Smalltalk

R E P O R T

Editors
John Pugh and Paul White
Carleton University & The Object Peapla

SIGS Publications Advisory Boand
Tom Atwood, Object Design
Frangnis Bancilhon, 0, Technalogies
Grady Booch, Rational
George Bosworth, Digitalk
Brad Cox, Information Age Consulting
Adele Goldberg, ParcPlace Systems
Tom Love, IBM
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Sesha Pratap, CenterLine Software
Cliff Reaves, IBM
Bjame Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

Tue SmaLLTALK RepoRT Editorial Board
Jim Anderson, Digitalk
Adele Goldberg, ParcPlace Systems
Reed Phillips, Knowledge Systams Carp.
Mika Taylor, Digitalk
Dave Thomas, Object Technalogy Imernationel

Columnists
Kent Bech, First Class Software
Juanita Ewing, Digitalk
Greg Hendley, Knawledge Systems Corp.
Tim Howard, RothWell Imernatianal
Ed Klimas, Linea Engineering Inc.
Alan Knight, The Dbject Peaple
William Kohl, RothWell International
Mark Lorenz, Hatteras Software, Inc.
Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS PUBLICATIONS GROUP, INC.
Richard P. Friedman, Founder & Group Publisher

Editorial /Production
Kristina Joukhadar, Managing Editor
Susan Culligan, Pilgrim Road, Ltd., Design
Seth J. Bankey, Production Editor
Margaret Conti, Advertising Production Assistant
Tanya Trowell, Edilorial Assistant
Brian Sieber, cover illustration

Circulation
Bruce Shriver Jr., Circulation Director
John R. Wengler, Circulation Manager

Advertising/Marketing
Shirley Sax, Director of Sales

Gary Portie, Advertising Manager, East Coast/Canada/Europe

Helen Newling, Advertising & Exhibit Sales

Michael W. Peck, Adventising Sales Assistant

Sales Representative: Diane Fuller & Associates, Wast Coast
408.255.2991 (v), 408.255.2992 (f)

Sarah Hamilton, Manager of Promations and Research

Caren Polner, Promations Graphic Designer

Administration
Margherita R. Monck, General Manager
David Chatterpaul, Accounting Manager
James Amenuvor, Bookkeeper
Amy Melsten, Human Resources Manager
Joanna Lowenstein, Administrative Assistant

Publishers of JouanaL oF OsjecT-ORIENTED
ProcraMMING, OnjecT Macazing, C++ ReporT,
SmaLitaLk Rerort, THE X JournaL, REPorT ON
Osject ANaLvsis & DesigN, OnjecTs 1IN Eurore,
and DirecTory oF Osject TECHNOLOGY

July-August 1994

Table of Contents

July-August 1994 Vol3 No9

Features

Software metrics for
the Smalltalk practitioner 4

William Cole

Evolutionary metrics is an important type of metrics that should be collected for all
projects. Bill describes a variety of metrics that can be collected over the lifetime
of a project that will provide feedback with respect to the reliability and quality of
your applications.

Floating toolbox in Smalltalk/V 9

Wayne Beaton

Digitalk’s Smalltalk/V product allows Smalltalkers to take advantage of many native
host facilities. One tool that is missing in this library is a floating toolbox window.
Wayne provides details to show you how you can implement such a feature.

Columns

Project Practicalities A brief look at size metrics 14

Mark Lorenz

Mark discusses metrics that measure the size of different as-

pects of a Smalltalk application class library. He covers heuris-
tics for examining metrics for the number of instance variables
and the number of methods per class.

Smalltalk Idioms Using patterns: Design 16
Kent Beck

How do you effectively make use of patterns? Like any new

“tool," defining new patterns is important. How they are put

into practice is what's important, and Kent discusses just how

to do that.

The best of

comp.lang.smalltalk New net resources 19
Alan Knight

The Internet holds a vast array of source code for many differ-

ent application domains. This month, Alan provides a sampling

of some of those libraries, detailing the domains for which

they were developed and how you can get them.

Getting Real Responsibly designing 21
Rebecca Wirfs-Brock your objects’ data

An important aspect of object design involves the choice of

instance variables for a class. Often overlooked in many meth-
odologies, Rebecca provides some detailed advice on “discov-

ering” the instance variables for your classes.

Departments

Editors’ Corner & Note from the Publisher 2
Product Announcements 24
Recruitment 27

The SmalHialk Repart {ISSN# 1056-7976) is published 9 times a year, every month excapt for the Mar/Apr, July/Aug, and Nov/Dec combined issues. Published by SIGS
Publications Inc., 71 West 23nd SL, 3rd Floor, New York, NY 10010, € Copyright 1934 by SIGS Publications. All rights reserved. Reproduction of this material by electronic
1ransmission, Xerox or any other methad will be treated as a willful violation of the US Copyright Law and is Flatly prohibited. Malerial may be repreduced with express
penmission from the publisher. Mailed First Class. Canada Post Intematianal Publications Mail Product Sales Agreemeni No. 29D386.

Subscriptian rates 1 year (9 issues): domestic, $79; Foreign and Canads, §114; single copy price, $B. To submit arlicles, please send electronic files on disk to the Editors
al 509-885 Meadowlands Drive, Ottawa, Ontaria K2C 3N2, Canada, or via Internet to pugh@scs.carletan.ca Preferred formats for figures are Mac or DOS EPS, TIF, or GIF
{ormats. Always send a paper copy of your manuscrif, including camera-ready copies of your figures {lager outpur is fing).

POSTMASTER: Send address changes and subscription orders to: The Smalltalk Report, PO. Box 2027, Langhorne, PA 19047. For service on currenl subscriptions call
215.785.5996. PRINTED IN THE UNITED STATES.

1

Editors’

Corner

elcome to the new SmaLLTaLk REroRT! We
had promised you a new look and a new for-
mat in the Fall. As you can see we are ahead of
schedule—just like a Smalltalk project normally
is! With the expansion in the size of THE ReporT, we will
be adding new columnists, features, and departments in
coming issues. As we move to our new format, it’s a good
opportunity to thank the columnists who have been with us
since the inception of the THE SmaLLTALK REPORT. Special
thanks to Rebecca Wirfs-Brock, Juanita Ewing, Kent Beck,
and Alan Knight.

‘We have just returned from the Object Expo conference
in New York City, where for the first time there was a well-
attended conference track dedicated solely to Smalltalk-
related issues. We got a first look at a number of new devel-
opments in the Smalltalk arena that we will review in up-~
coming issues. Smalltalk/X is a new highly portable imple-
mentation of Smalltalk from Tomcat/Claus Gittinger in
Germany that features a compiler to generate fast native ma-
chine code and “makes possible independent class libraries,
binary distribution and stand-alone applications.”

ParcPlace featured the new 2.0 release of the VisualWorks
environment. ParcPlace is positioning the product as a tool

for generating client-server solutions and plans to go head to

head against O-O 4GLs such as Power-
Builder. In an approach similar to that
taken by Digitalk with their PARTS
product, ParcPlace is emphasizing the
“ability to create basic database applica-
tions without any Smalltalk or SQL pro-
gramming” with the full power of the un-
derlying Smalltalk engine to be used
when traditional programming is re-
quired. The new release features major
enhancements designed to permit the
manipulation of relational data as objects.
The IBM booth featured its new
VisualAge product while Easel demon-

strated their Object Studio family of PAUL WHITE

Smalltalk-based products including their

new Synchrony tool. With numerous companies offering
training and support services also in attendance, there was a
very strong Smalltalk presence.

As Rick Friedman mentions in his note, we are beginning
to plan out the program for the Smalltalk Solutions '95 confer-
ence next February. Watch out for more details in future issues.

We hope you enjoy your “new” SMALLTALK REPORT.

—The Editors

A note from the Publisher

uring our three years of pub-
lication, we have observed a
steady growth in the number
of Smalltalk users around the
world. In fact, we estimate that there

are now more than 50,000 avid Small-

talk programmers worldwide and grow-

RICHARD P.
FRIEDMAN

ing by 33% each year. Loyal, commit-
ted, and passionate about the language, they fervently seek
to find solutions to system development questions using
Smalltalk. In the past six months we have seen a spike in the
number of Smalltalk-based projects being implemented and
a dire need for recruiting knowledgeable and experienced
Smalltalk programmers. IBM and Easel have joined Dig-
italk and ParcPlace in the competitive vendor foray. Clearly,
the Smalltalk market is hot.

In keeping with the expanding marketplace and the need
for practical information, THE SMALLTALX REPORT Will be

evolving into a larger publication. Each issue will present
more insightful articles, source codes, experience reports,
tutorials, and industry news than ever before. Also, THE
SmavrrTaLk REPORT sports a design facelift that gives ita
more colorful and easy-to-read magazine format; and it re-
mains the one source you can depend on for savvy advice,
useful tips, and thoughtful perspectives on all Smalltalk
dialects.

THe RePorT will come to life when it sponsors the
Smalltalk Solutions '95 conference in New York City, Febru-
ary, 1995. Virtually all the Smalltalk gurus and leading OO
methodologists will be lecturing; the conference technical
chair is SmaLLTALK REPORT coeditor John
Pugh. It will be an opportunity to test-drive
all the Smalltalk products at once and getall SMALLTALK
your questions answered. Smalltalk has grown SOLUTIONS
up, and we are pleased to give it its own maga-

zine and conference.

The Smalltalk Report

Powertul Spreadsheets, Now in Smalltalk/V’

WidgetKit™/Professional (WKPro)
brings proven and powerful spreadsheet
DLLs to Smalltalk/V. And the spreadsheet
power is as easy to use as WindowBuilder™
Pro/V. WKPro consists of the FarPoint
Professional DLLs, Smalltalk wrappers
that integrate the controls into the Subpane
hierarchy, and Smalltalk classes that allow
the controls to be placed and edited
interactively in WindowBuilder Pro/V.
WKPro enables you to quickly build solid,
powerful, reusable, and maintainable Uls
for your Smalltalk/V applications.

Graphical Widgets
WKPro includes graphical controls to
display pictures pr===== s 3
(BMP, PCX, &
GIF) in spread-
sheet cells or
separately.
Animation too.

i

;fi’%ztif’"?;

BT EE

E fi Don Bradman

el e
"23APR1904 8
211802 |
DAUUL1943 |
22DEC1912 ~ E
12-5EP-1954
15FEB-1909 E
_12-MAR-1956 " 59,834.00 £

iffifi-4¥3f343£2‘7§§%*‘¥‘irt’%

FQ*% i 11

High-Powered Spreadsheets

You get a spreadsheect similar to
Microsoft’s Excel™: formulas, drag and
drop, and row/column resizing. There are
11 cell types, control of color, formatting,
multiple selection, and locking. The
spreadsheets have printing, load, and save
capability. The functionality is factored
into a hierarchy of 7 classes. Choose the
one that’s right for your application.

Virtual Spreadsheets Too

WKPro includes virtual spreadsheet
capability that enables you to load only the
visible data.

File System Widgets and More
WKPro includes DirectoryList, DriveList,
FileList, and DirectoryFileList controls.
You get input validation widgets for the
cell types. Use them for spreadsheet cells
or by themselves. Uls built with WKPro
are portable to all the supported platforms.

No runtime fees for applications developed
with WK/Pro. It includes complete docu-
mentation, full source, and free support to
registered users for the first 90 days.

WIDGETKIT/PROFESSIONAL

NEW! For Win $395
NEW! For Win32 $395
For OS/2........ $495 (4094)

WidgetKit/Professi#hal requires WindowBuilder Pro/V.

All the DLL functionality of FarPoint Professional is packaged
for easy use in WindowBuilder Pro/V. WKPro is compatible
with Team/V™ and ENVY®/Developer. Support subscription
available.

.And CUA"91 Controls Are Easy Too!

WidgetKit™/CUA 91 is a library of
CUA*91 controls for Smalltalk/V. CUA'91
controls provide a distinctive and powerful
user interface. WidgetKit/CUA ‘91 makes
them easy to use and portable. Place and
edit the controls interactively with
WindowBuilder™ Pro/V. WidgetKit/
CUA91’s specialized editors give you easy
access to all of the control’s attributes.

Notebooks, Cached for
Performance

CachedNotebooks provide the CUA91
notebook control. Performance is dramati-
cally improved by dynamic page loading.
You get complete control of orientation,
tabs, align-
ment, color,
binding, and
| caching.

Fax 408-970-7282

SIWHLSAS

Objectshare Systems, Inc.
5 Town & Country Village, Suite 735
San Jose, CA 95128-2026

CompuServe 76436, 1063
© Objectshare Systems Inc. 1994

Containers
CuaContainers
provide text or
icon representa-
tions of items they
contain. Items can
be dragged and
dropped between
containers. Supports icon, name, text, tree,
and detail views. CuaContainers can hold
objects of any type.

Value Set and More

CuaValueSet provides a way for users to
select from icon and text choices with a
mouse click. WidgetKit/CUA'91 also
provides full support for the rest of the

. CUA'91 controls, including slider and

spin button.

oo gl [|
![iemz

_...-

For WindowBuilder Pro/V
WindowBuilder Pro/V lets you build
Smalltalk/V user interfaces fast. Place the
controls and edit them interactively.
Increase consistency, ease maintenance.
Call for a free brochure.

No Runtime Fees

No runtime fees for applications developed
with WidgetKit/CUA‘91. It includes
complete documentation, full source, free
support to registered users for the first 90
days, and a 30-day money-back guarantee.

WIDGETKIT/CUA 91
NEW! For 0OS/2

$295
$295 (3094)
$295 (3094)

For Win
For Win32

WidgetKit/CUA'31 requires WindowBuilder Pro/V. WidgetKit/
CUA91 is compatible with Team/V and ENVY/Developer.
Includes DLLs. User interfaces built using WidgetKit/CUA'91 are
portable to supported platforms. Support subscription available.

Call to order today (408) 970-7280

9AM to 5 PM PST, Monday through Friday

30-day money-back guarantee

Software metrics for the
Smalltalk practitioner

William Cole

t has been accepted that defect prevention is a more optimal

approach to software quality than defect correction. How-

ever, many development efforts still rely on defect detection
as the primary method for ensuring software quality. This is due
not so much to a lack of concern for quality as to the pragmatic
reality of software project mortality rates. In many organiza-
tions, the success rate of projects started versus completed is
sometimes less than 30%. Given this level of mortality in soft-
ware projects, it is not surprising that project managers are un-
willing to invest resources for up-front reliability and quality en-
gineering efforts. In many cases resources for quality efforts are
not invested until the project has survived to the test and inte-
gration phase. Unfortunately, this is too far into the develop-
ment cycle for defect prevention techniques to be of any value.

This is why the majority of software quality assurance (QA)
efforts drive system reliability to acceptable levels using tradi-
tonal defect detection techniques (unit and integration testing)
techniques. Not surprisingly, defect detection QA approaches for
high-reliability systems often demand more resources than those
expended in the design and coding phases of development.

The Tom Gilb approach to process measurement says any-
thing you measure in the development process is valuable. How-
ever, the practical reality of running software metrics programs
leads this author to a more conservative stance. Even with long-
standing software metrics (Halstead, McCabe) that have been in
use for several years, there is still a high level of interpretation
based on the language implementation, the type of application,
etc. The logistical aspects of software measurement are also an
issue, given the analysis of large data sets along with the need to
provide timely feedback.

The point here is that proposing metrics is the easy part—
but validating and interpreting measures into meaningful infor-
mation that improve the cost efficiency of software development
is much more difficult. Therefore, in proposing a series of soft-
ware measures, we asked ourselves two basic questions:

* What are the concrete goals (in dollar terms) of what you're
trying to achjeve?
* Are the metrics proposed easily gathered, analyzed and veri-
fiable without too much subjective interpretation?
Our objective here is to present a series of simple software mea-
sures to achieve two results: 1) Determine the regions of code
which are most volatile, allowing for intelligent project manage-
ment decisions on where to invest (often limited) QA resources,
and 2) Present a straightforward method for capturing and ana-
lyzing the measures outlined in this article. We'll call these mea-
sures Change Metrics.

4

The following section presents an introduction to Change
Metrics. The third section outlines further interpretations of
Change Metrics. The fourth section shows how to implement
these metrics within the framewark of the Smalltalk language
environment. The final section presents conclusions on the ma-~
terial covered in this article.

CHANGE METRICS
There are two basic change measures for OO systems: 1) struc-
tural changes to a class and 2) behavior changes (to methods
within a class). Within each series, both complexity and produc-
tivity measures can be derived. The approach herein takes a
larger-grained view than this, focusing instead simply on the
version history and number of methods associated with each
class version, or:

1. number of versions for a class

2. number of new methods for each class version.
Each of these basic Change Metrics can be viewed from two
different perspectives; the distribution of changes within a soft-
ware system (which are the “hot” classes), and who is doing the
changes, or:

1. Distribution of versions across all elasses within an application.

2. Changes per developer.
The underlying premise with these measures is that the fewer
Versions associated with a class design, the more stable and robust
it will be. This is only a general observation. The following will
describe each series of Change Metrics in more detail. General-
ized trend interpretations are also provided with each measure.

Number of class versions
This relates to the number of versions made to a class. General
assumptions derived from this measure:

1. Plotted along a time axis of (#), if the number of class ver-
sions increases as the project nears completion, it indicates
that the design is unstable.

2. Plotted along a time axis of (#), if this number remains stable
or decreases as the project completes, it is a sign that the class
design is stable.

Number of methods for a class
This measure relates to the number of methods associated with
each Class Version. General assumptions derived from this
measure: _
1. An initial growth phase, followed by a stable (or gradually in-
creasing) number of methods per Class is indicative of a ro-

bust class design.
The Smalltalk Report

New from SIGS!

A SIGS Publication

Report on
Object Analysis
& Design

= Your first step for

== ¢ ||| planning and building
:_: object-based software
el el systems.

The Report on Object Analysis & Design (ROAD)

is a new bi-monthly (6x), advertising—free journal, which
focuses on language-independent, architectural concerns
about object—oriented analysis, design and modeling. Each
issue provides you with in-depth articles addressing the
complex questions related to the system architecture prior
to when language issues are addressed, including...

— the fundamental issues related to object modeling

- notational schemes for representing A&D models

— the processes for performing OOA or OOD

- revisions and updates of various design methods

- comprehensive comparisons of OOA&D approaches
- specifications on which method to use, and when

— expert reports on the tools currently available

And much more.

T LG EEEEE L L LR

SAVLE UPTO 20% WITH THIS OFFER!

Platform and system Accr#
independent, ROAD is 1 ExpDate
written for all levels of

SIGNATURE

project complexity.

EPORT... i Yes—Enter my subscription to
! ROAD at the rate marked below: N
' ame
! [J Personal]
! 01 Year (6issues) $99 Title
i 02 Year (12 issues) $158 Save 20%! Address
E J Corporate/Library Ci
! [1 Year (6 issues) $199 ity
For software developers E (2 Years (12 issues) $358 Save 10%! State/Province
and project leaders | METHOD OF PAYMENT :
either currently working | O Check enclosed ble to ROAD Zip/Postal Code
. 1 eck en , payable
on an OT project, or ! (nUS. dollars, drawn ug a}(]J.S. bank) Country
moving toward that g Charge my P E
goal. i QVisa QMasterCard 3 AmEx | '
i

To start your subscription to ROAD, mail or fax this coupon today!

Now! Automatic

Documentation

Synopsis produces high quality class documentation
automatically. With the combination of Synopsis and
Smalltalk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

* Documents Classes Automatically

* Provides Class Summaries and Source Code Listings
* Builds Class or Subsystem Encyclopedias

Publishes Documentation on Word Processors
Packages Encyclopedia Files for Distribution

Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

For Smalltalk/V Development Teams — With Synopsis

Development Time Savings

Coding Documentation
Without EET
Synopsis A e A
' Start Finish
Documentation
With TN
Synopsis
A A
Start Finish
Products Supported:
Digitalk Smalltalk/V Windows $295
Digitalk Smalltalk/V OS2 $395

(OS/2 version works with Team/V and Parts)

Sy Synopsis Software

8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

2. A great number of changes to methods between successive
versions of a class (or wildly fluctuating numbers) points to
immature or incomplete design. This can also point to in-
complete or poorly understood requirements.

For instance, Figure 1 shows an example graph of the number of
methods for a class between successive class versions from a
sampled development effort.

Developer counts

Developer counts represent the view of class Ownership from
the perspective of the entire system. These counts can be corre-
lated with the above counts to determine:

1. Number of class versions per developer.

2. Number of new methods created per class per developer.
There are many was to correlate developer counts at both the in-
dividual Class level and at a synthesis (multiple class) level(s).
For instance, Figure 2 shows an example graph of the number
classes owned per a group of developers in 2 measured project;

Developer counts are measures which profile a developers
impact and productivity on the system. Traditionally, there has
been both resistance and controversy surrounding these types of
measures. Personal productivity metrics have complex interde-
pendencies within the context of an organizations sociology.

Careful consideration is required in implementing these types of
individual productivity measures.

Distribution of changes
An important synthesis of the related metrics in this series, it

6

provides a “change” complexity measure of Classes, based on
the number of changes distributed across the entire system
within a time domain. See Figure 3 for an example visualiza-
tion of this metric.

General assumptions derived from this measure:

1. High numbers of changes to source code units are indicative of:

* low requirements stability/completeness,

* poor design quality within a source code unit,

* excessively tight “coupling” of source code units,

= resulting in 2 domino effect of change propagation.

2. Clustering of changes within subsystems can indicate present
and future reliability and maintainability problems. This al-
lows for the intuitive modeling of future errors using the
Change Prone Module equation.!

INTERPRETATION
As with most software metrics, interpretation must be limited to
30
1]
s
E 20
- 15
8 10
a
=
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Class Versions
Figure 1. Number of methods/class.
The Smalltalk Report

‘“Mastering the Art & Science of Object Technology”

Now in its fifth successful year, Object Expo Europe is still the largest
OOP conference and exhibition in Europe. More than just sessions and
exhibits, Object Expo Europe is a festival of object-related events and
people.

Be a part of this once-a-year event that will bring the entire European
OOP community to London’s premiere venue, the Queen Elizabeth |
Conference Centre in Westminster. Mark your calendars now, and send
for more information today!

September 26-30, 1994

Queen Elizabeth Il Conference Ctr., London

Sponsored by

OB]H;.I. BB TI-ORENTED . Presented by
migtine P"‘M
C—R—_m Ulnlllﬂﬂg KPMG nSO\IIFEgE%é

What's special about
Object Expo Europe '94:

An all new technical programme, for
developers to managers!

Choose from over 50 in-depth lectures focusing on new
aspects of OOP, including analysis and design, distributed
object technology, standards, languages and environments,
ODBMS, and project management strategies—the class
topics you're most interested in!

More of the speakers you've asked for!
Learn from industry leaders on how to maximise object
technology for your company.

All of the newest object technology
products on display

Take advantage of this once-a-year event to see and try out
an entire spectrum of object technology products.

Exchange ideas and discuss industry
advancements

Enjoy Keynote speeches, Birds-Of-A-Feather Roundtable
discussions, Product Education Sessions, User Group
Meetings, Book Signings, Expert Walk-In Clinics, Welcome
Receptions, and much more!

(XX RN NNY 5 [N NN N NN ENENNNNNNNNNNENNENNNNENNN]
&

~ YES!

Please send me more information
on Object Expo Europe’94

[Pree Exhibits [] Attending [] Exhibiting [Executive
Pass Symposium

Name

Tide

Company
Address

City Province/State,

Country Zip/Postal Code

Day Phone

Fax

Mail or Fax to: Object Expo Europe 94
Brocus House, Parkgate Road, Newdigate
Surrey, RH5 5AH, UK

voice x 44 (0) 306 631331
fax x 44 (0) 306 631696

Software metrics ‘

generalized trend indicators. This is due to the wide range of
potential applications and language implementations. Analysis
of previous change measure data shows both implicit and ex-
plicit relationships to system software quality attributes.? Rela-
tionships to system quality are dependent on whether there is a
positive (high count) or negative (low count) trend associated
with changes to a software system.! Note also that the terms
“increased,” “stable,” and “decreased” in this case are relative to
the average mean number of changes occurring across all classes
within a system.,

An important assumption needs to be addressed here con-
cerning the use of ENVY/Developer. Ordinarily, projects tend
to start out with long intervals between Class versions. As
things progress and the project gets closer to completion, the in-
terval between Class versions tends to decrease significantly. It is
important to bear this in mind when interpreting the counts for
number of versions per Class.

More than 75 KLOC of Smalltalk code was analyzed during
the course of validating our hypothesis. All of the assertions in the
third section were validated to some degree. We are intentionally
vague on the validation of these measures as our sample of code
was limited to this single application. Also, our motive was to use
these measures in the most general sense; we sought to avoid
complex analysis and by extension, complex interpretation.

IMPLEMENTATION
It is understood that many of the implementation details out-
lined in this Section are at best rudimentary. They are only in-

as

25
20
15
10

Classes Owned

0 1 2 3 4
Developer

Figure 2. Distribution of class ownership.

Vearsions

Classes

Figure 3. Distribution of versioning events across multiple classes. |

8

tended to provide a general implementation framework for es-
tablishing a change metrics collection program within the
Smalltalk environment. Further details of implementing a
change metrics collection program, along with analysis, report
generation, and visualization of metrics data collected will be the
subject of a follow-on paper.

The ENVY/Developer team programming tool from Object
Technology makes it possible to quickly collect change metrics
from an ENVY/Developer repository. In ENVY all method and
class editions are marked with a unique timestamp. The reposi-
tory can be queried for all available editions of a particular class,
or all method editions for a particular method, and their time-
stamps compared.

In this way it is easy to determine several possible metrics
about the rate of change in an application including:

1. The total number of editions of 2 method or class over its
lifetime.
2. The number of method changes whose timestamp falls be-
tween any two class versioning events.
3. The number of method and class editions whose timestamp
falls between any two arbitrary units of time.
In addition, ENVY/Developer provides a record of the class
owners of all classes in a repository. It is simple to query all
classes in the repository for their owners and assemble a dictio-
nary relating users to the classes they own.

CONCLUSION

As mentioned earlier, several measures of stability, complexity
and productivity of a software development effort can be derived
from these Change Metrics. Possibilities also exist for using
these measures to refine existing birth—death reliability model-
ing techniques.3

No reference is needed to the application domain of the sam-
pled software system. The intent has been is to outline an ap-
proach general enough for multiple implementations. An effort
has also been made to abstract the key concepts to allow applica-
tion of these measures to a wide range of language technologies.

It is important to note here that Change Metrics are not a
defect prevention technique. In many ways it can be viewed as a
large-grained defect detection strategy that identifies groups or
subsystems of classes that are more defect prone than others.
The efficiency and quality of a software development effort can
thus be enhanced by qualifying those areas where testing efforts
can be best applied.

Another key benefit of Change Metrics is that they are a
back-end quality activity. In most organizations, obtaining re-
sources for quality initiatives is easier in the test and integration
stage of development when visibility of a project escalates.
Change metrics also allow for more timely feedback on a soft-
ware system’s level of quality, being simpler to gather and to in-
terpret than many traditional SQ_measures.

However, if one tries to divine more detailed information
from Change Metrics, the results will be less effective as the
measurements become more finely grained. Again, thisisa
large-grained detection approach to software quality.

Those interested in obtaining the Smalltalk code used to
capture Change Metrics from an Envy/Developer repository can

continued on page 13

The Smalitalk Report

Floating toolbox
in Smalltalk/V

Wayne Beaton

any applications written for Windows use windows
M that float above the workspace in place of tool boxes

fixed to the workspace. This technique has the advan-
tage of being completely free-form, allowing users to organize
their work spaces any way they like.

Microsoft has published THe WiNDows INTERFACE: AN
ArpricaTioN DEsien Guipg, which details how user interfaces
should appear and function in Windows. Curiously, the text
does not mention floating windows, but the Visual Design
Guide, software provided with the book, does.

Typically, floating windows have a mini caption bar to distin-
guish them from regular windows. According to Microsoft, the
caption bar should be nine pixels in height and the system box,
in the left top corner, should be twelve pixels in width. Figure 1
shows an example of a floating window that could be provided
in a window building application.

Windows does provide support for floating windows. How-
ever, it provides no support for mini caption bars. The only
programming rnention that I have been able to find is in an
obscure piece of code provided as an example for Microsoft
Visual C++ that creates a captionless window and draws every-
thing itself. Fortunately, the same can be accomplished in
Smalltalk/V Windows.

The combination of Windows and Smalltallk/V Windows
permits the programmer to draw on a TopPane just as easily as
any other kind of pane. Windows even tells us when, where and
what to draw through its event mechanism.

The class FloatingTopPane has been created, as a subclass of
TopPane, to support floating windows. The name FloatingTop-
Pane is perhaps incorrect, in that its instances do not have to
float. T have selected this name to keep clear the purpose of the
pane—it has been designed to float, and any other use would be
a violation of interface guidelines.

The class has been designed in such a way that it can be used
in place of TopPane using the same public interface. Child panes

openAbove: anApplicationWindow
"Open myself as a floating window above
anApplicationWindow."
self
addView:
(FloatingTopPane new
owrer: self;
parent: anApplicationWindow;
when: #opened perform: #opened:;
yourself);
openWindow

Figure 2. Example code: How to create a window that "floats"
ahove another.

Figure 1. A floating win-
dow containing icons.

July-August 1994

can be added using the addSubpane: method; the children use
framing blocks the same way as they do with a TopPane.

A floating window is just a child window that remains on top
of its parent window. To make a FloatingTopPane float is a sim-
ple matter of specifying a parent window at creation time. This
is accomplished in Smalltalk/V by setting the parent of the
floating window to the parent window. The open method for a
ViewManager subclass might look like Figure 2.

When a window is created, a style is passed in to determine
the appearance of the window. The style is an integer, which
presumably means something to the Windows’ API. This inte-
ger is answered from the method defaultFrameStyle in Applica-
tionWindow. FloatingTopPane overrides this method and an-
swers the styles WsPopup and WsBorder. The combination of
these styles creates a window with a border and no caption bar
or sizing frame.

Due to a bug in V, whether it is specified or not, a window
will have a caption bar. The fix for this bug, the method Appli-
cationWindow>>wmSize:with: as provided by Digitalk in a
maintenance upgrade has been included with the code.

Through a strange sequence of events, an instance of Float-
ingTopPane is asked to draw itself when it receives a message to
display. The display method simply draws the caption bar in the
correct color (depending on whether the window is activated or
not) and then draws the system box.

Getting the children to draw themselves uses existing code—
no changes were required to facilirate this. However, in order to
get children to size themselves correctly, the method Application-
Window>>resize: had to be overridden to take into account the
caption bar that Windows is no longer responsible for drawing.
The new version simply takes the rectangle parameter and ad-
justs it to leave room for the caption bar.

Getting the window to respond to such activites as dragging
is another matter. Windows doesn't think that the caption bar is
there, so there is no place to grab in order to drag the window to
a new location. To facilitate dragging, it is the programmer’s re-
sponsibility to understand the mouse click, provide a drag out-
line and to perform the actual move. Further , if the mouse is
clicked in the system box, then the systern menu should appear.

When the left button is clicked with the mouse in the con-
fines of the window (but not in the confines of a child win-
dow), the window is sent the button1Down: message with the
point at which the click occured in the window’s local coordi-
nates. Similarly, the window will receive the messages but-
ton1Move: and button1Up: when the mouse is moved or re-
leased with the left button pressed, respectively.

Floating toolbox in Smalltalk/V (

The method FloatingTopPane>>button1Down: (shown in
Fig. 3) first checks to see if the button was clicked with the
mouse inside the system box.

This can easily be determined by checking to see if the rec-
tangle outlining the system box contains the point of the click.
If so, the message doSystemMenu is sent to perform any system
box activity. Otherwise, if the mouse click occured inside the
rectangle outlining the caption bar, then the window is prepared
to be dragged.

Since Windows will not perform any of the dragging func-
tions for us automatically, it must be simulated. When a window
is dragged, an outline, showing the area the window would oc-
cupy should the button be released, is moved about the screen
maintaining a relative offset from the current mouse point. To do
this, the mouse points, in screen coordinates, must be maintained.

The point of the mouse click is given in coordinates local to
the window. These coordinates are converted into screen coordi-
nates and remembered in instance variables. The variable start-
Point holds the point where the mouse was first clicked; last-
Point holds the position of the most recent mouse event.

The difference between the last point and the start point is
used to determine the current position of the drag rectangle and
ultimately, the new location of the window. Figure 4 shows the
method that computes the drag rectangle; the frame rectangle of
the receiver, which is the rectangle defining the screen area occu-
pied by the window, is translated by the difference of the last
point and the start point. The drag rectangle is drawn by XORing
this rectangle on the screen.

button1Down: aPoint
"Private - The left button is down at aPoint. If
aPoint is in the syster box, then pop up a menu.
If aPoint is in the caption bar, then prepare to drag."
| screenPoint |
(self systemBoxRectangle containsPoint: aPoint)
ifTrue: [self doSystemMenu]
ifFalse: |
(self captionBarRectangle containsPoint: aPoint)
ifTrue: [
screenPoint := aPoint
mapClientToScreen: self.
self
captureMouselnput;
startPoint: screenPoint;
lastPoint: screenPoint;
displayReverseDragOutline]
ifFalse: [super button1Down: aPoint]]

Figure 3. FloatingTopPane>>button1Down.

outlineRectangle
"Private - Answer a rectangle defining my
dragged frame."
~self frameRectangle
translateBy: (self lastPoint - self startPoint)

Figure 4. FloatingTopPane>>outlineRectangle.

activeCaptionColor
"Answer the color to use for an active caption
(title bar)."
~UserLibrary getSysColor: ColorActivecaption

Figure 5. The method ColorManager class>>activeCaptionColor.

10

To ensure that all subsequent mouse events are received, the
message Window>>captureMouseInput is sent. Normally,
mouse events are sent to the window containing the cursor.
Calling this message will ensure that all future mouse events are
sent to the receiver.

When the message buttoniMove: is received, the drag out-
line is hidden, the new position of the mouse is remembered,
and the drag outline is then redisplayed in the new position.

The method FloatingTopPane>>button1Up: hides the drag
outline, rernembers the new position of the mouse, and moves
the window to the new location by calling the Windows API
SetWindowPos. The message clearMouseCapture releases the cap-
ture of mouse events exclusively for the receiver.

I have not implemented the use of the system menu, partially
because my initial effort didn’t work quite right, and partially
because I didn't need it that badly. I have provided a hook for it
in the method FloatingTopPane>>doSystemMenu that can be
included by someone with more enthusiasm for such a creature
than myself.

The ColorManager

The display methods in the class FloatingTopPane make refer-
ence to the class ColorManager, which is a class implemented to
handle colors.

Through the control panel, the user has complete control
over the colors that windows will use. These colors are not
represented in ColorConstants, but they can be determined by
calling standard APIs. The ColorManager class implements
such calls.

1 have included the subset of the methods implemented in
ColorManager used by the FloatingTopPane class. Implementing
the balance of the methods should be a simple matter.

The method ColorManager class>>activeCaptionColor,
shown in Figure 5, answers the color to be used by an active
caption bar.

It calls the User API getSysColor. Similarly, the method
ColorManager class>inactiveCaptionColor answers the color of
an inactive caption bar. The method ColorManager class>>black
answers the value for ClrBlack in the pool dictionary Color-
Constants.

CONCLUSION

I have provided my implementation of floating windows in the
class FloatingTopPane, a class created in order to employ floating
windows with minicaption bars.

The implementation is simple but incomplete; I have chosen
not to provide the system menu, nor have I provided for any
keyboard movement.

When creating objects like the floating top pane, it is im-
portant to consider look and feel guidelines like those pub-
lished by Microsoft for Windows. Using these guidelines will
ensure that applications will appear and function similar to
other applications and provide 2 more comfortable environ-
ment for the user. Q

Wayne Beaton is a senior member of the development team at The Object
People. He can he reached at The Object People in Ottawa, Canada, at
613.225.8812, or by email at wayne@0bjactPeople.on.ca.

The Smalltalk Report

Listing 1. FloatingTopPane class.

TopPane subclass: #FloatingTopPane
instanceVariableNames:

‘startPoint lastPoint '
classVariableNames: "
poolDictionaries:

'WinConstants '
category: 'Windows-Mini Caption Bar'!

'FloatingTopPane class methodsFor: 'examples' !

examplel
"Open an empty floating window over the Transcript."
self new
parent: (Transcript views at: 1);
open! !

IFloatingTopPane methodsFor: 'activating' !

activate
"Private - I have been activated. Redisplay my caption bar."
self invalidateRect: self captionBarRectangle.
“super activate!

deactivate
"Private - I have been deactivated. Redisplay my caption bar."
self invalidateRect: self captionBarRectangle.
~super deactivate! !

!FloatingTopPane methodsFor: ‘initializing' !

initGraphics

"Private - Initialize the graphics tool for the receiver. Borrowed from
the super class, except that I need a Pen, not a TextTool."

handle = NullHandle ifTrue: ["nil].

graphicsTool := Pen forDC: nil medium: self.

"Can't use foreColor: or backColar: because it sets the graphicsTool's
foreColor & backColor of the window's childrens"

self propertyAt: #foreColor put: self foreColor.

self propertyAt: #backColor put: self backColor.! !

!FloatingTopPane methodsFor: 'events-buttons' !

button1DoubleClick: aPoint
"Private - Left button is double clicked. If the double click occured in
the system box, then close myself."
(self systemBoxRectangle containsPoint: aPoint)
ifTrue: [self close]
ifFalse: [super button1DoubleClick: aPoint]!

button1Down: aPoint
"Private - The left button is down at aPoint. If aPoint is in the system
box, then pop up a menu. If aPoint is in the caption bar, then
prepare to drag.”
| screenPoint |
(self systemBoxRectangle containsPoint: aPoint)
ifTrue: [self doSystermMenu]
ifFalse: [
(self captionBarRectangle containsPoint: aPoint)
ifTrue: [
screenPoint := aPoint
mapClientToScreen: self.
self
captureMouseInput;
startPoint: screenPoint;
lastPoint: screenPoint;
displayReverseDragOutline]
ifFalse: [super button1Down: aPoint]]!

button1Move: aPoint
"Private - As the user moves the mouse around with the left button
down, show an outline of where the window would go if the button
is released."

| screenPoint |
handle = WindowHandle queryCapture
ifTrue: [
screenPoint := aPoint mapClientToScreen: self.
self continued on next page

VisualWorks

FREE®

That’s right, you get the
renowned VisualWorks
development product absolutely
free with each license of HP’s
Distributed Smalltalk
development bundle.

If you want to build client-server
applications that truly give more
power to your end users, you'll want
HP Distributed Smalltalk. You get
tools and CORBA 1.1 class libraries for
object request broker and related
services, along with the VisualWorks
Smalltalk environment and GUI
builder. And that gives you a faster,
easier way to develop and deploy
distributed applications.

We're convinced that once you try
HP Distributed Smalltalk, you'll be
hooked. That’s why, for a limited
time, we’re willing to give you the
VisualWorks portion of our product
FREE.

Contact us today, for details!

Phone: (408) 447-4722
FAX: (303) 229-2180

Attention: VisualWorks Offer

e-mail: dst@sde.hp.com

% Offer Expires September 30, 1994
Minimum order 5 licenses.

© 1994 Hewlett-Packard Company

July-August 1994

A backaro

11

continued from page 11

Floating toolbox in Smalltalk/V

displayReverseDragQutline;

lastPoint: screenPoint;

displayReverseDragOutline]
ifFalse: [super button1Move: aPoint]!

button1Up: aPeint
"When the user lets up the button, move the window to the new
location."
| screenPoint |
handle = WindowHandle queryCapture
ifTrue: [
screenPoint := aPoint mapClientToScreen: self.
self
displayReverseDragOutline;
lastPoint: screenPoint;
clearMouseCapture.
self handle
setWindowPos: nil
rectangle: self outlineRectangle
fs: SwpNozorder | SwpNosize]
ifFalse: [super button1Up: aPoint]! !

!FloatingTopPane methodsFor: 'private-accessing' !

lastPoint
MastPoint!

lastPoint: aPoint
lastPoint := aPoint!

startPoint
~startPoint!

startPoint: aPoint
startPoint := aPoint! !

!FloatingTopPane methodsFor: ‘private-style' !

defaultFrameStyle
"Private - Answer my style."
“WsPopup | WsBorder! !

!FloatingTopPane methodsFor: 'private-menu bar' !

buildMenuBar
"Private - [have no menu bar."! !

!FloatingTopPane methodsFor: 'private-captionBar' !

captionBarHeight
"Private - Answer the height of the caption bar."
~g!

captionBarRectangle
"Private - Answer the rectangle outlining my caption bar."
~self captionBarRectanglelIn: self rectangle!

captionBarRectangleIn: aRectangle
"Private - Answer the rectangle outlining my caption bar. Assume
aRectangle is my frame."
~(aRectangle leftTop leftAndUp: 1)
extent: aRectangle width + 2
@ self captionBarHeight! !

!FloatingTopPane methodsFor: 'private-client rectangle’ !

clientRectangleIn: aRectangle
"Private - Answer the rectangle, inside my frame, where my children
go. Assume aRectangle is my frame."
~(aRectangle leftTop down: self captionBarHeight - 1)
rightBottom: aRectangle rightBottom! !

!FloatingTopPane methodsFor: 'private-displaying' !

display
"Display myself."
self
displayCaptionBar;
displaySystemBox!

displayCaptionBar
"Private - Display the caption bar."
| box fillColor |
box := self rectangle.
self pen
foreColor: ColorManager black;
backColor:
(self isActive
ifTrue: [ColorManager activeCaptionColor]
ifFalse: [ColorManager inactiveCaptionColor]);
rectangle: (self captionBarRectangleIn: hox)!

displaySystemBox
"Private - Display the system box in the top left comer."
| systemBoxRectangle insetRectangle |
systemBoxRectangle := self systemBoxRectangle.
insetRectangle := (0@0
extent: systemBoxRectangle width - 6 @ 3)
centerln: systemBoxRectangle.
self pen
foreColor: ColorManager black;
backColor: ColorManager lightGray;
rectangle: systemBoxRectangle;
backColor: ColorManager white;
rectangle: insetRectangle! !

!FloatingTopPane methodsFor: 'private-displaying draq outline' !

displayReverseDragQOutline
"Private - Display the drag outline using the display's pen."
self
displayReverseDragOutline: self outlineRectangle
using: Display pen!

displayReverseDragOutline: aRectangle using: aPen
"Private - Display aRectangle as the drag outline using aPen."
aPen
saveDC;
setRop2: R2Notxorpen;
foreColor: ColorManager hlack;
place: aRectangle leftTop;
box: aRectangle rightBottom;
restoreDC!

outlineRectangle
"Private - Answer a rectangle defining my dragged frame."
~self frameRectangle
translateBy: (self lastPoint - self startPoint)! !

'FloatingTopPane methodsFor: 'private-system box' !

doSystemMenu
"Private - The system menu has been clicked. I guess that a menu
should be opened."!

systemBoxExtent
"Private - Answer the extent of the rectangle outlining the system
box."
~self systemBoxWidth @ self captionBarHeight!

systemBoxRectangle
"Private - Answer the rectangle outlining the system box."
~self systemBoxRectangleIn: self rectangle!

systemBoxRectangleIn: aRectangle
"Private - Answer the rectangle outlining the system box, assuming
aRectangle is the window's frame."
~(aRectangle leftTop leftAndUp: 1)
extent: self systemBoxExtent!

systemBoxWidth
"Private - Answer the width of the system box. This constant comes
right from Microsoft's GUI guidelines "
A0t

12

The Smalitalk Report

!FloatingTopPane methodsFor: 'windows events' !

resize: aRectangle
"Private - When I resize, make sure that my child windows leave room
for the caption bar."
~super 1esize: (self clientRectangleIn: aRectangle)!

wmSize: wordInteger with: longInteger
"Private - Process the window resizing message. From a Digitalk
maintenance upgrade (2.01)."
| extent |
"do nothing if being minimized"
wordInteger = Sizeiconic ifTrue: [“nil].
extent := ((WinPoint new:4)
ulongAtOffset: 0 put: longInteger) asPoint.
(extentx=0o0r: [extenty=0])
ifFalse: [self resize: (0 @ O extent: extent)].
Anil! !

Listing 2. ColorManager class.

Object subclass: #ColorManager
instanceVariableNames: "
classVariableNames: "
poolDictionaries:

"WinConstants ColorConstants '
category: ‘Environment'!

!ColorManager class methodsFor: 'system colors' !

activeCaptionColor
"Answer the color to use for an active caption (title bar)."
~UserLibrary getSysColor: ColorActivecaption!

inactiveCaptionColor
"Answer the color to use for an inactive caption (title bar)."
~UserLibrary getSysColor: ColorInactivecaption! !

!ColorManager class methodsFor: 'colors' !”
black

"Answer the color constant for black."
~ClBlack!

O]

Software metrics
continued from page 8

email the author at billcole@mercury.interpath.net, or
73363.276@compuserve.com.

Refining the implementation of Change Metrics to address
error reintroduction as a result of defect correction will be the
topic of a future paper. @

Acknowledgement
The author wishes to thank Kyle Brown for his assistance in
preparing this article.

References

1. Levendel, Y, Reliability analysis of large systems: defect data modeling,
IEEE TransacTions oN Sorrware ENcINEERING, 16(2), 1990.

2. Myers, G. SoFTWARE RELIABILITY, 1976, p. 340.

3. Ehilich, W. K., Lee, §. K., Molisani, R. H. Applying reliability mea-
surement: A case study, IEEE Sorrwane EncineerinG, March 1990.

William Cole is President of JumpStart Systems. a Smalitalk consulting
firm in Cary, NC. He can be reached at 919.460.1583 or by email at
hillcole@mercury.interpath.net.

July-August 1994

Consulting Services
Tacs o the Soalltald dosirn

ODBTalk

Open Database Connectivity

Solution for Smalltalk

A class library for ODBC
Windows $199
Wini2s $299
WinNT $399

Socktalk

Client Server Development

Solution for Smalltalk

A class library for Windows

Sockets Development
Windows $149
Wind2s $199

WinNT $249
Introductory prices until
Sep 1/94

Available from these distributors:

North America: The Smalltalk Store
tel: (415) 854-5545
fax: (415) 854-2557

North America: Computer Services
Group
tel: (212) 819-0122
fax: (212) 819-0147

Europe: micado SoftwareConsult
tel: +49-2242-871-450
fax: +49-2242-871-455

Australia/Pacific: Cyberdyne
Systems

tel: +61-2-955-9788

fax: +61-2-95502913

or contact Ken Findlay at LPC
tel: (416) 787-5290
fax; (416) 787-9214

13

Project Practicalities

A brief
look at
size
metrics

ast month, we took “A brief look at inheritance metrics.”
This month, we will continue looking at O-O metrics,
again drawing heavily* from my book.1
An area of historical interest in software metrics is the desire
to measure the size of a piece of code. As usual, the differences
encountered in O-O systems necessitate the use of different
metrics. In this article, I'm going to discuss some design metrics
dealing with class and method size.

MARK LORENZ

SIZE METRICS
Class size
Class size can be measured in a number of ways, including:

* number of instance methods

* number of class methods

* number of instance variables

* number of class variables

In this article, we'll look at the number of instance methods in
more detail.

Figure 1 shows the results from a number of O-O projects.
We see that most of the projects averaged in the ten to fifteen
methods per class range. I have noted a couple of points worth
discussing on the results—Ul-intensive projects and longer-term
projects. We believe, through further detailed study, that:

« Ul classes tend to have more methods to service the controls
available to the user;

* new requirements are typically placed on mature classes over
time, causing them to grow in size;

* classes nested deeper in the inheritance hierarchy tend to
have fewer methods, since they merely extend their super-
classes’ capabilities.

The public methods indicate most accurately the amount of
work for which a class is responsible.

The number of methods in a class relates to the amount of
collaboration being used. Larger classes may be trying to do too
much of the work themselves instead of putting the responsibili-

* This article draws heavily from the work | did for the book, with the publisher's blessing. Rather than
note evary reference, | will refer you to the book for an ewtensive discussion of 00 metrics.

Mark Larenz is founder and president of Hatteras Software, Inc., a company that
specializes in helping other companies use object technology eHectively. He wel-

comes questions and comments at 919-851-0993 or at 712143120« com-
puserve.com.

14

ties where they belong. They are more complex and harder to
maintain.

Smaller classes tend to be more reusable, since they provide
one set of cohesive services instead of a mixed set of capabilities.

On an individual class basis, I use an upper threshold of 20
for the number of instance methods in a model class and 40 for
UI classes to identify anomalies. I use a lower threshold for av-
erages across a number of classes: 12 for model classes and 25 for

UI classes.

ACTION PLANS
Possible actions when anomalies are found in class size
Hold design reviews to examine the class to see if some of the
methods don't make sense to be included in this class’ responsi-
bilities. There may be undiscovered class(es) or misplaced re-
sponsibilities. Look carefully at method names and ask yourself
questions such as
* Is this something I would expect this class to do?
» Is there a less obvious class, such as an event, that has not
been defined?
When examining a class, focus on public methods of a class.
Take a look at the instance variable usage metric to see if there
is 2 way to divide the class along optimum method lines.

METHOD SIZE
Method size can also be measured 2 number of ways:
* number of message sends,
* number of statements, and
* number of lines of code.
In this article, we’ll look at the number of message sends as a more
style-independent metric for measuring method size.

Figure 2 shows some project results for message sends. Our
rule of thumb is nine for an upper anomaly threshold. Large
numbers may indicate function-oriented code and/or poor allo-
cation of responsibilities.

" . General-purpose

30 basae classes

Smalltalk C+

Figure 1. Average number of instance methods per class.

25r
20
15

10

Smalltalk

Figure 2, Average number of message sends.

The Smalltalk Report

Authors Wanted
For Two Exciting
Book Series

Managing Object Technology

edited by Charles E Bowman

For more information please contact:
Charles F. Bowman, Series Editor
914-357-6285 (v), 914-357-6524 (f)

71700,3570@compuserve.com

<<
Advances in Object Technology

edited by Dr. Richard S. Wiener

For more information please contact:
Dr. Richard S. Wiener
135 Rugely Court
Colorado Springs, CO 80906
719-579-9616 (f&v)

SIGS
BOOKS

405 El Camino Real, #106
Menlo Park, CA 94025, U.S.A.
voice: 1-415-854-5535

fax: 1-415-854-2557

email: info@smalltalk.com
compuserve: 75046,3160

he
malltalk
tore

... devoted exclusively to Smalltalk products.

Send For Our Free Catalog!

The Smalltalk Store carries over 75
Smalltalk-related items: compilers, class
libraries, books, and development tools. If
we don’t have what you need, we’ll look for
it. Give us a call or send us an email - we’ll
put you on the mailing list and send you a
copy of our combination newsletter-catalog.

Developers: Do you have a product
that might be useful to Smalltalk,
VisualAge or Parts programmers?
The Smalltalk Store call sell or
publish your software for you. Ask
for our Developer’s Kit.

Following are a number of affecting factors for this metric.

Key classes. Classes at the center of your application will often
be larger and more complex.

UI classes. User interface classes will have some large methods,
such as the initial layout of the window contents. This may
skew your averages higher.

Active versus passive classes. Classes that take an active role in
driving the behavior of the system will generally be larger
and more complex than passive, data-providing objects.

Accessing methods. Methods that allow access to state data in
classes are typically very short. This will skew your averages
lower.

Language. C++ method sizes tend to run higher than Smalltalk.
T use a higher threshold for C++ projects to identify anom-
alies. Coding in a hybrid language, such as C++, also allows
the developer to write code in methods that are outside the
“O-O part” of the language. This code will not, of course, be
counted in the number of message sends but certainly relates
to the size of the method. We wouldn't want to ignore 100
lines of non—0-O code and count a couple of message sends
(member function invocations). Of course, we don't generally
want our developers writing non—0O-O code anyway!

Action plans

So what do you do if your message sends are beyond the rule-
of-thumb threshold? Look at the methods individually or in
small groups and decide if an action would improve your design.
If so, provide mentoring for developers who are writing larger
methods. They are probably falling back on old habits and writ-
ing their methods in a more setial, function-oriented fashion in-

July-August 1994

stead of requesting services from other objects. Larger numbers
of smaller methods are, in general, a better O-O design.

SUMMARY

‘We have taken a brief look at O-O metrics dealing with class and
method size. In particular, we examined a class’ number of instance
methods and a2 method’s number of message sends. We have seen
that there are factors that affect the meaning of these measurements
and have taken a look at possible action plans for anomalies. @

GLOSSARY

Accessing method. A method that is used to gez or set an instance vari-
able. Accessing methods allow you to perform laissez-faire initializa-
tion. They are usually very short, almost standard, methods that are
left out of some measurements.

Anomaly. A deviation from the common result.

Heuristic. A guideline based on trial-and-error usage. A rule of thumb.

Key class. A class that is central to the business domain being auto-
mated. A key class is one that would cause great difficulties in devel-
oping and maintaining a system if it did not exist.

Measurement. The determination of the value of a metric for a particu-
lar object.

Metric. A standard of measurement. Used to judge the attributes of
something being measured, such as quality or complexity, in an un-
biased manner.

Threshold value. A measurement value that has been determined
through project experiences to be significant in terms of desirable or
undesirable designs, with some margin of error. Generally, these will
be tunable over ime as you gain experiences specific to your busi-
ness and teams.

Reference
1. Lorenz, M. OpjecT-ORIENTED SoFTWARE METRICs: A PracTiCAL
Guipg, Prentice Hall, Englewood Cliffs, NJ, 1994.

15

Using
patterns:
Design

kind of ran out of steam towards the end of that last series on

creating new objects. I think the message—that many of the

most important objects are not the ones you find by underlin-
ing nouns in a problern statement—is still valid. The objects that
emerge (if you're watching for them) late in the game, during
what is typically thought of as maintenance, can profoundly af-
fect how you as a programmer view the system. By the time I got
to the fourth part, though, I was tired of the topic. Those last
couple of patterns still deserve some reexamination in the future.

This month I'm making a new start, and once again the topic
is too large for a single column. The problem is how patterns
can be used. I have presented probably a dozen patterns over the
past year, but I haven’t said anything about how they are used.
Using patterns is a topic of current interest to me, because I've
started teaching a three-day course on how to write and use pat-
terns, and my students are asking me how to apply all these
great patterns they are writing.

I divide the use of patterns into three categories: explaining
designs, designing, and documenting for reuse. This series will
address all three uses of patterns, and introduce several new pat-
terns in the process.

KENT BECK

EXPLAINING

Even if you don't use patterns explicitly in design, they are a
great way to explain the architecture of a system. Look for a pa-
per Ralph Johnson and I wrote in the coming ECOOP '94 pro-
ceedings for an example which uses patterns to describe the Hot
Draw drawing editor framework (the paper is also available via
ftp from st.cs.uiuc.edu).

DESIGNING

Nothing says you have to wait to use patterns until the design is
finished. Considering patterns by name during design can result
in clearer, more consistent, and more productive designs. If
you're working in a team, patterns can become the basis of much
more efficient communications between team members. I find

I{ent Beck has been discovering Smalltallcidioms for eight years at Tektronix, Ap-
ple Computer, and MasPar Computer. He is (he founder of First Class Software,
which develops and distributes reengineering products far Smalltalk. He can be

reached at First Class Software, P.O. Box 226, Boulder Creek, CA 95006-0226, or
at 408.338.4649 (phone), 408.338.3666 (fax), 707611216 (Compuserve).

16

Smalltalk kdioms

that even when I design alone, patterns keep me from taking
shorteuts that cost me time down the road.

REUSE
The patterns used for explaining and designing are very general
purpose, software engineering patterns. They are intended for an
audience of professional programmers who are used to making
judgments based on experience and taste. There is another pro-
gramming audience, however, one that is potentially much
larger than just hackers. This audience are those who program
by necessity, not by choice. They are the biologists, chemists,
and business people of the world who can’t find a program that
does what they want, but they don't want to learn any more
about programming than they must to get their job done. Pat-
terns are a great way of communicating how to reuse a frame-
work (as opposed to merely telling them how it works).

Tl deal with all three uses of patterns in the months ahead.
I'll start with design—how you can use patterns to help you de-
sign better, faster, and with greater confidence.

DESIGNING WITH PATTERNS

The stereotyped Smalltalk programmers design as they program.
There’s never a “paper” design, instead the design of the program
is reflected in the code and changed as a result of manipulations
in the browser. Ignore for a moment that this picture doesn't re-
flect any of the diversity that currently exists in the Smalltalk
world, which includes many programmers following explicit,
nonprogramming-environment-based methods. What can pat-
terns offer the lone wolf, the “design-as-you-go” programmer?

One great thing about patterns is they provide you with easy-
to-digest descriptions of design techniques. Even if you have
been using Smalltalk for years, there are likely tricks that other
designers know that you don’t. Reading and writing patterns
gives you a way to communicate your design knowledge with
others, and have them fill you in on techniques you don't know.

One of the things I like about patterns is that they force me
to be consistent in my designs. After I formulate a pattern I can
often go back to my existing programs and see how they would
have been better had 1 consistently used the pattern. An exam-
ple is using “each” for the parameter to a block used for iteration.
T used to get creative with the parameter names, trying to call
them something meaningful. By just using “each” I can program
faster, because I don't stop to choose a name; I can read the code
better, because I know what to expect; and I am more likely to
put complex expressions in the block into their own method, be-
cause “each” doesn’t work well if you are programming a block
with 20 lines in it.

Finally, no one ever really just codes for themselves, for the
moment. Someone will read your code, even if it is just you six
months later. The consistency and explicitness of patterns, if
their use is documented, become important sign posts on the
road to understanding what you were getting at when you wrote
the code in the first place.

Now let’s move into an example of using patterns for design.
T'll introduce a specification that we need to design to, then al-
ternately tell you about new patterns and show how they ad-
vance the design. In real design, you’ll be working mostly with
patterns you already have in front of you. The purpose of the

The Smalltalk Report

discussion isn't to show you a real design session, but rather to
convince you that patterns could be valuable during design, and
coincidentally introduce some new patterns.

THE PROBLEM: TV WITH REMOTE CONTROL
Here’s the example I'll use for the rest of the articles on design
with patterns. The problem is to design the software to run a
television, including a remote control. For now we'll support
two simple stories (some people call them “use cases”): when
someone presses a channel button the channel (one of ten)
changes, and when the television notices a commercial starting
it flashes a light on the mute button of the remote control.
We are given several pieces of software to begin with:
» a keyboard library that returns the last key pressed (0-9 for
the 10 channels, -1 for no new key press, and 10 for mute)
* an infrared communication library that sends and receives
bytes
* a tuner library that changes channels, and
* an object that watches a video stream and broadcasts mes-
sages whenever it notices the start of a commercial
T'm assuming that both the television and the remote control
have processors capable of executing objects, and that they are
linked with a communication channel based on infrared.

Reading and writing
patterns gives you a way
to communicate your design
knowledge with others...

BIG OBJECTS—OBJECTS FROM THE USER'S WORLD

We'll implement the “change 2 channel in response to a key-
press” story first. The first problem to be solved is finding the
large scale objects in the system. The last issue contained a pat-
tern, Objects from the User’s World, which addressed this
problem. The problem statement of that pattern was, “What
are the best objects to start a design with?” Sounds like the
right pattern to me.

The solution of Objects from the User’s World is to begin
the system with objects that the user thinks about. Two objects
spring to my mind that fit this criteria. RemoteControl has the
responsibility for translating user input into commands (that is,
given some user input, the RemoteControl will decide what mes-
sages to send to the rest of the system). Television has responsi-
bility for changing channels. I'm imagining protocol in Small-
talk like channel: anInteger.

RemoteControl * translate user input into commands

Television * change channels
If T want to execute the story, first the RemoteControl has to take
the input of a channel button being pressed, then translate it
into a message to the Television to change the channel.

Keyboard—Objectified Library and Event

This scenario is plausible as far as it goes, but it isn’t nearly de-

July-August 1994

Smalitalk

Developers/Designers

capitalize on our success

Al QSYS {Qudlity SYStems) we have provided Obiject Oriented
consulting services lo our Fortune 1000 clients for over six years.
What sets us apart is the fact that we've done it with outstanding
success.

This has created further opportunities for Smallialk Specialists on
leading edge assignments with our North American clients. You can
join us either on o permanent basis or on a long or sher! lerm conlract.

Your first step in capitalizing on our success is to contact Elspeth
Koorat:

1Yonge St, #1801

Toronto, Canada MSETW7

V: [416 594-0985
F: {416) 369-0515

90 Park Averwe, # 1600
New York, NY 10016
V:(212) 984.0715

Email: 72072.257 5
@compuserve.com

tailed enough to begin programming. The next problem we
solve is getting the keystrokes into the RemoteControl to begin
the computation. The first part of this problem is reading the
keystrokes in the first place. Recall that we have a library that
lets us read the keystrokes. We need to surface those functions
in object terms. Here's the pattern we will use:

OBJECTIFIED LIBRARY
How can you integrate a function library with a system built
from objects?

All modern object languages provide facilities for calling
functions written using older languages. The design problem is
how to integrate the functions conceptually with the rest of the
system. The simplest solution is to call the functions wherever
you need to in your code. This has the advantage of simplicity,
because you don't have to introduce any new objects.

Just calling the functions from wherever introduces problerns
of its own. First, external libraries change at a rate that isn’t syn-
chronized with changes to your objects. New releases of a library
may come at a time when you don’t want to change much of
your system. By scattering the calls to the library all over your
system, you make yourself vulnerable to having to touch many
parts of your system.

Second, because the world is moving more and more towards
objects, any function library is likely to be replaced by abjects.
Scattering calls to the library means that you will have to revisit
much of your design should that happen.

Finally, scattered calls to the function library don't communi-

17

The Analysis & Design approach
the Smalltalk WORLD

PEGASUS ™
"THE INTEGRATED OO0 METHODOLOGY"
PEGASUS combines the concepts of:

B Use Cases and Scenarios described by Ivar
Jacobson in Object Oriented Software Engineering

Object Modeling Techniques
by James Rumbaugh for static object modeling

O Responsibility-Driven Design by Rebecca
Wirfs-Brock for modeling dynamic behavior of an object

For Information about this 2
FULLY INTEGRATED TOOL & 3-DAY COURSE
2 Call RothWell International &
800 2566-9712 or 713 660-8080

Smalltalk Idioms

cate well. In particular, you cannot easily answer the common
question, “how is the library being used?” Answering this ques-
tion is important both for making the kind of design updates re-
quired above, and to use the library with other objects. There-
fore: Create an object to represent the library. Give it external
protocol using Smalltalk naming conventions and accepting and
returning standard objects.

Using Objectified Library, we create a Keyboard object whose
responsibility in the design is to read keystrokes, and which ac-
complishes it by calling the keyboard library.

Keyboard * read keystrokes

Running the story again, we have the RemoteControl asking the
Keyboard for the next keystroke, then translating that into a
message to the Television to change the channel.

Notice that the solution to Objectified Library tells us to “ac-
cept and return standard objects.” What object should the Key-
board return? Here is a pattern that you are probably familiar
with that answers this question:

Event
How do you represent interesting events from the outside
world?

The simplest solution to representing outside events is to
cause a message to be sent to the object which handles the

18

event, passing as parameters what happened. Unfortunately, the
parameters are seldom a simple, atomic object. Also, the system
is often interested in other, related information from other sen-
sors such as the clock (i.e., a2 timestamp). Passing all of the in-
formation as separate parameters leads to long, unwieldy mes-
sage names and introduces the risk that some parameters will
get out of sync with others.

Simplicity of naming is not the only important issue work-
ing against simply sending a message. Many times the parame-
ters to be included with an event are time valued and must be
collected immediately to be correct. The collection of the para-
meters doesn't involve complex processing, so it can easily be
done in a lightweight but higher priority process than the
process in which the reaction to the event is determined. Split-
ting the collection of the parameters from their processing in-
troduces the need to create a protocol between the tasks. Sim-
ple protocols provide flexibility, and a single object as the
protocol is simplest of all.

Bundling the parameters together into an object introduces
its own costs. First, there is the additional complexity in the
system of having an additional class. Second, there will be a
runtime cost associated with creating the object. However,
these costs are easily dealt with later, while the difficulties asso-
ciated with not having the parameters together will adversely
affect the whole design. Therefore: Create an Event object.

Give it protocol to return information describing what hap-
pened outside the system to create the event and report what
else interesting was happening at the time.

Our Event object will carry along what key was pressed to
create the Event. The Event will be a good place to hide the in-
terpretation of the keystroke (i.e., the difference between 0-9
and 10). We'll be able to add testing protocol like isChannel,
which will insulate the rest of the system from the details of
the keyboard.

‘We have to change the responsibility of Keyboard a little to
reflect that the Keyboard is responsible for creating the events:

Keyboard * create events from keystrokes

Running the story, we now have the RemoteControl asking the
Keyboard for an Event, then using the Event to send a “change
channel” message to the Television,

CONCLUSION

This article has used one pattern from the previous issue, Ob-
jects from the User's World, and two new ones, Objectified Li-
brary and Event, to create the first four objects in our system:

RemoteControl, Television, Keyboard, and Event.

That’s all T have space for in this issue. Next time we’ll de-
cide how the objects are going to be distributed between the
two processors, including a nifty pattern I learned while con-
sulting on a telecom project called Half Objects. We'll also
get into more of the details of how Events get turned into
commands.

If you have good examples of applications of any of the pat-
terns I present, or if you have alternative patterns that you think
are better, please let me know. Patterns are just getting started
and there are no right answers, only a bunch of committed peo-
ple searching. @

The Smalltalk Report

The best of comp.lang.smalltalk

New net
resources

he Internet, in its new guise as an “information super-
highway” is becoming very trendy. There are an ever-in-

creasing number of resources accessible via the net. This

ALAN KNIGHT

column covers some Smalltalk-related resources that have re-
cently become available.

X3J20 MAILING LIST

X3]J20 is the designation of the American National Standards
Institute (ANSI) committee that’s working on a standard for
Smalltalk (q.v. THE SmaLLTALK REPORT, 2(7):1)).1f you're in-
terested in the committee’s progress, you can now get updates by
e-mail. Bruce Schuchardt (bruce@slc.com) writes:

The X3J20 Smalltalk standards committee has formed a mail-
ing list for its work. In our 10/93 meeting it was decided that
since the committee is public its mailing list should be open
for public subseription.

If you wish to subscribe to the X3J20 mailing list, send a
message to listmaint@slc.com with the body text

subscribe x3)20 your-email-address

You must send the subscription from the mailing address
you list in the body of the subscription request or it will be
ignored, i.e., you can't request a subscription for someone
else, or for yourself at another address.

Problems in using the mailing list should be addressed to
x3j20-owner@slc.com. We have had some problems with
the mailing list but we hope these have all been ironed out
at this point.

Messages to the list should be sent to x3j20@slc.com.

There is also an electronic archive of X3J20 documents, at
the ftp site info.er.usgs.gov. Documents are available as ASCII
text, PostScript, or Hypertext Mark-up Language (HTML).
They are stored by document number in the directories that are
named /pub/smalltalk/approved and /pub/smalltalk/submitted.
The file pub/smalltalk/ Index has a list of document descriptions

and numbers.

Alan Knight is # cansultant with The Object People. He can he reached at

613.225.8812, or by e-mail as lmight= acm.org.

July-August 1994

SMALLTALK REFACTORY

There have been a number of interesting development tools for
ParcPlace Smalltalk from Ralph Johnson’s students at the Uni-
versity of Illinois. These include the object debugging extensions
(q.v. THE SmaLLTALK REPORT, 2(9): 4) and the NewTool ex-
tended browser (q.v. THE SmaLLTALK REPORT, 3(2):17). The
Smalltalk Refactory is another in this series, which assists in
making a number of common types of modifications to Small-
talk code. From the user manual:

Object-oriented languages are touted as promoting soft-
ware reuse. However, object-oriented software is usually not
reusable when it is first written. Reusable software is the re-
sult of several design iterations involving different applica-
tions that reuse a common body of code. As the code is in-
corporated in the different applications, reusability problems
become apparent and the body of code must be altered. Each
iteration becomes easier and easier as the common code be-
comes more and more reusable.

Since these iterations involve not only new code but also
existing code, care must be taken when altering the common
body of code. The changes that are made must be behavior-
preserving so as not to break the existing applications. These
behavior-preserving manipulations that change the design
of the reusable code are known as refactorings.

...The Smalltalk Refactory is a tool (basically a modified
browser) that brings together several refactorings that have
been created at the University of Illinois.

The supported refactorings are:

* Rename instance and class variables, automatically changing
all references

* Generate accessor methods for a variable and change all di-
rect references to use the accessors

= Move variables up into a superclass or down to all subclasses,
moving methods if necessary.

* Convert superclass to component. This moves a class up the
hierarchy and converts its current superclass into an instance
variable to which messages get forwarded.

* Change direct instance variable references to a2 method into
calls to accessor methods (generating the accessor methods if
necessary)

* Rename a method, changing references.

Renaming a method is particularly interesting, as this is not easy
in a dynamically typed environment like Smalltalk. The user

manual describes their technique:

(Suppose) your application has a class that defines the add:
method. After review, it is determined the name addFigure:
more accurately reflects its function. Simply changing the
name to addFigure: and then browsing all senders of add: will
return an enormous list of methods since add: is often called
in the context of Collection classes. Very few of these are ac-
tually references to your application.

To overcome this, the refactory uses a new technique
known as lazy refactoring. After the renaming operation has
been performed, a Dynamic Analysis is created that moni-
tors all calls to the original method. When these are detected
the source code of the caller is altered to refer to the new
method. The upshot of all of this is that to correctly perform

19

Objects
Everywhere

Why settle for hybrid Implementations when
you can have the real thing? JumpStart is the
leading provider of solutions and training
programs for pure object systems using
Smalitalk and the GemStone*™ ODBMS. We
also speclalize in deploying IBM Smalitalk®™™

and VisualAge™ applications.

Ask about our Corporate Educators Program.

Manufacturing
Process Controf
Network Management
Pharmaceutica

Cetified Service Patners with

IBM

919.460.1583
Copyright 1994, © SumpStart Systam, .

SERVIO

The best of comp.lang.smalltalk

the refactoring, your code should be run on a thorough test
suite. ...In future versions of the refactory, many powerful,
new refactorings will be implemented in the manner along
with additional support for this style of refactoring.

I think this could be a great tool. While it doesn’t do anything
that couldn’t be done by hand in under half an hour, it does it
quickly, automatically, and (at least for the static cases) without
missing anything. I think this could do a lot to encourage
refactoring.

As an academic project, this has a few more rough edges
than one would expect in a commercial offering. I came across a
trivial bug in one of the menus, and I thought that slower trans-
formations should display a wait cursor. It would also require 2
bit of work to make it compatible with ENVY/Developer or
other version control tools.

While the code is dependent on the details of ParcPlace’s
browser and metaframework, it should be possible to use this as
a basis for something similar in another dialect. It can also serve
as a framework for adding your own favorite refactorings.

Don Roberts (droberts@cs.uiuc.edu) wrote the refactoring
browser, and included a number of refactorings written by Dan
Walkowski (walkowsk@cs.uiuc.edu).

It is available from the normal Smalltalk ftp sites
(st.cs.uiuc.edu and mushroom.cs.man.ac.uk). At the UIUC site
it is stored as pub/st80_r4/Refactory1.0.st. Those interested in
more information about refactorings are referred to William

Opdyke's Ph.D. thesis on the subject, available from the same

20

site (in PostScript form) as pub/papers/opdyke-thesis.ps. The
pub/papers directory also contains a number of other papers
which may be of interest.

COMPUTATIONAL GEOMETRY WORKBENCH
The refactory is of interest to almost anyone working in Small-
talk, since it deals with domain-independent transformations of
code. The Computational Geometry Workbench, on the other
hand, is 2 much larger, very domain-specific toolkit. The domain
is (of course) computational geometry, mostly of the two-di-
mensional straight-line variety. The documentation describes it
as providing:
an environment for creating, editing and manipulating
geometric objects, demonstrating and animating geometric
algorithms and for implementing new algorithms.

This toolkit comes from a research group under Jérg-Rudiger
Sack at Carleton University. In fact, I was part of this research
group a few years ago, and this project is a substantial part of my
Master's thesis. If you like it, I'm happy to take credit for large
parts of it. If you don't, well, it was long ago when I was young
and (even more) foolish. In either case, you should be aware of
my obvious bias. As with many projects dependent on student
labor, the quality of the code varies widely. Some of it is very
good, some of it is surprisingly good for student work, and some
of it is not good at all.

The system is written for Smalltall/V Mac 1.2.1 (that’s one
version behind the current 2.0). At the rate Digitalk releases
V/Mac versions it shouldn’t fall any further behind in the next
few years. It’s a fairly large system, including;

* Basic data structures (stacks, queues, search trees, etc.).
* Not-so-basic data structures(finger trees, splay trees, etc.).
* Robust (knock wood) code for dealing with geometry.
* Some very complex geometric algorithms (triangulation, visi-
bility, shortest-path, and point location are most prominent).
* A geometric object browser and other tools for manipulating
geometric objects.
» A framework for algorithm animation.
* Yet another home-grown change control system.
* Many hacks to Smalltalk/V Mac, including color support.
* A clipboard interface, very handy for importing geometric
figures into drawing programs and docurnents.
* Documentation (an uncommon feature with university
projects).
It is available by ftp from the normal archive sites or from
alfred.ccs.carleton.ca.

OBJECTSHARE UPDATES BY FTP

Objectshare Systems makes the popular WindowBuilder and
SubPanes add-ons for Smalltalk/V. Updates of their products
are now available by ftp from the UIUC archive site, in the
pub/OBJSHARE directory. These are incremental updates,
meaning that they must be installed into an image already con-
taining the appropriate version of the product (for example, to

upgrade WindowBuilder Pro 1.0 to 1.04).

Alan Knight is a consultant with The Object People. He can be reached at
613.225.8812, or by e-mail as knight@acm.org.

The Smalltalk Report

Responsibly

designing
your

objects’ data

REBECCA
WIRFS-BROCK

en should you define the data encapsulated within

responsibly designed objects®> What things should you

consider as you pin down the internal representation
of object data? Responsibility driven design places great empha-
sis on object roles and responsibilities. Once initial object behav-
iors are defined, the design can and should be refined. Refine-
ment often makes the difference between a muddled design and
a workable one. It is during refinement that we make a con-
certed effort to streamline collaborations, factor common re-
sponsibilities into class inheritance hierarchies, and clarify the
contractual agreements between objects. All this modeling soaks
up 2 lot of design energy!

Even after this effort, we're really not ready to roll into imple-
mentation. Not jusz yet. There is a fair amount of object design
work left. Whether these details are worked out as the last stages
of design or the initial phases of construction is irrelevant. It is
these design details that are vital to most business applications.

Initially, in my quest for answers to the design for object
data, I searched the writings of authors’ with a strong data focus
for expert guidance. While their methods emphasize identifying
the form of the data encapsulated within objects and showing
structural relationships between classes of associated objects,
they only give light treatment (if at all) to many tactical consid-
erations. While I found it interesting, their works did not shed
much light on what I wanted to find out.

Nuts and bolts implementation details typically are left as an
“exercise to the implementor.” Even datacentric methods finish
before dealing with the complexities of designing persistence
into an application. Without a design for dealing with this, our
applications are incomplete. However, a generic, one-size-fits-all
solution is unrealistic. Over the past three years I have seen sev-
eral practical solutions to data design for large applications. No
one followed a recipe. Each development team wrote their own
unique chapter. Each solution focused on different elements of
this large problem. These experiences have shaped my opinions.

Rebecca Wirfs-Brocl is the Director of Object Technolagy Services at Digitalk and
co-author of Designing Object-Oriented Software. Prior (o joining Digitally, she man-
aged the development of Tektronix Color Smalltall. Comments, further insights or

wild speculations are greatly appreciated by the author. She can be reached via email
at rebecca digitallccam or by mail address at Digitall, 7585 SW. Mohawk Drive,
Tualatin, OR 97062

July-August 1994

Getting Real |

1 don’t intend to answer all these “data meets responsibility
driven design” questions in this column. I will present a strategy
for tackling the design of object data, both persistent and non-
persistent. I will outline a practical and straightforward process
for developing these details. We’ll look at managing structural
relationships between collaborators, understanding object persis-
tence, fetching, retrieving and updating parts of objects that do
persist, and a general strategy for providing information to and
incorporating advice from those tasked with developing external
databases for our applications.

Let’s start by looking at what data requirements we can glean
from our initial object model.

WHAT WE KNOW ABOUT DUR OBJECTS

Use cases describe tasks that a system must perform. Conversa-
tions capture the dialog between an actor (either a human or an-
other application) and our object model. Conversations depict
sequences of interactions and work steps that must be accom-
plished to perform an actor-directed task.

As we unfold our madel of collaborating objects to supports
each conversation, we are developing a sense of objects’ dynamic
behaviors. We comprehend how actors ask to get at certain in-
formation. We know how and why various objects are used in
particular situations.

Our emerging object model is populated with objects having
responsibilities for knowing

» certain facts,
* how to perform specific tasks, and
= about the existence of others,
designed according to their roles and stereotypes.

For example, in our video kiosk application (which I have

borrowed from our design course and will use to illustrate objects

>

responsibilities and behaviors), a Local Inventory object knows
the Videos on hand. Each Video “knows” a number of character-
istics (including title, director, category, rating, and so on).

When we record responsibilities this way, we are reflecting
in our model how we expect to navigate between objects. To
display a list of available movie titles, we'll ask the Local In-
ventory for that list. We can then display this list. When the
user picks a movie from that list, she can either choose to read
a detailed description or perhaps to view a video clip before
renting. She may decide to reserve that movie for later instead
of renting it today.

Data modelers look at an emerging object model differ-
ently than I have been trained. Both of our perspectives are
useful. When a data modeler looks at relationships between
data (or between classes of objects), she sees the possible ways
to get at one piece of information from another. A data mod-
eler needs to understand the relationships between objects.
Traditionally, data modelers have built structural models
showing cardinality, data ownership, and creation and update
rules in order to understand the significance of those rela-
tions. The data modeler looks at my object model with an eye
towards building a consistent logical data model. Physical
modelers are concerned with designing data base schemas that
are correct and high performance.

There are important differences in our concems. During de-
sign initially focus on object behaviors. It is my firm belief that

21

Getting Real

these need to be understood before one steps into the design of
each object’s encapsulated data. Data modelers seek information
about access patterns and structural relationships! Are we at
cross purposes? Not really. What we can do is tell them about
our application’s impact upon their data designs.

We have been focusing on how our objects collaborate to
support actor-directed tasks. So, with a modest effort we can
add these details to our model:

* We can define a first cut at our objects’ instance variables.

* We can identify what parts of our objects are persistent.

* We can tell how to uniquely identify any persistent object.

* We can describe the ways we traverse our objects to accom-
plish specific tasks.

» Conversation by conversation, we can determine which ob-
jects will be accessed and how they will be modified.

* We can record which conversations cause specific objects' in-
formation to be created, modified, updated, stored and re-
trieved.

* We can determine how we'd ideally like to fetch persistent
information in order to “materialize” our application objects
from external storage.

* We should be able to tell how long objects need to exist in
our application.

Besides simply digesting this information, it is equally impor-
tant that database designers critique our design. We are provid-
ing them with preliminary information that will remain prelimi-
nary until we believe it to be sound. They can help validate our
work. They can spot inconsistencies and gaps in our thinking.
They can recommend alternative ways to build our objects that
are more flexible, place less demands on databases, or take into
consideration other applications’ needs.

Database design is so crucial to business applications that
database specialists are integral members of many object analysis
and design teams. Data designers add a vital perspective.

STEREOTYPES AND PERSISTENCE

We can also look to object stereotypes to identify persistency de-
mands. While there are no hard and fast rules, here are some
typical situations.

Controllers perform a cycle of action. Coordinators pair client
requests with objects that can perform a specific service. Service
providers typically perform a single operation on demand. Infer-
face objects support communication between objects within our
program and external systems or users.

These objects typically don't define persistent information.
However, they may be designed to be configurable. In this
case they are constructed to contain configurable “facts” that
dictate how they perform their varied tasks. Often we store
this configurable information externally and reinitialize these
objects and their classes prior to use. This allows us to change
certain aspects of our application without having to redefine
these classes.

On the other hand, coordinators and controllers do initiate
requests to retrieve other persistent objects. For example, in our
video kiosk design, the Session Manager (a coordinator) asks a
CustomerDB object (a database interfacer) for a particular cus-

22

tomer object. Controllers may pass along references to these
persistent objects. The Session Manager passes along a customer
to a Kiosk Transaction object tasked with coordinating either
renting, reserving or previewing a movie.

Objects may generate and store a history of their work.
Service providers and coordinators might generate and store
this information themselves or, more likely, collaborate with
others having the specialized knowledge do perform this
task. For example, in our kiosk design, a record is printed for
each transaction. Transactions are logged and the local and
store inventory is adjusted. To do these tasks, we can design
a Transaction Record object to contain transaction specific
information.

Information holders maintain values that other objects can ask
about. These kinds of objects may or may not be persistent.
Transaction Records may themselves be made to persist, or they
may be interpreted by Printers and Transaction Loggers to gen-
erate persistent information.

Consider another example from our video kiosk. We model a
Customer object that knows facts about customers, including
their allowable transactions. Certain customers, based on their
credit record and recent level of business are granted special
privileges. While we may externally store a lot of information
relating to a customer, we don’t automatically equate all of it
with our application’s view of a customer.

‘We may formulate a complex query asking whether the
number of rentals the customer has made in the last month is
greater than a certain number and whether bills have been paid
on time. Based on the answer to that query we can construct a
customer object that only holds the information needed for our
video kiosk application, including a list of permissible customer
transactions. We might generate that list of permissible transac-
tions rather that read the information directly in some customer
record in a database.

Structurers maintain relationships between objects. Structur-
ers hold references to other objects that refer to others in 2 com-
plex network. A key decision to make is how much information
to retrieve and store at any point. The ideal is to get just what
you need, unless it is easy to get more than you want, Access
patterns can be determined by analyzing our model’s behavior a
use case at a time. Complex retrieval and storage strategies,
which demand support via a data access framework, are beyond
the scope of this column.

PRACTICAL CONSIDERATIONS

We need to make tradeoffs in our object and database designs.
When we implement a solution, we make tactical tradeoffs that
limit our design's potential capabilities. They also enable us to
build practical solutions. In our Smalltalk programs we connect
one object to another (e.g., make one object “know” about an-
other) because that is how we see them collaborating. Connect-
ing one object to another is unidirectional, unless we explicitly
make it otherwise.

For example, since the Local Inventory knows of Videos
on hand, then the Local Inventory may contain direct refer-
ences to Video objects. We might store them in a dictionary
with the title as a key. If we need Video access to be more

continued on page 28

The Smalltalk Report

T AVEMY OF (NN THAR noviva o

JOURNAL OF

OBJECI-ORINIED C++ R EP()R;

p wj«m"“‘"“’f

OPLN SYSTL

us . Exception handiing

Programmi
KinG++

{ Hetroi o annan
s X ‘ S T NUTRIT TN

B -
‘ ' S ‘ o A .
How to find o | S A ; i ?
g00¢ 0bjecrs : } 5 ; i !: h’&'

The manager’s guide to implementing object Written for programmers and developers Informs C++ developers on how to get the
technology. The “point of entry” for software using OOP techniques. International in most out of the language. Ideas and techniques
management infusing objects into their work scope. Code intensive, practical, technical. for increasing your productivity with C++.
environment. Filled with how-to advice, usable Breakthrough peer-reviewed papers and Code-intensive, functional tips and tricks for
strategies, and real world experiences. invited columns, Now in its 7th year. C++ users on all levels and platforms.

Addresses language-indepen-

Filled with “how-to” advice dent, architectural concerns
for Smalltalk users at all about O-O analysis, design and
levels and in all dialects. modeling. Platform and system
The best way for Smalltalk independent, ROAD is written
programmers to maximize the for software developers and
language’s potential. project leaders.
PUBLICATIONS
L T T T T T T T T T T T T T T S T T T T T e s T T s e s T AT T T m T e ——— A
ﬂki Yes, | want my subscription to the following publications to begin Name i
! immediately. If not completely satisfied, | may cancel at any time Title !
1 and receive a full refund of the unused portion. i
! .) _ Company '
IO Object Magazine (1year,9issues)c.ovvuvrrnneenn.. $39 Address :
1 O JOOP {1year,3issuss)vvvuvneereiinieeneneaennnnnsn $59 . 1
1 0 C++ Report (1year,9is5UBS)ovenenirnennirernnennns $69 City I
3 0 The Smalltalk Report (1year, 9issues)cccvvunenns 379 Province/State__ Postal Code/Zip '
QI ROAD (1year, BiSSUBS)o veieie e eia e aeeaaeennns $99 Country
TOTAL
Method of Payment: Phone Fax
o Bill me, Attn: Return this coupon by mail or fax, or call to start your subscriptions.
o Check Enclosed (Payable to S/GS Publications) Mail: SIGS Publications, Inc., P.O. Box 2027, Langhorne, PA 19047
o Charge My: oVisa o MasterCard o American Express Fax: 215-785-6073
Card# Exp Phone: 215-785-5996

Important: Non-U.S. orders must be prepaid. Please add $35 per subscription year for air

Signature service. Checks must be in U.S. dollars drawn on a U.S. bank.

Product Announcements

Product Announcements are not reviews.
They are abstracted from press releases provided by
vendors, and no endorsement is implied.

Vendors interested in being included in this feature
should send press releases to THE SMALLTALK REPORT,
Product Announcements Dept., 91 Second Ave.,
Ottawa, Ontario K1S 2H4, Canada,
613.225.8812 (v), 613.235.8256 (f).

UNISQL delivers first ODMG-based C++ and
Smalltalk links

UniSQL, Inc., announced the availabilty of two new object—
oriented database interfaces that support the Object Data
Management Group’s (ODMG) emerging specifications for in-
dustry-standard C++ and Smalltalk object-oriented program-
ming language bindings. The announcement was made at the
Object Expo National Conference and Exposition. The
UniSQL Smalltalk Interface products let C++ and Smalltalk
developers build mission-critical application that utilize
UniSQL's object/relational database and middleware capabili-
ties in a way that is fully transparent to C++ and Smalltalk lan-
guage environments.

UniSQL provides integration to C++ and Smalltalk develop-
ers via the firm's UniSQL/M Multidatabase System. This sys-
tem is able to support object capabilities, such as methods, in-
heritence, user-defined data types, and composition, with
systems that have no such capability.

Both the UniSQL C++ Interface and UniSQL Smalltalk In-
terface are available for Version 2.1. They will also be available
in July for the UniSQL/X Database Management System and
the UniSQL/M Multidatabase System on UNIX servers run-
ning DEC OSF/1, HP-UX, IBM AIX, and DEC/OSF/1, with
DOS/Windows support.

UniSQL, Inc., 9390 Research ll, Suite 200, Austin, TX 78759-
6544, 512.343.7297 (v}, 512.343.7383 (f)

ParcPlace object-oriented tool provides
point & click database application creation
ParcPlace Systems, Inc., has introduced VisualWorks 2.0, a ma-
jor new release of the company’s object-oriented client and
server tool. VisualWorks 2.0 emphasizes ease-of-use and fea-
tures a Database Application Creator that allows corporate de-
velopers to create basic database applications without any Small-
talk or SQL programming.

VisualWorks’ Database Application Creator comprises three
components: an ObjectLens to view and manipulate relational
data as objects; a Visual Data Modeler to create a visual map be-
tween relational data and objects; and DataForms—intelligent
reusable objects that allow database manipulation without SQL
programming.

ParcPlace Systems, Inc., 408.720.7514 (v), snichols@parc-
place.com (email)

24

Easel Corporation signs licensing
agreement for SOM and DSOM technology
Easel Corporation announced that it signed a licensing agree-
ment with IBM for its System Object Model (SOM) and work-
station Distributed SOM (DSOM) technologies. Under the
terms of the agreement, Easel will incorporate the SOM and
DSOM technologies into its Object Studio family of object-ori-
ented application development tools.

The integration of SOM and DSOM into Easel Corp.'s Ob-
ject Studio family will enable developers to build object-oriented
applications containing interoperable components that are
reusable and platform independent. The company will deliver
SOM- and DSOM-compliant products in the next major re-
lease of its Object Studio product family.

SOM and DSOM are standards for creating object-oriented
class libraries and for reusing objects. It allows an object to be
created in one development language and accessed from a dif-
ferent language. SOM is the first cross-language, cross-plat-
form implementation of the Object Management Group’s
Common Object Request Broker Architecture (OMG’s
CORBA) specification.

Easel Corp.’s Object Studio family comprises the ENFIN
Smalltalk client/server application development environment
and Synchrony, the first of a new generation of business object
management tools that integrates the design, assembly and reuse
of business objects. Business objects are high-level objects that
mirror an organization's business process and enable developers
to rapidly build enterprise-scalable applications that help run a
business.

Easel Corp., 25 Corporate Drive, Burlington, MA 01803,
617.221.2100 (v), 617.221.6899 (f)

European Smalltalk Summer School

European Smalltalk Users Group (ESUG), organizes
its second Smalltalik Summer School in Cork, Ireland,
from September 5-9, 1994. This will be a unique op-
portunity for attendees to meet well-known European
Smalltalkers from both the academic and industrial
fields, and to gain hands-an experience of Smalltalk’'s

. most advanced techniques. Non-European Smalltalkers
are of course welcome.

The program will include one-track tutorials, as well
as multiple-track workshops, demonstrations or expe-
rience reports. Also, rooms will be available for spon-
taneous meetings. Smalltalk vendors will be able to
make demonstrations free of charge. The National
Software Directorate will support a special promotion
of Smalltalk to the Irish Software Industry in parallel to
ESUG. This school is linked to a COMETT-projected
supported by the EEC. We look forward meeting you.
Do not miss this major European Smalltalk event!

For more information, please contact ESUG by
email at esug@ibp.fr or by writing to Annick Fron at
AFC Europe, Les Maurettes “Le Grimaud,” Avenue du
Docteur Lefebvre, 06270 Villeneuve-Loubet, France;
+33.92.028653.

The Smalltalk Report

From The People
That Bring You This

New Release!

Jolin RLOElTs

Objectifying Real-Time
Systems
by John R. Ellis

The basic concepts of object-oriented
programiming are discussed, establishing
a common understanding of objects,

e
Provides instruction on how to create
each of six RTOOSA Requirements
Model products.

[)
Anyone interested in developing
object-based real-time systems should
read this book.

[]
Accompaning diskette contains the
source programs of examples through-
out the book that enable the reader to
experiment and verify exectutions

Magazine...

Best Seller!

OBJECT |
LESSONS |
|

Lessons Learned In Object-Oriented
Development Projects

Object Lessons
by Tom Love

Trade secrets of Tom Love, Vice
President of IBM Consulting Group
are revealed demonstrating the “how
to’s” of putting theory into practice.

An “insider’s view” of some major
companies’ successes and failures
relating to object-oriented software
projects. Save countless hours and
dollars by learning from their costly
mistakes.

[]
This book is written for those making
decisions on design and management
of large-scale commercial object-
oriented software.

New Release!

Object Development
Methods
edited by Andy Carmichael

Addresses how object-orientation can be
applied to systerns analysis and design.
[]

A comprehensive survey is included com-

paring the leading methodologies of

Booch, Texel & Rumbaugh among others.
L]

The common concepts and underlying
structure of each methodology is an
important theme explored within this
book.

[
This book proves an invaluable refer-
ence guide for those still exploring var-
ious methodologies and their bene-
fits/drawbacks, and for those who have
already made a methodology selection.

without having to k.ey in code. (276 ;ages) .
380
(525 pages with diskette) (380 pages)
[P e e e
COMPLETE i YES! Please send me the following book(s). If | am not totally satisfied,
! | may return the book(s) within 14 days and receive a complete refund.
MONEY- BACK i [Objectifying Real-Time Systems by John R. Ellis (ISBN: 0-9627477-8-5)ccc.usurenseennes $44
G U ARANTEE ! O Object Lessons by Tom Love (ISBN: 0-9627477-3-4) $44
i ! [Object Development Method edited by Andy Carmichael (ISBN: 0-8627477-9-3)........... $39
]
Available at selected bookstores. 1 Name METH
Distributed by Prentice Hall. ! 0D OF PAYMENT
istributed by Prentice 1l ' Title [Check enclosed {payable to SIGS Books)
S I G S I O Charge my credit card:
! Address J Visa [MasterCard (L AmEx Exp Date
BOOKS ! Company, Credit Card #
! . ! Signature
y |
SEND TO: SIGS Books, Inc., Aun: Cic. Dept. CIWIStatEIZIP Shipping/Handling: For US orders, please add SE.for ship-

71 West 23rd Street, Ird Floor, New York, NY 10010
FOR FASTER SERVICE, FAX TO: 212/274064

ping/handling, Canada add $10; Foreign add $15;

Country/Postal Code ; 1
Important: NY State residents add applicable sales tax.

Phone Fax

1
| SBTPA

JOIN THE
FORERUNNER IN

CLIENT/SERVER
TECHNOLOGY

SmallTec
Develo

lizes leading-edge ¢li

$5:.to solve the diverse neé
worldwide. Recently reco
eaderin client/serverc
ment, The GcrtnerGroup
logy research organizatioh osed in Stamford, CT projects we have the best
ects for client/server consulting and systems integration success by 1995, of all
panies in the industry.

SYSTEMIHOUSE

eadlng the industry in trqnsfarmlng business processes through information technology,
we employ 4, 800 ossoclates internationally and enjoy annual revenuesin excess of $750

HHE F alt

We seek.expert SmallTalk Developers who possess excephonal technical skills and

business advisory experience. These positions are -located in our rapidly expanding
MINNEAPOLIS, MINNESOTA praclice. Extensive travel to clients' sites may be required.

- Senior Technical Architects/Technical Architects
- Senior Systems Engineers
 Programmer/Analysts

You must have demonstrated experience in the following:

+ SmallTalk V with Parts or SmallTalk 80 with Visual Works with either Team¥.
or Envy Tools

« Experience with Object Oriented Design and Object Oriented Analysis using
Responsibility Driven Design methodology utilizing CRC, or Object Introduc-
tion Diagram

» Experience with associated CASE Tools a plus

Discover why “The Systems Integrator Newsletter” named us the best Client/Server
Systems Integrator of 1992 and the Rising Star of Systems Integration. Send resume,
indicating position of interest, in confidence to: Manager of Human Resources-
SMALLTALK, SHL, 1901 North Naper Blvd., Naperville, IL 60563-8895. FAX:
708-505-9158. Equal Opportunity Employer M/F/D/V

Recruitment

For information on advertising in the Recruitment Section, contact
Michael W. Peck at 212.242.SIGS

micado SoftwareConsult GmbH is one of the
leading system houses in Germany for object
oriented languages. It has an expert team with
wide experience in development and customer
support. Due to the astounding growth of the
object oriented market in Germany, we are cur-
rently seeking the following freelance OO pro-
fessionals:

Smalltalk
Designers and
Developers

If you welcome new challenges and if you want
to explore your career opportunities please
send or fax your resume to

micado SoftwareConsult GmbH

Reutherstr. la-¢c D-53773 Hennef

Tel. (49)2242-871-450 FAX -455
Compu-Serve 100024,2444

Froaisinm moalhng. Sup

e currently have numerous
opportunities requiring 1+
years experience with:

SMALLTALK

H Object Oriented Design

E os»2

B c++
K c

For immediate
consideration,
please FAX or mail
resume to:

Tech Specialists
5711 Six Forks Rd.
Raleigh, NC 27609
(919) 870-5100
(919) 870-7274 Fax

For consultants
and husinesses
alike looking far
$UCCess, we are
THE company of
chaice. Tech
Specialists is a
professional
services firm that
provides 1S,
Software
Development and
Engineering
professionals on a
contract hasis. For
opportunities with
a real future, call
usto explore the
possibitities,

Call for Writers

Editorial topics include:

Smalltalk

R E P O = T

is seeking expert reports, tuforials, and
technical papers. Articles should be
instructive, product-neutral, and technical.

Submit papers, discuss story ideas,or request
Writers’ Guidelines from:
John Pugh and Paul White, Editors
THE SMALLTALK REPORT

855 Meadowlands Dr., #509, Ottawa, ON K2C 3N2
613.225.8812 (v), 613.235.8256 (f)
john@objectpeople.on.ca

Applications

* (ommercial, engineering & scientific applications

» Applications frameworks
* Project manogement

© Verlical {application) and horizontal (system) dass

libraries
® Portability issues
» Objet library management

Project management
© Rapid prototyping

* Yersion management

» Application monagement

* Team organizafion

* Organizing for reuse

» Introducing Smalltalk inlo an organization

Tools

o User interface builders

© Object editors

® Application development tools
* Project management tools

® CASE tools

Language issues

® Inheritance

® User interfoce poradigms

* (oncurrency

® Persistent objects and databases
© Distributed Smaflialk issues

® Performance issues

® Typing

© Melalevel programming

(Competitive stipend paid)

July-August 1994

27

Product Announcements !

Digitalk releases EHLLAPI component for
PARTS Workbench

Digitall, Inc. is shipping the PARTS Communications Wrap-
per for EHLLAPI (Emulator High-Level Language Applica-
tion Programming Interface), a component for PARTS Work-
bench for OS/2, which allows integration with legacy
mainframe systems by adding visual, object-oriented, client-
server technology.

The Parts Assembly and Reuse Tool Set (PARTS), is the
first component-based client/server integration framework ever
offered. It makes the assembly and reuse of so ware components
from different technologies a distinct and easier process than
creating the components, which allows for much faster delivery
of applications with reduced maintenance cost. These compo-
nents can be written in Smalltalk/V, C, COBOL, or other lan-
guages. The PARTS Workbench is the framework for integrat-
ing these components.

The PARTS Communications Wrapper for EHLLAPI is
designed for corporate users who need GUI front ends to their
legacy 3270/5250 mainframe systems. It allows corporate users
to easily convert 3270/5250 text screens to graphical screens,
giving their users a clean, intuitive interface without having to
change the host application.

The EHLLAPI Wrapper supports IBM Communications
Manager and other EHLLAPI products compatible with Com-
munications Manager on OS/2. Now mainframe data can easily
be integrated with graphical user interfaces, Smalltalk/V, C,
COBOL, database servers that use SQL., and Lotus Notes.
Digitalk, 5 Hutton Center Dr., 11th Floor, Santa Ana, CA
92707, 714.513.3000 (v), 714.513.3100 (f).

BOK Technologies introduces
GraphicsObjects/V for Smalltalk/V

for Windows, Win32, OS/V, and Macintosh
BOK Technologies Inc. announced GraphicsObjects/V, a high-
level and platform-independent graphics class library for
Smalltalk/V. The library speeds up the cross-platform develop-
ment on interactive graphical applications written in Small-
talk/V for Windows, Win32, OS/2, and Macintosh. Graphic-
sObjects/V contains a rich set of classes that encapsulate the
platform graphics API and existing low-level graphic methods
implemented in Smalltalk/V, thus providing a portable layer
that isolates Smalltalk/V programmers from platform depen-
dencies. GraphicsObjects/V programming API (access meth-
ods) is uniform, consistent and identical for all its implementa-
tions, which insures the cross platforms portability. Code
created with GraphicsObjects/V is portable across Smalltalk/V,
Windows, Win32,08/2, Macintosh and future platforms.

The library provides in-depth support for objects including
geometric shapes (Bezier curves, polygons, ellipses, wedges, arcs,
etc.), a structured graphics hierarchy (collection, set, dictionary
of graphics, etc.), a complete 2D geometrical transformations
(rotation, scaling,. etc.), prebuilt shapes (arrows, nodes, etc.),
drawing attributes (line styles, brushes, etc.), and text blocks that
fully support multiple fonts, styles, and colors. The library also
provides methods allowing to display, perform hit testing, posi-
tion, align, and arrange graphics objects. Developers can save
and retrieve graphics objects using the storing/retrieving mecha-
nism defined in Smalltalk/V. The library is written entirely in
Smalltalk/V and all source code is included. It is available for
Smalltalk/V, Windows, Win32, O8/2, and Macintosh.

BOK Technologies, Inc., 5476 Trans-Island Ave., Montreal,
PQ, H3W 3A8 Canada, 514.485.6690 (v}, 514.485.2095 (f),
72730.655@compuserve.com (e-mail)

Getting Real

continued from page 22

flexible, we can build other mechanisms to access and retrieve
information.

Objects can be “wired together” via instance variable refer-
ences, or more loosely coupled via event mapping. In contrast, if
there is a way to get at one piece of information from another in
a relational database, you can. If we need to be infinitely flexible
we may keep video information in a database and access it
through a query.

It may not be sufficient to say that one object "knows” about
another. How does it know? And, even more intriguing, when
does it need to know of another? Once structural aspects are de-
cided, strategies for fetching and retrieving persistent informa-
tion can be worked on.

If we don't have enough room to internally store all Video in-
formation inside our application, we can retrieve this information
from an external source on demand. In any case, we still describe
our Local Inventory object as being responsible for knowing and

28

managing the kiosk’s videos. If we place space, performance, or
flexibility constraints on our design, we just have to be more
clever about how our Local Inventory determines the information
it is responsible for knowing.

CONCLUSION

T've learned several lessons from observing and participating
in large development efforts. Big efforts require framework
support and consistent design guidelines that are followed.
Ad hoc solutions to data access and retrieval don’t scale.
Defining consistent ways to define the instance variables for
objects and handle persistent information smoothes out the
development effort.

Sometimes, though, it is the simple, easy to do things that
make a big impact. It pays to involve data designers early on.
Identify persistence requirements and the “shape” of data re-
quests as soon as practical, but not before you understand your
model. Build complexity as you need to. Expect designs to
evolve and mature. It’s pleasantly surprising to me how much we
do know about our objects’ data requirements if we've really
thought through our initial design. ¢

The Smalltalk Report

	By Article Title
	A brief look at size metrics
	Floating toolbox in Smalltalk/V
	New net resources
	Responsibility designing your objects' data
	Software metrics for the Smalltalk practitioner
	Using patterns: Design

	By Author Name
	Beck, Kent
	Beaton, Wayne
	Cole, William
	Knight, Alan
	Lorenz, Mark
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	Getting Real
	Project Practicalities
	Smalltalk idioms

