
WiWltalk I
Mtora

John Pugh and Paul White

CarfekmUniimhy h TIMObjwf hlph

NGSPuhticationsAdvisoryBoard
Tom Atwood, Object Dnsiffn

Frwpis Bancilhon, 02 Technologies

Orady Booth, FJationel

GeGtgE Boswmrth, O@lk

Brad Con, Information Age Cmrsulling

Adele Gddbwg, P6rcPlace Systems

Tom Lava IBM

Bwlrend Meyw, ISE

Meifir Pag&fones, WWland Systnms

.%sha Prstap, CenterLine So fiwarE

Cliff Ffeaves, IBM

Bjame Stmustrup, ATST Bull labs

Oave Themes, Object Technology Intematimml

rHESMAUmurRwmrr Edtirial Board
Jim Anderson, Oigifalk

ArMe Goldbwg, PwcPlace Systems

HI?KI Phillips, Knowkdga Systnms Carp.

M)kn Taylor, Oigitalk

OWB Thcmm, O@ Ter.lrmfqy Irrtertinl

tohrmnista
Kent Beth, Fiml Class SoflwarE

Juaniia Ewing, Oigihlk

Greg HendlW, Krwwlndgu S@ms Corp.

flm Howard, RothWall International

Ed Kfimas, Lines Engineering Inc.

AJBnKnight Thn f)bjnct peOple

Wlfiam Kohl, RothWEll International

Mark Lwwu, Hatlems .%Jlware, Inc.

Eric Smith, Knowledgn Systnms IMP.

Rnbncca WirfsIkdr, Oighalk

NGSPttBUCATtONSGROUP,INC.
Richard P. Friedman, Founder b Group Publisher

:dtirisl/Production
Krisdrm Joukhndw, Mwreging Editor

Susan Culligmr, Pilgrim Road, Ltd., Dmign

S6th J. BnLIkEy, Production Ednm

Margaret Conti, Advertising Pmdrmion Asistanl

Tanya Tmwell, EdiIorird $lssistanl

Brian siahw, mwr illustration

%sulation
Bruce Shrivw Jr., Circulnlion Oimctw

John R. Wengler, Calculation Meneger

advertising/Msrlrstiou
ShirJeyS8s,Oirectm of Sales

Gary Partie, Advertising Mwragw, East Coast/Canada/Europe

Hnlen Nnwfing, Adverdsing 6 Exhibii SBles

Michael W. Peck. Advwiisinn Salw Assistant

Sales Represerrtativw Oiarre Fuller k Associstm, V&t Coast

408.255.29S1 (v), 40E,255,2S92 If)

Swab Hamilton, Manegw of Pmmolions and Research

Camn Polner, Promotions Gmphic Oasignw

administration
Mwgherim R. Month, Gennrsl Manager

Orwid Chatfmpeul, Accounting Manager

James Amenuvcr, Bookknepw

Amy Melsten, Human Rnsources Manager

Jowrna fnwenstein, Mministdve Pssisrarrf

%bfkhers ofJOUI(NAL OF OBJECT-ORIENTED

3RWRAMMING, OWCT h~GAZINE, C++ REPIJRT,

iMALLTALK REIWKT, THEXJOLInNAL,REPORTUN
IBJECT ANALYSIS k DMIGY, OeJr!crs IN EUROPE,

md I) IRECTORYOF OBJECT TKCHIiOLOGY

July-August 1994

July-August 1994 VO13 N09

Features

Sof13vare metrics for
the Smalltalk practitioner
William Cole
Evolutionary metrics is an important type of metrics that should be collected for all

projects. Bill describes a variety of metrics that can be collected over the lifetime

of a project that will provide feedback with respect to the reliability and quality of
your applications,

Floating toolbox in Smalltalk/V 9
Wayne Beaton
Digitalk’s SmalltalkN product allows Smalltalkers to take advantage of many native

host facilities. One tool that is missing in this library is a floating toolbox window.

Wayne provides details to show you how you can implement such a feature.

Columns
projectpracticalities A brief look at size metrics
Mark Loren.z
Mark discusses metrics that measure the size of different as-

pects of a Smalltalk application class library. He covers heuris-

tics for examining metrics for the number of instance variables
and the number of methods per class.

SmalltalkIdioms Using patterns Design

Kent Beck
How do you effectively make use of patterns? Like any new

“tool,” defining new patterns is important. How they are put
into practice is what’s important, and Kent discusses just how

to do that,

The best of
comp.lang.smalltalk New net resources
Alan Knight
The Internet holds a vast array of source code for many differ-

ent application domains. This month, Alan provides a sampling

of some of those libraries, detailing the domains for which

they were developed and how you can get them.

GettingReal Responsibly designing

Rebecca Wirfs-Brock your objects’ data
An important aspect of object design involves the choice of

instance variables for a class. Often overlooked in many meth-

odologies, Rebecca provides some detailed advice on “discov-

ering” the instance variables for your classes.

14

16

19

21

Departments
Editors’Corner~ Note fromthe Publisher 2

ProductAnnouncements 24

Recruitment 27

The SmaffralkFfepurrllSSN# 1056-797GI is pubfishmie times a war. everv monthawepl fm Ihn Mar/A$a. JulY/Auo, and Nnv/Oec cDmbinedissues.Puhfishedby S163
hbficarimrs Inc., 71 Wsl 23rd S1.,3rd flml, NEWYork.NV10010. (2 Ccpyright19S4 by SIG3 Puhlicntions.AN iighls rmmwd. ReprwJuctimof this material by electronic
Iransnission, Xwm or nnq oth mmfmd will be tmnled as a wiliful violntionof lhu US Capqrigfrllaw md is Flalh pmhibiled.Mnlerinl mnq bn rnpmiucad with wpmss
pmmissicmfrom GM pubfishw Mai18dKrsl CS.5.CanadaPosf Inlemmiond Puk4wlions Mail Pmducl Saks Aweemenf No. 29 G3e6.
3ubscriplim rates 1 yew 19 ikawsl domaslic.$79: FareinnandCanada,S114: sinulnmpy Price,S0. To submitariicles phase sendeleclronirfiks on disk 10tie Edflors
al WISB5 Meadowlands Otiw, GGEWn,OntarioK2C 3N2, Canada,w via Internetm puutiuuulwm.m Pmfmd kumals for hwxes are Mac or MS EPS, TJEor GIF
Innmc+. ldww serd a pnpnrcqri of vour manusm@r,includingcamera.rnadyqim of ymurfigwm (low ❑utput k fine]
FQSIMASTER: Send addresschnnge-snnd wbsuipdon ordms m The Smalflah Report PO. eox 2027. Lm3horm. PA le047 Fur service on curmnl subsmiptinnscall
215.765.59Sil PFIWTEOIN TPf UNrfEO STATES.

1

PAUL WHITE

A

2

W elcome to the new SMALLTALKREPONT!We

had promised you a new look and a new for-

mat in the Fall. As you can see we are ahead of

schedule-just like a Smalltalk project normally

is! With the expansion in the size of Tm REPORT,we will

be adding new columnists, features, and departments in

coming issues. As we move to our new format, it’s a good

oPPofinltY to thank the columnists who have been ~th us
since the inception of the THE SMALLTALKREPORT.Special

thanks to Rebecca Wirfs-Brock, Juanita Ewing, Kent Beck

and Alan Knight.

We have just returned from the Object Expo conference

in New York City, where for the first time there was a well-

attended cotierence track dedicated solely to Smalltalk-

related issues. We got a first look at a number of new devel-

opments in the Smrdltalk arena that we will review in up-

coming issues. Smalltalk/7(is a new highly portable imple-

mentation of Smalkalk from Tomcat/Claus Gittinger in

Germany that features a compiler to generate fast native ma-

chine code and “makes possible independent class libraries,

binary dktribution and stand-rdone applications.”

PatcPlace featured the new 2.0 release of the VkualWorks

environment. ParcPlace is positioning the product as a tool

for generating c!ient-semer solutions and plans to go head to
note hom the Publisher

~

RI
RICHARD P.
FRIEDMAN
head against O-O 4GL’s such as Power-

Builder. In an approach similar to that

taken by Digitrdk with their PARTS

product, ParcPlace is emphasizing the

“ability to create basic database applica-

tions without any Smalltalk or SQL pro-

gramming” with the full power of the un-

derlying Smrdltalk engine to be used

when tradkional programming is re-

quired. The new release features major

enhancements designed to permit the

manipulation of relational data as objects.

The IBM booth featured its new

VisualAge product while Easel demon-

strated their Object Studio family of

Smrdltalk-based products including their
new Synchrony tool. Wkh numerous companies offering

training and support services also in attendance, there was a

very strong Smslltrdk presence.

As Rick Friedman mentions in his note, we are beginning

to plan out the program for the Smalltalk Solutions ’95 confer-

ence next February. Watch out for more details in fiture issues.

We hope you enjoy your “new” SMALLTALKREPORT.

—The Editon
~ uring our three years of pub-

lication, we have observed a

steady growth in the number

of Smalltalk users around the

world. In fact, we estimate that there

are now more than 50,000 avid Small-

talk programmers worldwide and grow-.-
ing by 33% each year. Loyal, commit-
h
SM~\\~#}~

W

ted, and passionate about the language, they fervently seek

to find solutions to system development questions using

Sma.lltalk. In the past six months we have seen a spike in the

number of Smalltalk-based projects being implemented and

a dire need for recruiting knowledgeable and experienced

Smalltalk programmers. IBM and Easel have joined Dig-

italk and ParcPlace in the competitive vendor foray. Clearly,

the Smalltalk market is hot.

In keeping with the expanding muketplace and the need

for practical information, THE SMALLTALKREPORTwill be
evolving into a larger publication. Each issue wilI present

more insightful articles, source codes, experience reports,

tutorials, and industry news than ever before. Also, THE

SMALLTALKREPORTsports a design facelift that gives it a

more colorful and easy-to-read magazine forma~ and it re-

mains the one source you can depend on for savvy advice,

useful tips, and thoughtful perspectives on all Smalltalk

dkdects.

THE REPORTwill come to life when it sponsors the

Smalltalk Solutions ’95 conference in INewYork City, Febru-

ary, 1995. Virtually all the Smalltalk gurus and leading 00

methodologists will be lecturing, the conference technical
chair is SMALLTALKREPORTcoeditor Tohn

““Pugh. It will be an opportunity to test-drwe

all the Smalltalk products at once and get all

your questions answered. Smalltalk has grown

up, and we are pleased to give it its own rnaga-

zinc and conference.
The Smalltdk Report

PowerfulSpreadsheets,NowinSmalltalW
WidgetKit’”/Professional (WKProj
brings proven and powerful spreadsheet
DLLs to Smalltalk/V. And the spreadsheet
power is as easy to use as WindowBuilder””
Pro/V, WKPro consists of the FmPoint
Professional DLLs, Smalltalk wrappers
that integrate the controls into the Subpane
hierarchy, and Smalltrdk classes that allow
the controls to be placed and edited
interactively in WlndowBuilder Pro/V.
WKPro enables you to quickly build solid,
powerful, reusable, and maintainable UIS
for your Smalltalk/V applications.

Graphical Widgets
WKPro includes graphical controls to
display pictures
(BMP, PCX, &
GIF) in spread-
sheet cells or
separately.
Animation too.

High-Powered Spreadsheets
You get a spreadsheet similar to
Microsoft’s Excel”: formulas, drag and
drop, and row/column resizing. There are
11 cell types, control of color, formatting,
multiple selection, and lockitg. The
spreadsheets have printing, load, and save
capability. The functionality is factored
into a hierarchy of 7 classes. Choose the
one that’s right for your application.

Virtual Spreadsheets Too
WKPro includes virtual spreadsheet
capability that enables you to load only the
visible data.

...AndCUA’91ControlsAre
WidgetKitm/CUA’91 is a library of
CUA’91 controls for Smalltalk/V. CUA’91
controls provide a distinctive and powerful
user interface. W]dgetKit/CUA’91 makes
them easy to use and portable. Place and
edh the conhols interactively with
WindowBuilderm Pro/V, WidgetKit/
CUA’91’s specialized editors give you easy
access to all of the control’s attributes.

Notebooks, Cached for
Performance
CachedNotebooks provide theCUA’91
notebook control. Performance is dramati-
cally improved by dynamic page loading.
You get complete control of orientation,

tabs, align-
ment, color,
binding, and
caching.

Containers
CuaContainers
provide text or
icon representa-
tions of items they
contain. Items can
be dragged and
dropped between
con&ers. Supports icon, name, text, tree,
and detail views. CuaContainers can hold
objects of any type.

Value Set and More
CuaValueSet provides a way for users to
select from icon and text choices with a
mouse click. WidgetKit/CUA’91 also
provides full support for the rest of the
CUA’91 controls, inchrditw slider and
spin button.

File System Widgets and More
WKPro includes DirectoryList, DriveList,
FileList, and DirectoryFileLlst controls.
You get input validation widgets for the
cell types. Use them for spreadsheet cells
or by themselves. UIS built with WKPro
are portable to all the supported platforms.

No mntime fees for applications developed
with WK/Pro. It includes complete docu-
mentation, full source, and free support to
registered users for the first 90 days.

K
WidgetKit/Profess’~al requires WndowBuilder Pro/V

All the DLL functionality of FarPoint Professional is packaged

for easy use in WindowBuilder Pro/Y WKPro is compatible

with Team/W and ENVY@/Developer. Support subscription

available.

EasyTOo!
For WindowBuilder Pro/v
WindowBuilder Pro/v lets you build
SmalkaHdV user interfaces fast. Place the
controls and edh them interactively.
Increase consistency, ease maintenance.
Call for a free brochure.

No Runtime Fees
No runtime fees for applications developed
with WidgetKit/CUA’91. It includes
complete documentation, full source, free
suppott to registered users for the first 90
days, and a 30-day money-back guarantee.

NW! For (3s/2mm.$295

For Win $295 (3Q94)
For Win32 $295 (3Q94)

WidgetKit/CUA’91 requires WndowBuilder Pro/V WidgetKit/

CLW91 is compatible with Tearrr/V and ENVY/Dweloper.

Includes DLLs User interfaces built using WidgetKi~CUA’91 are
portable to supportad platforms. Support subscription available.I

SHARE
E 2 Objectshare Systems, Inc.

cm 5 Town & Country Village, Suite 735

8

Callto order today (408)970-7280
San Jose, CA 95128-2026
Fax 406-970-7282

8 ~ CompuServe 76436,1063
9AM to 5 PM PSZ Monday through Friday

30-dav monev-back rauarantee
INc. 0 ObjectShare Systems Inc. 19W

Softwaremetrics for the
Smalltalkpractitioner

William Cole
It has been accepted that defect prevention is a more optimal

aPProacJI tO SOfNWWequfllty th~ defect correction-HOW-
ever, many development efforts still rely on defect detection

as the primary method for ensuring software quality. Thk is due
not so much to a lack of concern for quality as to the pragmatic
reality of software project mofiali~ rates. In many organiza-
tions, the success rate of projects started versus completed is

sometimes less than 30%. Given thk level of mortality in soft-
ware projects, it is not surprising that project managers are un-
wilkg to invest resources for up-front reliability and quality en-
gineering efforts. In many cases resources for quality efforts are
not invested until the project has survived to the test and inte-
gration phase. Unfortunately thk is too far into the develop-
ment cycle for defect prevention techniques to be of any value.

This is why the majority of software qualky assurance (QA)
efforts drive system reliability to acceptable levels using tradi-
tional defect detection techniques (unit and integration testing)
techniques. Not surprisingly defect detection QA approaches for
high-reliabilky systems often demand more resources than those
expended in the design and coding phases of development.

The Tom Gilb approach to process measurement says any-
thing you measure in the development process is valuable, How-

ever, the practical reality of running software metrics programs
leads this author to a more conservative stance. Even with long-
standhg software metrics (Halstead, McCabe) that have been in
use for several years, there is still a high level of interpretation

based on the language implementation, the type of application,
etc. The logistical aspects of software measurement are also an
issue, given the analysis of large data sets along with the need to
provide timely feedback.

The point here is that proposing metrics is the easy part-
but validating and interpreting measures into meaningful infor-

mation that improve the cost efficiency of sofhvue development
is much more dh%cuk. Therefore, in proposing a series of soft-

ware measwes, we asked ourselves two basic questions:
■ What are the concrete goals (in dollar terms) of what you’re

trying to achieve?

“ &e the metrics proposed easily gathered, analyzed and veri-
fiable without too much subjective interpretation?

Our objective here is to present a series of simple software mea-
sures to achieve two results: 1) Determine the regions of code

which are most volatile, allowing for intelligent project manage-
ment decisions on where to invest (often limited) QA resources,
and 2) Present a straightforward method for capturing and ana-
lyzing the measures outlined in this article. We’ll call these mea-

sures Change Metrics.
4

The following section presents an introduction to Change
Metrics. The thkd section outhnes fither interpretations of
Change Metrics. The fourth section shows how to implement
these metrics within the framework of the Smalltalk language
environment. The final section presents conclusions on the ma-
terial covered in thk article.

CHANGE MHFIICS

There are two basic change measures for 00 systems: 1) struc-
tural changes to a class and 2) behavior changes (to methods
within a class). Wlthln each series, both complexity and produc-
tivity measures can be derived. The approach herein takes a

larger-grained view than this, focusing instead simply on the
version history and number of methods associated with each
class version, oc
1. number of versions for a class

2. number of new methods for each class version.
Each of these basic Change Metrics can be viewed from two
different perspectives; the distribution of changes within a soft-
wue system (which are the “hot” classes), and who is doing the
changes, OK
1. Dktribution of versions across all classes within an application.
2. Changes per developer.

The underlying premise with these measures is that the fewer

Versions associated with a class design, the more stable and robust
it will be. This is only a general observation. The following will
describe each series of Change Metrics in more detail. General-
ized trend interpretations are also provided with each measure.

Number of class varsions

This relates to the number of versions made to a class. General
assumptions derived from this measure:
1. Plotted along a time axis of (t), if the number of class ver-

sions increases as the project nears completion, it indicates
that the design is unstable.

2. Plotted alon~ a time axis of (t), if thk number remains stable

or decreases as the project completes, it is a sign that the class
design is stable.

Number of methods for a class

TKIS measure relates to the number of methods associated with
each Class Version. General assumptions derived from this

measure:
1. An initial growth phase, followed by a stable (or gradually in-

creasing) number of methods per Class is indicative of a ro-
bust class design.
The Smalltalk Report

A SIGS Publication

,

‘ H

EPORT,,,

B ECT Report on
NALYSIS,

ESIGN~ ‘ Object Analysis
& Design.CCmmws...,,.,,.s,.“!,!.,,-.Ww..---.6.-44-----... i-,—M*-.. -“,”, Your first step for-- :&%&-‘“’--‘-’- -..,- IfW-—!*!hm!.ski,. W.** !,-.,-%.,*,,A+ .- “--- b,.,4......... +,+-. ., planning and building

-.-. -,. r!,c...d,”!.+ .-.-,- .
h..... object–based software-.., ,b,1-.’”.”r.,....- -- 1,.,.4-,,..,w.ra..!w.” 1- --- 1
, ..,. r... ‘..!! !!.4.-. ,-- ,, systems.

-.

The Report on Object Analysis & Design (ROAD)
is a new hi-monthly (6x), advertising-free journal, which
focuses on language-independent, architectural concerns
about object-oriented analysis, design and modeling. Each
issue provides you with in-depth articles addressing the
complex questions related to the system architecture ~

to when language issues are addressed, including...

- the fundamental issues related to object modeling
– notational schemes for representing A&D models
– the processes for performing OOA or 00D
– revisions and updates of various design methods
- comprehensive comparisons of 00A&D approaches
- specifications on which method to use, and when
– expert reports on the tools currently available

And much more.

,- -& clip and mail or fax------- . . . ---------- . . --------- . -m

El’
1

BJECT 1 ROAD at the rate marked below
1
; D Personal

NM-MIS ~ D 1 Year (6 issues) $99

ESIGN
n D 2 Year (12issues) $158 Save 20%!n
~D Corporate/Library
n ~ l-year (6 issues)-$lgg

For software developers ~ Cl2 Years (lZissues) $358 Save 10%!
and project leaders :IMETHOD OF PAYMENT
either currently working :

: D Check enclosed, payable to ROAD
on an OT project, or ,

(in U.S.dollars,drawn on a Us. bank)
moving toward that ~~ Charge my

1
goal. 11 Q Visa a MasterCard a AmEx

Name

Title

Address

City

State/Province

Zip/Postal Code

Country

P: F:

Now! Automatic Documentation
For SmalltalklV Development Teams — With Synopsis

Development Time Savings
SJTIOPSiSproduceshighquality class documentation

automatically. With the combination of Synopsis and Coding Documentation
Smalltalk/V, you can eliminate the lag between the Without
production of code and the availability of documentation.

A
start Finish

Synopsis for Smalltalk/V
Documentation

● Documents Classes Automatically
With

● Provides Class Summaries and Source Code Listings Synopsis

● Builds Class or Subsystem Encyclopedia A A

● Publishes Documentation on Word Processors
Sralt Finish

● Packages Encyclopedia Files for Distribution Products Supported:

● Supports Personalized Documentation and Digitalk Smalltalk/V Windows $295
Coding Conventions Digitalk Smalltall@ 0S2 $395

(0S/2 version works with Team/Vand Pam)

Dan Shafer, Graphic User Interfaces, Inc.:

“Every serious Smalltalk developer should take a ~ Synopsis Software
close look at using Synopsis to make documentation 8609 Wellsley Way, Raleigh NC 27613
more accessible and usable.” Phone 919-847-2221 Fax 919-847-0650

: 25- -

g 20- -

u 15- -v

01
12 345 67691011121314

Class Versiona

gure 1. Number of methods/class.
2. A great number of changes to methods between successive
versions of a class (or wildly fluctuating numbers) points to
immature or incomplete design. This can also point to in-
complete or poorly understood requirements.

For instance, Figure 1 shows an example graph of the number of
methods for a class between successive class versions from a
sampled development effort.

Developer counts

Developer counts represent the view of class Ownership from
the perspective of the entire system. These counts can be corre-
lated with the above counts to determine:
1. Number of class versions per developer.
2. Number of new methods created per class per developer.

There are many was to correlate developer counts at both the in-
dividual Class level and at a synthesis (multiple class) level(s).
For instance, Figure 2 shows an example graph of the number
classes owned per a group of developers in a measured projec~

Developer counts are measures whkh profde a developers
impact and productivity on the system. Traditionally, there has
been both resistance and controversy surrounding these types of
measures. Personal productivity metrics have complex interde-
pendencies within the context of an organizations sociology.
Careful consideration is required in implementing these types of
indkidual productivity measures.

Distribution of changas

An important synthesis of the related metrics in this series, it
6

provides a “change” complexi~ measure of Classes, based on
the number of changes dktributed across the entire system
Within a time domain. See Figure 3 for an example visuahza-
tion of thk metric.

General assumptions derived from this measure:
1. High numbers of changes to source code units are indicative of

“ low requirements stability/completeness,
● poor design quality within a source code unit,
● excessively tight “coupling” of source code units,

“ resulting in a domino effect of change propagation.
2. Clustering of changes within subsystems can indicate present

and future reliability and maintainability problems. Thk al-
10WSfor the intuitive modeling of future errors using the
Change Prone Module equational

lhlTEFIPREfATION

As with most software metrics, interpretation must be limited to
The Smalltalk Report

“Mastering the Art & Science of Object Technology”
Now in its fifth successful year, Object Expo Europe is still the largest
OOP conference and exhibition in Europe. More than just sessions and
exhibits, Object Expo Europe is a festival of object-related events and
people.

Be a part of this once-a-year event that will bring the entire European
OOP communi~ to London’s premiere venue, the Queen Elizabeth II
Conference Centre in Westminster. Mark your calendars now, and send
for more information today!

What’s special about
Object Expo Europe ’94:
An all new technical programme, for
developers to managers!
Choose from over 50 in-depth lectures focusing on new
aspects of OOP, including analysis and design, distributed
object technology, standards, languages and environments,
ODBMS, and project management strategies-the class
topics you’re most interested in!

More of the speakers you’ve asked for!
Learn from industry leaders on how to maximise object
technology for your company.

All of the newest object technology
products on display
Take advantage of this once-a-year event to see and try out
an entire spectrum of object technology products.

Exchange ideas and discuss industry
advancements
Enjoy Keynote speeches, Birds-CWA-Feather Roundtable
discussions, Product Education Sessions, User Group
Meetings, Book Signings, Expert Walk-In Clinics, Welcome
Receptions. and much more!

●

S#onsoredby
●

●

9

Auui
Please send me more information

on Object Expo Europe ’94

❑ Free Exhibits ❑ Attending ❑ Exhibiting ❑ Exeeutive
Pass Symposium

Name

Title

Company

Address

Cky Province/State

country Zip/Postal Code

Day Phone

Fax

Mail or Faxto: Object Expo Europe’94
Brocus House, Parkgate Road, Newd[gate

Surrey, RH5 5AH, UK

VOk6 X ~ (0) 306631331
fmX4(0)306631696

0EES7

I

generahzed trend indicators. This is due to the wide range of
potential applications and language implementations. Analysis. .
of previous change measure data showa both implicit and ex-
plicit relationships to system software qualky attributes.2 Rela-
tionships to system quaky are dependent on whether there is a
positive (high count) or negative (low count) trend associated

with changes to a softmue system.l Note also that the terms
“increased, “ “stable,” and “decreased” in thk case are relative to

the average mean number of changes occurring across all classes
Withh a system.

An important assumption needs to be addressed here con-

cerning the use of ENVY/Developer. Ordinarily, projects tend
to start out with long intervals between Class versions. As—
things progress and the project gets closer to completion, the in-
terval between Class versions tends to decrease significantly. It is
important to bear this in mind when interpreting the counts for
number of versions per Class.

More than 75 K.LOC of Smrdhalk code was analyzed during

the course of vaLdating ow h~othesis. All of the assertions in the
third section were vahdated to some degree. We are intentionally
vague on the validation of these measures as our sample of code
was tilted to thk single application. Also, our motive was to use
these measures in the most general sense; we sought to avoid
complex analysis and by extension, complex interpretation.

IMPLEMENTATION

It is understood that many of the implementation details out-

lined in this Section are at best rudimentary. They are only in-
35 ~ d
~30. I 1

0
=25.

#20.
I I

~15.
:lo -
D 5.

0-
0 1 2 3 4

Developer

gure 2. Distribution of class ownership.

Iura 3. Oisribulionofwrsioningavmtsacrossmultipleclasses. I

8

tended to provide a general implementation framework for es-
tablishing a change metrics collection program within the

Smalltalk environment. Fhrther details of implementing a
change metrics collection program, along with analysis, report
generation, and Visufllzation of metrics data collected will be the
subject of a follow-on paper.

The ENVY/Developer team programming tool from Object
Technology makes it possible to quickly collect change metrics

ilom an ENVY/Developer repository. In ENVY all method and
class editions we marked with a unique timestamp. The reposi-
tory can be queried for all available edkions of a particular class,

or all method editions for a particular method, and their time-
stamps compared.

In thk way it is easy to determine several possible metrics

about the rate of change in an application includlng
1. The total number of editions of a method or class over its

lifetime.

2. The number of method changes whose timestamp falls be-
tween any two class versioning events.

3. The number of method and class editions whose timestamp
falls between any two arbitra~ units of time.

In addition, ENVY/Developer provides a record of the class
owners of all classes in a repository. It is simple to query all
classes in the reposito~ for their owners and assemble a dlctio-

nv relating users to the classes theY OWSI.

CONCLUSION

As mentioned earlier, several measures of stability, complexity
and productivity of a software development effort can be derived
from these Change Metrics. Possibilities also exist for using
these measures to refine existing birth-death reliability model-

ing techniques.J
No reference is needed to the application domain of the sam-

pled software system. The intent has been is to outline an ap-

proach general enough for multiple implementations. An effort
has also been made to abstiact the key concepts to allow applica-
tion of these measures to a wide range of language technologies.

It is important to note here that Change Metrics are not a
defect prevention technique. In many ways it can be viewed as a
large-grained defect detection strategy that identifies groups or

subsystems of classes that are more defect prone than others.
The efficiency and quaky of a software development effort can
thus be enhanced by qualifying those areas where testing efforts
can be best applied.

Another key benefit of Change .Nletrics is that they are a

back-end quality activiry. In most organizations, obtaining re-
sources for quality initiatives is easier in the test and integration
stage of development when visibfity of a project escalates,
Change metrics also allow for more timely feedback on a soft-
ware system’s level of quality, being simpler to gather and to in-
terpret than many traditional SQmeasures.

However, if one tries to divine more detailed information
from Change Metrics, the results will be less effective as the
measurements become more finely grained. Again, thk is a
large-grained detection approach to software quality.

Those interested in obtaining the Smalltalk code used to
capture Change Metrics from an Envy/Developer repository can

mniinued on page 13
The Smalltalk Report

Floating toolbox
in Sma22ta2k/V

Wayne Beaton
Many applications written for Whtdows use windows
that float above the workspace in place of tool boxes
fixed to the workspace. This technique has the advan-

tage of being completely free-form, allowing users to organize

their work spaces any way they like.
Microsoft has published THE WINDOWSINTERFACE:AN

APPLICATIONDESIGNGUIDE, which details how user inter-faces
should appear and function in Windows. Curiously, the text
does not mention floating windows, but the Vkual Design
Guide, software provided with the book, does.

Typically floating windows have a mini caption bar to dktin-
guish them from regular windows. According to Microsoft, the
caption bar should be nine pixels in height and the system box,
in the left top corner, should be twelve pixels in width. F@rre 1
shows an example of a floating window that could be provided
in a window buildhg application.

Windows does provide support for floating windows. How-
ever, it provides no support for mini caption bars. The only
programming mention that I have been able to find is in an

obscure piece of code provided as an example for Microsoft
Vkual C++ that creates a captionless window and draws every-
thing itself. Fortunately, the same can be accomplished in
SmalltalMV Windows.

The combination of Windows and SmelltalkW Windows
permits the programmer to draw on a TopPane just as easily as
any other kind of pane. Windows even tells us when, where and
what to draw through its event mechanism.

The class PloatingTopPane has been created, as a subclass of

TopPane, to support floating windows. The name FloatigTop-
Pane is perhaps incorrect, in that its instances do not have to
float. I have selected this name to keep clear the purpose of the
paneit has been designed to float, and any other use would be
a violation of interface guidelines.

The class has been designed in such a way that it can be used
in place of TopPane using the same public interface. Child panes
Figure 1. A floatinu wim
dow containing icone.

openAbove:anApplicationWkrdow
“Openmyselfas a floating windowabove
anApplicationWindow.”

self
addView

(FloatigTopPane new
owner: self;
parer-t anApplicationWindow;
when: #opened perform:#opened:;

yourself);
openWindow

gure 2,Example code How to creele e window that “floats”
love anotfrer.

July-August 1994
can be added using the addSubpane: method; the children use
framing blocks the same way as they do with a TopPane.

A floating window is just a child window that remains on top
of its parent window. To make a FloatingTopPane float is a sim-
ple matter of speci@ing a parent window at creation time. This
is accomplished in SmalltalMV by setting the parent of the
floating window to the parent window. The open method for a
ViewManager subclass might look like F@.rre 2.

When a window is created, a style is passed in to determine
the appearance of the window. The style is an integer, which
presumably means something to the Windows’ API. This inte-
ger is answered from the method dei%ulfframeStyle in AppLica-
tionWindow. FloatingTopPane overrides this method and an-
swers the styles WsPopup and WsBorder. The combination of
these styles creates a window with a border and no caption bar
or sizing frame.

Due to a bug in V, whether it is specified or not, a window
will have a caption bar. The b for thk bug, the method Appli-

cationWindo@XwnSizewith: as provided by Digitalk in a
maintenance upgrade has been included with the code.

Through a strange sequence of events, an instance of Float-

ingTopPane is asked to draw itself when it receives a message to
display. The display method simply draws the caption bar in the
correct color (depending on whether the window is activated or
not) and then draws the system box.

Getting the children to draw themselves uses existing code—
no changes were required to facilitate this. However, in order to
get chddren to size themselves correctly the method Application-

Windo@>resize: had to be overridden to take into account the
caption bar that Windows is no longer responsible for drawing.
The new version simply takes the rectangle parameter and ad-
justs it to leave room for the caption bar.

Getting the window to respond to such activites as dragging
is another matter. Windows doesn’t think that the caption bar is
there, so there is no place to grab in order to drag the window to

a new location. To facilitate dragging, it is the programmer’s re-
sponsibilky to understand the mouse click provide a drag out-
line and to perform the actual move. Further, if the mouse is
clicked in the system box, then the system menu should appear.

When the left button is clicked with the mouse in the con-
fines of the window (but not in the confines of a child win-
dow), the window is sent the buttondown: message with the
point at which the click occured in the window’s local coordi-
nates. Similarly, the window will receive the messages but-
tonlMove: and buttonlUp: when the mouse is moved or re-
leased with the left button pressed, respectively.
9

I

The method PloatingTopPane>>button lDown: (shown in
Fig. 3) first checks to see if the button was clicked with the

mouse inside the system box.
Thk can easily be determined by checking to see if the rec-

tangle outlining the system box contains the point of the click.
If so, the message doSystemMenu is sent to perform any system
box activity Otherwise, if the mouse click occured inside the
rectangle outlining the caption bar, then the window is prepared
to be dragged.

Since Windows will not perform any of the dragging func-
tions for us automatically, it must be simulated. When a window
is dragged, an outline, showing the area the window would oc-
cupy should the button be released, is moved about the screen. .
maintaining a relative offset from the current mouse point. To do
this, the mouse points, in screen coordinates, must be maintained.

The point of the mouse click is given in coordinates local to

the window. These coordinates are converted into screen coordi-
nates and remembered in instance variables. The variable stirrt-
Point holds the point where the mouse was first clicked last-

Point holds the position of the most recent mouse event.
The difference between the last point and the start point is

used to determine the current position of the drag rect~ngle and

ultimately the new location of the window. F@re 4 shows the
method that computes the drag rectangle; the frame rectangle of
the receiver, which is the rectangle defining the screen area occu-

pied by the window, is translated by the difference of the last
point and the start point. The drag rectangle is drawn by XORing

this rectangle on the screen.
buttonlDowm aPoint
“Private- Theleft button is down at aPoint. If
aPoint is in the systembox, then pop up a menu.
If apoint is in the caption bar, then prepare to drag.”
I screenPoint I
(self aystemBoaRectanglecent.aiwPoint aPotit)

itTme: [self doSystemMenu]
ifFalse: [

(seHcaptionBarRectanglecontatisPokk aPoint)
ifl’rue: [

screenPotit := aPokt
mapClientToScreen:seK

self
captureMouseInpuc
startpoink screenPoint;
lastpoinh screerrloint;
diaplayReverseDragOuthne]

iffalse [super buttonlDowrr apoint]]

,J,r.I Fln.finnTn.P...>>h, *nnl l%.,.
,“! . “. ! -“.m~ !.p .,,--- .“..”,, , “...,,.

outlineRectangle
“Private- Answera rectangle detlning my
dragged frame.”
‘self frameRectangle

translateBy (seUlastPotit - self atartPoint)

igure 4. FloatingTopPan@> outlinaRectangle.

acbveCaptionColor
“Answerthe colorto use for an achve caption
(title bar).”

“UserLibracygetSysColonColorActivecaption
I
Figura 5. Tha method ColorManagar clas9>activaCaptionColor.

10

,

To ensure that all subsequent mouse events are received, the
message Windo@>eaptureMouseInput is sent. NormaIly,

mouse events are sent to the window containing the cursor.
Calling this message will ensure that dl i%ture mouse events are
sent to the receiver.

When the message buttonlMove: is received, the drag out-
line is hidden, the new position of the mouse is remembered,
and the drag outhne is then redkplayed in the new position.

The method PloatingTopPane>>buttonlUp hides the drag
outline, remembers the new position of the mouse, and moves
the window to the new location by calling the Windows API

SetWindowPos. The message clearMouseCapture releases the cap-
ture of mouse events exclusively for the receiver.

I have not implemented the use of the system menu, partially
because my initial effort didn’t work quite right, and partially
because I didn’t need it that badly. I have provided a hook for it
in the method PloatingTopPane>> doSystesnMenu that can be
included by someone with more enthusiasm for such a creature
than myself

Ttre ColorManagar

The display methods in the class FloatingTopPane make refer-
ence to the class ColorManager, which is a class implemented to
handle colors.

Through the control panel, the user has complete control

over the colors that windows will use. These colors are not
represented in ColorConstants, but they can be determined by
callhg standard APIs. The ColorManager class implements
such calls.

I have included the subset of the methods implemented in
ColorManager used by the FloatigTopPane class. Implementing
the balance of the methods should be a simple matter.

The method ColorManager class>>activeCaptionColor,

shown in Figure 5, answers the color to be used by an active
caption bar.

It calls the User API getSysColor. Similarly the method
ColorManager class>inaeiiveCaptionColor answers the color of
an inactive caption bar. The method ColorManager class>>blaclt

answers the value for ClrBlack in the pool dictionary Color-
Constants.

CONCLUSION

1 have provided my implementation of floating windows in the
class PloafirrgTopPane, a class created in order to em’ployfloating

windows with minicaption bars.
The implementation is simple but incomplete; I have chosen

not to provide the system menu, nor have I provided for any
keyboard movement.

When creating objects like the floating top pane, it is im-
portant to consider look and feeI guidelines like those pub-
lished by Microsoft for Windows. Using these guidelines will
ensure that applications will appear and function similar to

other applications and provide a more comfortable environ-
ment for the user. ~

WaysraBaatonia a aaniormemberof tha davalopmsntteam at Tha Object

Paopla.He can ba machadat Tha OlrjsctPeoplein Ottawa, Canada,at

613.225.8812,or byamailat wsyrm@Objaotl%opla,on.ca.
The Smalltalk Report

That’s right, you get the
renowned VisualWorks
development product absolutely
free with each license of HP’s
Distributed Smalltalk
development bundle.

If you want to build client-server
applications that truly give more
power to your end users, you’ll want
HP Distributed Smalltalk. You get
tools and CORBA 1.1 class libraries for
object request broker and related
services, along with the VisualWorks
Smalltalk environment and GUI
builder. And that gives you a faster,
easier way to develop and deploy
distributed applications.

We’re convinced that once you try
HP Distributed Smalltalk, you’ll be
hooked. That’s why, for a limited
time, we’re willing to give you the
VisualWorks portion of our product
FREE.

Contact us today, for details!

Phone: (408) 447-4722
FM: (303) 229-2180

Attention: VisualWorks Offer

e-mail: dst@sde.hp.com

* offer Expires September 30, 1994
Minimum order 5 licenses.

@1994 HewletS-PackardCompany

Ea HEWLETF
PACKARD
TopPanesubclass: #FloatingTopPane
kcstanceVariableNames:

Wart-PointlastPoint’
cl.assVariableNames:“
poolDiciionaries:

Winconstants‘
category ‘Windows-MiniCaptionBar’!

!FloatingTopPaneclass methodsFo~ ‘examples’!

ercamplel
“Openan emptyfloating windowoverthe Transcript.”
self new

parenb (Transcriptviewsati 1);
open! !

!FloatingTopPanemethodsFor: ‘afivating’ !

activate
“Private- I have been activated. Redisplaymy caption bar.”
self invalidateRect self captionBarRectangle.
‘super aciivate!

deafivate
“Private- I have been deactivated. Redisplaymy caption bar.”
seti invalidateReck self captionBarRectangle.
‘super deactivate! !

!FloatigTopPane methodsFor: ‘initiating’ !

hitGraphlcs
“Private- InitiaUzethe graphicstool for the receiver. Borrowedfrom
the super class, except that I need a Pen, not a TextTool.”

handle = NuUHandleifl’rue: [mnil].
graphicsTool:= Pen forDC:nil medium self.
“Can’tuse foreColor or backColonbecause it se&ithe graphicsTool’s
foreColor&backColorof the window’schildrens”

selfpropertyAti#foreColorpub self foreColor.
self propertyAk #backColorpuk selfbackColor.! !

T’loatingTopPanemethodsFor ‘events-buttons’!

mttonllloubleclick apoint
“private- Leftbutton is double clicked. If the double click occured in
the system box, then close myself.”
(self systemBoxRectanglecontainsPointi aPoint)

iffrue [seUclose]
ifFalse: [super buttonlDoubleCLick:aPoint]!

mttonl Down:aPoint
“Private- Theleft button is downat aPoint. If aPoint is in the system
box, then pop up a menu. If aPoint is in the caption bar, then
prepare to drag.“
I screenPoint I
(self aystemBorcRectanglecontainsPoinb apoint)

ifTrue: [self doSystemMenu]
iffafse: [

(self captionBarRectanglecontainsPoicckaPotit)
ifTrue: [

screenPoint := aPoint
mapClientToScreerrselt

sell
captureMouseInpufi
startpoint screenPoint;
Iasffoint screenPoint;
displayReverseDragOuthe]

ifFalse: [super buttondown: apoint]] !

mttonlMove: aPoint
“Private- Asthe user movesthe mouse around with the left button
down, show an outline of where the windowwould go if the button
is released.”
I screenPoint I
handle = WindowHandlequeryCapture

ifrrue [
screercpoint:= aPoint mapClientToScreen:self.
seLf mnsinued m nextpage
July-August 1994 11

I

continucdfim page 11

displayReverseDragOutljne;
listpointi screenloinb
displayReverseDragOutline]

ifFalse: [super buttonlMove: aPoint]!

buttonlUp: aPoint
‘Whenthe user lets up the button, movethe windowto the new
location.”
I screenPoint I
handle =WindowHandlequerycaptore

ifTrue: [
screenPoint:= aPoint mapChentToScreemself.
self

displayReverseDragOutlirre;
Ia.stpoinhscreenPoint;
clearMouseCapture.

self handle
setWirrdowPos:nil
rectangle: self outhneRectangle
fs: SwpNozorderI SwpNosize]

ifFalse: [super buttonlUp: aPoint]! !

!PloabngTopPanemethodsFon ‘private-accessing’!

astpoint
“lastPoint!

.astpoirm aPoint
lasffoint := aPoint!

starLPoint
‘startPoint!

StaltPoink aPoint
starLPoint:= aPoint! !

!FloatingTopPanemethodsFo~ ‘private-s~le’ !

iefaultFrameSbjle
“Private- Answermy style.”
*WsPopupI WsBorder!!

!FloatingTopPanemethodsFor ‘private-menubar’ !

buildMenrrBar
“Private- I have no menu bar.”! !

!HoatingTopPanemethodsFo~ ‘private-captionBar’!

:aptionBarHeight
“Private- kwwer the height of the caption bar.”
Al9.

:aptionBarRectangle
“Private- fmswer the rectangle outlirimg my caption bar.”
“seti captionBarRectangleIn:self rectangle!

:aptionBarRectangleIrr aRectangle
“Private- Answerthe rectangle outlining my caption bar. Assume
aRectangleis myframe.”

“(aRectangle leftTopleftAndUp:1)
extent aRectanglewidth+ 2

@ seLfcaptionRarHeight!!

FloatigTopPane metlcodsFoc‘private-chentrectangle’ !

:lientRectangleIn: aRectangle
“Private- Answerthe rectangle, inside my frame, where my children
go. AssumeaRectangleis my frame.”

‘(aRectangle leftTopdown: self captionBarHeight- 1)
rightBottom: aRectanglerightBottom! !

,HoatingTopPanemethodsFoc ‘private-displaying’!
“Displaymyself.”
self

displayCaptionBar;
displaySystemBox!

disp@CaptionBu
“Private- Displaythe caption bar.”
I box fiUColorI
box := seti rectangle.
self pen

foreColonColorManagerblack;
backcolo~

(self iaAchre
ifllue: [ColorManageractiveCaptionColor]
ifFalse: [ColorManagerinactiveCaptionColor]);

rechngle: (seWcaptionBarRectangleIn:box)!

displaySystemBox
“Private- Disp[aythe system box in the top left comer.”
I systemBoxRectangleinsetRectangle I
systemBoxRectangle:= self systemBoxRectangle.
insetRectangle := (O@O

extenti systemBoxRectanglewidth -6 @ 3)
centerIn: systemBoxRectangle.

self pen
foreColor ColorManagerblack;
backColor:ColorManagerlightGray;
rectangle: systemBoxRectangle;
backColor ColorManagerwhite;
rectangle: insetRectangle! !

!PloatingTopPanemethodsFo~ ‘private-displayingdrag outline’ !

rlisplayReverseDragOutUne
“Private- Displaythe tiag outhne using the display’spen.”
self

displayRwerseDragOutline:self outlineRectangle
usfig: Displaypen]

displayReverseDragOutline:aRectangleusing: aPen
“Private- DisplayaRectangleas the drag outline using aPen.”
aPen

saveDC;
setRop2:R2Notxorpen;
foreColocColorManagerblack;
place aRectangleleftTop;
box aRectanglenghtBottom;
restoreDC!

outlineRectangle
“Private- Answera rectangle defining my dragged frame.”
“self frameRectangle

tianslateBy (self lastPoint - seLfstartPoint) ! !

!PloatingTopPanemethodsFor: ‘private-systembox’ !

doSystemlienu
“Private- The system menu has been chcked. I guess that a menu
should be opened.”!

syatemBoxExtent
“Private- Answerthe extent of the rectangle outlinhrg the system
box.”

‘self systemBoxWidth@ self captionBarHeight!

systemBoxRectangle
“Private- Answerthe rectangle outlining the systembox.”
‘self systemBoxRectangleIn:selJ rectangle!

systernBoxRectangleIn:aRectangle
“Private- Answerthe rectangle outhring the system box, assuming
aRectangleis the window’sframe.”

“(aRectangle leftTopleftAndUp:1)
extent self systemBoxExtent!

systemBoxWidth
“Private- Answerthe width of the system box. Thisconstant comes
riaht from Microsoft’sGUIrwidelines.” I

“1;! ! I

The SmaUtalk Report

~Ezzzsl
ODBTalk
Open Database Connectivity

So&ai”onfor Smalltalk

A class library for ODBC
Windows $199

Win32s $299
WinNT $399

Socktalk
Client Sewer Development

Solution for Smalltidk
A class library for Windows
Sockets Development

Windows $149

Win32s .$199
WinNT S249

Iirtmductoryprices until

Sep 1/94

Available from these distributors:

North America: ‘IIM SmalltalkStme
tel: (415) 854-5545
fax: (415) 854-2557

North America (huputer Sewices
Group

tel: (212) 819-0122

fax: (212) 819-0147

Europe: udcado SoftwamComdt
tel: +49-2242-871-450
fax: +49-2242-871 -455

Australia/Pacific: Cyberdyne
systems

tel: +61-2-955-9788
fax: +61 -2-95502913

or contact Ken FIndkay at UC
tel: (416) 787-5290
fax: (416) 787-9214
Sof134are metrics
continuedfim puge 8

email the author at billcole(i?rmercury.interpath.net, or

73363 .276@compuserve. corn.
Refining the implementation of Change Metrics to address

error reintroduction as a result of defect correction will be the
topic of a fiture paper. ~

Acknowledgement

The author wishes to thank Kyle Brown for his assistance in
preparing this article.

Fhfarencos
1. Levrmdcl,Y, ReliabWy analysisof large systems:defect data modeling,

IEEE TRANSACTIONS ON SOFTWAREENGINE~RING,16(2),1990.
2. Myera,G. SOFTWARE RELIABILITY, 1976, p. 340.
3. Ehrlich, W. K., Lee, S. K, Molisani, R. H. Applying reliabili~ mea-

surement A case study,IEEE SOFTWARE ENGINEERING, lMarch199o.

Wllfinm Coleis Prssideotof JumpStati Systems. a Smalltalk consulting

firm in Cary,NC. He can be reachedat 919.460.1583 or by email at

billcela@mersury.interpath.net.
!FloatigTopPane nrethodsFo~‘windowsevents’ !

resize: aRectangle
“Private- WhenI resize, make sure that my child windowsleave room
for the caption bar.”

‘super resize: (self clientRectangleIn: aRectangle)!

wenSize:wordInteger witlu longInteger
“Private- Processthe windowresizing message. Froma Digitalk
maintenance upgrade (2.ol) .“
I extent I
“donothng if being minimized”
wordInteger = Sizeicotic ifl’rue: [“nil].
extent:= ((WinPointnewv4)

ulmrgAtOffsehOpuk longInteger) asPoirrt.
(extent x= Oor[extenty=O])

Wake [self resize: (O@ Oextent extent)].
Afi~!!

)bject subclass: #ColorManager
nstarrceVariableNames:“
:lassVariableNames:“
looLDictionaries:

WinConstantsColorConstants‘
:ategory ‘Environment’!

ColorManagerclass methodsFoc ‘systemcolors’!

mtiveCaptionColor
“Answerthe colorto use for an active caption (title bar).”
“UserIibraq getSysColor:ColorActivecaption!

nactiveCaptionColor
“Answerthe colorto use for an inative caption (title bar).”
‘UserLibrarygetSysColocColorInactivecaption!!

ColorManagerclass methodsFor: ‘colors’!‘

Ilack
“kmswerthe color constant for black.”
‘ChBlack! q
July–August 1994 13

MARK LORENZ

A brief
look at

size
metrics

25 -

20 -

15 -

10 -

5

0
1 Smalllelk C*

Figure 1. Average number of inetanca msthods par cless.

20 -

15 -

10 -

5 -

0
srraalltslk CM

I Figure 2, Avereue number of messege sends.
Last month, we took “A brief look at inheritance metrics.”
This month, we will continue looking at O-O metrics,
again drawing heavily* from my book.1

An area of historical interest in software metrics is the desire
to measure the size of a piece of code. As usual, the differences

encountered in O-O systems necessitate the use of different
metrics. In thk article, I’m going to discuss some design metrics
dealing with class and method size.

SIZEMETRICS

Classsize

Class size can be measured in a number of ways, including
● number of instance methods
■ number of class methods

- number of instance variables
● number of class variables

In thk article, we’ll look at the number of instance methods k
more detail.

Figure 1 shows the results from a number of O-O projects.
We see that most of the pmjecte averaged in the ten to fifteen
methods per class range. I have noted a couple of points worth
discussing on the resuhe-UI-intensive projects and longer-term
projects. We believe, through ilu-ther detailed study that:

● UI classes tend to have more methods to service the controls
available to the user,

■ new requirements are typically placed on mature classes over
time, causing them to grow in size;

~ classes nested deeper in the inheritance hierarchy tend to
have fewer methods, since they merely extend their super-
classes’ capabilities.

The public methods indicate most accurately the amount of

work for which a class is responsible.
The number of methods in a class relates to the amount of

collaboration being used. Larger classes may be trying to do too
much of the work themselves instead of putting the responsibili-

“ ThB articl~draws hentily hornthe work I didfor the hook with ihn pubfishefshlessirrg.Ratherthan
nomavnrvrefmencn,I will referyouto the bookfm an errtnnsivediscrweimrof Oil metrics.
14
ties where they belong. They are more complex and harder to

maintain.
Smaller classes tend to be more reusable, since they provide

one set of cohesive services instead of a mixed set of capabilities.
On an individual class basis, I use an upper threshold of 20

for the number of instance methods in a model class and 40 for
UI classes to identi~ anomalies. I use a lower threshold for av-
erage~across a number of classes: 12 for model classes and 25 for

UI classes.

ACTIONPLANS

Possiblaactionswhen anomaliesare foundin clesesiza

Hold design reviews to examine the class to see if some of the
methods don’t make sense to be included in thk class’ responsi-
bilkies. There maybe undkcovered class(es) or misplaced re-
sponsibilities. Look carefldly at method names and ask yourself
questions such as

● Is this something I would expect this class to do?
■ Is there a less obvious class, such as an event, that has not

been defined?
When examining a class, focus on public methods of a class.

Take a look at the instance variable u.rage metric to see if there

is a way to divide the class along optimum method lines.

METHOOSIZE

Method size can also be measured a number of ways:
“ number of message sends,
● number of statements, and
■ number of llnes of code.

In this article, we’ll look at the number of message~endras a more
style-independent metric for measuring method size,

Figure-2 shows some project results-for message sends. Our
rule of thumb is nine for an upper anomaly threshold. Large

numbers may indicate function-oriented code andlor poor allo-
cation of responsibihies.
The Smalltalk Report

Authors Wanted
For Two Exciting

Book Series

Managing Object Technology
edited by Charles E Bowman

For more information please contact:

Charles F. Bowman, Series Editor
914.357-6285 (V), 914-357-6524 (f]

71 700,3570@compuserve.com

Advances in Object Technology
edited by Dr. Richard S. Wiener

For more information please contact:

Dr. Richard S. Wiener
135 Rugely Couti

Colorado Springs, CO 80906
719-579-9616 (f&v]

mSIGS
BOOKS

Mhe 405 El Camino Real, #106
Menlo Park, CA 94025, U.S.A.

Mmalltalk
voice: 1-415-854-5535

fax: 1-415-854-2557

*tore
email: info@srnalltslk.com

CompuServe:75046,3160

.. . devoted exclusively to Smalltalkproducts.

Send For Our Free Catalog!
The Smalltalk Store carries over 75
Smalltalk-related items: compilers, class
libraries, books, and development tools. If
we don’t have what you need, we’ll look for

it. Give us a call or send us an email - we’ll

put you on the mailing list and send you a

copy of our combination newsletter-catalog.

Developers: Do you have a product
that might be useful to Smalltalk,

v

)\\’1 /,
VisuaLAge or Parts programmers?
The Smrdltalk Store call sell or \~//

\ I

publish your software for you. Ask H \j./
for our Developer’s Kit.
Following are a number of affecting factors for thk metric.
Key classes. Classes at the center of your application will often

be larger and more complex.
~ clasmw.User interface classes wiU have some large methods,

such as the initial layout of the window contents. This may
skew your averages higher,

Active versus passive classes. Classes that take an active role in
driving the behavior of the system will generally be larger
and more complex than passive, data-providhg objects.

Accessrng methoo!t Methods that allow access to state data in
classes are typically very short. Thk will skew your averages
lower.

Lurzguage. C++ method sizes tend to run higher than SmaUtaJk.
I use a higher threshold for C++ projects to identi~ anom-
alies. Coding in a hybrid language, such as C++, also allows
the developer to write code in methods that are outside the

“O-O part” of the language. Thk code will not, of course, be
counted in the number of message sends but certainly relates
to the size of the method. We wouldn’t want to ignore 100
lines of non-O-O code and count a couple of message sends
(member function invocations). Of course, we don’t generally
want our developers writing non-O-O code anyway!

Action plans

So what do you do if your message sends are beyond the rule-
of-thumb threshold? Look at the methods individually or in
small groups and decide if an action would improve your design.
If so, provide mentoring for developers who are writing larger
methods. They are probably falhng back on old habits and writ-
ing their methods in a more serial, function-oriented fashion in-
Jul’’-August 1994
stead of requesting services from other objects. Larger numbers
of smaller methods are, in general, a better O-O design.

SUMMARY

We have taken a brief look at O-O metrics dealing with class and
method size. In particrdaq we examined a class’number of instance
methods and a method’s number of message sends. We have seen
that there are factors that fleet the mtig of these measurements
and have taken a look at possible action plans for anomalies. ~

GLOSSARY
Accessingmethod. A method that is used to get or .et an instance vari-

able. Accessing methods flow you to perform laissez-faire initializa-
tion. They are usually very short, almost standard, methods that are
left out of some measurements.

Anomaly. A deviation from the common result.

Heurzstic.A guideline based on trial-and-error usage. A nsle of thumb.

Key class. A class that is central to the business domain being auto-
mated. A key class is one that would cause great dii%cukies in devel-
oping and maintaining a system if it dld not crrist.

Measurement. The determination of the valueof a metric for a particu-
lar object.

Metric. A standard of measurement. Used to judge the attributes of
somethhg being measured, such as quaky or complexity, in an un-
biased manner.

Thresholdvalue. A measurement value that has been determined
through project experiences to be significant in terms of desirable or
undesirable designs, with some margin of error. Generally, these will
be tunable over time as you gain experiences specfic to your busi-
ness and teams.

Rafsrsnce
1. Lorenz, iM. OBJECT-ORIENTEDSOFTWAREMETRICS:A PRACTICAL

GUIDE,Prentice Hall, Englevmod Cliffs, NJ, 1994.
15

Using
patterns:

r’ “““ 1
KENT BECK Design
Ikind of ran out of steam towards the end of that last series on
creating new objects. I think the message-that many of the
most important objects are not the ones you find by underlin-

ing nouns in a problem statements still valid. The objects that
emerge (if you’re watching for them) late in the game, during

what is typically thought of as maintenance, can profoundly af-
fect how you as a programmer view the system. By the time I got
to the fourth part, though, I was tiied of the topic. Those last
couple of patterns still deserve some reexamination in the kture.

This month ~m making a new start, and once again the topic
is too large for a single column. The problem is how patterns
can be used. I have presented probably a dozen patterns over the
past year, but I haven’t said anything about how they are used.

Using patterns is a topic of current interest to me, because I’ve
started teaching a three-day course on how to write and use pat-
terns, and my students are asking me how to apply all these
great patterns they are writing.

I divide the use of patterns into three categories: explaining
designs, designing, and documenting for reuse. This series will
address all three uses of patterns, and introduce several new pat-

terns in the process.

EXPLAINING

Even if you don’t use patterns explicitly in design, they area
great way to explain the archkecture of a system. Look for a pa-
per Ralph Johnson and I wrote in the coming ECOOP ’94 pro-
ceed@s for an example which uses patterns to describe the Hot
Draw drawing editor framework (the paper is also available via
ftp from st.cs.uiuc.edu).

DESIGNING

Nothing says you have to wait to use patterns until the design is
finished. Considering patterns by name during design can result
in clearer, more consistent, and more productive designs. If
you’re working in a team, patterns can become the basis of much

more efficient communications between team members. I find
16
that even when I design alrme, patterns keep me from taking

shortcuts that cost me time down the road.

REUSE

The patterns used for explaining and designing are very general
purpose, software engineering patterns. They are intended for an

audience of professional programmers who are used to making
judgments based on experience and taste. There is another pro-
gramming audience, however, one that is potentially much

larger than just hackers. Thk audience are those who program
by necessity, not by choice. They are the biologists, chemists,
and business people of the world who can’t find a program that
does what they want, but they don’t want to learn any more
about programming than they must to get their job done. Pat-
terns are a great way of communicating how to reuse a frame-
work (as opposed to merely telling them how it works).

I’ll deal with all three uses of patterns in the months ahead.
1’11start with design—how you can use patterns to help you de-
sign better, faster, and with greater confidence.

DESIGNINGWITH PAllEFINS

The stereotyped Smalltalk programmers design as they program.
There’s never a “paper” design, instead the design of the program
is reflected in the code and changed as a result of manipulations
in the browser. Ignore for a moment that thk picture doesn’t re-
flect any of the diversity that currently exists in the Smalhalk
world, which includes many programmers following explicit,
nonprogramming-environment-based methods. What can pat-.—
terns offer the lone wolf the “design-as-you-go” programmer?

One great thing about patterns is they provide you with easy-
to-digest descriptions of design techniques. Even if you have
been using Smalltalk for years, there are likely tricks that other
designers know that you don’t. Reading and writing patterns
gives you a way to communicate your design knowledge with

others, and have them fill you in on techniques you don’t know.
One of the things I like about patterns is that they force me

to be consistent in my designs. After I formulate a pattern I can

often go back to my existing programs and see how they would
have been better had I consistently used the pattern. An exam-
ple is using “each” for the parameter to a block used for iteration.
I used to get creative with the parameter names, trying to call
them something meaningful. By just using “each” I can program

faster, because I don’t stop to choose a name; I can read the code
better, because I know what to expec~ and I am more likely to

put complex expressions in the block into their own method, be-
cause “each” doesn’t work well if you are programming a block
with 20 lines in it.

Fkmlly no one ever really just codes for themselves, for the
moment. Someone will read your code, even if it is just you six
months later. The consistency and explicitness of patterns, if
their use is documented, become important sign posts on the
road to understanding what you were getting at when you wrote
the code in the first place.

Now let’s move into an example of using patterns for design.
I’ll introduce a specification that we need to design to, then al-
ternately tell you about new patterns and show how they ad-
vance the design. In real design, you’ll be working mostly with
patterns you already have in front of you. The purpose of the
The Smalltalk Report

Smdltdk
I)wdopwdlhsiywrs

capikdize on our success

At QSYS (Quolily SYSIems]we have provided Ob@ct Oriental

consultingservicesto ourFortune1000 clients[or over sixyears

What setsusapart is tha fact that we’ve done it with outstanding

success.

M hascreotd furtheropportunitiesfar SrnolltalkSpecialistsan

leading edge assigrrrnantswith ourNarthArrrariean clients.You can

ioinuseitherona pwmasmdbasisor an a I- or shortIermcontract.

Your first stepincapitalizing an armsuccessis ta contact Elspeth

Koor ak

-... . ---
I.Canada M5E 1W7

1Ya’rgalSt # 1901
Toronta,

II
v:416594-0985
E 416369-0515

90 ParkAvenue, #
New York, NY 10C
V(21219a4.0715

woo
)16

boil 72072.2575
@CompuServe.com
discussion isn’t to show you a real design session, but rather to
convince you that patterns could be valuable during design, and
coincidentally introduce some new patterns.

THE PROBLEM:TV WITH FIEM~E CONTROL

Here’s the example I’ll use for the rest of the articles on design
with patterns. The problem is to design the software to run a
television, including a remote control. For now we’ll support

two simple stories (some people call them “use cases”): when
someone presses a channel button the channel (one often)
changes, and when the television notices a commercial starting
it flashes a light on the mute button of the remote control.

We are given several pieces of software to begin with:
Da keyboard library that returns the last key pressed (O-9 for

the 10 channels, -1 for no new key press, and 10 for mute)
■ an infrared communication library that sends and receives

bytes
“ a tuner library that changes channels, and
● an object that watches a video stream and broadcasts mes-

sages whenever it notices the start of a commercial
I’m assuming that both the television and the remote control
have processors capable of executing objects, and that they are
linked with a communication channel based on infrared.

66Reading and writing
patterns gives you a way

to communicate your design
knowledge with others...

BIGOBJECTS-OBJECTSFROMTHE USER’SWORLD

We’ll implement the “change a channel in response to a key-
press” story first. The first problem to be solved is finding the
large scale objects in the system. The last issue contained a pat-
tern, Objects from the User’s World, which addressed this
problem. The problem statement of that pattern was, “What
are the best objects to start a design with?” Sounds like the
right pattern to me.

The solution of Objects from the User’s World is to begin
the system with objects that the user thinks about. Two objects
spring to my mind that fit thk criteria. RemoteControl has the
responsibilky for translating user input into commands (that is,
given some user input, the RemoteControl will decide what mes-

sages to send to the rest of the system). Television has responsi-
bility for changing channels. I’m imagining protocol in Small-
talk like channe~ anInteger.

RemoteConbol* hanslate user input into commands

Television● change channels

If I want to execute the story first the RemoteControl has to take

the input of a channel button being pressed, then translate it
into a message to the Television to change the channel.

Keyboard-ObjectifiedLibraryand Event
This scenario is plausible as far as it goes, but it isn’t nearly de-
July-Augzd 1994
tailed enough to begin programming. The next problem we
solve is getting the keystrokes into the RemoteControl to begin

the computation. The first part of thk problem is reading the
keystrokes in the first place. Recall that we have a librmy that
lets us read the keystrokes. We need to surface those fimctions
in object terms. Here’s the pattern we will use:

OBJECTIFIEDLIBRARY

How can you integrate a function library with a system built
from objects?

AU modern object languages provide facilities for calling
functions written using older languages. The design problem is
how to integrate the fimctions conceptually with the rest of the
system. The simplest solution is to call the flmctions wherever
you need to in your code. This has the advantage of simplicity,
because you don’t have to introduce any new objects.

Just calling the functions from wherever introduces problems
of its own. First, external libraries change at a rate that isn’t syn-

chronized with changes to your objects. New releases of a libraty
may come at a time when you don’t want to change much of
your system. By scattering the calls to the library all over your
system, you make yourself mdnerable to having to touch many
parts of your system.

Second, because the world is moving more and more towards
objects, any function library is likely to be replaced by objects.
Scattering calls to the library means that you will have to revisit
much of your design should that happen.

Fhmlly scattered calls to the function library don’t communi-
17

TheAt+& & ti&n apprma.rh

th a~ WORLD
ha81M?E??5WIMYlgj’&.. .

A
Pmiisusm

“THE INTEGRATED 00 METHODOLOGY’

PEGASUS combines the concepts of

❑ LJse Cases and %enarios described by Ivm
Jacobson in ~-. mg

. .

❑ Object Modeling Techniques
by James Rumbaugh for static object modeling

❑ Responsibility-Driven Design by Rebacui
Wirfa-Broek for modeling dynamic behavior of an object

For Information about this

FULLY INTEGRATED TOOL & 3-DAY COURSE

CUU kthwell International
900 2AWW)712 cm 71 R WdM090
cate well. In particular, you cannot easily answer the common
question, “how is the library being used?” Answering this ques-
tion is important both for making the kind of design updates re-
quired above, and to use the librm-ywith other objects. There-
fore: Create an object to represent the library. Give it external
protocol using Smalltalk naming conventions and accepting and
returning standard objects.

Using Objecbfied Library, we create a Keyboard object whose
responsibility in the design is to read keystrokes, and whkh ac-
complishes it by calling the keybo~d library.

Keyboard* read keystrokes
Running the story again, we have the RemoteContiol asking the
Keyboard for the next keystroke, then translating that into a
message to the Television to change the channel.

Notice that the solution to Objectified Libra~ tells us to “ac-
cept and return standard objects.” What object should the Key-
board return? Here is a pattern that you are probably familiar
with that answers this question:

Event
How do you represent interesting events from the outside
world?

The simplest solution to representing outside events is to
cause a message to be sent to the object which handles the
event, passing as p~ameters what happened. Unfortunately, the
parameters are seldom a simple, atomic object. Also, the system

is often interested in other, related information from other sen-
sors such as the clock (i.e., a timestamp). Passing all of the in-
formation as separate parameters leads to long, unwieldy mes-
sage names and introduces the risk that some parameters will

get out of sync with others.
Simplicity of naming is not the only important issue work-

ing against simply sending a message. Many times the parame-
ters to be included with an event are time valued and must be
collected immediately to be correct. The collection of the para-
meters doesn’t involve complex processing, so it can easily be
done in a lightweight but higher priority process than the
process in which the reaction to the event is determined. Split-

ting the collection of the parameters from their processing in-
troduces the need to create a protocol between the tasks. Sim-
ple protocols provide flexibility, and a single object as the
protocol is simplest of all.

Bundhng the parameters together into an object introduces

its own costs. Fkst, there is the addkional complexity in the

Systemof having an additional class. Second, there will be a
runtime cost associated with creating the object. However,
these costs are easily dealt with later, while the difficulties asso-

ciated with not having the parameters together will adversely
affect the whole design. Therefore: Create an Event object.

Give it protocol to return information describing what hap-
pened outside the system to create the event and report what

else interesting was happening at the time.
Our Event object will carry along what key was pressed to

create the Event. The Event will be a good place to hide the in-
terpretation of the keystroke (i.e., the difference between O-9
and 10). We’ll be able to add testing protocol like isCharmed,
which will insulate the rest of the system from the details of
the keyboard.

We have to change the responsib~ky of Keybomd a little to
reflect that the Keyboard is responsible for creating the events:

Keyboard * create events from keystrokes
Running the story we now have the RemoteConhol asking the
Keyboard for an Event, then using the Event to send a “change
channel” message to the Television,

CONCLUSION

This article has used one pattern from the previous issue, Ob-
jects from the User’s World, and two new ones, Objectified Li-
brary and Event, to create the first four objects in our system:
RemoteControl, Television, Keyboard, and Event.

That’s all I have space for in this issue. Next time we’ll de-
cide how the objects are going to be distributed between the
two processors, including a nifty pattern I learned while con-
sulting on a telecom project called Half Objects. We’ll also
get into more of the details of how Events get turned into
commands.

If you have good examples of applications of any of the pat-
terns I present, or if you have alternative patterns that you think
are better, please let me know. Patterns are just getting started
and there are no right answers, only a bunch of committed peo-
ple searching. ~
The SmaWalk Report

ALAN KNIGHT

New net
resources
The Internet, in its new guise as an “information super-
highway” is becoming very trendy. There are an ever-in-
creasing number of resources accessible via the net. This

column covers some Smalltalk-related resources that have re-
cently become available.

X3J20 MAILING LIST

X3J20 is the designation of the American National Standards
Institute (ANSI) committee that’s working on a standard for
Smalltalk (q.v. THE SMALLTALKREPORT,2(7):1)).If you’re in-
terested in the committee’s progress, you can now get updates by
e-mail. Bruce Schuchardt (bruce@slc.tom) writes:

The X3J20 Smalltalk standards committee has formed a mail-

ing list for its work- In our 10/93 meeting it was decided that

since the committee is public its mailing list should be open

for public subscription.

If you wish to subscribe to the X3J20 mailing list, send a
message to listmaint@slc.com with the body text

subscribe x3j20 your-email-address

You must send the subscription from the mailing address

you list in the body of the subscription request or it will be

ignored, i.e., you can’t request a subscription for someone
else, or for yourself at another address.

Problems in using the mailing list should be addressed to
x3j20-owner@slc. corn. We have had some problems with

the mailing list but we hope these have all been ironed out

at this point.

Messages to the list should be sent to x3j20@slc.com.
There is also an electronic archive of X3J20 documents, at

the ftp site info. er.usgs.gov. Documents are available as ASCII
text, PostScript, or Hypertext Mark-up Language (HTML).

They are stored by document number in the directories that are
named /pub/smalltaWapproved and /pub/smalltaWsubmitted.
The file pub/smalltaW Index has a list of document descriptions
and numbers.
July-August 1994
SMALLTALKREFACT(MIY

There have been a number of interesting development tools for

ParcPlace Smalltalk from Ralph Johnson’s students at the Uni-
versity of Illinois. These include the object debugging extensions

(q-v.THE SMALLTALK REPORT, W: 4) and the Ne~ool ex-

tended browser (q.v. THE SMALLTALKREPORT,3(2):17). The
Smrdltalk Refacto~ is another in this series, which assists in
making a number of common types of modhications to Small-
talk code. From the user manual:

Object-oriented languages are touted as promoting soft-

ware reuse. However, object-oriented software is usually not
reusable when it is first written. Reusable software is the re-

sult of several design iterations involving dfierent applica-
tions that reuse a common body of code. As the code is in-

corporated in the different applications, reusability problems
become apparent and the body of code must be altered, Each

iteration becomes easier and easier as the common code be-

comes more and more reusable.

Since these iterations involve not only new code but also

existing code, care must be taken when altering the common

body of code. The changes that are made must be behavior-

preserving so as not to break the existing applications. These

behavior-preserving manipulations that change the design

of the reusable code are known as refactorings.

. . .The SmaUtalk Rcfactory is a tool (basically a modfied

browser) that brings together several refactorings that have

been created at the UniversiW of Illinois.

The supported refactorings are:

● Rename instance and class variables, automatically changing

all references

● Generate accessor methods for a variable and change all di-

rect references to use the accessors

- Move variables up into a superclass or down to all subclasses,

moving methods if necessary.

■ Convert superclass to component. This moves a class up the

hierarchy and converts its current superclass into an instance
variable to which messages get forwarded.

* Change direct instance variable references to a method into
calls to accessor methods (generating the accessor methods if

necessary)

■ Rename a method, changing references.
Renaming a method is particularly interesting, as thk is not easy
in a dynamically typed environment like Smalltalk. The user
manual describes their technique:

(Suppose) your application has a class that defines the add:
method. After review, it is determined the name addFigure:

more accurately reflects its function. Simply changing the

name to addFigure: andthen browsing all senders of add: will

return an enormous list of methods since add: is often called

in the context of Collection classes. Very few of these are ac-

tually references to your application.
To overcome thk, the refactory uses a new technique

known as lazy refactoring. Mer the renaming operation has

beersperformed, a Dynamic Analysis is created that moni-

tors all calls to the original method. When these are detected
the source code of the caller is altered to refer to the new

method. The upshot of all of this is that to correctly perform
19

Objects
Everywhere

Whysettlefor hybrid Implementationswhen
you can havethe real thing? JumpStart Isthe
leadingprovider of solutlom and ttainlng
progmms for pure o~ect Systms using
Smalttalkand the Gemstone@”) ODBPIS. We
alsospecializein deploying IBM smalltalldm)
and VkuelA#”) applications.

Ask about our Corpomte Educators Progmm.

Monujktudng
ROeessCkmtm/

@

NetworkManagement

ju p. ~ti ~em’”
Cdlkltitimal

919.460.I503 IBM !#&
4~ 1W4, o Jmqc3ml s- hu
the refactoring, your code should be mn on a thorough test
suite. ...In future versions of the refactory, many powerfhl,

new refactoringa will be implemented in the manner along

with additional support for this style of refactoring.

I think thk could be a great tool. While it doesn’t do anything

that couldn’t be done by hand in under half an hour, it does it

quickly, automatically, and (at least for the static cases) without

missing anything. I think this could do a lot to encourage
refactoring.

As an academic project, this has a few more rough edges
than one would expect in a commercial offering. I came across a
trivial bug in one of the menus, and I thought that slower trans-

formations should dkplay a wait cursor. It would also require a
bit of work to make it compatible with ENVY/Developer or
other version control tools.

While the code is dependent on the details of ParcPlace’s
browser and metaframework, it should be possible to use this as
a basis for somethkg similar in another dialect. It can also serve

as a framework for adding your own favorite refactorings.
Don Roberts (drobertef?cs.niuc.edu) wrote the refactoring

browser, and included a number of refactorings written by Dan
Walkoweki(walkowek@cs.uiuc. edu).

It is availablei%omthe normal Smalltalk ftp sites

(st.cs.uiuc.edu and mushroom. cs.man.ac,uk). At the UIUC site

it is stored as pub/st80_r4/Refacto~l .O.st.Those interested in
more information about refactorings are referred to Wfllam

Opdyke’s Ph.D. thesis on the subject, availablefrom the same
20
site (in PostScript form) as pub/papers/opdyke-thesis.ps. The
pub/papers directory also contains a number of other papers

which may be of interest.

COMPUTATIONALGEOMETRYWORKBENCH

The refactoy is of interest to almost anyone working in Small-
tal~ since it deals with domain-independent transformations of
code. The Computational Geometry Workbench, on the other

hand, is a much kuger, very domain-specific toolkit. The domain
is (of course) computational geometry, mostly of the two-di-
mensional straight-line variety. The documentation describes it
as providing:

an environment for creating, edking and manipulating

geometric objects, demonstrating and animating geometric

algorithms and for implementing new algorithms.

This toolkit comes from a research group under Jorg-Rudlger

Sack at Carleton University. In fact, I was part of this research
group a few years ago, and this project is a substantial part of my

Jh’laster’sthesis. If you like it, I’m happy to take credit for large

parts of it. If you don’t, well, it was long ago when I was young
and (even more) foolish. In either case, you should be aware of
my obvious bias. As with many projects dependent on student
labor, the qr.dty of the code varies widely. Some of it is very
good, some of it is surprisingly good for student work and some
of it is not good at all.

The system is written for Smalltalk/V Mac 1.2,1 (that’s one
version behind the current 2.o). At the rate Digitalk releases

V/NIac versions it shouldn’t fall any further behind in the next
few years. It’s a fairly large system, including:

~ Basic data structures (stacks, queues, search trees, etc.).
● Not-so-basic data structures(finger trees, splay trees, etc.).
■ Robust (knock wood) code for desling with geometry.
● Some very complex geometric algorithms (triangulation, visi-

bility, shortest-path, and point location are most prominent).
● A geometric object browser and other tools for manipulating

geometric objects.

● A framework for algorithm animation.
● Yet another home-grown change control system.

■ Maoy hacks to Smalltalk/V Mac, includlng color support.
“ A dlpboard interface, very handy for importing geometric

figures into drawing programs and documents.
■ Documentation (an uncommon feature with universi~

projects).
It is available by ftp from the normal archive sites or from

alfred.ccs,carleton. ca.

OBJECTSHAREUPDATESBYHP

Objectshare Systems makes the popular WlndowBuilder and
SubPanes add-ens for Smalltalk/V. Updates of their products

are now available by ftp from the UIUC archive site, in the
pub/OBJSHARE dkectory. These are incremental updates,
meaning that they must be installed into an image already con-
taining the appropriate version of the product (for example, to

upgrade WindowBuilder Pro 1.0 to 1.04).

AlanKnightis a consultantwithTheOlrjactPeople.He csn Ire reechedat

613.225.EI112,or by e-mail as lmight@acm.erg,
The Smalltalk Report

Responsibly
designing

your
REBECCA

WIRFS-BROCK objects’ data

I

wen should you define the data encapsulated within
responsibly designed objects? What things should you

consider as you pin down the internal representation
of object data? Responsibi~ty driven design places great empha-
sis on object roles and responsibtities. Once initial object behav-
iors are defined, the design can and should be refined. Refine-
ment often makes the difference between a muddled design and—
a workable one. It is during refinement that we make a con-
certed effort to streamline collaborations, factor common re-
sponsibilities into class inheritance hierarchies, and clarify the

contractual agreements between objects. All this modeling soaks

UPa lot of design energy!
Even after tlis effort, we’re really not ready to roll into imple-

mentation. Notjurt yet. There is a fair amount of object design
work left. Whether these details are worked out as the last stages
of design or the initial phases of construction is irrelevant. It is
these design details that are vital to most business applications.

Initially in my quest for answers to the design for object

data, I searched the writings of authors’ with a strong data focus
for expert guidance. Whil~their methods emphasi=-identifying
the form of the data encapsulated within objects and showing
structural relationships between classes of associated objects,
they only give light treatment (if at all) to many tactical consid-
erations. Whale I found it interesting, their works dld not shed

much light on what I wanted to find out.
Nuts and bolts implementation details typically am left as an

“exercise to the implementor.” Even datacentric methods finish
before dealing with the complexities of designing persistence
into an application. Wkhout a design for dealing with this, our
applications are incomplete. However, a generic, one-size-fits-all

solution is unrealistic. Over the past three years I have seen sev-
eral practical solutions to data design for large applications. No
one followed a recipe. Each development team wrote their own
unique chapter. Each solution focused on dflerent elements of
this large problem. These experiences have shaped my opinions.
July-AugW 1994
I don’t intend to answer all these “data meets responsibility
driven design” questions in d-is column. I will present a strategy
for tackling the design of object data, both persistent and non-
persistent. I will outline a practical and straightfonvard process

for developing these details. We’ll look at managing structural
relationships between collaborators, understanding object persis-
tence, fetching, retrieving and updating parts of objects that do
persist, and a general strategy for providing information to and
incorporating advice from those tasked with developing external
databases for our applications.

Let’s start by looking at what data requirements we can glean
from our initial object model.

WHATWE KNOWABOUTOUROBJECTS

Use cases describe tasks that a system must perform. Conversa-
tions capture the dialog between an actor (either a human or an-
other application) and our object model. Conversations depict
sequences of interactions and work steps that must be accom-
plished to perform an actor-dwected task.

As we unfold our model of collaborating objects to supports
each conversation, we are developing a sense of objects’ dynamic
behaviors. We comprehend how actors ask to get at certain in-
formation. We know how and why various objects are used in
particular situations.

Our emerging object model is populated with objects having
responsibihies for knowing

“ certain facts,

■ how to perform specific tasks, and
● about the existence of others,

designed according to their roles and stereotypes.
For example, in our video kiosk application (which I have

borrowed from our design course and will use to illustrate objects’
responsibilities and behaviom), a Local Inventory object knows

the Videos on hand. Each Video “knows” a number of character-
istics (including title, director, category, rating, and so on),

When we record responsibilities this way, we are reflecting
in our model how we expect to navigate between objects. To
display a list of available movie titles, we’ll ask the Local In-
ventory for that list. We can then display thk list. When the
user picks a movie from that list, she can either choose to read

a detailed description or perhaps to view a video clip before
renting. She may decide to reserve that movie for later instead
of renting it today.

Data modelers look at an emerging object model differ-
ently than I have been trained. Both of our perspectives are
useful. When a data modeler looks at relationships between

data (or between classes of objects), she sees the possible ways
to get at one piece of information from another. A data mod-
eler needs to understand the relationships between objects.

Traditionally, data modelers have built structural models
showing cardinality, data ovvnershlp, and creation and update
rules in order to understand the significance of those rela-
tions. The data modeler looks at my object model with an eye
towards building a consistent logical data model. Physical

modelers are concerned with designing data base schemas that
are correct and high performance.

There are important differences in our concerns. During de-
sign initially focus on object behaviors. It is my firm belief that
21

i

these need to be understood before one steps into the design of

each object’s encapsulated data. Data modelers seek information
about access patterns and structural relationships! Are we at
cross purposes? Not really. What we can do is tell them about
our application’s impact upon their data designs,

We have been focusing on how our objects collaborate to
support actor-dkected tasks. So, with a modest effort we can
add these details to our modeh

● We can define a first cut at our objects’ instance variables.
● We can identit what parts of our objects are persistent.
● We can tell how to uniquely identi~ any persistent object.
● We can describe the ways we traverse our objects to accom-

plish specific tasks.
■ Conversation by conversation, we can determine which ob-

jects will be accessed and how they will be modified.
● We can record which conversations cause specific objects’ in-

formation to be created, modified, updated, stored and re-
trieved.

● We can determine how we’d ideally like to fetch persistent
information in order to “materialke” our application objects

from external storage.
● We should be able to tell how long objects need to exist in

our application.
Besides simply digesting thk information, it is equally impor-
tant that database designers critique our design. We are provid-
ing them with preliminary information that will remain prelimi-

n~ until we believe it to be sound. They can help v&date our
work. They can spot inconsistencies and gaps in our thinking.
They can recommend alternative ways to build our objects that
are more flexible, place less demands on databases, or take into
consideration other applications’ needs.

Database design is so crucial to business applications that
database specialists are integral members of many object analysis
and design teams. Data designers add a vital perspective.

STEREOTYPESAND PERSISTENCE

We can also look to object stereotypes to identi~ persistency de-
mands. While there tie no hard and fast rules, here are some
typical situations.

Contro/len perform a cycle of action. Coordinator pair client
requests with objects that can perform a specific service. Service

prowider~ typically perform a single operation on demand. Inter-

face o~ects support communication between objects within our
program and external systems or users.

These objects typically don’t define persistent information.
However, they may be designed to be configurable. In this
case they are constructed to contain configurable “facts” that
dictate how they perform their varied tasks. Often we store
this configurable information externally and reinitialize these
objects and their classes prior to use. This allows us to change
certain aspects of our application without having to redefine
these classes.

On the other hand, coordinators and controllers do initiate
requests to retrieve other persistent objects. For example, in our

video kiosk design, the Session Manager (a coordinator) asks a
CustomerDB object (a database interface) for a particular cus-
22
tomer object. Controllers may pass along references to these

persistent objects. The Session Manager passes along a customer
to a Kiosk Transaction object tasked with coordinating either
renting, reserving or previewing a movie.

Objects may generate and store a hktory of their work.
Service providers and coordinators might generate and store
this information themselves or, more likely, collaborate with

others having the specialized knowledge do perform this
task. For example, in our kiosk design, a record is printed for
each transaction. Transactions are logged and the local and
store inventory is adjusted. To do these tasks, we can design

a Transaction Record object to contain transaction specific
information.

Information bo/der~ maintain values that other objects can ask

about. These kinds of objects may or may not be persistent.
Transaction Records may themselves be made to persist, or they
may be interpreted by Printers and Transaction Loggers to gen-
erate persistent information.

Consider another example from our video kiosk. We model a
Customer object that knows facts about customers, including
their allowable transactions. Certain customers, based on their

credit record and recent level of business are granted special
privileges. While we may externally store a lot of information
relating to a customer, we don’t automatically equate all of it
with our application’s view of a customer.

We may formulate a complex query asking whether the
number of rentals the customer has made in the last month is
greater than a certain number and whether bills have been paid
on time. Based on the answer to that query we can construct a

customer object that only holds the information needed for our
video kiosk application, includlng a list of permissible customer
transactions. We might generate that list of permissible transac-
tions rather that read the information directly in some customer
record in a database.

Structure maintain relationships between objects. Structur-
es hold references to other objects that refer to others in a com-
plex network. A key decision to make is how much information
to retiieve and store at any point. The ideal is to get just what
you need, unless it is easy to get more than you want, Access
patterns can be determined by analyzing our model’s behavior a
use case at a time. Complex retrievsl and storage strategies,
which demand support via a data access framework are beyond
the scope of this column.

PRACTICALCONSIDERATIONS

We need to make tradeoffs in our object and database designs.
When we implement a solution, we make tactical tradeoffs that
limit our design’s potential capabilities. They also enable us to
build practical solutions. In our Smalltalk programs we connect
one object to another (e.g., make one object “know” about an-
other) because that is how we see them collaborating. Connect-
ing one object to another is unidkectional, unless we explicitly
make it otherwise.

For example, since the Local Inventory knows of Videos

on hand, then the Local Inventory may contain direct refer-
ences to Video objects. We might store them in a dictiona~
with the title as a key. If we need Video access to be more

continued fin pag? 28
The Smallta[k Report

software development...

The manager’s guideto implementingobject
technology.The “point of entry” for software
management infusingobjects into their work

environment. Filledwithhow-to advice,usable
strategies,and realworld experiences.

Written for programmers and developers

using OOP techniques. International in

scope. Code intensive, practical, technical.
Breakthrough peer-reviewed papers and

invited columns, Now in its 7th year.

Filled with “how-to” advice

for Smalltalk users at all

levels and in all dialects.

The best way for Smslltalk

programmers to mtiize the
language’s potential.

c-—.—.,.. ‘.11

. -- -,-.

Informs C++ developers on how to get the
most out of the language. Ideas and techniques

for increasing your productivity with C++.
Code-intensive, functional tips and tricks for

C++ users on all levels and platforms.

Addresses language-indepen-

dent, architectural concerns
about O-O analysis, design and

modeling. Platform and system
independent, ROAD is written

for software developers and

project leaders.

~SIGS
PUBLICATIONS

-------------------- -------------------- -------------------- ---------- ---------- ---------- _--_=

Yes, I want my subscription to the following publications to begin
immediately. If not completely satisfiad, I may cancal at anytime
and raceive e full rafund of tha unused portion.

❑ Object Magazine [1year, 9 issues) ..$39
❑J0UP(lyear,9 issues) ..$59

:m~~~:❑C++ Repoff[l yaar,9 issues) ..., ..$69

❑The Sma//talk Rapofi(l yaar,9 issues) ..$79
❑ ROAD (1 year, 6 issues) ..$99

TOTAL
Method of Payrnenfi

❑ Bill ma, Attn:

❑ Check Enclosed (Payable to S/GS Publications)
❑ Charge My D Visa ❑ MasterCard ❑ American Express

Card# E)(P_

Signatura

Name
I
I

T~le i

Company
I
1
I

Address 1
1

city
I

Province/State Postal Code/2ip
i:-- :.
I*FWW

Return thiscoupon by mail or & or call to start your subscriptions.

Maik SIGS Publidionq Inc, P.O. Box 24)27, hnghom~ PA 19047

Important Non-U.S. orders must be prepaid.Pleaseadd $35 per subscriptionyear for air
service.Checksmust be in U.S. dollarsdrawnon a U.S. bank_

—=. .

European Smalltalk Summer School
European Smalltalk Users Group (ESUG), organizes
its second Smalltalk Summer School in Cork, Ireland,
from September 5-9, 1994. This will be a unique op-
portunity for attendees to meet well-known European

Srnalltalkers from both the academic and industrial

fields, a&i to gain hands-on experience of Smalltalk’s
moat advanced techniques. Non-European Smalltalkers
era of course welcome.

The program will include one-track tutorials, aswell
as multiple-track workshops, demonstrations or expe-
rience reports. Also, rooms will be available for spon-
taneous meetings. Smalltalk vendors will be able to
make demonstrations free of charge. The National
Software Directorate will support a special promotion
of Smalltalkto the Irish Software Industry in parallel to
ESUG. This school is linked to a C~MEIT-projected
supported by the EEC. We look forward meeting you.
Do not miss this major European Smalltalk event!

For more information, please contact ESUG by
email at esug@ibp.fr or by writing to Annick Fron at
AFC Europe, Les Maurettes “Le Grimaud,” Avenue du
Docteur Lefebvre, 06270 Villeneuve-Loubet, France;
+33.92.028653.
Product Announcements are not reviews.
They are abstracted from prass relaases provided by

vendors, and no endorsement is implied.

Vendore interested in being included in this feature
should sand press releases to THE SMALLTALKREPORT,

Product Announcements Dept., 91 Second Ave.,
Ottawa, Ontario KIS 2H4, Canada,
613.225.S612 (V], 613.235 .S256 [f).

UNISQL delivers first ODMG-based C++ and
Smalltalk links
UniSQL, Inc., announced the availabdty of two new object-
oriented database interfaces that support the Object Data
Management Group’s (ODMG) emerging specifications for in-

dustry-standard C++ and Smalltalk object-oriented program-
ming language bindings. The announcement was made at the

Object Expo National Conference and Exposition. The
UniSQL Smalhalk Interface products let C++ and Smalltalk
developers build mission-critical application that utilize

UniSQEs object/relational database and middleware capabili-
ties in a way that is fully transparent to C++ and Smalltalk lan-
guage environments.

UniSQL provides integration to C++ and Smalltalk develop-
ers via the firm’sUniSQL/M Multidatabase System. This sys-
tem is able to support object capabilities, such as methods, in-
heritance, user-defined data types, and composition, with
systems that have no such capability.

Both the UniSQL C++ Interface and UniSQL Smalltalk In-
terface are available for Version 2.1. They will also be available
in July for the UniSQ~ Database Management System and
the UniSQ~ ,NIukidatabase System on UNIX servers run-
ning DEC OSF/1, HP-UX, IBM AIX, and DEC/OSF/1, with
DOSAVindmvs support.
UniSQL, Inc., 9390 Rasearch 11,Suite 200, Austin, TX 78759-

6544,512.343.7297 (V), 512.343.7383 (f)

ParcPlace object-oriented tool provides
point & click database application creation
ParcPlace Systems, Inc., has introduced VkualWorks 2.0, a ma-
jor new release of the company’s object-oriented client and
server tool. VisualWorks 2.0 emphasizes ease-of-use and fea-
tures a Database Application Creator that allows corporate de-
velopers to create basic database applications without any Small-
talk or SQL programming.

VisualWorks’ Database Application Creator comprises three

components: an ObjectLens to view and manipulate relational
data as objects; a Visual Data Modeler to create a visual map be-
tween relational data and objects; and DataForms—intelligent

reusable objects that allow database manipulation without SQL
programming.
ParcPlace Systems, Inc., 408.720.7514 (v), snichols@parc-

place.com (email)
24
Easel Corporation signs licensing
agreement for SOM and DSOM technology
Easel Corporation announced that it signed a licensing agree-
ment with IBM for its System Object Model (SOM) and work-
station Distributed SOM (DSOM) technologies. Under the

terms of the agreement, Easel will incorporate the SO.NI and
DSOM technologies into its Object Studio family of object-ori-

ented application development tools.

The integration of SOM and DSOM into Easel Corp.’s Ob-
ject Studio family will enable developers to build object-oriented

. .
appllcafions containing interoperable components that me
reusable and platform independent. The company will deliver
SOM- and DSOM-compliant products in the next major re-
lease of its Object Studio product family.

SOM and DSO.M are standards for creating object-oriented
class libraries and for reusing objects. It allows an object to be
created in one development language and accessed from a dif-
ferent language. SONI is the first cross-language, cross-plat-
form implementation of the Object Management Group’s

Common Object Request Broker Archkecture (OMGS
CORBA) specification.

Easel Corp.’s Object Studio family comprises the ENFIN
Smalltalk client/server application development environment
and Synchrony, the first of a new generation of business object
management tools that integrates the design, assembly and reuse
of business objects. Business objects are high-level objects that
mirror an organization’s business process and enable developers
to rapidly build enterprise-scalable applications that help run a

business.
Easel Corp., 25 Corporate Driva, Burlington, MA 01803,

617.221.2100 (V), 617.221.6899 (f)
The Smalltalk Report

From The People

New Release!

That Bring You This
Magazine...

Objectifying Real-Time
Systems

byJohn R. Ellis

The basic concepts of object-oriented
programming are discussed, establishing
a common understanding of objects.

Provides instructio~ on how to create
each of six RTOOSA Requirements
Model products.

●

Anyone interested in developing
object-based real-time systems should
read this book.

Accompanying dis~ette contains the
source programs of examples through-
out the book that enable the reader to
experiment and verify executions
without having to key in code.

(525 pages ;th diskette)

COMPLETE
MONEY- BACK

I GUARANTEE 1

1- Available at selected bookatoras.
Distributed bv Prentica Hall. I

mSIGS
BOOKS

BestSeller!

Object Lessons
by Tom Love

Trade secrets of Tom Love, Vice
President of IBM Consulting Group
are revealed demonstrating the “how
to’s” of putting theory into practice.

●

An “insider’s view” of some major
companies’ successes and failures
relating to object-oriented software
projects. Save countless hours and
dollars by learning from their costly
mistakes.

This book is writte~ for those making
decisions on design and management
of large-scale commercial object-
oriented software.

(276 ~ages)

New Release!

Object Development
Methods

edited by Andy Carmichael

Addresses how object-orientation can be

applied to systems analysisand design.
●

A comprehensive survey is included com-
paring the leading methodologies of
Booth, Texel & Rumbaugh among others.

The common conc~pts and underlying
structure of each methodology is an
important theme explored within this
book.

This book proves ~ invaluable refer-
ence guide for those still exploring var-
ious methodologies and their bene-
fitsldrawbacks, and for those who have
already made a methodology selection.

(380 ~ages)

r ------- ------- ------- ------- ------- ------- ------- ------- ------- -

~ YES! Please sand me tha following book(s). If I am nottotally satisfied,
I I may ratrrrntha book(s)within 14 days end receive a complete refund.

:
I D Objectifying Rea/-Tinre Systems byJohn R. Ellis (ISBN:o-9627477-8-5)........................$441
I Q L?bject Lessons byTom Love (ISBN: o.9627477.3.41~
i Q L7bject Development Method edited by Andy Carmichael ilseN: 0-9627477-%3)...........$39

i
I Name METHODOFPAYMENT
I

Title Q Check enclosed {payable to SIGS Books)
:
I Q Charge my credit card:
1 Address
1 Q Visa Q MasterCard Cl AmEx EI(p Date_
I
I Company Credit Card #

—~~,=co”e ,aM

Signature
SEND TO: SIGSBooks, Inc., Attn: Circ. Oept.

71 WI 23rd Street, 3rdFloor.NEWYork,NY 10010
ShippinglHandlirrg:For US orders, please add% for ship-

FOR FASTER SERVICE, FAX TO 212/27405
pin@lhandlinE, Canada add S10 Foraign add $15
Important NY StatO residms add applicahln sales tan.

~~(eading the industry in tran~f,~iming business processes through information technology,

‘“we employ 4,800 assoc~at& internationally and enioy annual revenues in excess of $750

,~,~illion. .:l.~,.~;~;.::.: :;:,: ,..

We seek expert SmallTalk Developers who possess exceptional technical skills and

business advisory experience. These positions are located in our rapidly expanding
MI NNEAPOHS, MINNESOTA practice. Extensive travel to clients’ sites maybe required.

● Senior Technical Architects/Technical Architects
s Senior Systems Engineers
“ Programmer/Analysts

You must have demonstrated experience in the following:

● SmallTalk V with Parts or SmallTalk 80 with Visual Works with either Team Y

or Envy Tools

“ Experience with Obiect Oriented Design and Obiect Oriented Analysis using

Responsibility Driven Design methodology utilizing CRC, or Obiect introduc-
tion Diagram

“ Experience with associated CASE Tools a plus

Discover why “The Systems Integrator Newsletter” named us the bes~ Client’/Server
Sys~ems Integrator of 1992 and he Rising S)ar of Systems Megralion. Send resume,
indicating position of interest, in confidence to: Manager of Human Resources-
SMALLTALK, SHL, 1901 North Naper Blvd., Naperville, IL 60563-8895. FAX:
708-505-9158. Equal Opportunity Employer M/F/D/v

For information on advertising in the Recruitment Section, contact

Michael W. Peck at 212.242.SIGS

. . ,

..,.,: ..:,

L.. k !.. : .-. .

,;

.

micado SoftwareConsult GmbH is one of the
leading system houses in Germany for object
oriented languages. It has an expert team with
wide experience in development and customer
support. Due to the astounding growth of the
object oriented market in Germany, we are cur-
rently seeking the following freelance 00 pro-
fessionals:

Smalltalk
Designers and

Developers
If you welcome new challenges and if you want
to explore your career opportunities please
send or fax your resume to

micado SofiwareConsuItGmbH
Reutherstr. 1a-c D-53773 Hennef

Tel. (49)2242-87 1-450 FAX -455
Compu-Serve 100024,2444

Call for Writers

m!iiizl
is seeking expert reports, futon”a[s, and

technical papers. Articles should be

imtructiue, product-neutral and technical

Submit papers, discuss sto~ ideas,or request
Writers’ Guidelines from:

John Pugh and Paul White, Editors

THE SMALLTMK REPORT

855 Meadowlands Dr. #509, Ottawa, ON K2C 3N2
613.225.8812 (V), 613.235.8256 (f)

john@objectpeople, on,ca

Editorial topics include:
Applications
_ Commercial,engineering&scientificapplkatians
“ Applkatiansframevmrks
● Praiertmanagement
s Verlical(applkatian]andharizantal(system)class

Iilrmries
● Portabilityissues
● O~etl librarymanagement

Project management
● Rapidpratatyping
● Versianmanagement
● Applkatianmanagement
● Teamarganizatian
● Organizingfar reuse
_ [rrtradutingSmalltalkinlaanarganizatian

Tools
sUserinterfacebuilders
● O~ed edfiars
● Applkatiandevelapmenltaols
● Pra]ertmanagementtaals
● CASEtaols

Language Issues
s hrheritanre
● User interfaceparadigms
● (annrrrenry
● Persistento~ectsanddatabases
● DistributedSmalltalkissues
● Performanceissues
c Typing
● Metalevelpragmmming

(Competitive st~endpaid)

Ju&Augwt 1994 27

—.
conh”nuedj%m page 22

flexible, we can build other mechanisms to access and retrieve
information.

Objects can be “wired together” via instance variable refer-
ences, or more loosely coupled via event mapping, In contrast, if
there is a way to get at one piece of information from another in
a relational database, you can. If we need to be infinitely flexible

we may keep video information in a database and access it
through a query.

It may not be sufficient to say that one object “knows” about
another. How does it know? And, even more intriguing, when
does it need to know of another? Once structural aspects are de-
cided, strategies for fetching and retrieving persistent informa-
tion can be worked on.

If we don’t have enough room to internally store all Video in-
formation inside our application, we can retrieve this information

from an external source on demand. In any case, we still describe
our Local InventoV object as being responsible for knowing and
28
managing the kiosk’svideos. If we place space, performance, or
flexibili~ constraints on our design, we just have to be more
clever about how our Local Inventory determines the information
it is responsible for knowing.

CONCLUSION
I’ve learned several lessons from observing and participating
in large development efforts. Big efforts require framework
support and consistent design guidelines that are followed.
Ad hoc solutions to data access and retrieval don’t scale.
Defining consistent ways to define the instance variables for
objects and handle persistent information smoothes out the
development effort.

Sometimes, though, it is the simple, easy to do thhrgs that
make a big impact. It pays to involve data designers early on.
Identi@ persistence requirements and the “shape” of data re-
quests as soon as practical, but not before you understand your
model. Build complexity as you need to. Expect designs to
evolve and mature. I t’spleasantly surprising to me how much we
do know about our objects’ data requirements ifwe’ve really
thought through our initial design. ~
Digitalk releases EHLLAPI component for
PARTS Workbench
Digitalk, Inc. is shipping the PARTS Communications Wrap-
per for EHLLAPI (Emulator High-Level Language Applica-
tion Programming Interface), a component for PARTS Work-

bench for 0S/2, which allows integration with legacy
mainframe systems by adding visual, object-oriented, client-
server technology.

The Parts Assembly and Reuse Tool Set (PARTS), is the
first component-based- clientiserver integration framework ever
offered. It makes the assembly and reuse of so-ware components
from different technologies a distinct and easier process than

creating the components, which allows for much faster delive~
of applications with reduced maintenance cost. These compo-
nents can be written in Smalltalk/V, C, COBOL, or other lan-
guages. The PARTS Workbench is the framework for integrat-

ing these components.
The PARTS Communications Wrapper for EHLLAPI is

designed for corporate users who need GUI front ends to their
legacy 3270/5250 mainframe systems. It allows corporate users
to easily convert 3270/5250 text screens to graphical screens,

giving ~heir users a clean, intuitive interface-wi_thout having to

change the host application.
The EHLLAPI Wrapper supports IBM Communications

Manager and other EHLLAPI products compatible with Com-
munications Manager on 0S/2. Now mainfi-ame data can easily

be integrated with graphical user interfaces, Smalltalk/V, C,
COBOL, database servers that use SQL, and Lotus Notes.
Digitalk, 5 Hutton Center Dr., 1Ith Floor, Santa Ana, CA

92707.714.513.3000 (V), 714.513.3100 (f).
BOK Technologies introduces
CraphicsObjects/V for Smalltalk/V
for Windows, Win32, OWV, and Macintosh
BOK Technologies Inc. announced GraphicsObjects/V, a high-
level and platform-independent graphics class library for
SmalltaWV. The library speeds up the cross-platform develop-

ment on interactive graphical applications written in Small-
talk/V for Whdows, Win32, 0S/2, and Macintosh. Graphic-
sObjects/V contains a rich set of classes that encapsulate the

platform graphics API and existing low-level graphic methods
implemented in Smalltalk/V, thus providing a portable layer
that isolates Smalltalk/V programmers from platform depen-
dencies. GraphlcsObjects/V programming API (access meth-
ods) is uniform, consistent and identical for all its implementa-
tions, which insures the cross platforms portability. Code

created with GraphicsObjects/v is portable across Smalltalk/V,
Windows, Win32,0S12, Macintosh and future platforms.

The library provides in-depth support for objects including
geometric shapes (Bezier curves, polygons, ellipses, wedges, arcs,

etc.), a structured graphics hierarchy (collection, set, dictionary
of graphics, etc.), a complete 2D geometrical transformations
(rotation, scahng,. etc.), prebuilt shapes (mows, nodes, etc.),
drawing attributes (line styles, brushes, etc,), and text blocks that

fully support multiple fonts, styles, and colors. The library also
provides methods allowing to display perform hit testing, posi-

tion, align, and arrange graphics objects. Developers can save
and retrieve graphics objects using the storing/retrieving mecha-
nism defined in SmaUtallW. The library is written entirely in
Smalltalk/V and all source code is included. It is available for
Smalltalk/V, Whdows, Wln32, 0S/2, and Macintosh.
BOK Technologies, Inc., 5476 Trans-island Ave., Montreal,

PQ, H3W 3A8 Canada, 514.4S5.6690 (v), 514.485.2095 (f),

72730 .655@compuserve. com (a-mail)
The Smalltalk Report

	By Article Title
	A brief look at size metrics
	Floating toolbox in Smalltalk/V
	New net resources
	Responsibility designing your objects' data
	Software metrics for the Smalltalk practitioner
	Using patterns: Design

	By Author Name
	Beck, Kent
	Beaton, Wayne
	Cole, William
	Knight, Alan
	Lorenz, Mark
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	Getting Real
	Project Practicalities
	Smalltalk idioms

