Object Expo Europe, and C++ World.

For information on attending
Smalltalk Solutions ‘95, please
contact the SIGS Conferences Registrar:

PHONE: 212.242.7515

DON'T MISS
FAX: 212.242.7578 THIS UNIQUE

email: sigsconf@ix.netcom.com SMALLTALK EVENT!

Book Review

Discovering
Smalltalk

ElSﬂOVERING*;

SMALLTALK Reviewed by

Mary Dunn

Wilf Lal.onde
Benjamin Cummings
Redwoad City, CA
ISBN 0-8053-2720-7
1994

ilf Lal.onde is an author and educator whose
name will be familiar to many readers of THE
SmaLrTark RerorT. His latest book,

DiscovERING SMALLTALK, aims to provide an introduction to
the Smalltalk language, environment, and class library, and to
the major concepts of object oriented development. His educa-
tional philosophy is that learning is best done through experi-
mentation and discovery. Hence, the book is organized as a
process of discovery, plunging first into examples of actually
doing some simple things in the Smalltalk environment, and
then proceeding from basic to complex topics. The basis for the
text is Smalltalk/V for Windows; the final chapter introduces
user interface development using Object Share’s
WindowBuilder in its examples.

The intended audience is “those who have never programmed
before,” as well as those who know other programming lan-
guages. It is designed for use in a first course in object oriented
programming. In the preface, Lal.onde discusses his academic
curriculum and where this book is used in sufficient detail to be
useful as a guide to educators. Outside of the classroom, I found
the book to be a good vehicle for an information systems profes-
sional leaming Smalltalk through self-study. It would be especial-
ly effective following some introductory reading on O-O, such as
David Taylor’s OsjecT ORIENTATION: A MANAGER's GUIDE.

I have a background in corporate information systems rather

than in the academic sector. I am cutrently managing a project
to introduce object-oriented technology to our company, which
includes a first project using Smalltalk/V and WindowBuilder.
I have done some research into object orientation and taken a
course in Smalltalk and O-O analysis/design but had not used
Smalltalk prior to reading this book.

The structure of the book provides a sound framework for

28

learning: Each chapter explains what it will cover and why and
ends with several sections that reinforce learning. Throughout
the text, important facts and ideas are enclosed in bordered boxes
to capture the reader’s attention. I found the index a bit sparse,
but I could locate most topics using the table of contents.

Discovering Smalltalk begins with a brief introduction to
computers, Windows, and Smalltalk. The coverage of basic com-
puter, mouse, and Windows concepts seemed likely to be too lit-
tle if the reader needed it and in the way if not. (I suspect the lat-
ter would be the more typical case.) We learn about Smalltalk
messages, receivers, and selectors through simple text manipula-
tion and calculations in the Workspace. Browsers are introduced
by using them, and we move on to methods, classes, and debug-
gers. From here on, we see more examples of code and discussion
of how Smalltalk works. The concept of inheritance and class
hierarchies follows. Collections merit their own chapter, intro-
ducing the collection classes and how to create and process them.

At this point we take a different tack to consider evolution-
ary analysis and design techniques (primarily Class-
Responsibility-Helper analysis and Use Cases). This discussion
points out the interrelationship of analysis, design, and pro-
gramming inherent in O-O development. I was glad to see this
included in a textbook that is intended to teach a programming
language. The integration of analysis, design, and coding has
significant implications for information systems professionals,
many of whom have “grown up” as either “analysts” or “pro-
grammers” and need to round out their skills to be effective O-
O developers. This brief presentation of analysis/design skills
and iterative development makes this a richer book, especially
for the reader who is leaming through self-study.

The next chapter gives us a fairly extensive look at the
Smalltalk class library and its operations. The author has us try
different ways of coding methods, thus reinforcing the experi-
ment-and-refine method of development while introducing us
to the fundamental classes and methods in Smalltalk.
Suggestions for further exploration are made so that we gain
confidence at learning through browsing. The basic structure
and object interaction in the user interface of a Windows appli-
cation are introduced very briefly in the final chapter.

The “discovery” method requires tolerance for incomplete
understanding early in the process of learning, which may be
uncomfortable, especially for the reader learning through self-
study. The author helps us through reminders of where we'd
seen a concept before and gives assurances that we'd revisit it
later on. Early in the book, this reader would have appreciated
more definition than was provided when topics were first intro-
duced (selector and part, for example). However, I must admit
that I did develop an experiential understanding of the con-
cepts as I proceeded. Throughout the book, Lal.onde offers
observations and hints based on his experience; these are espe-
cially valuable as the topics become more advanced.

The integration of doing with learning is notably effective.
If reading fails to convey an idea, then the example that faith-
fully follows usually succeeds. I was grateful for the extensive
use of figures showing Smalltalk transcripts, browsers, code
examples, etc., since it allowed me to make progress in the book
even when I was not able to be hands-on with Smalltalk while

continued on page 32

The Smalltalk Report

Objekt-orientiertes Programmieren

J0O0P '95

M U N CH E N

Movmg Forward W|th Object Technoloqy

January 30 February3 I995
Munich Sheraton, Germany

FEATURING

(-+ World

FOR INFORMATION ON EXHIBITING OR ATTENDING 0OP'95 reatuRING (++ World coNTacT:

(In the USA) SIGS Conferences, Inc......v. 212.262.1515..£. 212.242.1578
(In Germany) 5165 Conferences GmbH.....v. 089.957.9517...f. 089.951.9125

Don't Miss Geriganyliy

Most Attended™~"
Object Technology
& (++ Conference!

Here's What Prominent
German Publications Said

About 00P'9k...

“OO0P ’94: A lot of new
exhibitors with new
products...”

—Computerwoche, Nr. 7,
February 18, 1994

“For companies who want to
give further education to their
employees by participating in
a conference or who are
making important buying
decisions.. it is the only
alternative.”

—iX Magazin, March, 1994

“The most important thing for

the attendees was the quantity
and the quality of the talks
and the seminars.. It was a
positive experience in contrast
to mass-events like Cebit.. .
For software developers it is
recommended to visit this
conference.”
—mc Magazin fur
Computerpraxis; Jan. 1994

C_ﬂfm 05/BTpetum
OB]m Presented by

Multiuser
Multitasking
Magazin CONFFRLNCES

Consultant allInstances do: [:each |

each become: QSYSConsultant new].

-
e
£
x
=
[
Qo
Q
[+

Please contact
Elspeth Koor at 1-800-999-9776.

1 Yonge Street, #1801 90 Park Avenue, #1600
Toronto, Canada CI) S LIJ S New York, NY, USA
MS5E 1W7 10016
Fax: (416) 369-0515 CUALITY S¥YSTEMS Tel: (212) 984-0715

Email: 72072.2575 @compuserve.com

continued from page 15

interfaces do: [:aTransportinterface | aTransportInterface close]].

interfaces := nil.

stopListening
| aProcess |
listenerProcess notNil
ifTrue:
[aProcess := listenerProcess.
listenerProcess := nil.
aProcess terminate].

" initialize-release’

close
super close.
self stopListening.
self closeInterfaces.

" client access'

addClient: aTransportInterface
self interfaces add: aTransportInterface.
aTransportInterface addDependent: self.

removeClient: aTransportInterface

self interfaces remove: aTransportInterface ifAbsent: ["Just don't
care"].

aTransportInterface removeDependent: self.

“message processing'

listenerProcessLoop: aPortNumber
| childSocket newClient |
transport := TransportInterface newAtPort: aPortNumber.
[transport notNil] whileTrue: [
childSocket := transport socket accept.
childSocket isNil
ifFalse:
[newClient := TransportInterface newOn: childSocket.
self addClient: newClient]]

" updating'
update: aSymbol with: anObject from: aSender

aSymbol == #closedSocket
ifTrue: [self removeClient: aSender]

ifFalse: [super update: aSymbol with: anObject from: aSender].

SmalltalieServer class methods
*instance creation’'

newAtPort: aPortNumber

| aServer |

aServer := self new.

~aServer interfaces: OrderedCollection new;

listenerProcess:

([aServer listenerProcessLoap: aPortNumber)
forkAt:Processor activePriority - 1);
yourself.

For information on
advertising in the
Recruitment Section,

contact
Michael W. Peck at
212.242.7447

October 1994

Consulting Services
Tends fos the Sttt dencloper

ODBTalk
Open Database Connectivity
Solution for Smalltalk
A class library for ODBC
8 Windows 16-bit $199
B Win32s/NT 32-bit $299
® PARTS for ODBC $199
introductory price until
Dec 31/94

Socktalk
Client Server Development
Solution for Smalltalk
A class library for Windows
Sockets Development
B Windows 16-bit $199
B Win32s/NT 32-bit $299

Available from these distributors:

N. America: The Smallaalk Store
tel: (415) 854-5535
fax: (415) 854-2557

N. America: Computer Services Group
tel: (212) 819-0122
fax: (212) 819-0147

Europe: Object Solutions GmbH
tel: +41-1-946-0408
fax: +41-1-946-0191

Europe: micado SoftwareConsult
tel: +49-2242-871-450
fax: +49-2242-871-455

Asia/Pacific: Cyberdyne Systems
tel: +61-2-955-9788
fax: +61-2-955-2913

or contact Ken Findlay at LPC
tel: (416) 787-5290
fax: (416) 787-9214

31

Simalltalk

= =E P O R T

is seeking expert reports, tuforials,
and technical papers. Articles
should be instructive, product
neutral, and technical.

Editorial topics include:

* Applications

* Project management
* Tools

* Language issues

To submit papers, discuss story ideas,
or request Writers’ Guidelines, contact:

John Pugh and Paul White, Editors,
THE SMALLTALK REPORT

855 Meadowlands Dr. #509,

Ottawa, ON K2C 3N2

613.225.8812 (v), 613.225.5943 (f)
streport@objectpeople.on.ca

Call for Writers

Book Review

continued from page 28

reading. The book accompanied me to the porch when pleasant
weather beckoned and to the dentist’s waiting room when
necessity dictated. Such portability is no small benefit to one
learning on one’s own time.

Code examples did get lengthy, as Lal.onde had forewarned
in the preface. However, through the numerous and fully real-
ized examples, we become familiar with Smalltalk code almost
subconsciously as examples build from chapter to chapter. In
addition, the examples will serve as models after one has
finished the book. The technique provides solidification and
extension of understanding over the course of the book. In fact,
the flow of the book in itself constitutes a demonstration of
O-Ors iterative style of development.

Confession being good for the soul, I must admit that I
actually did not do the exercises at the end of the chapters. The
good news for potential self-study readers like me is that the
book worked anyway. I feel that I have landed firmly on the
shores of Smalltalk and can p roceed inland with the mind-
map provided by DiscoveriNG SMALLTALK. §@

32

The best of comp.lang.smalltalk

continued from page 20

[:a:h | a<=b]
appears to be transformed by the compiler into an object with
the method

value: a value: b

~fa<=bh

I’'m not sure exactly what the performance benefits of this
approach are, but it makes block optimizations even trickier,
since you need to know which particular blocks are supported
in this way to optimize.

A HAPPY ENDING
There are many more areas of performance optimization that I
have not yet even begun to talk about, so there may be more
forthcoming on this topic in the future, including arithmetic and
graphics operations, as well as some well-known performance hits
(e.g., Dot use isKindOf:. It’s not just slow, it’s the wrong thing to
do). For the moment, I'm way past deadline and running out of
space. I opened this two-part series with a quote from Bill Punch
(punch@cps.msu.edu) who was looking to optimize some
Smalltalk code. I'm happy to say that the results were satisfactory:
Using the acquired wisdom of the net, we have re-tuned our
application with some pretty wonderful results. There are
lots of ways to show this, but based on my home machine
(NeXT, 32Mb, ParcPlace VW) we showed the following

improvements (same test case shown):

Original June code: 42 seconds
1st speed fix: 27 seconds
2nd speed fix : 20 seconds
3rd speed fix : 15 seconds

All this for three to four hours of effort, most spent trying
to figure out the profiler and what it was telling us. Same
code on our Sparc 20/50 (32 Mb, ParcPlace VW) runs in
under 3.5 seconds with some copious output. In particular,
we are now showing that TextCollector>>show: is taking
something like 25% of the run time. That is, our code is
running in comparable time to how fast VW can pump out
the results. We're pretty happy with that!

How did we do that? The main net advice is the use of
the Profiler from the Advanced Programmers Kit (APOK).
We hadn'’t used it much before but will from now on. We
found a number of “holes” in our code that we fixed.

The other oft offered advice is on “growing” collections. We
found some overhead in that as well and remedied it.

THE USUAL BUGS
One of the problems with taking information off the net is its
short lifespan relative to the delays involved in publication. By
the time the information on the Smalltalk standardization
mailing list was published (THE SMALLTALK REPORT,
July-August 1994) it was already out of date. Requests for sub-
scriptions, which should be of the form:

subscribe x3j20 your-email-address
should now be sent to listserv@qks.com, and submissions to
the mailing list now go to x3j20@qks.com. Problems with the
list should be addressed to postmaster@gks.com. @

The Smalltalk Report

	By Article Title
	Discovering Smalltalk -- Book Review
	Exceptional power and control
	More performance tips
	Object transfer between Smalltalk VMs
	Persistent object management using the ParcPlace Binary Object Streaming Service
	Simple Smalltalk testing
	When the worst happens

	By Author Name
	Beck, Kent
	Christiansen, Michael
	Deugo, Dwight
	Dunn, Mary
	Ewing, Juanita
	Knight, Alan
	Lorenz, Mark
	Ulvr, Joe
	White, Tony

	By Topic
	Book review
	comp.lang.smalltalk
	Getting Real
	Project Practicalities
	Smalltalk idioms

