
The International Newsletter for Smalltalk Programmers

May 1994 Volume 3 Number 7

EXTENDING THE

Featur

1 E)rte
by 7

9 “Sma
for W
by W

Colum

13 The

Misc
by Al

15 Sma

Whe
by K

17Prod

Digit
by S

hc cllh;]ncelllcllts to snlLIll[;Ilk ;lp}lliciltio]l dcveh)plllcnt provided hy

VisuillWorks cxlclld well hcyolld the :ldv;llll~lges ()(GUI wi]ldt)w

p;linling, l: LIIILiiInlL’IlliIl LInlOIIg these L’[lh;l]lcenlents is L111(!wa}lplickl-

}

o

il

,

w

l

p

’r

iu

1

i

i

SC

(w
APPLICATION

MODEL

l))’I’ill] Iivw(]r(i & Bill K()}ll

Contents:

es/Articles

❑
‘Ibis ty

cationM

Ii)unci

(cillurcs

rc[ltly,

Stilrti]

specific

Model

.’ L’LISIL

. ;Iddil

. ICLII

“ dl~~

. cons

CI;IS

inlpl-
nding the application model
im Howard & Bill Kohl

rt Menus” in Smalltalk/V
in32

ayne Beaton

ns

best of comp.lang.smalltalk

ellaneous
an Knight

lltalk idioms:

re do objects come from?
ent Beck

uct Review:

alk’s TeamN
cot Campbell

[n this i

dcvcl I)p

crcllcc.

tendedAp

grcil[ly

of this i

vidcd in

shoLIld

;~djLlslll

plication

whcIl ills

COMPO

(.;onlpoll

(I[>,jccts

Ihe dcvc

“ Clcgilllc

. rc;ld;
tioll ilrchitcc[ure th:l[illcludcs il type (I[nlt)dcl dcdiciltrd exclusively

tt) lll;~[l;lgillg ~111clltirc il~l}llic:~tioll-or” ilt lci~st LII1clltirt window.

lc ui’ IIlodcl is i]ll[llclllclltcd hy (hc C1;ISSApplicationModel. Although Appli-

del ()([crs il rich SCI01 fe;lturcs for il}l}lli~;ltioIl lllillli~~~lll~llt, we hilve

dditioll;ll ilh~lli]~l SUllC]ilSSL’S ()(ApplicationModel, which ildd still nlurc

to bc ()(lrcnlclldous hcIlcfil in our VisukllWorks deveh)pnlent. Cur-

c hilv~ two very [ll;~ture :Il)s[rilct SUIJCILISSCS ()(ApplicationModel. When

:iincw }Iroicct (or ;1Cliclll, WCty~lic;llly cre;lte yet ;lllothcr kll)slr~lctSullcloss,

[() thi~t c[iclll’s Ilccds. “l”hcsL!;Iddi[ionill i~hstn~ct sLIhclilsses ofApplication-

r[)vidc SCVCEI1henelits:

conlrol” t)f the illtcrl-;lct!

llill fLlllction;ll l-ekllurcs

illl}llelllcllt;ltiolls of concrete ilp}llic;ltio]l nlode] Clilsscs

lllt tllld rc~ld:lhle source Cocic (or collcrctc ilp}llic:llion nlodcl Cl;lsscs

slcllcy of fcfitures ;Ind l>cll~lviur over ill] collcrctc ;Ip})lickllion nlodcl

S which C[)nlprise kIII cntirr op~>lickllion

ed di;llog dcvclo}lnlent

lrlic]t’, we will oticr sonle olthc nlorc LIse(ul cnh:lllcclllcllts th~l[hiwc hccIl

ed so Ftlr: colllponent” scrviccs, ;Ispccl services, LIIILI Conl;lining nlodcl rcf-

‘1’hcsc fci~turcs ;II-Cpr(~vidcd ill :1sLIl)cl~IssofApplicationModel wc c:III Ex-

plicationModel. A]lhoLlgh nlost of [hese idcils ;lrc l]Lli[e silllplc, they

Ft~cilit;~tc;l~~plici~tioll]ll[)del cIcvcI()}II1lcI1(.Also, it is illlport~lnt th;lt none

lddiliollkll fullclionillity illtcrfcrc with, or t)vcrridc, wh;lt is ;Ilre;ldy prt)-

ApplicationModel. ‘1’h;ltis, :Iny cxistillg sLIIIcliIssofApplicationModel

LI!S() [)c LIIIIL’ [() I’LIII ils il SLI(ICI;ISS of ExtendedApplicationModel without ;Iny

lcllts ill ils illl})lcll]cllt~llioll. I:inil]ly, wc will sht)w how 1[)iIdd ExtendedAp-

Model (() your VisualWorks CILISScrr;ltion diillog so th~I[it is ~lv;lil;~l)lc

t~lllillg ;I Cklllv;ls.

NENT SERVICES

cllt” scrviccs ilr~ ust!d [() control” [hc coIII})t)IIcIlls-iIIlci related i]ltcrfilce

sLIch LIS windows ill]d kcyhoilrd hooks-during” runti]llc. Wh;lt [hey (J(fer

h)pcr is

(! ()[Code

lhilily of COLIC

,.,),,,,,,,,,.,/,,,, ,,,,,(,,.. . . .

‘I’he Smalltalk Report
Wiirs
John Pugh and Paul White

Carleton University & The Objsct People

SIGS PUBUCATIONS

Advisory Board
Tom Atwood, Object Design

Frat-opis Bancilhon, 02 Technologies

Grady Booth, Rational

George Boaworth, Digiialk

Brad Con, Information Age Consuhing

Adele Goldberg, ParcPiace Systems

Tom Love, IBM

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems

Sesha Pratsp, Centerline Sofhvara

Cliff Reeves, IBM

Bjarne Stroustrup, AT&T Bell Labs

Dave Thomas, Object Technology International

THESMAUTAWRwcm
Editorial Board
Jim Andereon, Digitalk

Adele Goldberg, ParcFface Systems

Reed Phillips, Knowledge Systems Corp.

Mike Taylor, Digitdk

Dave Thomas, Object T=hnology Intwmdimal

Columnists
Kent Beck, First Class software

Juanha Ewing, Digitalk

Greg Hendley, Knowledge Systems Carp.

Ed Klimas, Lines Engineering inc.

Alan Knight, The Object People

Eric Smith, Knowledas .%tems Corm

Rebecca Wtis-Bro;k, Digitalk

SIGS Publidons Group, Inc.
Richsrd P. Friedman

Founder & Group Publisher

Art/Production
Krietina Joukhadar, Managing Edkr

Susan Culligan, Pi!gim Rosd, Ltd., creak Dmc6.n

Seth J. Bookey, Production Edtior

Andrsa Camrnarafa, ElectrcmicWdishing Coordhah

Margaret Conti, Production Assistant

Circulation
Bruca Shriver. Circub6cm Dk6ar

K.S. Hawkins, Fulfillment_

Markating/Advertising
Shirley Sax, Director of Sales

Gary %tie, rWvar6singMgr-Easf CaastfCanada/Ewcp

Hdan Newliw, kbetirnng and wbt -

%rah Hamilton, Maqer of Pmmii~ d ~h

&n?n Polner, Pmfn&ms Gra@ii Ardst

Administration
David Chatterpsul, Accounting Manager

James Amenuvor, Bookkeeper

Amy Melsten, AssNent to ths Publisher

Joanna Lowanatein, Administrative Assistant

Margheriia R. Monck, General Manager
EDITORS’
CORNER I

John Pugh Pad White

we’re very excited to have the opportunity to be the first to tell you about the upcoming

changes planned for THE SMALLTALKREPOLITas we start our fourth year of publication in

September. With Smalltalk’s move into the mainstream as an application development

tool and as the underlying scripting language for visual programming environments such
as IBMs VisualAge and Digitalk’s PARTS, the interest and activity within the Smalltalk

arena is growing exponentially. Reflecting this and our rapidly growing readership, THE

SMALLTALKREPORT will be expanded from its current 24 pages to 32 pages and will take

on a new look with enhanced use of color throughout the publication. We will be able to

expand the editorial content of THE SMALLTALKREPORT, which, for our readers, trans-

lates into more features, articles; columns, and reviews. Over the next few months we will

be introducing you to new columnists and new departments.

A new feature we would like to add to THE SMALLTALKRSPORT starting in September
is something that, for the want of a better name we are calling the “Wow, that’s neat. ..”

column. The idea is to have our readers contribute some small snippets of code that pro-

vide some interesting or useful functionality. We are hoping that the description and code
together will fit into roughly one printed page. If you have some “neat things” that you

have built in the past that you’d be willing to share with our readership, why not pass
them on?

We are delighted to introduce Tim Howard and Bill Kohl as new columnists this

month. They will be writing columns that will be dealing with issues of software construc-
tion using Smalltalk. Their first contribution is featured this month and deals with mak-

ing extensions to VisualWorks’ Application Model by introducing useful abstract classes

to ApplicationModel. We’re sure you’ll agree that their contribution will meet the same

high standards set by all our columnists.

Also in this issue, two of our regular columnists return. Kent Beck is continuing with
hk “Where do objects come from?” series, which has been dealing with issues of when

and why objects should be introduced during development. Alan Knight presents us with

a potpourri of issues that have been raised on Internet’s comp.lang.smalltalk, which is a

constantly growing forum in which Smalltalkers can participate. If you haven’t checked

out comp.lang.smalltalk, you may wish to do so. Although not all of what is said there will

be of interest to you, you will undoubtedly find gems of information to help in your work.
Wayne Beaton returns this month with a description of extensions that can be made to

Smalhalk/V’s menu facilities giving them a more object-oriented flavor. Finally, Scot Camp-
bell provides a detailed inside look at Team/V, Digitalk’s facility for team development.
THE SMAI.LTALKREPORT[lSSN4’ 1056-7976) is published 9 times a year, wq month except 10. the Mar/Apr, holy/Au , and N.vlUec com-
bined issu-. Published by SIGS Publication 1“.., 588 Broadway, New Ymk, NY 10312212 .274.0640.0 Co yrigbt 1994 y SIGS Publications,
All risbIs reserwd. Rqwoduction of this malcrial by electronic transmission, Xerox ❑ my other method ~betreald!awfllfulviolatio”of
the US Copyright bw a“d is tlatly prohIbkd. Makrial may be reproduced with express permi.uion from the publisber,

M.ilcd Firsl Claw Canada Post International Publicatimu Mail Product S.16 ABreernmt No. 1903s6. Subscription rates 1 year (9 issues): do-
mmtic, $7% Foreign and Canada, S1 14; Single copy price, s8.

POSTMASTER: Send address chmEm and subscription orders to THE SMALLT.+LKRBFOT+T,P.0, Box 2027, Lan~hmne, PA 19047. For service
on current subscriptions all 215.7 B5.5996.

To submit articles, please send electronic film on disk to the Edilors at 509-BB5 Meadowlands Drive, OtIawa, On[ario K2c 3N2, Cmada, m
via Internet to puEh@=s, carleton.ca Preferred formals far h ures are Mac m DOS EPs, TIF, or GIF formats. Always wnd a paper copy of y.ur

fmanuscript, including camera-rmdy copies of y.ur figures (ascr outpul is fine).

PRINTEDINTHEUNITED STATES.

~SIGS
1,1,1311(:X110% I

aublishers of JOURNALOF OEJECT.OUIENTED PRO.
SRAMMING, OBJECT MAGAZINE, C++ REPORT, THE
SMALLTALNREPORT, ROAD, THE X JOUNNAL, AND
OBJEKTapektrum.

THE SMALLTALKREPORT2

SHARE

g

❑
?

6 [WINDOWBUILDER Pfl” ●

INc. The New Power in Smalhall#VInter face Dezdopment

SmalltalWV developers have come to rely on WhdowBuilder PrrYV is waikdble on Windows for .$295

Some of the exciting newfeatures .,.

WindowBuilder as “an
essential tool for develop-
ing sophisticated user inter-
Faces. Tedious hand coding
of interhces is repkdced by
interactive visual composi-
tion. Since its initial release,
WindowBuilder has
become the industry stan-
dard GUI development tool
for the Srnalltalk/V environ-
ment. Now Objectshare
brings you a whole new
level of capability with
WlndowBuilder Pro! New
functionality and power
abound in this next genera-
tion of WindowBuilder.

tincl0S/2 for $495. Our stan-
ckardW[ndrrwBuilder/V is
still available on Windows
frrr $149.95 and 0S/2 for
$295. We offer FLIII vdLIe
trade-in for our
Window13ui1dercustomers
Wdnting to move up to Pro,
These products are also
avaipdbiein
EhTW~/DewIopr and
Twdrn/VT~[compatibk! for-
mats. As w-ithall of our
products, WindowBuilder
Pro comes with a 30 ckJy
money bdck gwdrantee, full
source code and no Run-
Time fees.

● (hnpositel%ums: Create custom controls as composites

m%=

becmse they are Class based, they c;n be e&ily sub-
classes; chdnges in a CompositePane are reflected any-
where they are used.

● .VI()rphing: Allows the developer to quickly change

n

mnlllalk frOMone ~p~ OfCOn~CJl“Skills
■

~~rtiullder to another, allowing for

II

O Smaliralk

powerful “what-i~ style O WlndowSulldcr

visual development. The O Other

flexibility allowed by
rrrorphing will greatly enhance productivity.

“ S~~lpl~ook: Another new fWd[Ur~ to leverage Visua]
component reuse, ScrapBooks provide a mechanism for
~ devekmers to auicklv

11 Ill Ill favorite in;erFdce com-
lkimamid~ll ponenLs, organized

into chapters and pages,

● Wpid Promtyping LYdpA-

I]ilititx: With the new link. mMed ❑ Wwl,i,ng,r Cl.,,:

%=:. E!i!!9

ing capabilities, a develop- ~R=
er can rapidly prototype a
functional interface without lV~~l?&

n

O,m, h sd,d.d
ulndw ,s a d!Jd.1

writing a single line of MOISWCm
MOITrmtiPI III, .xl”,mtidml,

code, LinkButtons and
POW”vicu
Paz#a15

Link,Menusprovide a pow- --

ms:zi:::i- w~ndows together and speci-

actions wi[hout having to write code. These features
greatly enhance productivity during prrrtotyping.

● ToolBar: Developers cm Cr&ate sophisticated tocdlmrs

just like the ones in the WindcmrBuilder Pro tool itself,

● ()thcr nc!l- I&llurcs ind LIde>: enhdnccd duplication and
cut/paste functions, size and position indimtors,
enhanced framing specification, IJarent-Chikt window
relationship specifimticm, enhdnced EntryField with chtir-
acter and field level validation, and much mom.,.

● Ack-in .Mtinag~>r:Allows developers to easily integrate
extensions imo WindowBuikfer Pro’s open architecture,

Cal
Catch the excitement, go Pro!
Objectshue for mot-e inf(mmltion,

(408) 727-3742

obfecMLatesystems,Inc 5 TowrI & Country V-
Pam (408) 727-6324 suits 735
CompuServe 76436,1063 SanJose, CA95126-2026

Wi~Buildsr ard Windc.wSddWPm arntrndarnatkscd0bjec16hamSystems,Inc.All olherbrandandprcdxi nartw me registeredlmdomarks.1Ihaf respeslivmcompanims

continuedfiompage1 ■ EXTENDINGwfE APPLICATIONMODEL
. brevity of code

● development efficiency

. flexibility

* safe component access

. additional functionality

After you have written a few meaningful applications in Vku-

alWorks, you may begin to notice a certain repetition of code

where component control is concerned. For example, suppose

we want a method that is responsible for disabling three com-

ponents—#name, #address, and #phone. The implementation

for such a method might look like this:

(selfbuildercomponentslt#name)disable.
(seLFbuildercomponentAk#address)disable.
(selfbuildercomponentAti#phone) disable.

At first glance, one notices that this code is not very readable. A

statement such as self builder componentAt.. ,disable does not

fit very well with our common vernacular. To a second party

reviewing this code, it is not readily apparent what is going on.

Smalltalk code should be short, elegant, and readable. Also,
4

notice how much redundancy is involved, There is no excuse

for this in Smalltalk, which leads us to the next implementa-

tion. Most veteran Smalhalkers would implement our example

method as follows.

#(nameaddressphone)do: [:each I
(selfbuildercomponentAteach)disable]

An improvement, but we are still not quite there. This second

implementation is more elegant in that it removes the redun-

dancy, but it is even less readable than the first. In English,

what we are trying to do is disable #name, #address, and

@hone. Is there any reason why we cannot write the method

just this way? Certainly not! Application models that are sub-

classes of ExtendedApplicationModel implement our example

method as follows.

selfdisable: #(name addressphone)

This third implementation is short, concise, and readable. In
the time it takes to read this very short line, we know exactly

what is taking place. Application models that are subclasses of

ExtendedAppl.icationModel are able to control their compo-

nents in just such a fashion.

ent(s)
atedbyaSymbolOrColor

id is a$nrrbol

by a$mbol

bolOrArray

bolOrArray

bolOrAsray

e componentwhoseID is

aSymbolOrAnay

dbyaSymbolOrhray

yasymbolwithaContioUer

mbol

bolOrArray

bolOrArray

~

As another illustration of the utility
of component services, consider chang-

ing one of the colors of a component.

This is not at all a straightforward task.

There are some subtleties involved with

this process and several lines of code are

required to do the job. For example, if

we wanted to change the foreground

color of a component whose ID is

#notes, then we would write something

like the following.

I Ip comp I
comp := selfbuilder componentAti#notes.
lp := complookPreferences.
Ip :=Ip foregroundColoxColorValuered.
complookFreferences:lp

This is quite a bit of code and not at all

readable. Of course, the acid test of read-
ability is to state in English exactly what

we are trying to accomplish. In this case,
the English version reads change thejore-

ground color of#notes to the color red.

The ExtendedApplicationModel offers a

component service that allows us to

write the code in just such a way.

selfchange #foregroundColor
of #notes to ColorValuered

Notice that we also gain in brevity and

elegance. For someone reviewing the
code, it is immediately obvious what this

statement does. To provide some flexi-

bility, the color argument can be either

——
Table 1. ComDonent Semites.

Messege Behavior
—.—

abortFocusShift Preventsa shift of focusfrom takingplace.

change:asyrnbolof Changethe color rolea.syrnbolof the compon
asymbolorluq identifiedbyaSymbolOrAsrzytothecolorindic

to: aSymbolOrColor

componenbasymbol Returnthe component(SpecWrapper)whose

cont?ollerFo~asymbol ‘ Returnthe controllerfor Ihe widgetidentified

disable aSymbolOrArray Disablethecomponent(s)identifiedbyaSym

emble aSymbolOrAnay Enablethe component(s)identifiedbyaSym

invalidate:aSymbolOrAnayRedrawthe component(s)identifiedby aSym

keyboardHook Returnthe keyboardhook.

keyboardHookasymbol Retrunthe keyboardhookfor the widgetof th
asymbol.

keyboardFrocessor Returnthe keyboardprocessor.

I Makeinvisiblethecomponent(s)identifiedbymakeInvisible
aSymbolOrAcray

mekeVisible:
aSymbolOrArray Makevisibleagainthe component(s)identifie

replace~dgetControllerI.mReplacethecontrollerin thewidgetidentifiedb

asymbolwitlv a
Controller

takeFocrrs:aSymbol Givefocusto the componentidentifiedby asy

tumOfEaSymbolOrAmay Turnoff the component(s)identifiedby aSym

hrmOn: aSymbolOrArray Turnonthe component(s)identifiedbyaSym

widget a$robol Returnthe widgetidentifiedbyasymbol

tidow Returnthe builder’swindow.
THE SMALLTALKREPORT

Now! Automatic Documentation
For SmalltalklV Development Teams — With Synopsis

Development Time Savings
SYllO@S produceshighquality class documentation

automatically. With the combination of Synopsis and Coding Documentation
Smalltalk/V, you can eliminate the fag between the Without
production of code and the availability of documentation. Synopsis *

A

start Finish

Synopsis for Smalltalk,/V
Documentation

● Documents Classes Automatically

c Provides Class Summaries and Source Code Listings
~~o~.is =

● Builds Class or Subsystem Encyclopedkts A A

● RI blishes Documentation on Word ~ocessors
Stan Finish

c Packages Encyclopedia Files for Distribution Products Supported:

● Supports Personalized Documentation and Digitalk Smallt&/V Windows $295
Coding Conventions Digitrdk Smalltalk/V 0S2 $395

(0S/2 version works with Tearo/V and Parts)

Dan Shafer, Graphic User Interfaces, Inc.:

“Every serious Smalltalk developer should take a ~ SynopsisSoftware
close look at using Synopsis to make documentation 8609 Wellsley Way, Raleigh NC 27613
more accessible and usable,” Phone 919-847-2221 Fax 919-847-0650

—

some kind of Paint objector a Symbol identi!jing one of the

named ColorValuessuch as #navy or #lightGray.

As another form of flexibility, many component services
that take a component ID as an argument can also take an Ar-

ray of component IDs. For instance, we can mike a single

component invisible with

selfmakeInvisib[e:#rrsme

Or with the same message, we can make an arbitrary number

of components invisible, such as

selfmakeInvisiblm#(nrunerankserialliumber)

The component services are also robust enough to ignore any
errant component IDs—those that do not identiij a compo-

nent. The component lookup is conducted such that compo-

nent IDs not found in the builder’s named components collec-

tion are ignored.

There are two component services that add some additional

functionality not currently available in VisualWorks. These
component services turn components off and on. Turning off a

component is similar to disabling it in that the turned off com-

ponent will not respond to user input. Unlike disabling, how-

ever, the component is not redrawn in a gray hue but main-

tains its original color. The implementation is quite a bit
different as well, A component is turned off by giving its wid-

get a NoContioller. The purpose of turning off a component is
to provide a read only effect. Turning on a component merely
MAY 1994
reinstates the widget’s default type of controller so that it can

accept user input again.

There are 18 component services; these are listed in Table 1.

ASPECT SERVICES

When designing an application model that manages several
components, the instance variable list tends to become some-

what overloaded. Traditionally, good Smalltalk style frowns on
class definitions with excessive instance variables. Such a

symptom can be indicative of

“ a lack of factoring in the hierarchy

. a lack of support object types and collaborator object types

“ unnecessary and unused instance variables

Table 2. Aspect service argument for ValueHolder.

aSelector

anObject
aSelectorOrArray rA Symbolwhichis the nameof the methodusing

Theinitial valueof theValueHolder.

If it is a Symbol,it is the nameof a unarymessage
to besentto the applicationmodelon a changeof
valueof theValueHolder,
If it is anArray,thefirst elementis the change
message,andthesecondelementis thereceiver
of the message.
5

.,..”. _ ..- —.
-.

■ EXTENDINGTHEAPPLICATIONMODEL

-

e

s-
In general, an excess of instance variables usually indicates that

the class is assuming too much responsibility and that some of

this responsibility should be defined in one or more super

classes or delegated to collaborator and support objects. In the

case of concrete application model development, however,

these two options usually do not apply. This leaves only one

avenue for reducing our number of instance variables—re-

moving those that are unnecessary. Well, the aspect instance

variables are unnecessary! The reason for this is that a

UIBuilder caches these objects in its bindings variable. This

means the application model maintains redundant references

to its aspect models. The application model can always refer-

ence its aspect models via its builder, so why keep them as in-
stance variables? ExtendedApplicationModel uses this informa-

tion to provide aspects for the components without having to

load upon aspect instance variables.

Typically, an aspect method returns some type of value

model, or some other type of aspect object such as a Selec-

tionInList, In an extended application model, aspect methods

can be written in one of two ways. For example, a method for
the #documentName aspect might look like the following

docnmenttleme
“documentNameisNil

ifllue [documentName:= Wing new asVahre]
ifFalse: [document]

This first implementation, which is the traditional approach,

requires the allocation of an instance variable, documentllame.
In an extended application model, the method can also be

written as

Table 3. Aspects service arguments for Seleciim-lnList.

aSelector

anObject

aSelectorOrAmayl

aSelectorOrArrayZ

ASymbolthat is the nameof the aspectandof
the method.
Thiscanbenil,asequenceablecollection,or aSymboL
If it is nil, thenanemptySelefionIrrlist iscreated.
If it is a collection,the SelecbonInListis initialized
with the collection.
If it is a Symbol,thenit is interpretedasa message
sentto the applicationmodelto retrievethe list
whichis then usedto initializethe SelectionInList.
ASymbolor Array.If aSymbol,then it is the change
messagesentto theapplicationmodelona change
of the list.
Ifanhay, thenthefirstelementisthechangemessage
andthesescmdelementis thereceiverofthemessage.
A symbolor h-ray. If a Symbol,then it is the mes-
sagesentto theapplicationmodelon a changeof
the selectionindex.
If ankey, thenthefirst elementis the change
messageandthesecondelementis the receiverof
the message.

Tsble 4. Aspect service srgumente for SubCanvas.

aSelector A Symbolwhichisthe nameof theaspectandof the method.

‘ akfodel AsubclassofApplicationModeloraninstanceof suchaclass.
6

“selfvalueHolderFoc#documentNameinitiaNralue:Strkrgnew

This second implementation does not require an instance vari

able! As long as the aspect is accessed using the accessing mes-

sage (a practice we strongly encourage), the correct value will

be returned and the application model will behave just as if th

implementation was that of the first type. Also notice how

much more readable it is than the traditional implementation.
There are two aspect services for ValueHolders:

valueHolderFo~aSelectorinitialValue:anObject

and

valueHolderFo~aSelectorMialValue: anObject
changeMessage:aSelectorOrAr?ay

The arguments are described in Table 2.

There are two forms of the aspect service for SelectionInList

and MultiSelecbonM.ist

selectiorrInListFo~aSelectorIisk anObject

and

selectionIrrUstFor aselector list anObjectlistChange:
aSelectorOrArraylselectionChange:aSelectorOrArray2

The arguments are defined in Table 3.

When the component is a subcanvas, then the aspect is an-

other application model. The aspect service in this case is

apphcatiorfo~ ase~ectormodek aModel

The arguments are presented in Table 4.

Also, if the sub environment is itself an extended applica-

tion model, then it will automatically receive a reference to its

containing model. The containing model properties of Ex-

tendedApplicationModel are covered shortly.

All the aspect services use the same approach. For illustra-

tion, we will use the valueHoLderForinitialValue:changeMessage
aspect service. Whenever someone sends a message to access an

aspect, that method’s implementation is an aspect service mes-

sage. For instance, an application model with a #producUD as-
pect might have a method which looks like the following.

produeUD
‘self

valueHolderFor:#producLID
initiWalue: String new
changeMessage:#changedProducLID

The implementation of the valueHolderFocirdtilValue:changeMe

sage: aspect service method defined in ExtendedApplication-

Model is shown below.

valueHolderFocaSelectorirdtialValueanObjectchangeMessage:
aSelectorOrAnay
“(selfbuilder bindings includesKey tielector)

ifFalee: [seti
registerInteresLIn: (ValueHolderwith: anObject)

using: aSelectorOrAmay]
ifl’rue: [selfbuilder aspectA’caSelector]
THE SMALLTALKREPORT

This method checks first to see if the builder already has the
aspect model in its bindings. If so, then access it from the

builder and return it (the iflrue: clause). If not, then create

the ValueHolder with the initial value of anObject and use

the information in aSelectorOrluray to register interest in

the Value Holder. Then return this new ValueHolder (the if-

False: clause), The interest in the ValueHolder is registered

by sending the message registerInterestIn: aValueHolder us-

ing: aSeiectorOrArray. The implementation for this method

is shown below.

regiaterInteresUn:aValueModel using: aSeleetosOrkray

aSelectorOrArrayisNilifTrue: [“aValueModel].
(aSelectorOrArrayistidOE Array)

ifhue: [aVahseModel
onChangeSend:(aSelectorOrArrayat 1)
to: (aSelectorOrArrayat 2)]

Wake: [aValueModel
onChangeSend:
aSelectorOrArrayto: selfj.

‘aValueModel

If aSelectorOrArrayis a Symbol, then it is understood that the

interested object is the application model itself. If aSelectorOr-

Array is an Array, then its first element is expected to be a Sym-
bol naming the change message and its second element is ex-

pected to be the interested object, that is, the receiver of the

change message.

One caveat to using the aspect services is that the aspects are

necessarily public. If a completely private aspect is desired, you
must abandon the aspect services and declare an instance vari-

able that does not have an accessing method.

Although there is no functional benefit in using aspect ser-
vices, we do get a threefold increase in elegance, namely,

“ a reduction in the amount of instance variables in the class

definition

“ much more readable and descriptive aspect methods

“ the discipline of referencing aspects by their accessing

messages

For example,

Label ExtendedApplicationModel
Aspect#superPick
Select #ExtendedApplicationModel

CONTAINING MODEL

Quite often, when an application model is launched from an-
other application model, the new application model will want

to reference its parent. Also, it is quite convenient for an ap-

plication model running a subcanvas to reference the con-
taining application model. For these reasons, ExtendedAppli-

cationModel defines an instance variable, containingModel,
which allows an application model to reference the contain-

ing application model which launching it or contains it as a

sub environment.
MAY 1994
ADDING TO VISUALWORKS

The complete source code for ExtendedApplicationModel,
along with an example application, can be acquired from the

University of Illinois Smalltalk Archives in ST_80VW directory

as “extendedApplicationModel.st.” To make ExtendedApplica-

tionModel available from the class creation dialog, open the in-

terface in UIFinder class>>classCreationDialog for editing. Now

add a radio button below the ApplicationModel radio button.

Give this new radio button the following properties and install

the canvas.

To make ExtendedApplicationModel the default selection for
this dialog, you must edit the UIFinder class method

operOJewIlassDialogForName:aclassNamesubClassing:aSuperName
inCategoy aCategory

This is a very long method, Find the part that reads

builder
aspec~b #superPick
put

(superPick:=
(superNamevalueisEmpty

We [#ApplicationModel]
ifFalse:[#Other])asValue).

and change the iffrue: value form #ApplicationModel to #Ex-

tendedApplicationModel. This will make ExtendedApplication-

Model the default superclass of any new classes created as a re-

sult of installing a canvas.

CONCLUSION

VisualWorks projects of any merit should include one or more
abstract subclasses of ApplicationModel to facilitate application

development. In this article, we developed such a class, Ex-

tendedApplicationModel, and populated it with some very useful

features: component services, aspect services, and a containing

model reference. Component services facilitate the control of
the interface objects during runtime and provide more readable

and elegant implementations. The aspect services eliminate the

need to load up on instance variables when defining an applica-

tion model class and also provide brief, readable aspect method

implementations. The containing model reference is an instance
variable that allows an application model to reference its parent

or containing model for which it serves as a subenvironment.

These three enhancements are good examples of why it is advan-

tageous to create abstract subclasses of ApplicationModeLEl

Tim Howard holds an MiiA and a MS in Indu;;rial Engineering

and has been developing application so@vare for eight years.

Presently he is working on a VisualWorks bookfor SIGS Publica-

tions and consultsfor RothWell International. He can be reached

at the RothWell ofices at 800,256.0541, at home at 713.784.9730,

or via email at 74213. 1517@compuserve. corn.

Bill Kohl is a Training Administrator at RothWell International

and can be reached at the RothWell International ofices at

800.256.0541.
7

Your way to
High - Productivity

● developed by Claus Gittinger ●

The object-oriented development tool for
high-portable applications ~ ,

*
ALL AVAILABLEPlatforms ONOURBeta-CD-ROM1.0:

R 3000/400& SiliconOraphicdlrix4.O.X,; NeXZ MachwithXl 1; SPARC SunOs4. 1.K
80386/486 LINUXV.O.99P110/11

Yetalsorunning:PARiscHP-UX 9.% SPARC Solaris2.x R 3000/400~ PCSM4UN1X;
80386/486: Sys 5.41/5.42, SINIX 5.4x UnixWar% Sohois x86

All trademarks are the proper~ of the respectiv holders

“SMARTMENUS”

IN SMALLTALK/V

FORWIN32

Wayne Beaton
❑
enus play an important role in any Windows-

based application. Typically, an application will

“gray-out”, or disable menu entries that don’t

make sense in the current context. Menu items

may or may not have a check mark to their left,

indicating that an option is active or inactive. Managing these

menu items can be cumbersome, if not downright difficult us-

ing the mechanisms built into Smalltalk/V (for large applica-

tions, it certainly takes far too much effort to get menus to op-

erate correctly).

The current mechanism feels a lot like functional program-

ming if, for example, an application has a menu titled ‘File’
and a menu titled ‘Edit’, each containing a number of entries, a

ViewManager subclass might have code to update these menus

which looks something like:

sel-fisDocumentDirty
ifTrue: [

(self menul’itled: ‘File’)
enableItenc #lileSave]

iffalse [
(seLfmenuTitled ‘File’)

disableItem: #WleSave].
self clipboardContisObject

ifl’rue: [
(self menu’lltled:‘Edit’)

enableItern #editPaste;
embleItern #editPasteSpecial]

iffalre [
(self menuTitled ‘Edit’)

&sableItem #editPaste;
disabldtem: #editPasteSpecial]

(... et)...)

For a smaU number of entries, this technique maybe easy to

understand and use. As the size of the application and the

number of menus increase, this type of code can grow exceed-

ingly complex. To start, the label of the menu is required to ac-
cess it. If the application is required to function in multiple
languages, this issue becomes even more complex (the typical

solution might be to have a specific method that will determine

each menu title). If the logic that determines the enabled or

disabled state gets any more complicated, the method becomes
MAY 1994
so nested that even expert Smalltalkers choke, gag and eventu-

ally collapse and die.

AN OEUECFORIENTED APPROACH?

As strange as it may seem, Smalltalk is object-oriented, which

means (in part) that objects know things about themselves.

Why not have menus know how to update themselves?

When a menu item is created, a label, selector and accelera-
tor is specified for it, The label is the string that will be dis-

played for the user when the menu is selected and pulled

down. The selector is a unary message that will be sent to the

menu’s owner when the item is selected by the user and the ac-

celerator is a description of the keyboard equivalent of select-

ing the item.

Smart menus will consider additional information. When
an item is added to a smart menu, the programmer can also

specify a block of code as the “enabled condition” for the
item, The block must result in a Boolean when evaluated—if

the result is true, the item will be enabled, if false the item

will be disabled. Similarly, the programmer can specify a

“checked condition” which is also a block resulting in a

boolean which determines if the item is checked or not. If no

conditions are specified, then by default an item will be en-
abled and unchecked.

A subcass of Menu has been introduced named Smari+fenu

(see listings 1 and la) that handles menu updating. A single

method has been added to MenuWindow(see listing 2) to sim-

plify the interaction between an application and its menus.

A menu is created using the existing methods in class menu.

Enabling and checking behavior can be added for an item after
that item has been added. For example, to create a “File”

menu, a method using the following code might be employed:

buildFileMenu
“Buildand answerthe menu titled ‘File’.”
‘SmartMenu new

owner: self;
title: ‘Tile’;
appendItem: ‘Open...’selecto~ #fileOpen;
appendItem: ‘Save’selecto~ tilesave;
enableItem: #iileSave

when: [self isDocumentD@];
yourself

This method builds a menu titled “File” with two entries. The

entry labeled “Open. . . “ is always enabled. The entry labeled

“Save” is only enabled when the document is dirty.
There are two ways that the menu updating process can be

initiated. Before a menu is pulled down, the menu window is
triggered with the event aboutToDisplayMen~ the handler for

this event can send the message updateMenus to the

menuWindow. Alternately, the menuWindow can be asked at
any time to update its menus (again using the message up-

dateMenus).

The class ClassList has been created to demonstrate the use

of SmartMenus (see listing 3). This class builds a window con-
taining a list box populated with the classes known to the sys-
9

■ “SMARTMENUS” IN SMALLTALKAIFORWIN32
1
CompiledMethod
CompiledInitializer
ByteArray
Interval

Figure 1. An instmx of ClassList.

tern (see Fig. 1). A single

menu, titled “Class” is

added containing two en-

tries. The first entry, la-

beled “Class Is Variable”,

is always disabled and

checked only if the selected

class is a variable byte

class. The second entry, la-

beled “Browse”, is enabled
only if a class is selected

and is never checked.

The menu is created in response to the event needsMenu.

When this event is encountered, the method updateClassList-

BoxMenu: assigns the menu created by the method buildClass-

Menu to the list box using the SubPane method setMenu:. The
method buildClassMenugenerates a new instance of SmartMenu

by adding each item, and then indicating under what condi-
tions each item is enabled or checked.

When a class in the list is selected, the event clicked: is trig-

gered, sending the method clickedClassListBox to the ClassIist.

Menusubclass: #SmartNenu
insbnceVariableName~

‘itemEmbleConditionsitemCheckConditions’cbszsVariableNames:”
poolthctionaries: “ !

!.SmartMenumethods !

checfckern aSymbolwhen block
“Seta check mark beside the item onlywhen block evaluates hue.”
seti itemCheckConditions

ati asynrbolpub block.
self updateItemWithSelector:asyrnbol!

enableItern aSynrbolwhen block
“Enablethe item named a$rnbol onlywhen block evaluates true.”
self itemEnableConditions

ah a$rrnbolputi block.
selfupdateItemWithSelecto~asyrnbol!

initialize
“Private- Initialize myself.”super initilize.
self

initializeIternEnableConditions;
irritializeItemCheckConditions!

initializeItemCheckConditions
“Private- Irdtidize my colletion of check conditions. “
self itemCheckConditions:Dictionarynew!

initilizeItemEnableConditions
“Private- IniMize mycollefionofenableconditions. “
self itemErcableConditions:Dictionarynew!

isSmartMenu
“Answerwhether I am an instance of SmarLMenu.”
%ue!
10
This method remembers the selected class and updates the

menus by sending the message updateMenus to the MenuWindow.

SOME CONCLUSIONS

SmalltallcN provides a rich set of user interface tools, but it

seems they have not yet evolved aspects of it into a more usable

form. As is often the case, the environment can be manipu-

lated into a more usable form with minimal impact.

The code presented here is only a first step. With some

imagination, there are other facilities that can be integrated

easily. Enabling and disabling items is something that most, if

not all, applications do. Some applications dynamically change
the contents of some menus, change the text of some entries,

or even include a graphic that may change. Such less-generic

behaviour can be easily added. El

Wayne Beaten is a senior member of the Development Team at

the Object People. His interests include User lnt~aces, Neural

Networks, and snickering ofpeople who wear socksw“thsandals.
He can be reached at The Object People in Ottawa at

613.225.8812 (Wayne@ObjectPeople. on.ca).

-—
itemCheckConditiorrs

“private- Answermy colletion of check conditions.”
‘itemCheckConditions!

itemCheckConditions:aDictionary
“Private- Set my colletion of check conditions.”
itemCheckConditions:=aDidionary!

itemEnableCondltions
“Private- Answermy collection of enable conditions.”
‘itemEnableConditions!

itemEnableConditions:aDicfionary
“Private- Set my collection of enable conditions.”
itemEnableConditions:= aDictionary!

itemSelectorsDo:block
“Private- Evaluateblock with the selector for each of my selectors

as parameter.”
items do: [:item I

blockvalue: item selector]!

shouldItemBeChecked:a$rnbol
“Private- lmswer whether the item named asymbol should be

checked or not. ”
‘(self itemCheckConditions

ah aSyrnboliflhsenb [Afalse]) value!

shouldItemBeEnabled asymbol
“Private- fuwwerwhether the item named a$rrnbol should be

enabled or not.”
‘(self’itemEnableConditions

ab a$mbol ifclbsen’c[tie]) value!

update
“Updateall of myitems.”
sefJitemSelectorsDo:[:each I

self updateItemWithSelecto~each]!

I
I

1
1

.:
THE SMALLTALKREPORT

__. —
updateItemWithSelecto~asyrcrbol
‘Private- Updatetheitemwithselectorasymbol.Firstenableor

disablethe itembasedonthevalueofthe appropriateenable
block.Second, check or uncheck the item based on the value of
the appropriate check block.”

(self shouldItemBeEnabled:asymbol)
ifl’rue: [self enableItem: asyrnbol]
ifFalse: [seMdisableItem: asyrobol].

(self shouldItemBeChecked:a$nnbol)
iPhue: [se~ checldterrc asymbol]
ifFaLse:[seUuncheckItern a$robol]! !

!Objectmethods !

isSmartMenu
“Answerwhether I am an instance of
SnrartMenu.m
‘i%lse!!

!MenuWindowmethods !

updateMenus
“Forcemy menus to update themselves.”

menus do: [:each I
each isSmartMenu

We: [each update]]! !

ViewMamgersubclass: #ClassLister
instanceVariableNames:

‘classl.ist selectedClass’
classVariableNames:“
pooltriclionanex “ !

!ClassListermethods !

browseClass
“Browsethe selected class,”
self selectedClassedit!

buildClassMenu
‘private - Build and answerthe class menu.”
‘SmartMenu new

owner self;
title: ‘Class’;
appendItern ‘ClassIs Variable’

selectoc #classIsVariable;
appendSeparator;
appendItern ‘Browse’

selector #browseClass;

enableItern #classIsVariablewhen: [false];
checkItem: #classIsVariablewhen:

[self selectedClassnotliil
and: [seLfselectedclass invariable]];
MAY1994
enableItem: #browseClass
when: [seti selectedClassnotliil];

yourseW.

classf.ist
“classList!

classlisk aCoUefion
classList := aCollection!

clickedClassListBorselectedItem
self selectedrlass: selectedItem.
self menuWindowupdateMenus!

open
“Openmyselfon all the classes in SmaUtaUc.”
self openOn:

(SmalkallrrootClasses
irject OrderedCollechonnew
into: [:sum :each I

sum
addAILeach wittrAMrbclasses;
yourse~) !

openOmaCoUedion
“Openmyseti on the Listof classes in aColleclion.”
I pane 1
self

chssLisk aColLeclion;
label: ‘ClassIist’;
addsubpane:

((pane:= listBox new)
owne~ self;
Seiliame #classListBox
when: #needsMenu

send: #updateClassListBoxMenu:
to: sell witlu pane;

where #needsContents
send #updateClassListBox
to: selfwitlv pane;

when: #clicked:
send #clickedClassListBo~to: self;

yourself).

self openWindow!

selectedclass
“selectedClass!

selectedClass:aclass
selectedClass:= ailass!

updateClassIistBox aListBox
“Updatethe contents of the class list box.”
SLiatBox

contents: self classList;
selection: self selectedClass!

updateClassListBorrMenwaListBox
“Updatethe menu for my class list box.”
aListBoxset.hlerurselfbuildClassMenu!!
11

-hwtild--

Woddbehtrmarerewldingifyour.oddreuse

existingcodeinsteadof rewritingit. And now

that gout becomesrealitywith objectmriented

programming. Especiallywhen you can rely

on VisuulWorksm,the PorcPloceSmulltalk””

Appliartiitis Diwefopmerd himrtm~ thot

createsopplimtiansthot are‘mtty pwtctble

betweenWindows,0S/2, MacirMl andUNIX.
Ttus OCIP, it provideso robustset of toolsta

MM soptsistkoted$raphiialopplkationswitfs

mess too widevarietyof relotionaidotaboses,

Fullyarmed with superiarflexitritity,dynamic

mrnpilationfor impressiveperformanceand the

world’s largest set of tried and tested CIOSS

HE BEST OF comp.lang.smalltalk Alan Knight

Miscellaneous
T
his month’s column covers several unrelated things
that don’t require an entire column’s worth of space.

This includes some recommended reading, the an-

nouncement of a new version of the Self language, a template

of examples for class comment rules used in the APOK tool kit,

and a handy bit of code for finding references to objects in

ParcPlace SmaHtalk.

READING MATERIAL

Books on Smalltalk programming are coming out regularly,

but the most interesting Smalltalk-related reading I’ve come

across lately has little to do with programming. It’s Alan Kay’s

‘The Early History of Smrdltalk~ part of the Second History of

Programming Languages conference (HOPL-11) sponsored by

the Association for Computing Machinery (ACM) Special In-

terest Group on Programming Languages (SIGPLAN).

The conference covers the early history of more than 14

different programming languages, including Smalltalk and C++

(SIMULA was covered in the first HOOPLA). I naturally

thought the Smalltalk article was the highlight, but I found the

whole thing very interesting. I include a few choice quotes

from the article:

One way to think about progress in soflware is that a lot of

it has been about finding ways to late-bind, then waging

campaigns to convince manufacturers to build the ideas

into hardware.

A language I now called “Smalhalk’’-as in “program-

ming should be a matter of,.. ” and “children should pro-

grarnin “ The name was also a reaction against the

“Indo European god theory,” where systems were named

Zeus, Odin and Thor, and hardly did anything. I figured

that “Smsdltalk” was so innocuous a label that if it ever did
anything nice people would be pleasantly surprised.

. . . I thiik the enormous comrnerciahzation of personal

computing has smothered much of the kind of work that

used to go on in universities and research labs, by sucking

the trdented kids towards practical applications.

Should we even try to teach programming? I have met
hundreds of programmers in the last 30 years and can see

no discernible influence of programming on their generrd
ability to think well or take an enlightened stance on hu-

man lmowledge. If anything, the opposite is true.
i%iAY1994
I received the preprints of the conference papers as a special is-

sue of SIGPLAN notices. I understand, however, that a book

including these papers and much other conference material is

being planned, Unfortunately, it won’t be published until

sometime in 1995. In the meantime, the preprints are available

from the ACM: US $27 for ACM members and US $54 for

nonmembers. The order number is 548931, ISBN 0-89791-

5704. The ACM publications office can be reached at

800.342.6626 or 212.626,0500 or at P,O, Box 12114, Church

Street Station, New York, NY, 10257 USA.

SELF

Self is a prototype-based experimental language similar in

many ways to Smalltalk, with a very aggressive optimizing
compiler. It’s often mentioned in discussions about optimizing

Smalltalk. If you’re interested in checking it out for yourself
and have a Sun workstation handy, Version 3.o was recently

announced, Excerpts from the announcement follow

The Self Group at Sun Microsystems Laboratories, Inc.,

and Stanford University is pleased to announce Release

3.o of the experimental object-oriented programming

language Self, . . .

Designed for expressive power and malleability, Self

combines a pure, prototype-based object model with uni-

form access to state and behavior. Unliie other languages,

Self allows objects to inherit state and to change their pat-
terns of inheritance dynamically. Selfs customizing com-

piler can generate very efficient code compared to other

dynamically-typed object-oriented languages.

The latest release is more mature than the earlier re-

leases more Self code has been written, debugging is easier,

multiprocessing is more robust, and more has been added

to the experimental graphical user interface which can now

be used to develop code. There is now a mechanism (still

under development) for saving objects in modules, and a

source-level profiler.

The Self system is the result of an ongoing research pro-

ject and therefore is an experimental system. We believe,

however, that the system is stable enough to be used by a

larger community, giving people outside of the project a

chance to explore Self.

This release is available free of charge and can be ob-
13

■ THE BESTOF COMP.LANG.SMALLTALK
tained via anonymous flp from Self. stanford,edu. Also avail-

able for flp area number of published papers about Self.

There is a mail group for those interested in random

ramblings about Self: Self-interest@Self. stanford.edu. Send

mail to Self—request @self. stanford,edu to be added to it
(please do not send such requests to the mailing list itself!).

Self currently runs on SPARC-based Sun workstations

running SunOS 4.1.x or Solar-is 2.3. The Sun-3 implemen-

tation is no longer provided.

66 I have met hundreds of

programmers in the last 30 years and

can see no discernible influence of

programming on their general ability

to think well. ~

CLASS COMMENT RULES

Part of ParcPlace’s Advanced Programming ObjectKit (APOK)

is a class reporter that includes checking parts of class com-

ments against some simple rules. This is good. In my experi-

ence, there are far too many classes out there in real products
that have no comments at all. Of those that do, far too many

are inadequate or out of date. Let’s face it. When you’re on a

roll, writing detailed comments to explain everything just

slows you down. Going back afterward and figuring out which

comments need to be fixed is tedious and annoying. It’s too

easy to just skip it and let things get a little bit out of sync. You

can fix it later. Naturally, later never arrives. To help prevent

this, comment checking should bean important part of any

code review. A tool to make some of this checking automatic is

a godsend for reviewer and programmer alike.

The rules that it checks, while relatively simple, aren’t that

well documented. It always seems easier to just refer to other

class comments for examples (I have to congratulate ParcPlace

for actually having class comments and for following their own

rules). In the interests of making commenting easier, Niklas

Bjoernerstedt (nbt@funsys.se) has written some templates for

these rules. They are reproduced below

InstanceVariables:
bufferTypetil I Stringclass

> Classof the byte-type object used to store data fromtie io
Cormeetion
CtassVariables:

IM90Roots<Set OFIM900bje@
ClassInskmce Variables:

activated *e I false I nil> Holdsthe afivated status of the
application
Pool Dictionaries:
14
IOConstants <Dicbonarp of characters keyed by symbols
Subclassesmust implement the followingmessages:

printig
det%ukRelation~e

class protocol
instance creation

newApp

FINDING REFERENCES IN PARCPLACE SMALLTALK

Tracking down references to objects using allOwnerscan be
painful. One problem is that the process of searching for refer-

ences generates more references. This is particularly noticeable
in ParcPlace Smalltalk, where it is common to see half a dozen

“false” references among one or two real ones, Many of these

are arrays, and it can be troublesome to pick out which are le-

gitimate references and which are artifacts of the search process.
To help filter out these false references, Jan Steinman

(jan.bytesmiths@acm.erg) provides the following bit of code.
This should be added as a method in Inspector, and the field-

Menu method modified to call it (don’t forget to evaluate In-

spector flushMenus)

inspectHolders
“Inspectall who have a reference to the fieldobject. Donot include

references generated by the reference gathering process!”

(self fieldValueaUOwnersreject: [:each I
“don’tkclude the objert under inspefion (it alwayscontis the

field object)”
each == object

“don’tinclude this inspector (in case the field is ‘self’)”
OK[each== self

“don’tinclude the methods that got us here”
OK [(each class == MethodContext

arrd: [each selector== #allOwners
on [each selector== #aUOwnersWeakly]])

“don’tinch.rdethe stack array with a temporaryvariable containing
the object”
OK[each class ==Array

and [each sise = 12
and: [each first == false
and: [(each at: Z)== self fieldVahre]]]]]]) inspect

This isn’t foolproof (in a pathological case, it could filter out a

legitimate reference), and it doesn’t do much filtering that

couldn’t be done manually, but I find it very useful, It clears

away the clutter and allows you to concentrate on the impor-

tant references. I added one extra line, each==seLf, to this

method because oflen I seemed to be using it on inspectors

with the field for self selected giving me an extra reference

from the inspector itself.
Note that in ParcPlace, Smalltalk references sometimes hang

around awhile after they should be garbage, presumably due to

WeakArrayreferences. This can be confusing, so when in doubt,

force a garbage collect from the Launcher and see if it helps. Ki

—. —
Alan Knight isan objectperson with TheObjectPeople.He can be

reached at 613.225.8812 or by email at knight@acm.org.
THE SMALLTALKREPORT

MALLTALK IDIO,MS Kent Beck

Where do objectscome from?
Fromvariablesand methods
L
et’s see if I can get through this third column on how

objects are born without blushing, So far we’ve seen two
patterns: objects from states and objects from collec-

tions. This time we’ll look at two more sources of objects: ob-

jects from variables and objects from methods. AU four pat-

terns have one thing in common—they create objects that

would be difficult or impossible to invent before you have a

running program.

These patterns are part of the reason I am suspicious of any

methodology that smacks of the sequence, “design, then pro-
gram.” The objects that shape the way I think about my pro-

grams almost always come out of the program, not out of my

preconceptions. Thinking “the design phase is over, now I just

have to push on and finish the implementation” is a sure way
to miss these valuable objects and end up with a poorly struc-

tured, inflexible application to boot.

PAllERN: OBJECTS FROM VARIABLES

Problem: How can you simplify objects that have grown too

many variables?

Constraints: It is common to add a variable to an object

during development, then add related variables later, Afier a
while, this process of accretion can lead to objects that have

many variables. Such objects are difficult to debug, difficult to

explain, and difficult to reuse.

Still, the object more than likely works as desired. You’d
like to avoid changing code and risking breaking the system for

no reason, You will pay a space penalty for breaking the object

UP, as each object requires an 8 or 12 byte overhead.
Solution: Take variables that only make sense together and

put them in their own object. Move code that only deals with

those variables into methods in the new object,

Example: The classic example of this pattern is dimen-

sioned numbers. Because Smalltalk doesn’t have a built-in

framework for dimensioned numbers, programmers ofien

simulate computing with dimensions by storing a value and a

dimension together:

Class:Page
variables:lineswidthNumberwidthUnitsheightthrmberheightUnits

Code has to take the different possibilities for units into accoun~

area
I widthInchesheighffnchesI
M..%Y1994
widthInches :=widthNumber●

(widthUtits = #mm ifllue: [25.4] ifpahe: [I]),
heighffnches := heightNumber*

(heightNumber== #mm ifie: [25.4] ifFalse: [1]).
%vidthhches ● heightlnches

The number and units for width don’t make sense without one

another. Take away one variable and the other no longer is

useful. The same is true for height. Both are candidates for ob-

jects from variables. First we have to create a Length object to

hold both the measure and units:

Class:Length
variables: magnitude uNts

Now the Page can be simplified:

Class:Page
variables: hnes width height

and the area method can be simplified, too:

area
‘(width * height) inches

1’11leave the implementation of Length arithmetic as an exer-

cise for the reader and maybe as the subject of a future column.

Once you have Length, you will find many places to use it.

The resulting code will be much cleaner, easier to read, and

more flexible. If you have to add cubits as a measure, you
won’t have to visit a hundred methods, you’ll just have to fix

Length.Following upon object from states, I suppose this is
another way to avoid the need for case statements. Rather than

build the cases into many different methods, you build it into

one object and hide the caserressof it.
How can you know when and how to simplify an object

that seems to have too many variables? You should obviously

avoid the extremes: no object with fewer than two variables
will work because you’d never have enough information in one

place to write a readable method. All the variables in the world

in one object would result in an entirely unreadable, un-

reusable mess. How can you walk the delicate line between

breaking objects up too much and too little?

One telling sign that this pattern is appropriate is when you

have two variables in an object with the same prefix and differ-

ent sutllxes. Thus, if you see headCircunrference and head-
Weight as variables, they likely could be factored into their own
—

15

■ SMALLTALKIDIOMS

ODBMS

ODBMS 2.0
Smalkdk Object Management

Client-Senfer kehimxure
Objeet Management supporting
Versiong Transactions, Distribution
Mukimed.is-Objects
Objects to RDBMS

Availsble ss
Single User, Network snd Server Version

Supports !Ihmdlmlkunder
windows,windowsNT, 0s/2, Unix

Successful appliestiomx
Smsllmlk Tesm Development
Personal Dsm Mansger
Ca@guration of Complex Systems

ObjeetmientedTechnology by
Vc software
usAvc~~Tx
m(713) 33Mw361 fi (713) 333-3743

C$mpaW. Vc SVamms

~“ ““--+ifhE+49S31242h0, E +49 331242

%%’!!%wR’(R&&%%6

–w

LJEV&-,~
W+44714 94S1, E+44714360324

16
object, reducing the original object’s variable count by one.

Now for the second pattern du jour, objects from methods.

This isn’t a pattern I have. (This is a usage that has spread
quickly in the pattern community. You’ll present a pattern and

someone will say, “I have that pattern,” meaning they use it,

even if they haven’t ever articulated it before.) Several people I

respect have reported excellent results with it, so I’ll do my best

to make the case for it. Perhaps there is something else in my

programming style that causes me to find these objects another

way, or maybe I just never find them. I haven’t really thought

much about it. Anyway, here is the pattern

PAllERN: OBJECTS FROM M~HODS

Problem: Sometimes you write a method that is too long to

read well. Reduction with the usual techniques (e.g., compose

methods), doesn’t seem to make it read any better. How can

you simplify methods that resist easy reduction?

Constraints: Creating a new object is one of the weightiest

conceptual decisions you can make when programming with

objects. You should never make the decision to create one

lightly. If the object in question has no obvious counterpart in

the problem domain, you should be even more careful. The in-
creased load on downstream programmers is one reason to

create as few kinds of objects as possible. The tendency of ob-

jects to leak into the user’s consciousness is another.

Objects are great for structuring information, particularly

information that has a behavioral or computational compo-

nent. They are good for representing not just the user’s view of

a program, but the programmer’s view as well. When you have

tried simpler methods of writing a computation and failed to

produce a result that effectively communicates your intent as a

programmer, you are justified in creating new objects to sim-

plify your computation.

Methods that are candidates for this treatment have several

features in common. First, they are long. Two, three, and four

line methods composed out of other provocatively named

methods generally communicate well.

Second, they are not easily shortened by splitting them into

smaller methods. This may be because the parts of the method

don’t make sense when separated, or it may be because you

have to pass so many parameters to the submethods that you

have trouble naming them all meaningfully. The submethods

may also need to return two or more values. Finally, such

methods often have many tempora~ variables (resulting in the

many parameters to the submethods).

Solution: Create an object encompassing some of the tem-
porary variables from the complex methods that manipulate

those variables into the new object. In the original method,

create one of the new objects and invoke it.

Example: As I said in the preamble, I don’t have a good ex-

ample of this pattern. I have used object languages that didn’t

have points, however, and I can imagine discovering them us-

ing this pattern. If you have a method that displays a sequence

of pictures:
continuedon page .21

THE SMALLTALKREPORT

~------

Digitalk’sT-m/V

Scot Campbell
smalltalk is a highly productive programming environ-

ment. Starting with the mature base class library, devel-

opers add new classes and new behavior to existing

classes using the interactive browsers, inspectors, and debug-

gers of the environment. However, afier reaching a given mile-

stone in the development process, the developer is left with the

question, “What did I add to the base image?”

Smalltalk teams, as all software development teams, gener-

ally have the challenge of delivering high-quality products un-

der tight timetables. Smalltalk teams have the added pressure

of “proving” the new technology to management. Shipping a

module with a missing method or an uninitialized variable can

be detrimental to these ends, and Murphy’s Law predicts the

certainty of a runtime error occurring from the omission.

Team/V, from Digitalk, is team-oriented configuration man-

agement software that aids in structuring the project and deliv-

ering complete applications.
The other most notable product in this category is

ENVY/Manager, from Object Technology International, Inc.,
which has been previously reviewed in this publication, 1 This

article explains the functionality and features of Team/V and

highlights areas where it differs from EIWY/Manager.
Team/V addresses the major issues of team development in

Smalltalk

1. Identification of the additions to

the image that make up the appli-

cation.

2. Coordinating the efforts of the de-

velopment team.

3. Version Control.

TEAM/V CONCEPTS

Team/v adds mechanisms and tools to
help structure and manage the work of a

team, Packagesorganize the code that

help to identify the makeup of the appli-

cation and coordinate the efforts of indi-

vidual members. New browsers work with
package% and versioncontrolmechanisms

manage changes to packages. Versions of
packages are saved in a reposito~ where

they can be loaded by other team mem-

ISuperclass

:d_at

~Varlables —
~ Instance

-;—;— ,,. .;— ~=:— ,.,
MAY 1994
hers as development progresses. Comparison browsers highlight

the differencesbetween any two versions of a package,

PACKAGES

The fundamental organizing structure in Team/V is the Pack-
age. A Package is intended to encapsulate one unit of function-

ality. For example, the set of classes and methods that support

asynchronous communications could form a package. In addi-

tion to being a unit of functionality, the package is also a unit

of sharing, being used by any applications that require the

function. By assigning the packages among the developers of a

team, a project can distribute the work to be done. A package

consists of the following

“ Name-for identification purposes (this name appears in
the browsers),

“ Annotations-are simply key/value pairs for commenting

the package,

■ Comment—a predefine annotation,

. Dejnition+are ordered collections of units of Smalhalk code.

Packages roughly correspond to ENVY Applications, however,

there are differences. ENVY applications maintain two relation-
e.. . .— ..— ..-. . . .— --

Figure 1. Tha Pachaga Browser.
17

■ PRODUCTREVIEW
* base class I
,* maM&aChw bEphemerlsCalculator

7
UA ’91 Control) GeographlcSpot

Float> asTlme
erlal Comm Su Float> declmalToSexageslmal
Serial Comm S Floal>fractlonalPart
eamfV Enhanc Float> sexageslmalToDeclmal
eamtV Interfa
eamlV Protect

Ierslon TlmeZones := Dicti&ar~ new “- ‘-
at “ADT’ puti -E;
at “AsT’ puc -9;
at “EST’ put 8;
at “CDT’puh -5;

ah “CEST’ put: 1;

ah ‘CET’ puk2;

at ‘CST’ put -6;

aK ‘EDT’ put: -4;

ac “EST’ puc -5;

ah ‘GMT’ Puti 0;

Figure 2. The Definition Organizer.

ships. The first, prerequisites, indicate what other applications

are required before a given application can be loaded. OTI

claims that prerequisites are essential for supporting the con-

cept of pluggable software components while Digitalk claims
they limit reusability. Both positions are valid. Anything we add

in Smalltalk is based upon what already exists, and in fact an

application named “Kernel” (which includes most of the base

class library) becomes the default prerequisite for any applica-
tion we define. And documenting what set-vicesare required

and enforcing the requirement is helpful, in fact, essential to

prevent errors. However, the biggest challenge in effectively us-

ing either of these products is coming up with the best configu-

ration of packages or applications. A poor configuration of ap-
plications will lead to overlapping and unnecessary prerequisite

relationships that can limit reusability.

The second relationship supported by ENVY applications

are subapplication~ which is a partial relationship. A subappli-

cation is a part of an enclosing application, The most common

usage of this is for muhiplatform development, where the ap-

plication contains function common to all platforms, and sub-

applications contain platform-specific code when it is required.

Subapplications can be nested, which allows the project to bet-

ter organize the classes in a large application.

DEFINITIONS

Definitions are the main component of a package.

An element in the definitions list can be one of the following

Class-both definition and methods,

Class Extension-methods for a class, no definition (called
“loose methods” in the Team/V documentation),

Global variable,

Pool Dicts”onary,

Initializer-an arbitrary Smalltalk expression whose primary
purpose is initializing objects.
18
A new browser, the Definition Organizer, provides the capa-

bility to order the definitions. By sequencing the definitions,

you can ensure that needed initialization is run before any

component that requires the initialization. The Definitions

concept appears more flexible than the collection of defined

and extended classes in an ENVY application or subapplica-

tion. The Team/V documentation talks of the elements of a

class definition (instance vars, class vat-s,class instance vars,

and the pool usage), as discrete items in the definitions.

While this is currently not possible, they have plans to sup-

port class extensions that contain more than just a set of

methods. You could then have an extension that added some
methods and a needed instance variable, required only by

the extension.

The other area where definitions appear more flexible is in

the ordering of the definitions. ENVY adds protocol to per-

form initialization before or after an application is loaded. The
loaded and rernovingmethods are commonly implemented for

applications in ENVY. The loaded method can be used for ini-
tializing classes in the application. Team/v defines a class ini-

tializer,which puts the initialization with the class. The ENVY

rensoving method is commonly used for cleaning up the image

when an application is unloaded, such as removing a global

variable. In contrast, with Team/V, because the global is part of

the definition, when a package is deleted, any unreferenced

globals defined in the package are removed automatically.

An example ad-hoc initializer given in the tutorial tests the
package after it is loaded. This rigor would go a long way in test-

ing prerequisite conditions, ensuring that the image the package

is loaded into will support the requirements of the package.

VERSION CONTROL

The Glossary that comes with the Team/V documentation
defines a revision as “One of potentially many incarnations of

a given package” while it defines a version as “One of poten-

tially many incarnations of a given definition,” The distinction

is not critical; however, I will attempt to use them in their cor-

rect context.

When a package is “committed” the package is stored in a
repository under a specified revision number. Team/V sup-

ports repositories managed with Intersolv’s PVCS or the file

system of the OS being used. The PVCS repositories are more

space efficient, as only the delta between revisions is stored,
and all revisions can be stored in one archive. PVCS also in-

cludes access control mechanisms to limit who can make a new

revision of a package and mechanisms to deal with concurrent

commitment. You do not have to separately purchase PVCS to

use the PVCS archives; Team/V ships with support that allows

it to utilize PVCS archives.
ENVY defines component ownership, classes have owners

and applications have managers, Although any developer can

modify a class, it is the owner who maintains the major path of
development for the class. The application manager is the only

one who can release an application, thereby making it available
for others,
THE SMALLTALKREPORT

With the purchase of the full PVCS product, Team/V

users can put controls on who can modify or release a pack-

age. Without having the full PVCS product, I was unable to

determine if PVCS provides the flexibility or dynamics pro-

vided by ENVY.

OTHER FEATURES

Class Definition

Class definition is done through a formatted pane on the

package browser. In addition to naming the class, its super-

class, instance variables, class variables, and pools that are
supported in Smalltalk/V, Team/V adds Class Instance Vari-

ables, Comments (for both the class and variables), and class

initialization. Message categories are also implemented for

classifying, or grouping methods. Although the notion of

public and private methods is not directly implemented, as in

ENVY, private methods can be placed in a category named or

containing “Private,” which would provide the benefits of

documenting the public/private protocol of the class.

Conflict Resolution

When a package is loaded Team/v first checks for any

conflicts. A conflict occurs when one of the definitions of a
package you are trying to load has the same name as one of the

definitions already loaded in your image, A conflict also occurs

if you attempt to load a class extension for a class that is not
defined, Conflict resolution only occurs when you load a pack-

age. Using the Install/File-In menu items does not perform

conflict resolution. However, with the Package/Load operation

one can select any source file and have the conflict resolution

performed when filing in source in nonpackage format.

Team/V then generates a package named “From: <tllename>,”

which you can then rename to an appropriate name.

NEW BROWSERS

Package Browser

The Package Browser is a new tool for working with Packages

(See Fig. 1). The package browser has four panes at the top.

The top left pane shows the packages in the image. Packages

that are only opened and not loaded are enclosed in parenthe-

ses. Open packages are packages that are only open for inspec-
tion; they are not part of the executable image. Open packages

are useful for comparing with other revisions of the same

package or any other package. You can also modify and com-

mit a new version of an open package. In this way you can re-

solve a conflict in a package you are attempting to load.
The second pane from the left shows global definitions

(classes, global variables, and pool dictionaries) for the selected
package. The third pane from the lefi shows the message cate-

gories for the selected definition if the definition is a class. And

finally the right pane shows the methods for the selected cate-
gory, if a category has been selected. A nice feature of the

method list is that it can show inherited methods in addition
to those defined within the selected class.

The lower half of the package browser shows various as-
MAY 1994
pects of a definition, a class definition (as shown in the

figure), method source if a method is selected, or any of the

comment fields that the system supports. This pane is the pri-

mary place for modifications to be made. In fact, the Class Hi-

erarchy Browser has been made read-only in Team/V. Source

code formatting for method source is also available from the

package browser.

Some of the panes support direct manipulation (drag/drop)

for moving components around. However, because the panes

are not multiselect, I found this to be tedious at times. For ex-

ample, a definition that defined a class could be moved from

the definitions list to a different package, but a definition that

was only a class extension could not. In this case, each method

had to be moved individually. This tedium occurs mainly

when you are fdktg in external source while constructing your

packages for the first time. ENVY defines a default application
that receives all filed-in code. I found the default application

mechanism to be more convenient.

The browsers show modified components in italics and a

different color, defined classes are in bold while class exten-

sions are not. These visual cues are excellent for grasping what

changes have been made since the last commit.

Definition Organizer

The Definition Organizer lets you examine the definitions

within a package in the order in which they will be initialized.

You can reorder the definitions as necessary. The top left pane

shows the packages currently loaded or opened, the top right

pane shows the defiition list for the selected package, the

lower left pane shows the annotations for the selected package

or definition and the lower right pane shows the source for the

selected definition or annotation (See Fig. 2).
While the Package browser only allows specification of

global definitions only (class, pool and global variable defini-

tions), the Definition Organizer allows all types of definitions to

be specified. Only the definition organizer allows for the ad hoc

initializers to be added. The Definitions Organizer is also the
tool to use for annotating a Package.

Definition Group Browser

The D~nition Group Browserhas the same appearance as the

familiar method browser so I have not shown it. The main

difference is that the contents can be any definition (e.g.,

method, class, initializer, etc.) rather than just methods. A nice

feature added to the Smalltalk menu is Browse—

>Modified.. which brings up a Definition Group Browser on all

definitions that have been modified since you last committed
the packages.

HistoV Browser

The bottom right of the Team/V browsers contain a button
labeled with version information for the given definition,

Clicking on this button brings up a History Browser that con-
tains all the known versions of the definition. The versions

known are only those since the last compress of the changes
19

IH nl#cVrA?athm m &aseclass I..&y . .

CUA ’91 Controls iz:%%%:”hec’a=’ww’”” El
Ephemerh Calculator Ephemeris Calculator

Serial Comm Su ort
(Serial COmm Su orl 1.1)

j

- Cwm%rt ,. cmnPwt~ilbdeflnltlon I I de flnltlon
.iwtance meftumic

[

‘ -.hrwwe /hv/wa
byteslnQueue

al

clear
flushlnputBuffer
flushOutputi3uf fer
getch 1

byteslntlueue
clear
flushlnputBuffer
flushOutputBuf fer
gelch

Figura 3. The Pachaga Comparison Browaar.

file. This differs from ENW where every save of a method

saves an edition in the repository that can later be browsed
and compared with other editions. I expected to have ver-

sions of methods in opened packages available in the History

Browser, but they were not. Not being able to have history di-

rectly available for versions of methods across versions of
packages is a definite disadvantage.

COMPARISON TOOLS

Team/V allows you to compare two versions of a method, or

two revisions of a package.

Method Comparison Browser

Selecting IMethod-> Compare from a Package Browser or Ver-

sion—> Compare from a History browser brings up a Method
Comparison Browser. The Method Comparison browser is basi-

cally two method browsers side by side. The differences be-
tween the two selected versions of the method are shown both

in a different color and underlined.

Peckege Comparison Browser

Team/V allows you to compare two versions of a given pack-

age, or you can compare two completely different packages

(See Fig. 3). The top two panes are the revisions list; revisions

of all packages appear. The middle two panes are the defini-
tions list. Definitions that are in one revision but not the

other are in boldfaced text. Definitions that are in both are in

italics. The bottom panes are the contents panes with differ-

ences underlined.

The granularity of versions is finer in ENVY than Team/V.

ENVY maintains versions of methods, classes, subapplications,

applications,and Configuration maps (groupings of applica-
tions) in the repository while Team/v maintains only versions

of packages.

face and an ann

annotation nam

values that indi

(e.g., “All,” “PM

with a “smart”

tion line-ups, t

form support.

OTHER DIFFER

ENVY defines c

cations that oth

to a given point

maps are stored

ENVY. Team/V

build a script th

into her image.

tory, the manag

A particularl

has been image

a separate runtim

quired at runtim

Digitalk makes
packager. There

Smalltalk/V0S/2

reason you may

Team/V is n

large companies

cPlace versions

share a common

CONCLUSION
Both Team/V a

team developme

standalone com
20
■ PRODUCTREVIEW

Documentation

Team/V’s documentation is very good and

easy to use. In addition to the explanation of
how the new browsers work, there is a chapter

that explains the concepts behind Team/V

and a tutorial that acquaints the new user

with the development process under it. One

very useful chapter answers questions that

arise during the development process. Ques-

tions like, “How do we divide up the work of

the application?” (i.e., along what lines should

we define our Packages?).

The Team/V Programmatic Interfaca

The Programmatic Interface is a mapping of
the semantic components of Team/V into

classes that you can use to create your own

custom tools and browsers. Digitalk’s inten-
tion is to keep this interface compatible in

future releases of Team/V, Multiplatform

development could be built using this inter-

otation convention on packages. Using an

ed something like “Platform” and having

cate the intended platform for the package

,” “Win,” etc.) one could extend the system

export to have something like ENVY applica-

hereby providing some amount of multiplat-

ENCES

onfiguration maps that are groupings of appli-

er developers can load to bring their image up

in the development process. Configuration

in the repository as are all components in

does have a Build Script operation that will

at a developer can run to load current packages

But because they are not stored in the reposi-

ement would not be as easy.

y hot issue of late on the CIS Digitalk forum

size. ENVY includes a packager that will create

e image containing only the code that is re-

e. One drawback of this is that changes that

to its implementation of Smalltalk affect the
was a long delay between the release of

2.o and a packager that worked for it. One

want to stay with a single source for tools.

ot supported on ParcPlace’s Smalltalk. Many

have projects using both the Digitalk and Par-

of Smalltalk. With ENVY these projects could

repository.

nd ENVY share all the mechanisms to support

nt and version control. If you are delivering a

mercial application on multiple platforms,
THE SMALLTALKREPORT

Shift Over
To CPU!

Ifyou’re an experienced Smalltalk professional, shift

your career ovwto the exciting world of consulting
with Computer People Unlimited, We’re the

Midwest’s premier profmsional software services

firm handling a full spectrum of engagements from
staff supplementation to complex turnkey projects.

Currently, we have opportunities available
for experienced:

WALLW.K DEVELOPERS

You will be rewarded with a highly competitive

salary and complete benefits. To find out more

about these Midwest opportunities, please call or
fax your resume to:

Appleton/Green Bay --- MarvMiller
Phone: 1-800-960-1 !27Bor Fax: 414-73 B-4499

Milwaukee --- Julie Endlich
Phone: 1-800-527-846!2 or Fax: 414-!295-401 1

Madison -- John Manyo
Phone: I-EOO-980-278$! or Fax: 60E-!293-3B1O

Minneapolis --- Scott Fleischmann
Phone: 1-EOO-97ME50 or Fax: 619-33 B-321O

You may also send your resume to: Computer

People Unlimitedf Dept. SR,73!2N, Jackson Street,

Milwaukee, WI 53!202, Sorry, no entry
level positions available. We are an equal
opportunity employer,

COMPU~ PEOPLE UNLSMITED Im.

Building OnOurStrengths.
■ SMAUTALKIDIOMS

continuedfiompage 16

display
Ixyl

X:=y:=o.
10 tiesRepeab

[picture displayAtlLx y y.
X:=X+2.
y:=y+2]

Using objects from methods, we notice that x and y are used

together. We create a point object with x and y variables. We
can then simplify the above method to the following

display

IPI
p:= PoiIrtxoyo,

10 tiesRepeab

[pietore displayAkp.
p:=p+2]

I don’t find this example compelling, but if you had an algo-

rithm that used a half dozen points, you could easily get lost in

the thisX, thisY, thatx, thatYs, The transformation would make

much more difference,

Ward Cunningham told mea story of using this pattern on
a piece of financial sofhvare. There was one method that was

long and ugly, but it was important because it computed the

value of a bond at a given moment, As soon as they turned the

method into its own object, the computation came into focus.
These advancer objects became the centerpiece of their

caching strategy.

In my next column, I will end my series on the origin of ob-
jects by examining two common patterns for finding objects:

objects ti-om the user’s world and objects from the interface. ❑
ENVY with its packager for producing minimal sized delivery

sets and application line-ups for supporting multiplatform de-
velopment seems better positioned. If on the other hand you

are in an enterprise that has standardized on a platform and

you are delivering many Smalltalk applications that can share
base class libraries, you can easily package your applications in

object libraries and have small images that bind to needed li-

braries and open the required user interface. In this case,

Team/V provides all the needed tools. ❑

Reference

1. Steiman,J., and B.Yates,‘Product review Object technology’s

ENVY developer,” THE SMALLTALK REPORT, 2(2), 5-11, October

1992.

Scot Campbell is a Smalltalk contractor”in California. Before cori~
tracting, Scot developed programming toolsat Chevron Informa-

tion Technology Co. Scot can be reached at scot%etcom.com or

CISD: 70641 >2501.
MAY 1994 21

OBJECT EXPO NEW YORK

JOB FAIR
JUNE 7, 11-6:30 ■ JUNE 8, 11-6:30

JUNE 9, 9am-2pm

DataLink Corporation and other top
recruiting, consulting and hi-tech firms
will be at the East Coast’s largest OT spe-

cific expo looking for YOUR object-ori-

ented expertise and skills. The OBJECT

EXPO NEW YORK JOB FAIR, located in

a private area on the exhibits floor, allows

you to talk one-on-one with recruiters

about the best nationwide career oppor-

tunities for OT professionals.

BRING YOUR RESUME-RECRUITERS
WANT TO ME~ WITH YOU!

Fax to 212.274.0899 Dept. OE for a
FREEexhibits pass to attend

the Job Fair.

Software Engineering

PRO-STAR is a fast growing management and
information systems ccinsulting company
specializing in applications development. We
provide services to our clients that support all
phases of the systems developmentlife cycle. We
have expertise in virtually all hardware and software
technologies.

We have significant clienthetver development
projects underway. We need to add senior smalltalk
developers to our staff. Experience with ENFIN is a
plus. If you area talented, hard working information
technology professional, come join our team in
Sacramento, California. Please respond to

PRO-STAR, a division of PRODATA, Inc.
6929 Sunrise Blvd., #210
Citrus Heights, CA 95610
(916) 969-0176
FAX (916) 722-1045
rfellows@netcom. com

FORCE-FIT RELATIONAL TECHNOLOGY

AND YOU COULD REALLY HIT IT ❑ IG.

Maybe you’re beating your head egainst the relational you can stora Smalltalk objects directly in the

database wall - trying to integrate your Smalltalk database. We make your development time more

applications with an FIDBMS. Maybe you’re spending productive and your object applications more efficient.

all your time debugging SQL calls instead of building Learn for yourself by calling us today for a

great applications. Or maybe you’ve hit the relational copy of “Object or Relational? A Guide for

performance wall bacause you’re wasting too much Selecting Database Technology: After all, the

processing time on object decomposition and decomposition. best way to deal

Serviom has a better way. With our high-performance with an obstacle SERWO
GemStone@ object database management system, is to avoid it in

OBJECT TECHNOLOGY
the first place. FOB THE HEAL WOULD

Call1000-243-9369 for a fraa copyof “ObjectorIMational?A 6uidefor SalectingOatabasaTechnology?
Smio is a bwlemark ad GemStnne is a regisbmd trademark of Semin Cnrpnration.

Not long ago, clientisefver
development required massive
amounts of time, money and
expertise to combine different
and complex technologies.

_ Now Digitalk
PART$’ a rapid
application
development
too/ set, lets you
easily integrate
your software
assets into

clien Vserver applications
PARTS is the only object-

oriented technology that /ets
you leverage your legacy code
and the knowledge of your
current stall

Only PARTS products let
you take existing code - written
in SmalltalkW COBOL, C, SQL
and other languages – and wrap
it into components or “parts!
Which can then be virtually
snapped together visually, The resu/t systems like CICS, COBOL, APPC

is smooth-running cliem%erver and SOM. And PARTS Ietf” ‘-”’

applications in a fraction of the develop on both 0S/2 and

usual time. For a fraction of the 1
usual cost. I

PARTS supporfs all popular Only monms ago, VL wtm

SQL databases like Sybase, Oracle awarded PARTS Workben(’- ‘L-

and DB2. Plus legacy or late model highest rating ever in the ua[~
a,-! ,“

category calling it “the defini-
tive visua/ development tool’.’

And InfoWorld ranked
PARTS the #l component-
based tool for visual develop-
ment. Info World’s Stewart
Alsop adds: “There’s nothing
like it on the PC. ”

To make large teams pro-
ductive, PARTS also supports
group development and version
control. Plus PARTShas a host
of graphical power tools to give
you all the power of objects-
without the learning curve.

And PARTSis from
Digitalk. The company that’s
been providing object-oriented
tools to the Fortune 500 longer
than anyone else in the world-
with over 125,000 users.

call 800-531-2344 X 610

	By Article Title
	Digitalk's Team/V
	Extending the application model
	Miscelleanous
	"Smart Menus" in Smalltalk/V for Win32
	Where do objects come from?

	By Author Name
	Beaton, Wayne
	Beck, Kent
	Campbell, Scot
	Howard, Tim
	Knight, Alan
	Kohl, Bill

	By Topic
	comp.lang.smalltalk
	Product Review
	Smalltalk Idioms

