
The International Newsletter for Smalltdk Programmers

February 1994 Volume 3 Number 5
CREATINGIPF
. —..- —.

HELP PANELS FOR

SMALLTALK/V
.—. -—

0s/2
.-

APPLICATIONS:

PART 1
by Marcos Lam

and Susan Mazzara
Contents:

Feetures/Articfes

1

8

Creating IPF help panela for
Smalltalk/V 0S/2 applications:
part 1
by MarcosLam &Susan Mszzara

Cross-process exception
handling: part 2 “
by Ken Auer &Bsrry Og/esby

Columns

12 Getting Real:
The art of designing meaningful
conversations
by Rebecca Wir&Brock

15 The best of comp.lang.smalltalk:
Booleans
by AlanKnight

19Product Review
Tensegrity release 1.0 for
Windowa and 0S/2
by DavidBush
❑
HEN DO YOU seek help for using an application? If you are like

many people, you consult documentation only when you feel

confused and frustrated with the application you are trying to

use. On-line help systems, at their best, can bring instant relief to

the frustrations of using a new or complex application. When

well written snd organized and when supplied with tools for retrieving informa-
tion easily, they give instant instruction on using an application. At worst, they

raise your level of frustration, which caused you to seek help to begin with. On-
line help that is poorly written and organized or that does not provide the right

help in the right context is a hindrance rather than a help.

Many factors, including writing style, the tools used to create the help panels,
and the tools used to link them to an application, make the difference between a

help and a hindrance. Digitalk’s Smalltalk/V for 0S/2 provides classes for linking a

Smalltalk application to help panels created using IBM’s Information Presentation

Facility (IPF). Creating truly helpful help panels for applications in SmalltalldV for

0S/2 can be a challenge, but with a clear understanding of IPF and some enhance-

ments and extensions to DigitalIt’s classes, you can greatly improve the conve-

nience and readability of your help panels. Part 1 of this article explains some of
the features of IPF, how it processes help requests, and some of its essential re-

quirements for tagging help panels. Part 2 explains the Digitalk classes that support
IPF and suggests ways to enhance and extend them to create helpful help.

WHAT IS IPF?

IPF is part of the 0S/2 software developer’s toolkit and consists of a tag language for

marking text, a compiler for formatting the marked text, and a viewing program for

opening on-line documents and hooking context-sensitive help into an application.
On-line documents are books, with tables of contents and indexes, presented on line

instead of on paper. You display an on-line document by executing the IPF viewing

program. On-line documents are not connected to an applicatio~ they are simply on-
line versions of books. Context-sensitive help is displayed by selecting an item from an

application’s window, such as a menu or menu item, and pressing F1 to get help for
that item. Once you have started the help system in this way, you can read through it

like a book. IPF combines features of on-line documentation and context-sensitive

help in a compiled help library. A help library is a single file that contains the help

panels for an application, For on-line documents, these files have the extension .INF,
and for context-sensitive help the extension .HLP.If you tag your source fdes properly,
the same source files can be compiled into an on-line document or a context-sensitive

help library.
Figure 1 is an example of an IPF help panel. The cover-page is the main help win-

dow and contains controls for the help system. It has menus and buttons for search-
ing and browsing the help library. The help panel itself contains the text of the help

system. Hypertext and hypergraphic links connect to other help panels in the library.
contitmcd OH p,lg.4...

The SmalltalhReport
Editors
John Pugh and Paul White

Cadeton University & The Object People I

SIGS Puummom

Advisory Board I
Tom Atwood, Objecl Design

Grady Booth, l?aiinnal I
George Bosworth, Digilalh

Brad Cox, Information Age Consulting

Adele Goldberg, Parcpla.e Sys[erns

Tom Love, IBM

Bertrand Meyer, ISE

Meilir Page-Jonee, Wayland Systems

Se.sha Pratap, CenierL,ne Sofiware

Cliff Reeves, IBM

Bjarne Strous.trup, AT&T ❑ell Labs

Dave Thomaa, Object Technology International ‘

THE SMALLTAIX Rwwf

Editorial Board
Jim Anderson, Digitalk

Adele Goldberg, ParcPface Systems

Reed Phillips, Knowlsdge Syslems Corp.

Mike Taylor, Digilalk

Dave Thomaa, Object Technd~ Inlemailcmd

Columnists
Kent Beck, Firsi Class Safhvare I

Juanita Ewing, Digiialh

Greg Hendley, Knowledge Sys[ems Corp.

Ed Klimas, Lines Engineering Inc.

Alan Knight, The Ob)ect People

Eric Smith. Knowledge Syslems Corp.

Rebecca Wrfs-Brock. Digtdk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Pubfisher I

Art/Produetiorr
Kristina Joukhadar, Managing Eddor

Susan Cul~gan, Pilgrim Road, Ltd., Creame Cireciion

Sath J. Sookey, Produ.lion Editor

Andrea Cammarata, Ekctroni. Publishing Coord.

Margaret Conti, Prmluciion Assistant

Circulation
Bruce Shriver, Cucu!atnn Directm

K.S. Haklns, Fuhilkrenl Manager

Marketing/Advertising
Shirley.%, OudOr d Sab

Gary pork, Advert,siW Mgr4ast Caastlcanada

Gabtial!e James, Adverhsing Mgr—West Coast/Europ

I-te!en Newling, hrdsing & Enhitii *

Wendy Pfumb, Recruitment Advertising

%reh Hamilton, Marraaer d Pmn-oimm snd Re?ewch

-n Polnar, Pmmoti;s Graphc Atit

Administration
Wlliam J, Ryan, Ch!ef Operations Officer

Margherita R. Monck, General Manager

David Chatterpaul, Accounting Manager

Jamea Amenuvor, Saokkeaper

Amy Malsten, Assistanl 10 the Pubhsher
EDITORS’
CORNER

John Pugh Paul White

ver the past year or so, there has been a shift from discussion of object-oriented language is-

Usues to methodology issues. The “language wars” have abated in favor of the “methodology
wars.” Thinking positively, this has resulted in lots of discussion about important issues that
otherwise might have remained ignored. More recently, there has been voluminous discus-
sion about the merits (or otherwise) of the growing number of CASE tools that have
emerged to support the various methodologies. On the frrmt line however, the managers of
large Smalltalk projects are looking for guidance on sound project management practices—
a topic cm which the object-oriented community is far less voluble. We have talked to
enough managers charged with the task of managing medium to large-scale Small talk devel-
opments to recognize how strongly they feel they are entering uncharted territory and how
frightening that feeling can be.

The “science” of project management has improved dramatically over the last decade.
Unfortunately, most of the tools and techniques developed for traditional systems simply
don’t apply to Smalltalk projects. Issues like scheduling and planning, staffing and budget-
ing, project tracking and metrics need to be revisited when placed in an object-oriented
context. Managers are being sold on a new software Iifecycle but when they ask the obvious
question of how to manage it, there seem to be few answers. This is, of course, great for the
consulting business but not so great for the people with their necks out on the line. Advice
such as “keep a good project log so you can do better the next time” is not acceptable.
Hopefully, there will be lots more discussion on this topic soon. If you have thoughts in this
area we would like to hear from you.

Now to this issue. In the first of two articles, Marcos Lam and Susan Mazzara take a
look at the problem of creating “helpful” help systems and in particular discuss how the
classes provided in Digitalk’s Smalltalk/V for 0S/2 can be extended and enhanced to im-
prove the convenience of linking Smalltalk to help panels created using IBM’s Information
Presentation Facility (lPF).

In the second part of their article, Ken Auer and Barry Oglesby continue their discus-
sion of problems inherent in handling exceptions across processes in a generic non-intru-
sive fashion.

In the “Art of Meaningful Conversations,” Rebecca Wirfs-Brock describes her experi-
ences in using the notions of use cases and system/actor conversations to guide the object
modeling process. Finally, Alan Knight’s watch on the Smalltalk bulletin board focuses on
the recent controversy over Boolean variables.

This issue’s product review represents our first look at the growing number of object-
oriented database systems that may be used with Smalltalk. This month, David Bush takes a
look at the Tensegrity product from Polymorphic Software.

-.-.-L- -

I

I

!

i

l’HK SM. I.I.T.I K RkPom [I.SSN# I l15h-7976) is published 9 times a ytiar. every rmmlh exccp[for [h. .Mm/Apr, july/Au , and NIwII kc con>-
hined iswcs, Publishedhy SIGS PublicationsInc., 5?,8ffmadumy, Nmv York, NY IC012 21 2.27+064(1. 63 Gpyrighk 1s+4 y SIGS Puhlicdtivns.!-l

All riEhts resmwd. tkpraduction of this rrmtcrial by elcc[ronic transn>ission, Xer.x m any other mt-thod will he (reakd as a willful violation of
(h. us Copyrighl bw and is tlady pmhibimd. Mmcrial may bc rcprwtumd wi[h cnprm pcrmiwion fmm [hc publisher,

Wiled First cIa.u. Canada POSI Intemalimml Publimtium Mail Pruduo !iaks AErtcnwnl No. 290386. Subscription rates I year (9 ikwcs 1: do-
mestic, $79; Foreign snd Canada, $v4: SinElc mpy prim, 34.

POSTMASTETC Send addresi chmrdm and mkription mdcrs tax THE St.iAI.LT. I K REPI,nr, P.fJox 2027, Lmgharne, PA 19047. For servi.c on
currmt .mbncripion. cdf 215.7 B5.55%.

To submit ariides, plcaw .wnd Actronic fdm on disk to rhc Editors AI 50%8s5 Mcadnwlands L>rive, Ottawa, Ontario K2C 3N2, Canada, or
via lnlerncl to pu~h@scs.earl. tom.. Prcfcrrcd formals f.r (i .rc% arc WC or 130s EPS, T1 F’,or <;l F iormNk, Altmys .wnd. paper copy of your

Pmanuscript, indudin~ camera-ready copiesU1your fi~urcs I a=r ouIpu[is fincl.

PRINTEDINTHEUNtTEDSTATES.

ES,I,G,S

Publishers of JOURNAL OF OBJECT-ORIENTED PRO-

I SMALLTALKREFCUT, a“d_fHEX,0”RF4AL.

GRAMMNG, OEJECT MAGAZINE, C++ REPORT, THE -1
2 THE SMALLTALK REPONT

FORCE-FIT RELATIONAL TECHNOLOGY
AND YOU COULD HEALLY HIT IT BIG.

Mayba you’re beating your haad against the relational you can store Smalltalk objacts directly in the

detabase wall - trying to integrate your Smalltalk database, Wa make your development time more

applications with an RDBMS, Maybe you’re spending productive and your object applications more efficient.

all your time debugging SQL calls instead of building Learn for yourself by calling us today for a

great applications. Or maybe you’ve hit tha relational copy of “Object or Relational? A Guide for

performance wall because you’re wasting too much Selecting Database TachnologyV After all, the

processingtime on object decompositionand decomposition, best way to deal

Sarviom has a bettar way. With our high-perlormanca with an obstacla SERWO
GemStone@object database management system, is to avoid it in

OBJECT TECHNOLOGY
tha first place, FO~ THE EEAL WO~LD

Call 1800-243-9369 for a free copy of “Object or fielational? A Guidefor Selecting OatabaaeTechnology!’
S8Mo is a tradmarh and GemSbme is a registered wdmark of SeMo Corporation.

Now! Automatic Documentation
For Smallta/WVDevelopment Teams — With Synopsis

Dcvclopmcnt Time Savings

Synopsis prod= hish qua@ cl~s doe~en~tion
automatically. With the combination of Synopsis and Coding Documentation
SmaUtalkfV, you can eliminate the lag between the Without
production of code and the availability of documentation.

A
stat Finiih

Synopsis for SmaHtalldV Documentatktn
. Doeurnents Classes Automatically With
. Provides Class Summaries and Source Code Listings Synopsis
. Builds Class or Subsystem Encyclopedias A A

. Publishes Documentation on Word Processors
*II Fhkh

. Packages Encyclopedia Files for Distribution Products Supported:

. Supports Personalized Documentation and Digitalk Smrdltaw
Coding Conventions OTI ENVYfDeveloper for Smalltrdk/V

Windows: $295 0S/2 $395
Dan Shafer, &’@iC User hterfaees, h’lC. :

“Evq serious Smalltalk developer should take a ~ Synopsis Software
close look at using Synopsis to make documentation 8609 Wellsley Way, Raleigh NC 27613
more accessible and usable.” Phone 919-847-2221 Fax 919-847-0650
. . . continued frompage1
Aside from writing style, two factors contribute to effective

help panels: how easily you can retrieve them in context and

how easily you can move from one help panel to another. The
first factor is largely determined by the interface between the

help system and the application, The second factor is deter-

mined by the tool used to create the panels.

cwww~o
m.p. w. lie~merfue

Help~el ~- “ri
The .b@ browser presenl. Informatbn abo.1 ~,
,>l!,,-:1 ‘le!,[,)li,m< and <r),ri,),n,uu,ts. 11s 11s1and 1,.1
pan- display obJecl r,.s!)finltisll,il,tn.s, $#!r.kw

Hypertent hk- ,,$td,tn..s. and source code. II Is the prlrtwy place ‘

fm dsplaylng d edlthg cc=de h C&Iedgn, It also z
has many tools for rt., urdl,,,j .MI,I .tIMIWirVj MI.
dt.wIII of your a@critbn

lb? Iollowlng h an Illustrall.n 01 the .b~ct browser ~
WIndOW. For more Information cm each Pmt .1 Ihe >.

wlrd.w. place the mouse p.lnler .ver the letters to
lhe left ❑f the Illuslrallm! and double cllck mouse ~

Hypergraphwh

~,.+;..:
..1 .- ,,.,, ..-. , -_.,. ,:,. ,,—,..:,__:.- >::.. .. —---- .- . ..i.

‘“hand:”% ~J’aaa’H’s

Figure 1. Sample help panel.
4

RETRIEVING HELP PANELS

Context-sensitive help provides help for the part of the win-

dow that has focus:

“ Extended help for a window or dialog. Extended help is the

main help panel for a window or dialog. It contains intro-

ductory material about an application or the current win-

dow or dialog of an application for one that has multiple
views. You invoke it by pressing F 1 when the window opens.

“ Help for menus and menu items. Help for menus and menu

items explains how to use the application’s commands. You
invoke it by clicking on a menu item and pressing F1.

. Help for subpanes and buttons. Help for subpanes and but-
tons explains the contents of the subpanes on a window or

dialog and the function of its buttons. You invoke it by

shifting focus to the subpane or button and pressing F 1.

Processing a Help Request

To communicate with IPF to display information from a help

library, an application does the followin~

1. Sets up a help table and help subtable. The help table associ-
ates an application’s windows with their help subtables and
extended help panel ID. The help subtable associates the win-

dow’s controls, such as menus, menu items, buttons, and en-

try fields, with a particular help panel in the help library.
THE SMALLTALKREPORT

.-
Figure 2. How IPF

I
————
—.
——
——

~

processes he~p ;equests.

No Entry

2. Initializes the HELPINITstructure. The structure contains

3,

4,

values, such as the name of the help library, that IPF re-

quires to create a help instance.

Creates a help instance through the API WinCreateHelpIn-
stance with the HELPINITstructure as one of the parameters.

Associates the help instance with the application window by

issuing the API WinAssociateHelpInstancewith the help in-

stance and handle of the window as parameters.

When IPF receives a help request, it looks up the help subtable to

determine the ID of the help panel that corresponds to the control

for which you have requested help information. IPF then displays

the help panel. This process is illustrated in Figure 2.

When IPF receives a help request for which it cannot find
the corresponding help pane, it sends the HM_HELP-

SUBITEM_NOT_FOUNDmessage to the application. (The receiver

must either answer true to instruct IPF to display no panel or

false to display the extended help panel.) The application can
respond in one of the following ways:

.

.

.

.

Do nothing—ignore the message and answer true

Display its own window and answer true

Send the HM_DISPLAY_HELPmessage to IPF to instruct it to

display a particular help panel and answer true.

Answer false to display the panel for extended help.

This process is illustrated in Figure 3.

Terminating a help instance

An application terminates a help instance by calling the API

WinDestioyHelpInstancewith the handle of the help instance. It

is important that an application destroy help instances to free

memory and release the link to the help libraries. Destroying

help instances is particularly important during the develop-

ment of a help system. Information development is typically it-

erative: information developers write help panels, compile
them, test them, and then rewrite them. If the link between the

application and the help library is not released, the help library
cannot be replaced with a new version,

all le

head

com

catio

an a

requ

class

help
plica

ject

Hype

Text

note

link

Link

from

link

link

them

Hea
mati

ing

Foot

term
a foo

your

Inte
the

in th

tern

Exte

sepa

num

then

LIN

TAG
—

FEBRUARY1994
NAVIGATING THROUGH HELP LIBRARIES WITH IPF

To seean overview of the help library and read through a

context-sensitive help library like a book, you can start with

the table of contents, or page through the panels using the

previous, back, and forward menu commands and buttons.

Other ways of navigating through help panels are hWertext
and hypergraphic links. Hypertext links connect words and

phrases to other panels. Hypergraphic links connect areas of
a bitmap to other panels.

Contents

You can open the contents window for a help library with

a menu command or a button. The contents window lists

vel-one headings and can be expanded to show any other

ing levels defin~d in the help library. To compile a good,

prehensive table of contents for a complex Smalltalk appli-

n, all help panels for an application or a particular tool in

pplication must be included in a single help library. This

irement can be problematic for Digitalk because its help

es show an incomplete understanding of how lPF retrieves

panels and some rather simplistic assumptions about ap-
tions. These problems and how to solve them are the sub-

of part 2 of this article.

rtext end Hypargraphic Links

or graphics in a help panel can link to a heading or a foot-

. A heading link displays another help panel. A footnote

displays a small window inside the current help panel.

s can be internal or external. An internal link displays help

the same help library as the current panel. An external

displays help from a different help library. Each type of

is described below with suggestions about how to use

in an on-line help system.

ding links Heading links give quick access to more infor-

on about a topic or step-by-step instructions for perform-

an operation related to the current panel.

note links Footnote links are an effective way to define

s. If your application introduces many new terms or ideas,
tnote link can make these new terms more accessible to

users.

rnal links An internal link is a link to another panel within

same help library. If the current help panel is number 2000

e help library called ONIJNE.HLP,for example, then an in-

al link might display panel number 2005 in ONLINE.HLP.

rnal Link An external link is a link to another panel in a

rately compiled help library. If the current help panel is

ber 2000 in the help library called ONLINE.HLP,for example,

an external link might display panel number3010 in ON-

E2.HLP.

GING HELP PANELS

To create a help library, you tag the help text with IBM’s stan -
. _ ---

5

■ CREATING IPF HELP PANELS FOR SMALLTALK/V 0S/2 APPLICATIONS: PART 1
dard generalized markup language (SGML) and then use the

IPF compiler to format the text into .HLPfiles. SGML tags have

the following format: :tagname attributes.

Some tags require an ending tag :etagname.

SGML defines tags for nearly every conceivable purpose in

publishing, whether in book or on-line format. IPF interprets a

small subset of these tags. The tags that most concern a

Smalltalk application developer are heading and linking tags

because these are the ones that determine which help panels
are displayed when you request help for an application.

Heading tags

IPF heading tags have a tag name and several attributes that

control how the help panel is identified, formatted, and ac-

cessed. The following example shows the heading tag and at-

tributes that play an important role in retrieving help panels.

The text in italics uniquely identifies each help panel.

:h# res=# id=iderditierglobaLHelpPanelTitle

This tag contains the following parts:

“ :h# is the heading level. You carscreate heading levels one

through six. Heading level two is subordimte to level one, level

three subordinate to level two, end so on. This hierarchy per-

tains only to how headings appear in the library’s table of con-

tents. You can access any heading level through an F 1 request,

- res= is the resource ID. IPF requires this numeric ID in help

subtables to associate a control with a help panel and to

process internal hypertext and hypergraphic links.

. id= is the ID. IPF requires this alphanumeric ID to process
external hypertext and hypergraphic links.

“ globaLIPF requires this attribute to mark the help panel as ac-

cessible through an external hypertext or hypergraphic link.

Hypertext link tags

IPF’s tag for creating hypertext links is coded differently ac-

cording to the type of link you need to make in your help

pan

low

Inte
low

.

“

- r

“

T

“

Ect
low

.

“ r

. r

-

“

“

Foo

. :

■ r

. r

E3we” ““”:[RSqueei

+ “m

= DisplayExtendedHelp
L

J No

Figure 3. HOW IPF proceeees help p&els it cannot find.

Entty
6

ek heading or footnote, and internal or externrd. The fol-

ing are examples of each:

rnal heading link Internal heading link tags have the fol-

ing format:

:lirdrreftype=hdres=#.selectiorrtextelink.

:link is the link tag.

reftype=hd is the type oflin~ reftype=hd creates a link to an-

other help panel.

es= is the resource ID of the panel to which we are linking.

IPF requires resource IDs for internal hypertext links.

selecbon text is the text that is sensitive to the link request.

his text is highlighted (usually with color

:elink. is the link ending tag.

errsal heuding link External heading link
ing forma~

:link re@pe=hdrefid=identirlerdatabase=’flerrarne’.se[eti’ontext%link.

link is the link tag.

eftype=hd is the type of link.

efid= is the ID of the panel to which we are linking. IPF re-

quires IDs for external hypertext links.

database= is the name of the help library containing the help

panel to be linked to.

selection text is the text that is sensitive to the link request.

:elink. is the link ending tag.

tnote link ANfootnote links are internal and tagged as follows:

:lirrkreftype=frrrefid=iderrtilier.selection text: elink.

Iink is the link tag.

eftype=fn is the type of linlq ret@pe=fn creates a link to a

footnote.

efid= is the ID of the footnote tag to be linked to. A foot-

note tag has the format :fn id=identifier,f ootnotetext.

in the help panel.

ags have the fol-

. selection text is the text that is sensitive to the link request.

. :elink. is the link ending tag.

Hypergraphic link tags

IPF’s tags for creating hypergraphic links serve two pur-

poses:

1. The artwork tag imbeds a bitmap into a help panel and
names a link file that defines the sensitive areas of the

bitmap.

2 The link tags associate each sensitive area with an inter-

nal or external help panel or a footnote.

The following are examples of each.

Artwork tag Artwork tags have the following format:
THE SMALLTAI.K REPORT

ODBMS

ODBMS 2.0
Smalltalk Object Management

Client-sewer Arckimcture
Object Management supporting
Versions, Transactions, Distribution
Multimedia-Objeeta
Objects to RDBMS

Available as
Single User, Network and Server Version

Supporrs Smalltalk under
Windows, Windows NT, 0S/2, Unix

Successful application~
Smallmlk Team Development
Pemonal Data Manager
Con@uraaon of Complex Systems

)bjectoriented Technology by
{C Sofwa.re
Isk Vc SofmaTc, Houatosll-x
: (713) 333-S936,E (713) 333-3743

Rmnany Vc softwareCossnhwtioo
atlibwd 2s, 38118 Bmlrmmtlw“

%’+49 53124240-0, fi +49 5312424 -24

ISA Ob.wt power,Haward MA
(50S) 4$=4, fi (50S) 263-0696

~yab,~
+44 7143 94S1,E +44 714360524
:artwork narne=’filename’bnkfde=’filename’.

“ :Iink is the artwork tag.

. name= is the name of the file containing the bitmap.

. Linkfile=is the name of the file containing the link tags.

Litrkfiles A link file contains the following tags. The link tags

in this example link to an internal help panel. You can also link

to external help panels or footnotes.

:arttink.
:link reftype=hdres=32114X=10y337 CX=Z5CY25.
:Mr reftype=hdres=32101X=10y=300CX=25CF25.
:eartlink.

Link files define areas of a bitmap that are sensitive to hyper-

graphic links. The link tags have some additional attributes for
defining areas of sensitivity

. x= and y= coordinate where the sensitive area begins.

“ CX=and q= define the extent of the sensitive area along the

x and y axis.

LIMITS OF IPF

From the perspective of application development and linking

applications to IPF help libraries, IPF has some limits that, if
overcome, would make IPF easier to develop with and use

- An application cannot ask a help library if it has a certain

help panel by its resource ID or alphanumeric ID.

“ Whenever a help library is asked to display a help panel that

it does not have, IPF always responds by displaying a mes-

sage box saying “Linking not found”. Since users are not

generally aware that IPF is the source of the help panels, this

message is cryptic, and it is not possible to prevent the

message box from appearing or replace the puzzling mes-

sage with a more informative one.

IPF AND DIGITALK

When you need to link IPF help panels to a Smalltalk/V 0S/2

application, IPF’s requirement to use resource IDs for context-
sensitive help and internal links and IDs for external links is an

important issue. Attempting to use these tags differently results

in compiler errors in IPF. Digitalk’s implementation of its help
classes, however, requires the use of IDs for context-sensitive

help. If you attempt to make an external link to a panel that

also provides context-sensitive help according to Digitalk’s

guidelines, HelpManagerreturns an error. Digitalk’s help classes

render context-sensitive help and external links incompatible

and greatly reduces your readers’ options for retrieving infor-

mation. Part 2 of this article explains the specific requirements

of Digitalk’s help classes and their limitations. ❑

Marcos Lam is a“member ofthe technical staff and Susan”Maz-
zara is a technical writer at Knowledge Systems Corporation.

Both have worked on the development team for CoDesign, a

Smalltalk development environment that integrates design and
code. They can be contacted at Knowledge Systems Corporation,

114 MacKenan Drive, Cary, NC 27511, 919.481.4000.
- .

FEBRUARY1994 /

CROSS-PROCESS

EXCEPTION

HANDLING: PART 2

Ken Auer and Barry Oglesby
•l
HE FIRST PART of this article (SMALLTALK Rri-

PORT 3 [4]) provided some general background

on the process and exception handling mecha-

nisms as provided by the vendor. In addition, it

described a problem that arises when dealing

with parallel, concurrent processes, as well as our extensions to

the current framework that provide a solution to this problem.

In this issue we describe a problem that arises when dealing

with master/subordinate processes and present our solution

with some examples. Further, we provide an extensive example
that incorporates both types of extensions.

MASTER/SUBORDINATE PROCESSES

A single controlling master process often creates one or more

subordinate processes to complete a single task. The master

often is required to know about problems that occur in its sub-

ordinates but, once forked, a process is independent, so even if
the master keeps a handle on its subordinates, the subordinates

cannot communicate directly with their master. A typical sce-
nario in machine-control software, for example, is for a ma-

chine supervisor process to create one or more subordinate

processes to control the machine’s resources. In the current

framework, if one subordinate fails the master does not find
out unless the subordinate has a direct handle on its master. If

a problem occurs in a subordinate process, the resulting signal

raised will only be handled by that subordinate. Its master does

not automatically respond to that signal. Figure 1 demon-

strates this scenario.

~... . .— .—. Further, because

‘Ukrtina[ep= the master does not

—-

o=a]g;;g;
Figure 1. Maeter-subordinate processes (current). should be done

fg””-:.&l

Suhrdna[e ~r~~~ I about it. For exam-

ple, depending upon

the reason for the
failure, the master

might create a new

Figu;e 2. &ter-subrdinate promsses (desired). subordinate to cOm-
8

plete or restart the failed one’s task or, in the worst case, simply

terminate its other subordinates.

This problem can be solved on a case-by-case basis by set-
ting up semaphores or some other explicit communication be-

tween processes to communicate their progress or lack thereof.

However, the master usually doesn’t care about the subordi-
nates unless something goes wrong. Additionally, the master

may often need to do multiple tasks that would preclude it

from either waiting on a semaphore or polling some variable

every so often to find out if there’s a problem. Instead, if the

master process could be notified in case of exception, then no

explicit communication would be required.

A subordinate process could signal an exception in the mast-

er process by interrupting it with the appropriate block. How-

ever, this would mean that the subordinate must have an ex-

plicit handle on its master accessible. Additionally, it would

have to explicitly setup its own exception handlers to act ap-

propriately.
What is desired is to have the capability to allow both the

subordinate raising a signal and its master to automatically re-

spond in the appropriate manner. In Figure 2, a signal raised in
the subordinate process is handled not only by that subordi-

nate but also by its master with no explicit communication.

PROBLEM SOLUTION

Usually, the only time that both master and subordinate pro-

cesses are known is at creation time. Once a process is execut-

ing, its knowledge of related processes is gone unless common

variables hold the information. This need to maintain such

variables has been replaced by a new method implemented in
BlockClosure called forkM:fonvardExceptionsTo:. In this method,

an exception handler that handles Signal noHandlerSignal is

wrapped around the block before creating the process. At the
time of invocation, the handleBlock encapsulates within it the

master process. If an exception occurs in the subordinate pro-

cess, a signal will be raised. Because no handler exists for this

signal, an exception on the NoHandlerSignalwill be created with
the original exception as its parameter (see Exception>propa-

gatePrivateFrom:). The exception handler defined in forkAt:for-
wardExceptionsTo:can and will handle this exception. It will do

so by passing the exception as an argument to its handleBlock.

The master process (which was encapsulated within the handle-
Block) will be interrupted with a block raising the exception’s

parameter (the original exception). This will cause the normal

processing of the master process to be interrupted and excep-

tion handling to begin.

Additionally, other methods have been added to BlockClo-

sure to use this root method to allow the flexibility to create
parallel and subordinate detector processes, The implementa-

tion of these methods is as follows:

fortL4kaFriori@rforwardExceptionsTo:aprocess
“Createand schedule a process nmning the code in the receiver
at aPriorityAnyunhandled exceptions raised by thk new process
WNbe forwardedto aprocess. Answerthe new process.”

“[Signal noHarrdlerSignal
THE SMALLTALKREPORT

I A REPERTOIRE OF QUERY AND REPORTING TOOLS FOR VI SUALWORKS

Ad-hoc query and repotting

Integrated with Visual Works

Database or object model accessH Y
Shared reporting repository

=) t Portable font and printer support

m,m -Full ”,,. ,,,,- , >“7

Synergistic Solutions, Inc.

l— 908.422.0450 Voice ● 908.422.W-01 FAX
70233, 201 7@Compuserve,com

All @xl narmsate regirb?tsdlmdsmarlsoIIheir m+xr.lk —
handle: [:ex I
aprocessinterruptWith:

[ex parameter
searchFmrn currentprocess suspendedContext;
raise]]

do: [sell value]] forluk aPriority

forkFonvardExceplionsTo:aprocess
“Createand schedule a process running the code in the receiver.
Anyunhandled exceptions raised by this new process willbe
forwarded to aprocess, Answerthe new process.”

‘seli
forkAtiprocessor activePriority
forwardExceptionsTo:aprocess

forkSubordinate
“Createand schedule a subordinate process running the code in the
receiver. A handle to the master process to this subordinate is
captured so that exceptions raised by the subordinate can be
handled by the master, Answerthe new process.”

‘self forkForwardExceptiocrsTo:processor activeprocess

Two simple examples are defined below.

Estample 1

This example illustrates the master process handling an excep-

tion occurring in its subordinate process:

ObjectindexNotFoundSigml
handle:

[:e~ I Transcript m; show: ‘Masterhandling exception’]
do: [1 delay I

“Createand fork subordinate process.”

.-
FEBRUARY 1994
[I collefion I
collection:= OrderedCollectionwith: 1 with: 2.
collection at 3] forkSubordinate.
“Repeatmaster process forever.”
delay:= DelayforSeconds:5.
[Transcriptcc show ‘Masterprocessalive’.
delaywait]repeat]

Execution of this block of code will cause a subordinate prc-)-

cess to be forked from a master process. The subordinate’s task

is to create an OrderedCollectionof two elements and access the

third element of this same OrderedCollection.This, of course,

results in the raising of obj ect index.NotFoundSignaLBecause

this process was forked as a subordinate, the normal execution

of the master process (which is executing an endless loop) will

be interrupted, and its exception handling block will be exe-

cuted. This will result in “Master process handling exception”

being written to the transcript window.

Example 2

This example illustrates both the subordinate and master pro-

cesses handling an exception occurring in a detector process.

ObjecterrorSignal
handle:

[:ex I Transcriptcc show ‘Masterhandling exception’]
do:

[I delay subordinate I
“Createand fork subordinate process.”
subordinate :=

[ObjecterrorSignal
9

■ CROSS-PROCESS EXCEPTION HANDLING: PART 2
handte: [:ex I
Transcript

show ‘Subordinatehandling exception’.
errreject]

do:
[I delay I

delay:= DelayforSeconds:3.
[Transcriptcr; show ‘Subordinateprocess alive’.
delaywait] repeat]] forkSubordinate.

“Createand fork simufated detector process.”
[I simulatedErrorSignalI
simulatedErrorSignal:=ObjecterrorSigccalnewSignal

notifierSting: ‘simulatedexternal error’.
(DelayforSeconds:5) wait.
simulatedErrorSignalraise]

forkFonvardExceptionsTo:subordimte.
“Repeatmaster process forever.”
delay:= DelayforSeconds:3.
~anscript m; show ‘Masterprocess ative’.
defaywait] repeat]

Execution of this code will cause a subordinate process to be
forked from a master process and a detector process to be

forked with the first subordinate process as its dependent pro-

cess. Additionally, an exception handler will be wrapped
around the subordinate as well as the master process. Now

when the simulated error signal is raised, the resulting excep-

tion will be handled first by the subordinate’s exception han-

dler. After the subordinate process is done, it is rejected, and

handled by the master’s exception handler. The transcript win-

dow will first show “Subordinate handling exception” followed

by “Master handling exception.”

EXTENSIVE EXAMPLE

For the exception handling enhancements presented in this ar-

ticle to become clearer, a more robust, concrete example will

be presented. This example will embody both enhancements
described above.

The example is very loosely based around a simulation of

machine-control software. In broad terms, a manufacturing

machine normally accepts some kind of raw material, pro-

cesses it, and produces a finished product. The machine could

be anything from a shop lathe, which accepts a piece of wood
as the raw material and produces a baseball bat, to a semicon-

ductor manufacturing machine, which accepts silicon wafers as

the raw material and helps produce finished computer chips.
To produce a finished product, in addition to the raw material,

many machines require the use of another kind of material,

namely a tool, to facilitate the processing of the raw material.

For example, a chisel or gouge tool is necessary for a lathe to

correctly shape the wood to produce the bat, Further, for the

lathe to produce the bat, both the wood and the chisel must be
present at the same time in the machine.

For the simulation, class MachineResource was added to the

hierarchy as a subclass of Object. The responsibilities of Ma-

chineResource are to accept material, process it, and pass it
along (either to the next MachineResource or out of the ma-

chine). A MachineResource forks several processes concurrently

in order to accomplish its tasks. Among them are processes to
facilitate the arrival, processing and departure of material. For
10
.—..—.

this example, the material arrival behavior will be the primary

focus. The arrival behavior itself is divided into three main

processes, namely the overseer or master process and two sub-

ordinate processes. The overseer coordinates the activities of its

subordinates, allowing them to proceed when required and to

stop when necessary. The main task of the two subordinates is

to wait for material to arrive. The first subordinate waits for

the raw material (e.g., the piece of wood); the second subordi-

nate waits for the tool (e. g., the chisel). Neither subordinate

knows about the other. If one fails, it performs its own excep-

tion handling to clean itself up then rejects the exception. This

provides a path to its master, which performs its own excep-

tion handling.

For the purposes of brevity, implementations of many
methods are left out and only trimmed-down versions of sev-

eral pertinent MachineResource methods are included, namely

the material arrival overseer process (the master process) and

the raw material block (converted to the material arrival sub-

ordinate process). A partial implementation of the overseer

process is described below

materiakrivaloverseerprocess
“Answerthe material arrival overseerprocess.
Thisprocess coordinates the adivities of its
subordinates.”

‘[self class failedToArnveSignal
handle:

[:ex 1

Transcript cr; show: ‘Overseerhandling exception’.
“real exception handling code goes here”]

do:
[Transcriptcr; show ‘overseerstarting’.
“Forksubordinate material and tool processes.”
seffforkMateriafArrivalprocess.
self forkTool.Arrivalprocess.
~’Waitfor notification of material and tool arrival.”
seLfwaitForMaterialAndToolToArrive.
“Assoon as both the material and tool arrive,
signal subordlmtes to begin Ioobing for the
next material and tooL”
self getNextMaterialArrdTool]repeat]] newprocess

This process starts by sending messages, each of which results

in the fork of a subordinate process. The method forkMateri-
alhs-ivalprocess forks the subordinate process (via forkSubordi-

nate), which facilitates the arrival of the raw material. The

method forkToolArrivalprocessforks the subordinate process
(via forkSubordinate), which facilitates the arrival of the tool

material. Once these subordinates are forked, the overseer goes

into a repeat loop. In this loop, the overseer waits for

notification that both the tool and material have arrived (via

waitForMateriaUutdToolTotive). Upon receiving this
notification, it allows the subordinate processes to continue
(via getNextMaterialAndTool).This entire block of code is

wrapped by a normal exception handler (via handle:do:), which

is sent to a new signal called FailedToArriveSignal.If an excep-

tion occurs and FailedToArriveSignalis raised in the overseer
process or either of its subordinates, the handleBlock will han-

dle it. FailedTotiveSignal has two more specific signals: Tool-
THE SMALLTALKREPORT

..— . .

E
he ,“ ~>, ‘::::::,::’i::
malltalk -.”,’,ma,,,~~~~~~~j
tore ‘J . ~

compuserw: 75046,3160
Dlgitalk List TSS Price

Mmdlhdkh’%lacinmsh m Windows, 16 bil API $495 $269
Sma11ta2k/VWindows, 32 bil API $995 $899
Smnlludk/V 0W2 $995 $s59
Psrls Workbench,0S12 $ I995 $1729
PsrtsWorkbench,Wh32 $ I995 $1s99

Objcctsbarc
WindowBuilder Pro, ST/V Win 16 $295 $269

WindowBuilder Pro, STN 0S/? $495 $459
WindowBuilder, STN Win 16 $149,95 $139
W1ndowBuilder,STN 0s/2 $295 $269
WidgetKit/CUA’91. sTN 0S/2 $295 $269

LogicAm!
VOSS mllection. anySTN $150 $139
VOSS DLL, STN 0s/2 or Win32 .s595 $549

VO.SS source, STN 0S/2 m Wi” 16 $1950 $1779
VOSS source, STN 286 $950 $s69

GSof(
MathPack 3.0, PPST $395 $369
MathPack 2,1, ST/V Win, 0S/2, Mu or 2M $125 $119

BusinessGraph 1,2, STN Win, OW- or Mac $95 $s9
LPC Consulting- 5~ciul Ihru.uh Fehruug 28, /9?4.

ODBTafk STN Win 16 m W,n32 $199 $1s9

Small talk Store e.rclu.r;ve~

XoterX Package Manager $125

SmalltafkstarterKitincludes STN for Win 16. Window Builder, XIMcrX

Package Manager. and two bnok~ - lJi.www-rinK Smalhnlk and Oexigniw

OhjecwOrienlrd Sofrwurr. Everylhkg you nmd to Icarn S rmlhidk!

Totzdlist price for UseSkwterKit is over $895 TSS price: $495
FailedToArriveSignal and MateriaLFailedToArnveSignal.

The implementation of the BlockClosure that is converted to

the subordinate raw material process is as follows:

forkMatetialArrivalprocess
“Forkthe material arrival process as a subordimte process.
This simulates the arrival of the raw material.”

“[seH class materialFailedToArriveSignal
onXrrceptiom

[:eii I
Transcript

show: ‘Materialprocess handling exception’.
“real exception handhrtg code goes here”
ex reject]

do:
~ranscript cr; show ‘Materialprocess starting’,
[selfwaifforSignalToContimse.
Transcriptcr; show Waiting for raw material’.
self simulateMateriafArrivaL
Transcriptcr; show The material has arrived’,
self notif$flltathlaterialltaskrived] repeat]]

forlrsubordinate

This process repeatedly waits for a signal to continue (via wait-

ForSignalToContinue), simulates the arrival of a material (via

sinmlateMateriablrrival), and notifies all interested parties that

the material has arrived (via noti~atMaterialHasArnved). This

entire block is wrapped by a new exception handler (via onEx-

ception:do:) which is sent to the MaterialFailedToArriveSigml.If

an exception occurs and MateriaJhiledToArriveSignal is raised
by any process anywhere in the system, this handler will be

called upon to handle the exception. Afier performing its own

exception handling, the handler will reject the exception to al-

low its master to do any additional handling.

A test in terface was built so that a simulated hardware error

could be easily introduced to the MachineResource. Upon

notification that an error has occurred in the material handling

hardware (accomplished simply via executing MachineResource

rnaterialFailedToArnveSignalraise), the exception handler for the

material process (as well as any other dependent of this signal)
will be called upon to handle the exception. First, the handler

will print the message “Material process handling exception”

to the transcript window, perform any real exception handling,

and, finally, reject the exception. The material arrival overseer

process will then provide any additional handling. The handler

for the overseer process will first print the message “Overseer

handling exception” to the transcript, then perform any real

exception handling.

CONCLUSIONS

Through some fairly simple extensions to the already powerful

and flexible exception handling framework in Smalltalk, we

have sufficiently addressed several problems inherent in han-
dling exceptions across processes in a generic, non-intrusive

fashion. Certainly, additional scenarios not yet raised exist in
which these extensions would prove very useful. On the other

hand, scenarios yet to be uncovered most likely exist in which
our solutions will not apply.

Due to the openness of Smalltalks implementation, we
FEBRUARY1994
were able to extend exception handling entirely in the

Smalltalk language itself. Additionally, the fact that everything
in Smalltalk is an object, including processes, Signals, and Ex-

ceptions, allowed us to solve the problem in an object-oriented

fashion, employing encapsulation, inheritance, and polymm-

phism in our solution.

Conceptually, these solutions could be applied to other ob-
ject-riented languages that have an open process creation and

exception handling framework. El

References

1. ParcPlace Systems Inc. OLIJECTWORKS\SMALLTALK USER’S GUIDE,

1992, Chap. 8.

2. Hinkle, B., and R.E. Johnson. Taking exception to Smalltalk, part
1, THE SMALLTALKREPORT, 213], 1992.

3. Hinlde, B., and R.E. Johnson. Taking exception to Smal]talk, part
2, THE SMALLTALKREPORT, 2[4], 1993.

4. Pyle, I. C. THE ADA PROGRAMMINGLANGUAGF..Prentice Hall Inter-

national, Englewood Cliffs, NJ, 1981.

Ken Auer is the Director of Development Services rrtKno wledge

Systems Corporation, Cnry, NC. He crrn be rerrched crt

919.481.4000 or kauer@ksccrzry.conL Barry Oglesby is n member
of the technical staff of Knowledge Systems Corporation, Car-y,

NC. He can be reachedat919.481.4000 or boglesby(i?ksccor y.com.
11

m===
The art of designing
meaningfulconversations

Rebecca Witfs-Brock
I
N MY LAST column, I introduced a tlamework for devel-

oping and describing use cases (see Fig. 1). Use cases, sce-

narios, or sm”ptsare roughly synonymous terms for im-

portant ways to focus our design activities. In this column,
we’ll see how use cases, system/actor conversations, and sup-

porting object designs fit together, We’ll explore some issues

surrounding the development of these models. We’re still learn-

ing about where certain techniques work well and where they

fall short. There are several helpful hints and some pitfalls. First,

let’s briefly review this framework

USE CASE FRAMEWORK

A high-level scenario is a textual description of some process

or business transaction that our system must support. Large

system development efforts may generate a wealth of detailed

process descriptions. Less formal designs still benefit from

writing high-level descriptions of desirable actor activities.

We prefer to transform these high-level descriptions into

conversations before we model with objects, This forces us to

separate out what the actor does and expects from our system’s

behavior. We purposely leave out details from conversations
that should be recorded elsewhere. We omit complex condi-

tional logic from conversations (e.g., if this happens and such

and so is true and x is not, then. . .). Supporting information

belongs in detailed process descriptions or other design docu-

ments. We focus on designing the flow of the conversation be-
tween the actor and our system.

There are two central parts to a conversation: a description
of the actor’s inputs to our system, and a corresponding de-

scription of our system’s responses. Together, these “side-by-

side” narratives capture a dialog between an actor and our sys-

tem. We also list alternatives to the main course. These
alternatives represent a reasonably complete list of conditions

that object designers must be able to detect and to design ap-

propriateresponses for. We also list constraints, timing con-

high level description
siderations, reasonable

Oibusiness scenario % actor or svstem default
‘wlral

,- ~ &y&e&l~.~& /how “ H&jg:!H&-
conversetion~ Whd ‘

-how :
sired outcomes (as we

‘*iM ‘ielw ~~he, . ‘hink ‘f it) ‘hen ‘ecOrd-
ing each conversation.

: initial object model <:,: Figure ~ show5 a sample
12
Conversations guide our initial object modeling activities. We

develop a high-level view of key objects and their interactions for

each system response side of a conversation. We start by selecting

candidate objects according to their roles and stereotypes. If we

already have a rough idea of our objects from previous modeling
sessions, it is easier. We still review these partially completed ob~

jects and our assumptions about them before plunging into

modeling. If this is the first time, we obviously spend some time

picking out and discussing candidates and their possible roles.

We use whiteboards a lot during modeling sessions. We

record responsibilities and collaborations on design cards. We
also draw and redraw potential collaboration sequences, wave

our hands, and run through consequences listing pluses and

minuses and looking for better ways to distribute object re-

sponsibilities. We construct an object interaction diagram de-

picting what each object does and roughly how it collaborates

with others. The results of all this activity are a better under-

standing of our design and an updated issues list!

Figure 3 illustrates object collaborations for beginning a

video kiosk session. This diagram shows a collaboration se-
quence that supports either a regular or preferred customer.

Beginning a session involves signing on and picking a transac-

. -.
Converaatim Begin Session
Actors: RegularCustomeror Preferred Customer
OvaMew A customer identifies herself to our VideoKioskapplication.
After she has signed on, she can rent, reserve, cancel reservations, or
previewmovies.
ContexkThevideo kiosk application screen is currently displayed.

fketnrtin ModelResponee

Initite Session Present greeting
Prompt customer for ID

Enter unique ID Receivecustomer info
Validateit
Prompt for permissibleactions

Select action Transferto selected action

Alternatives:
1. Userrrds-enters identification
Sign customer on as a guest, after ifirming her
2. User’saccount is overdue by 30 days or more than $5o
Inform user and ask if she wishes to make a paynrent.

Iinrisrg Considerattons:
Timeout and ternrhate session if user doesn’t respond in n minutes.

Reasombledefauk@her mnsiderations:
Makeit ve~ easy for guests to sign on. ‘lheyshouldn’thave to identitjr
themselvesin the same wayas other customers.(Notethat the
conversation for a ouest’sbeainnina a session mavbe shownin another
conversationor it & not, d~pend~g on how di~rent or important it is.)

.~
Figure 2. Beginning a session,
THE SMALLTALKREPORT

Just touch a Ladlon to

I #!!!!I
. , put a charl

view in your
chwl window!

Add chatis to yourVisualWor#tspalette
~lldIllfC Addm change dala points, with minirm.1 scrccn repainting.

Add or remove data series to/from the chart.

ftiertie Select &atil pnints with the mrnwe—EC-Charm infbnns
your applicaticm.

UseS semenspace effetifveiy $-
0 lm2mlma

Scroll the chart view in one or both

~. ,

7 IM
,,,

directimm Mark values of summmy 1gab

functirm in the 1=5
0-.:.,., ., ,,.,, =, -

axis areas. Show
1=6

.
WI

., . .< “ . . thresholds using 1967
{

‘.,:
.,. ,?,,,

grid lines.
1968

., .,
. ,. 4989

— ~ .f:.. ~- . ..- ~~
1WI

Nrw ~~ .$Td ~9Q1

No runtime licensefee

Call fora technfcal Damw ,4@ [,~1 (~ ‘li[~ >)[11$:,,*-

on EC-Umfis - (408)462-0641
Usuahvti is a Iradelmlh
d PmT& .S@wm, Im. 21137 Edst Cliff’Dr. Santa Cruz. CA 95062
tion from among renting a movie, previewing, and canceling

reservations, and reserving movies. Responsibilities were

parceled out among Session Manager, Transaction Manager, Cus-

tomer and CustomerDatabase objects in this modeling session.

Because the diagram was entered into a computer, it looks

more polished than it actually should. The collaborations
aren’t finished. What may look like message names are rough,

and more akin to responsibilities than precise message signa-

tures. We’ve shown sequences of important collaborations,

and also shown responsibilities that the Session Managerper-

forms itself (collaborations 1,2, and 5 in the diagram),

FINDING THE RIGHT SIZE USE CASE

Finding the right size for a use case is largely a matter of personal

choice. I have carefully laid out a long string of system/actor

events and asked colleagues and design students to split them

into meaningful units. We all try to follow these guidelines:

. Look for meaningful sequences that form some namable
subtasks.

I Don’t look for “reusable chunks” to start.

“ Find an all-encompassing name to call this activity.

“ Clearly name the subtask using a single action name.

“ Look for loops or repetitive event sequences.

How people group tasks together varies widely. Some have a

hard time justifying their decisions (“it just feels right” isn‘ta

justification). It really is a matter of how much or how little

detail you can handle, and what hidden assumptions you are

making about the underlying complexity of the task. Working

in a team, over time, the group as a whole usually develops a

collective sense of the right size for a use case. The above

guidelines are useful hints, not rules.

DULL CONVERSATIONS

Sometimes conversations that you generate from use csses are

too simplistic. This is often the case with event-driven systems.

Picking an item off a menu doesn’t often generate an interesting

conversation, either. If you have this problem, look at grouping

more tasks together. Perhaps your application isn’t very conver-

sational by nature. An actor might initiate a lot of complex tasks
for your system to work on, but the interactions to get them

w,.,.”.,!,,>., “,,...”,

%

, lm.i.lL..fm I

, .“,,,WM8B m.C.NW”.,
m

1 .!(..,mw$+i, #u.,,.”m,

, *.,!,.!
M.P+.,

., ,“,,,,,!%..,! .(1 , .Ih!wibk,,,. ”.,,,,,,”,:, ,,,,:,..

/ ~~~~~
. ,,,, ,,,, , .,-,,,, !.,,,,,,,, ,,,.,, !.,.)

(jb,,(-“m,

I ,.”.!,,1,..

MA.++.

w

Figure 3. Object collaborations for beginning a
video hiosk session.

—

started may be pretty
straightforward. A

command-driven
monologue isn’t that

interesting. Don’t force

conversations.

DEALING WITH

SLIGHT VARIATIONS

ON A THEME

Actors can be users or

other systems. Further
distinctions can be

made between actors.
FEBRUARY1994
.-

I’ve seen applications that have dozens of different types of

users and dozens of external systems to which they have to

connect. Different actors may need or are privileged to con-

duct slightly different dialogs. Even when performing even the

same task, different actors often need to have slightly different

conversations. Wading through all this takes a lot of time. The

bottom line is that unless a conversation or alternative radi-
cally differs from a previously documented one, I find it per-

fectly acceptable just to record the differences. Unless it is that

different, I don’t bother building a collaboration for each slight

variation, either. My goal is to produce and build designs, not

generate lots of paper to wade ~hrough. Consequently: I make
sure to record new responsibilities and collaborations on de-

sign cards, but I don’t necessarily show a lot of other support-
ing diagrams if it isn’t warranted.

WHAT REALLY GOES ON DURING MODELING?

I can’t ignore the big picture while designing the objects for a

particular conversation. I don’t know anyone who can, Too

many side excursions into the weeds can be frustrating. How-

ever, remembering consequences of prior modeling decisions
and checking for possible inconsistencies is extremely impor-

tant. Consolidating and unifying design is a constant back-

ground mental process that should be allowed to bubble to the

surface at times.

For example, if I know what Session Managershould do, I
don’t park my understanding of its other duties elsewhere while

designing how to begin a kiosk session. If I did that, I might add

to its pre-existing responsibilities in an inconsistent way.
13

PcithBmwer
— u truce und [I(n.llnt(’llt(lfiotz loot for .Smulhlk

Eliminate the need 10bring up multiple windows IO follow
an execution path. By using [he Puh!ksw.rer you can

quickly browse lhe message flow an event creates across

multiple classes, from a single window. Select the classes

to be traced, or have the RsMroMwcr automatically gen-

erate the class list based on a primary class. Then you

needonly enable the trace, create the event, & voila !

-==EICI.l...
S>% CIC.*:

l...c0rmmDrctlmm-v-mddvmrw

n-: idieNmn
,~wsmmmnd

(CtidoE lncMmIKMw tskSmNmne)
Srrlne: [CtidagrmmwrcwIAreNmma].

- := bblaNmme.
CmsdmCmkiableNmma@ ICU.

Browselt Software

Patk%asvsm for Digilalk (Wh 0S2 Win32) S99 Tel: (303) 730-0806

PaM3ruI.vsrr for PmPlace VlsualWorks $149 Fax (303) 730-0812

Sire licenses & educational discounts. Money back 30 day guaranbe

■ GEtTING REAL
—

SHOWING MODEL RESPONSES

Typical object collaboration diagrams look either deceptively

simple or overly complex. They don’t reflect the thought or ef-

fort that went into producing them. To understand their sig-
nificance, it is necessary to know what are key objects and what

level of detail the designer intended to model. To find this in-

formation, we need to look at supporting documents such as

emerging class designs, prior conversations, and other sup-

porting evidence. Designers can also help others through their

design. Diagrams alone can’t show the significance of key de-
sign decisions. This information is hard to find in class speci fi-

cations, too. That’s why designers need to tell us what they

considered to be important.

For example, our CustomerDatabase object isn’t a simple-

minded database interface. It doesn’t just humbly reconstitute

customer objects from stored information. Sure, it encapsu-
lates details of some relational database interface objects. But it

is really smart. It detects whether a customer is typical, pre-

ferred, or a guest and dynamically builds the right kind of Cus-

tomer object based on a number of decisions it must make

(e.g., is the customer late paying her bill, how many rentals has

she made recently, etc.) You can’t see those interior details un-

less we show the CustomerDatabase object in much further de-
tail on this diagram. However, when we were focusing on the

high-level objects and their interactions, we didn’t want to

clutter up our diagrams with too many lower-level details.

HOW D~AILED SHOULD AN OBJECT DIAGRAM GET?

1 used to have a problem showing message sends to self. It

seemed like too much detail too early. Now it doesn’t bother
14
me if it is done sparingly. Designing an object involves decid-

ing what it does itself as well as all of its collaborations. If you

haven’t internalized that you need to send messages to self to

create well-designed objects, you need to show this detail. If

you know this, but your peers still find it confusing, you prob-

ably need to show them that detail. Diagram details are a mat-
ter of personal discretion, design team standards, and need to

comprehend. Either too much clutter or too few details can

cause problems.

One important thing to note about our begin session col-

laboration diagram is that we showed interactions with the

user interface as dashed lines. We knew which objects collabo-
rated with the user interface, but we didn’t how they ccsllabo-

rated. We didn’t show this detail on purpose. We did this for

several reasons. We wanted to first concentrate on the interac-
tions between business objects, controllers, service providers,

information holders, and the like.

If we ignore the interface details for just a bit, we can ph.rg

our design into a variety of different user interface solutions af-

ter understanding our object model. We wanted to give our-

selves the freedom to explore potential user interface designs as
a separate activity.

We also didn’t want to overly constrain our design with

user interface requirements. Employing this tactic prevents us

from embedding a detailed, quirky understanding of particular

user interface objects. I personally don’t have a big problem

with setting aside the user interface details until 1 know what
the other objects generally have to do. 1 advise you to worry

about the details of that after the interplay between other ob-

jects settles down.
Following this strategy causes some feedback and tuning of

both our conversation and the objects that interact with the

user interface when we actually do attend to those details. If we

limit the number of objects that actually interact with user in-
terface objects (which is always a good design principle to fol-

low), the impact of this fine tuning can be minimized.

CONCLUSION

There are open issues about use cases, conversations, and c)b-

ject modeling. However, there is a big payoff in designing this

way. Use cases and conversations guide design activities. Tying

our model back to conversations, use cases, and supporting
documentation is one big step in the right direction. My goal

in applying these techniques is always to enhance my abilities
to communicate with non-object experts and improve my abil-
ity to produce the right design solution to the right problem. Ill

Rebecca Wirfi-flrock is the Directorof Object TechnologyServicesu!
Digitalkand co-author of ~EsrGNI.YG OsiJEcT-omEwrEn SoFT-
WARE. She has 18 years experience dcsigtsing,implementing, alzd
managing softwareproducts. For the lastnine years, she hasfocused
ossobject-orientedsoftware.She managed the development of Tek-
rroni.xColorSnralkalkand has been imnrersedin developi~lg,teac/l-
ing, and lecturingon object-orientedsoftware.L“omments,further in-
sights,or wildspeculationsare gremly appreciated by (he aurhor. She
can be reached viaemail at rcbecc@di@alk. cons.Her U.S. mail ad-
dressis l)igitalk, 7585 S.W. Mohawk Drive, Tualatin, OR 97062.
——— ———— .- —.

THE SMALLTALKREPORT

HE BEST OF comp.lang smalltalk

Booleans

Alan Knight
T
his month’s column focuses on the recent controversy

over Boolean variables. That’s right, Boolean variables. If

you don’t think true and false are the stuff of impas-

sioned debate, read on.

IFNIL

Jack Shirazi (js@biu.icnet.uk) started the debate by asking:

How many times have you written

somethingisNiliPhue:blockl ifFalse:block2.

How come there isn’t a itl’JihifNotNihmethod as standard?

Several people explained how to write MViEifNotNiEand what

a wonderful language Smalltalk is because it allows you to write

your own control structures. He then explained further:

I am obviously aware that I can add the method! ;-) It was

specifically the loss in performance that concerned me . . .

Why isn’t it there and optimized like the other ones It is
the ordy choice method that I can think of, which would be

used as much as itTrue:ifFalse:

It’s certainly true that a lot of Smalltalk’s conditional statements
are used to test for nil values. Mario Wolczko

(mario@cs.man.ac.uk) provided some quick statistics.

I counted how many methods in a standard 4.1 image in-

clude code like

a isNIlifhue:
~ . . nil i~a~e:

nil’= z ifl’rue:

and so on, That is, how many methods could be written

more concisely if ifNil:, notNil:, ifNil:notNiE, etc., were

available.

Out of 8,494 methods in the image, 704-i.e., 8% or 1 in

12 of all methods-had such a test. Seems liie things would

be a lot cleaner if it were to be added and used,

He also did a small experiment on the relative performance of

user-added control structures.
Numbers taken from a Sun IP~ repeating 1,000,000 times

lb I b:= nil. N1isNiLb yourself“to establish a baseke” 2,339

lb I b := nil. NI isNil ifl’nre: [b yourselfl 2,792
FEBRUARY 1994
lb I b := NL nil ifNil:~ yourselfl 13,912

(with the obvious definition of iilfik in UndefinedObject)

You pay a high price for really building the block and
sending the message,... Of course, you could always mod-

ify the compiler to treat your construct specially, too—this

is Iefl as an exercise for the interested reader :-)

Jan Steinman (jan.bytesmiths@acm.erg) proposes a slightly

different syntax. He writes:

One of the more common usages of nil tests is to guard
against passing that nil along the way. Many times I’ve

wanted the equivalent of the C?: operator, which, given
bool ? &ueVal: falseValreturns one or the other. So I imple-

mented ?. I chose a binary selector so that it could be easily

placed “in-line” without parentheses, and I added the block

test so that you can do things of arbitrary complexity in the

“not nil” case.

He provides code for a ? operator, which allows expressions like

the following

variable? defaultValue
se~keyword:SomeCtassdet%rltlnstarrce? ‘hithere’.
foo? [foo:= ‘tiltialvalue’]

So far, this hasn’t been too controversial, Few people would ob-

ject to a few extra control structures to make dealing with nil

easier. Kent Beck even discussed the ifNik construct back in the

February 1993 issue of THE SMALLTALK REPORT. A ? operator

looks a little too much like C for some people’s taste, but

they’re free to call it something more Smalltalk-ish or not to use

it at all. The controversy started when SmalltalkAgents actually

implemented many of these ideas in a way that lefi many peo-

ple unhappy,

SmalltalkAgents

In case you hadn’t heard, there’s a new Smalltalk implementa-
tion for the Mac, called SmalltalkAgents, and produced by a

company called Quasar Knowledge Systems (QKS). This new

implementation received a lot of attention on USENET for two

reasons. First, it departs significantly from traditional Smalltalk
implementations in many areas, and the design choices have
15

■ BEST OF COMP.LANG SMALLTALK
generated a lot of discussion. Second, David Simmons (whose

signature describes him as the Chief Technical Officer of QKS),

has posted several lengthy articles describing and justifying

those choices.

Note that this article deals with one minor design choice and

the discussion it generated on USENET. This is not representa-
tive of the general discussion on SmalltalkAgents, and should

not be taken as any kind of a review. If you want a review, see
Jan Steinman’s article in the November/December 1993

SMALLTALK REPORT.

Since I don’t have access to a Mac at the moment, I haven’t

been able to try out SmalltalkAgents yet. I am, however, ab-

solutely delighted to see a new Smalltalk implementation. There

hasn’t been enough meaningful competition in the Smalltalk

market so far, and the existing vendors have been able to get
away with far too much for far too long.

iflrueOrAlmostAnything Else:

What was the design choice that generated such controversy?

Alun ap Rhisiart (vollrath(!%mr.oxf ord.ac.uk)describes it as

follows:

STA has adopted C’s concept of Booleans. ifhue: [] will exe-

cute the true block for any receiver that is not false, r-d, or

zero.

35 ifTrue:[Speakersbeep]

will beep. Now suppose you want to protect yourself from

errors where an object (almost any object) has been passed,

but you are expecting a Boolean. You might have some-

thiig like this

param
ifhue: [hueblock]
itFabe: [Mse block]

now you have to write

paranr ==true
Whe: [true block]
ifFalse: [htse block]

Since when you write iPhue: you normally mean just that,

it is tedious and error prone to have to keep in mind that

this is not really a truth test, in spite of what it says. Tests

of truth value, and tests of existence (instantiation) are se-

mantically different, and C simply has this wrong. Occa-

sionally, you can drop a message send by writing object

ifhue: [] instead of object isNllifhue: [], but you have to
pay heavily for that by having a difficult time tracking

down a class of bugs, which should have raised an excep-

tion right away.

I have to say that my first reaction to this is to agree completely

with Alun. Booleans aren’t numbers. Numbers aren’t Booleans.

UndefinedObjectsaren’t anything. Mixing them all up can only

lead to trouble. This is particularly true in a dynamically typed
language, where you rely on strict message protocols to catch
16
stupid typing errors. One of my most common stupid mistakes

is to write a method that should return a value and then forget

to return anything, returning the receiver by default. This is

usually caught the first time you call the method, but wouldn’t

be with an implementation like this.

isNLIOrZeroOrFalsa

This is not the only change. At least ii’hue: and its relatives are

defined as errors for non-Booleans. Extending them will only
allow code that would other-wise crash. Sma11talk4gents also

redefines isNilin the same spirit.

OisNil==>true
nil isNil ==> true

false isNil ==> hue

anythingllse isNll ==> false

This is much worse, in that it can easily breik existing code. For

example, user-input mechanisms (prompters, input fields, etc.)

that expect the user to enter a number, might return nil for an

illegal value. If the value is checked using isNil, illegal values

can’t be distinguished from the number O.

Another opinion. Rik Fischer Smoody (riks@cse.ogi.edu)

writes:

I remember systems that can’t tell the difference between O,
nil, and false. (One such system is still in widespread use.)

Let’s not go back

I am in favor of adding ifhlik to the lexicon of Smalltrdk.

It is not instead of ifhue:, but in addition. Semantics is re-

lated, not equal.

OTHER LANGUAGES DO IT THAT WAY

C isn’t the only language with ambiguous Boolean semantics.
For one thing, there are probably lots of other weakly typed

languages close to the hardware whose conditionals are based

on bit patterns rather than logic. On the other hand, there is
LISP. This is a language that is in many ways similar in phi-

losophy to Small talk and had a lot of influence on Smalltalk’s

early design.

LISP has conditional statements that take any object, and

use nil (which is also the empty list) for false. Any other object

counts as true. There mayor may not be distinct true and false

objects. LISP doesn’t normally count Oas false, but it does
count the empty list, which might be even worse when general-

ized to Smalltalk. I shudder to think of isNilimplemented as

%elf isEmpty.

In fact, when I checked which objects counted as false with a

LISP user (Andrew Rau-Chaplin, arc@dimacs.rutgers. edu) he
described it as:

One of the most implementation-specific issues in LISP,

and in my experience one that causes some of the most dev-

ilish compatibility bugs.

Apple’s new object-oriented language Dylan, which is very

strongly influenced by LISP, has a special distinguished object
for false, and treats all other objects as true. Dylan doesn’t
THE SMALLTALKREPOtIT

seem to have a nil, though, and it uses false in many places

where Small talk would use niL It does support the slot-initial-

ized function, which tests for uninitialized variables (which

would be nil in Smalltalk). They also warn that it maybe an

expensive operation in many implementations, and that there

is no portable way of setting a slot to the uninitialized state
once it has been given a value.

You could always modifythe compiler
to treat your construct specially,too-

this is left as an exercise for the
interested reader, 99

Marks Stumptner (mst@vexpert.dbai. tuwien.ac.at) points

out tha~

Booleans have a clear specification and mixing them in with

everything else should not be done without a very good rea-

son. Note that the LISP/Scheme way of dealing with
#true/#false/nil predates their object-oriented extensions.

The very fact that they do have a “real” false that can be

tested for while being “mostly” the same as nil shows that

there’s something fishy here.

IN DEFENSE OF SmalltalkAgents

I’ve given a lot of space to those criticizing the way SmalltalkA-

gents treats Booleans. David Simmons (quasar@qks.tom) has

also written eloquently in defence of the QKS implementation,
and some of that is reproduced below, with occasional com-

mentary.

Why have #(isNil ifNik notNil ifNotNik)be true/false for both
zero and nil?

1. We factored the class library so that nil has a numeric
“value” of zero. Thus, nil cars be used in any mathemati-

cal operation. foo := nil. x := IO + foo. is OK. So isNilis

consistent with the numeric behavior. It would be a mis-

take to have defined isllil the way we did if it was the

only way to test for identity of UndefiedObject instances.

However, it is not, and in fact it is not the uniform

SmaUtafk identity #== test.

2. Nilis the default value for all variables until initialized.
The STA definition of isNi[/notNilcan therefore speed up

code significantly. We use it in tests for bit flag opera-

tions as well, such as:

user!%gsiftiottiik“ornotNil it%uw [
(7 asBitValue & userl%gs) ifhue: [eventListadd: #Closed].

1... .
FEBRUARY1994
3. In many other languages, the nil concept is expressed as

zero and is used interchangeably. This enables the lan-

guage to put the equivalence to good effect in expressing

algorithms concisely, although it is sometimes a prob-

lem for those languages in that they cannot differentiate

nil from zero. In Smalltalk nil is a first class object and

thus it can be differentiated explicitly via the #== opera-

tion. So in Smalltalk having the (STA) equivalence gives

us the abiMy to be concise, but not suffer from the in-

ability to dtierentiate NI and zero.

For example, in STA it is more et%cient to scan col-

lections (especially sets and their subclasses) using the

isNiltest.

We define hash tables with two forms of entry

“ Nil.Free slot that has never been used before

. Zero. Free slot that has been used before.

This allows us to delete entries from the hash table with-
out restructuring until the empty “/.tag falls to some

threshold Without this technique, a hash table must

be restructured whenever an entry is removed (or some

other form of used-free slot tagging must be employed).

We scan for empty slots via #isNil. We scan for valid en-
tries via == nil.

Judge for yourself, but tome the only one of these that works at
all is the efficiency argument. I see no great advantage in being

able to use nil in arithmetic. In fact that opens up a whdle range

of questions. What is the result of nil isZero? How about nil re-

spondsToArithmetic?Is O.0 isNiltrue?
Being able to write concise, expressive code is nice, but it’s

an argument for adding useful messages, not changing the

clearly defined semantics of existing, widely used operations.

Even for the sake of efficient code, new structures ought to be

sufficient.
I’m not sure what the “many other languages” that work

this way are. C is the only language I know of that works that

way. It wouldn’t shock me if FORTH did. 1 doubt there are

many languages at as high a level as Smalltalk that do.
Efficiency is the only argument I find reasonable, and there

are limits to what 1’11do for efficiency.

Why have Boolean equivalence for ifhue:...?

1. We believe that all objects should have a Boolean equiv-

alent.

2. (<expression>) asBoolean ifhue:... in loops and other

tests should be as fast as possible. That’s why almost all

implementations of Smalltalk inline them in the first

place. It is very common to need the asBoolean test.

Without it, code must be “structured” with extra state-
ments to convert, flag, and track true/false object cases

for all forms of flow control statements. The most com-

mon cases looking like foo isNilif..., foo == false or: [foo

== nil]) if..., etc.
17

mBEST OF COMP.LANG SMALLTALK
This can lead to unnecessary and sometimes confusing

code

3. Having the equivalence enables efficient constructs

where a method returns nil, fake, zero as a simple thee-
way subswitch. The compiler uses this to very good
effect since it allows us to keep the code simple and
make it faster, but carry additional information in the
return value, too.

(result:= foo <operation>)ifFalse: [Yesuk]. “Senderat somelevel
abovewilllook at the result and have exha information about the
operation.”

vs.

(#(easel case2 case3) includes: (result:= foo<operation>))
ifTme:

[Aresuk].

Overall, we find that having this freedom has led most

of our users (and ourselves) to be able to write algo-
rithms that are clear and expressive of their real intent.
It is also the case that not having to coerce objects to a
Boolean prior to their use in flow control methods im-
proves execution speed. The potential drawback is that
a “sloppy” design would result in erroneous flow con-

trol logic not being caught via a rmrstBeBoolean error.
This reflects a poor design and the ability to generate

an exception for &is singleexample of coding (logic)

mistake is not significant when compared against the

myriad other coding construct errors that are possible in
s@ltalk

Well, I’m happy that the QKS staff believe objects should have a
Boolean equivalent, but I don’t share their faith. I also don’t see

that passing nil/false/zeroas a specially encoded three-way

switch, as described in point 3, is a particularly good thing.
provides objective & authoritative

coverage on language advances, usage

tips, project management advice, A&D

techniques, and insighttid applications.

Don’t miss out!

3 Yes, I would like to subscribe to THE SMALLTALK REPORT.

3 1 year (9 issues):
Domestic D Individual $79 Q Institutional $119
Overseas D Individual $94 El Institutional $134

32years(18 issues):
Domestic D Individual$14B Q Institutional $22B
Oversees LI Individual$17B J Institutional $25B

18
That leaves us with efficiency again and the argument that the

loss in error checking isn’t very significant. I might believe the

loss of error checking isn’t a big deal, but the efficiency im-

provements had better be very impressive.

A COMPROMISE
Finally, here is something that makes me happy and perhaps

provides evidence that USENET can have influence on the real

world. David Simmons writes:

As of release 1.1 of SmalltalkAgents,... we provide a com-

piler directive called ANSIComphas-tthat enforces Boolean

testing fou #(ifhue: ifFal-se:ifTrue:ifFake: whileTruewhileFake

while’hue: whileFalse: and or: XOK).We may enhance it in
the future to also ensure strict nil testing for #(isNil notNil

iftiil: ifNotNiLifNil:ifNotNiL).

We always use strict nil testing for #?.

This is particularly nice, because this flag can be set at the level

of a method, a class, or a libra~ (a module construct added in

SmalltalkAgents). This means it is possible to have system code

using the non-ANSI semantics (without which it would proba-

bly break) while writing all user code “properly.”

ERRATA

As usual, I have something to apologize for. This time it’s my

passing reference to First Class Sofhvare’s Object Explorer, a

Smalltalk add-on for visually working with object structures. I as-

sumed this was for Smalhalk/V, but it is in fact for VisualWorks

version 1.0. First Class Software can be reached at 408.338.4649
(voice) or 408.338.1115 (fax). I haven’t even seen a demo of Ob-

ject Explorer, so please don’t take this as a recommendation. ❑

Alan Knight worksfor The Object people, He can be reached at

613.225.8812, or by email as knight@acm.org.
Method of Payment
Q Check enclosed (payable to THE SMALLTALK REPORT)

(Checks for US dollars musl be drawn on US bank)

~ Bill me
Q Charge my: Q Wee U MasterCard L1American Espress

Card No. —..
Eap.Data

Signature -.

Name

Address

Ttie Company

city state
Counb-y zip

Phone

To order, return this form with payment to

TheSmetltellcReport
P.O. Box 2027, Langhorne, PA 19047

For faster service, fax: 215.785.6073

THE SMALLTALKREPOIIT

David Bush

TensegrityRelease 1.0
for Windows and 0S/2
P
OLYMORPHIC SOFTWARE’S TENSEGRITY is an object-

oriented database system for use with Digitalk’s Smalkalk/V

for Windows 2.0 (16-bit version) and Smalltalk/V for 0S/2

2.0, #my object can be made persistent and stored in a Tensegrity

database, Persistent objects an reference any other object in the

image or in the database. Persistent objects are defined just like

nonpersistent ones and respond to messages in the usual way.

The package comes with a comprehensive tutorial that in-

cludes examples of converting an existing application for use

with Tensegrity.

VERSIONS

Single- and multiple-user versions of Tensegrity are available,

The single-user version is for developing and testing applica-

tions that will be used by a single user on one machine. The

multiple-user version is for developing and testing applications

that will be executed on more than one machine on a network.

Tensegrity works with any network protocol supported by
Windows or 0S/2. There are no application coding differences

between the single- and multiple-user versions of Tensegrity.

So a multi-user application could be developed, but not tested,
with the single-user version.

FEATURES

Persistent object storage

Tensegrity provides a way to store and retrieve an object’s data

and store a copy of its class definition on some medium outside

the image. That medium could be any device that can be ad-

dressed using the file system—a hard drive on the user’s ma-

chine, a hard drive in another machine on the network, or a

CD-ROM, among other things. So, you can store objects using

Tensegrity, exit the Smalltalk application without saving the

image, restart the application, connect to the Tensegrity data-
base, and find your objects just as you Ietl them.

Any object can be made persistent by sending it the #persis-

tent message.
Tensegrity does not store the compiled methods of an ob-

ject’s class, so if you want to distribute a predefine database,
the classes of the objects in that database must be defined al-

ready in the image that will connect to the database.

When you change the definition of any class that has some

instances in the Tensegrity database, you will have to send a

new version Qf the image to the end user as well.
FEBIWAnY 1994
NEW CONCEPTS

You’ll need to understand a few new concepts before using
Tensegrity. For example, all database access must be done within

a tmrssaction. Atomic blocks provide an easy way to access the

database without dealing with the details of transactions. You

also need to understand how persistent objects are structured

and stored. These new concepts are simple and easily learned.

Transactions

All database access must occur within a transaction. Transac-
tions provide the locking mechanism necessary to ensure data-

base integrity. Accessing a persistent object from within a trans-
action is a simple matter. Here’s an example:

aTransaclion:=TransactionnewRW.
aTransactionmakeCurrent.
persistentCustomerSetadd aCustomer.
a’transactioncommit;release.

This example creates a read/write transaction and adds a cus-
tomer to a persistent collection. The transaction is then com-

mitted and released.

Atomic blocks

Atomic blocks are macros that make accessing persistent ob-

jects even easier than using transactions explicitly. To add an

object to a persistent collection just do this:

[persistentCustomerSetadd: aCustomer]atomic.

This has the same effect as creating a transaction, adding the

object, committing, and releasing the transaction. Atomic

blocks can be a great time saver and will be sufficient for most

database access. Most single-user applications will probably

never need to use anything but atomic blocks.

Different flavors of atomic blocks provide for retrying a
transaction that failed a number of times or performing an-

other block in case of an error.

Object complexes

Object complexes are used to define the locking boundaries

around objects. An object complex can contain one or more ob-
jects. When a persistent object is accessed within a transaction,

the complex in which that object resides is locked. So you need to

be careful which objects you put together in the same complex.

An object complex is crea ted whenever you make an object
19

■ PRODUCT REVIEW
persistent. So if you create a collection of all the accounts a

bank owns, it would be best to create the collection and make it

persistent, then create an account, make it persistent, and add it

to the collection. That way, each account will be in its own

complex. When one account is accessed within a transaction,

the others will not be locked.

An object complex is also the unit of exchange between the

persistent store and memory. When an object is accessed within

a transaction, its entire complex is brought into memory. It is

wise to limit the size of an object complex. It’s also a rather

good idea to have objects that are accessed at nearly the same
time in the same complex.

Object containers

Tensegrity stores objects complexes in object containers. Each

object container consists of two files. Most single-user applica-
tions will probably store all objects in a single container. Multi-

ple-user applications may store some objects on a drive that is

accessible to other machines on the network and other objects

on a local drive. It is up to the developer to decide where the

containers reside. Containers can have a user-defined name or

a Tensegrity-generated name.

Object identity

The’= =’ message should be avoided in applications that use

Tensegrity. The results will be unpredictable because of the

mechanism Tensegrity uses to reference persistent objects.
Tensegrity provides the #areYou message, which serves the

same purpose. It will work regardless of whether the hvo ob-
jects being compared are persistent.

Gerbage colledlon

We’ve come to take garbage collection for granted with Smalltalk.

It just happens. Not so with Tensegrity. The application designer

must be sure to give end users access to Tensegrity’s garbage col-

lection facility or provide some means of automatic garbage col-

lection, perhaps based on elapsed time or growth in size.

Class mutation
When Tensegrity tries to access an object in the database that

has a class definition different from the one in the image, it sig-

nals the UnknownClassexception. Your application is then re-
sponsible for asking Tensegrity to update the class definition in
the database and initializing any added variables. The update is

done with the #updateSchema message. It can take a bit of time
as it sweeps the database of objects that aren’t referenced.

When an instance variable is added to a class definition, it

will be added to any existing instances of that class and given

the value nil. This can be a bit of a problem if that instance vari-

able needs to be initialized. One way around this is to create

variable access messages for each instance variable, which might

look something like this:

accounts

‘(accounts isNil
20
iffrue: [accounts :=BTreeSetnew]
iffal.se [accounts])

Then, instead of using an instance variable like this:

accounts add: aNewAccount.

do it like this

setf accounts add’aNewAccount.

Exce@lon handling system

The Exception Handling System (EHS) is a gem of Smalltalk

genius that comes along with Tensegrity. It’s based on the pub-

lic domain EHS written by Hal Hildebrand. The EHS provides
a way of protecting blocks of code by trapping errors and pro-

viding an opportunity for recovery. Proper use of the EHS cm

prevent the end user from ever seeing a walkback or runtime

error window. It can also help the developer produce code that

is more efficient and simpler to read.

Types of exceptions

There are two basic types of exceptions: FatalEvent and Proceed-

ableEvent. A fatal event is an exceptional event that cannot be

resumed. Perhaps the error can be corrected and the process

restarted. A proceedable event is exceptional event that can be

resumed.

Typee of exception handlers

Context handler A context handler is used to protect a Context.

A context is a block of code enclosed with square brackets. Here

is an example of a context handler that allocates more memory

when the LowOnMemoxyexception is raised:

[selfaddNewAccounts]
when: LowOnMemory
do: [:went I self allocateMoreMemory.event restart].

There is a special type of context handler called the Finally

block. It is used when you always want a block of code to exe-

cute, even if the code within the executed block fails. Here is an

example of unprotected code

line := streamnefie.

sheam close.

In the above example, if the #nextI.he message fails, it will
cause a walkback and the #close message will not be executed.

[line:= streamnextLine]finally:[sbeamclose].

In the example above the stream will be closed even if the

#nextLine message fails.

Class handler A class handler is like a context handler except it

applies to all messages in the class and all messages sent by
them.

Tensegrity includes a new class hierarchy browser that sup-

ports class handlers. There is a radio button added in the top cen-

ter pane below the instance and class radio buttons. When the
THE SMALLTALKREPORT

SHARE
?

8 ~ WINDOWBUILDERJ$””
INc.711PNew Pou)e?- in Sn~alltak/}7 I)lte@icc Ile[vlqt)]]le) It

Srndlr~lk/V develorrers have come [O rely on WindOwBuilder PrO/V is :Iv;lil;lblc On WindOws fOr 5295
Wincknvlluilckr as “tin
essential too] fOr develop-
ing sophiwic,lrcd user inter-
filccs. Tedious hmxl coding
ot’ intcrfwes is repkwd hy
intcrxctive visual composi-
ti(m. Since its initial releme,
WindowI]uikkr has
bcconw the irdusrry sEln-
dxrd G[l dcvdopmrm[too]
for the Snmlltdk/V cnviron-
nwnt. Nmv objcctshwt
brings YOLI :1 whole new

level OFmpd]ility with
WindowBuiklcr Pro! New
functitmdity :md power
dmunci in this next genera-
tion of WincknvBuik_lw.

We Edh Ylew M. Size Q@.. Su.pb.ok Add

Some of the exciting new-feat ures...

:md OS/2 fOr S4Y5. our stm-

rl~rr-1 Winclo\vIJ[[ilcler/\7is
still ;Iv.lil;lblc on Windows

for $ 149.!)5 :uxl 0S/2 for
$295. We offer ILIII twluc

[de-in for our
Windowlluilder custom~rs
vanling to move up to Pro.
Three prorluds me dso
:Lvdikkliein
tiN\~”/~c>lt>/cJpl-:lnd
TC;IIWWNcompatible f(n--
nXltS.As with ;1]1of OLIt”

products, \VillLl[)\\JIlllildcr
l’ro comes w,ith :1 ~(1d;ly
money b.wk guormtcr, full
source coclc ;md m) Run-
Tinw fees,

,=

● (;olIII)OSi(Cl]:lllLh\:” Crtid[(-? CLISto M C(X_ktrolS 3S COITLPOSkeS

kcmse thev are Class Imsed.

of other controls, treated as
d single object, allowing the

developer higher levemge
of reusxble widgets.
Compositel]mws cm be
used repetitcdy :md
they cm be rosily sLlb-

clm.wd; dmnges in t Compositd%w :Irc rdkc[cd :my-
where they ;Ire used,

● Jl(mpl]ing: Allows the developer to quickly ch;mge

D

malitdk frOm One type of cxmtrol ‘skill= ■

Wndn~uUder “’
Other to anorher, allowing for

El

OSmdIlalk

~ pmverful “wl~dt-i~ style O WlndmvBulldcr

visual clevclopnwnt. The OOther

flexibility allowed by
morphing will greatly enhdnce prottuctivity.

component reuse, Scrapbooks provide a mechmism for

m=:=defined sets of compo-

into ch~pters and pages.

● Mpid IhxW[ypi ng cl p.l-
bilitit?s:With the new link-ml*MmVw.Mmcl,,,:~.,~..‘Eing cdpbilities, a rkvek)p- ~~~:hw’r
m cm rapidly prototype a
functional intake without l~v.~a ~,~,,, ~,~~

El

*.. lb,SClcrlcd

writing a single line of MOISyskm
MOITrmm”lPI ill, Cmm”ldrdm,

cocl~. Linkllutmns and
P4bmlwm
Pllzzl.15

LinkMenus provide a pow- --

m erful mdxmisrn for linking
— I* windows together ;md spcci-

‘1 fying flow ()[cxmtrd.
““I ActionI]uttons Znd

I .—_ _L-. .~
L3izlcs!iaU?s.iiEa&Jdmcch:mism for dcvek)pers to

attach. create, id rcwsr
actions without h.[ving to write code, These Fwltures
grcdy enh<mce producti~~ity during pro[otyping.

● ‘1”(J()1Ikll-:tlevclopers cm Crr.m sophistimtcd todhxws

just like the ones in the Wind(nvBuikk?r Pm tool itself,

● otllcr IILW, fc:[turcs inuludu: enh~ncml duplim[ion :mrt
cut/pmte functions, size and position indiators,
enhmwd fr~ming spccifica [ion, Pmmt-Chilcl wimtow
relationship spkxifimticm, enh:mced EntryField with d]fir-
actcr and field level vdidtition, and much more...

~ Add-in .M:m:lgc’r:Allows devebpers to edsi]y integrme
extensions into WindowIluikler Prds open tirchitccture.

(408) 727-3742

objrmtshare Syskesm,1.. 5 Town& Country Vitlage

FaN: (40s) 727-6324 Suite 735
&mpuServe 76436,1063 SanJose, CA 9512 B-2026

WndowSuildw and WindoW.dder Pro aro tradnmarhs cdObjeclsharn Syslmms, Inc. All othar brand and pmducl names are regislmed trademarks.1 heir resp=live cumpani,s

■ PRODUCT REVIEW

handlersradio button is clicked, all the handlers for the selected

class appear in the list pane where messages are usually displayed.

Class handlers are added much like methods. When you cre-

ate a new class handler, the class hierarchy browser fills the

method pane with the pattern used for creating a class handler.

When you save the handler, the class hierarchy browser asks

you to which exception the handler is tied.
When an exception occurs, any context handler that exists for

that exception is executed. If there isn’t one for that exception,
the class handler for that exception is executed if it exists. If no

exception handlers exist for that exception, a walkback appears.

Collection classes

Tensegrity adds some new B-Tree–based collection classes.

They are optimized for use as large persistent objects. These

new collections can also be nonpersistent objects.

RUNTIME

A runtime license must be purchased before an application that

uses Tensegrity can be distributed. A special runtime DLL

comes with this license. The DLL that comes with the develop-

ment version will not allow a runtime application to be tested.

All testing must be done within the development environment

until the runtime license is purchased.
Aller a single-user runtime license is purchased, an unlimited

number of applications that use Tensegrity can be distributed.

SUITABILITY
The word temegri~ was coined by R. Buckminster Fuller, fa-

mous for the geodesic dome among other things. Tensegrity is

a combination of tension and integrity. Fuller believed a struc-

ture that had tensegrity could be scaled up or down in size

while remaining sound and efficient. Although I haven’t used
the Tensegrity Database System for any huge projects yet, it

does seem to possess this quality.

The most important application I developed with Tensegrity

has object containers that range in size from 20K to 300M. The

contained objects range in variety from strings of text to a

trained neural network. It runs in a single- user environment.
Debugging an application that uses Tensegrity can be a bit

trying at times. Read and write conflicts can be difficult to find.

Polymorphic Sofiware is working on a set of user interfaces that

will help with debugging and managing Tenaegrity databases.
This will be a welcome addition to a very strong package.

Employees of Polymorphic Sotlware maintain a presence in

the Digitalk Forum on CompuSewe (GO DIGITALK). There is

plenty of discussion of Tensegrity as well as other object-oriented

databases that work with Digitalk’s versions of Smalltalk. ❑

DavidBushfounded ObjectEvolutionafierfivegloriousyears asa
systems engheer at EDS. Object Evolution, located in Kailua,
Hawaii,seb!sasynchronouscommunicationsclassesfor
Smalltalk/Vfor Windowsand 0S/2. He can be reachedat
dbush@uhunix.uhcc.Hawaii.Edu.Commentsand criticismare
welcome.

Aaa leaderin Ihe delivery of Ob@Orierrted System
Integraliom.Smices, SHL Systemhouse invilsa you 10
enplora challenging and unique opporluniba wthin our

1

mgsnizalion, SMALLTALK opp’hmilies anial in Min- ~
lea@ia, Atlanta, Boulder, Raleigh and NY, Ior Tachnk
cal Archit=te, Project Msnngare, SaniirSoflwera A
Daveloparsand Softwara Engirsem

Weaaekclianthver, cbject~rieniadpmlassionala with
mpressiva irdustry cradanlials who share our world-

wide mmmiimant to am?llence. These results-oriented
information pofaasionals must lhrive on challangea and
possasserrceptional Iechnkal atilla as well as businaaa
advisory arrperianca.

For Considarabon send your resume in mnfklerrca to:
Michelle Haydan Depl, SMR294
SHL Systamhouae
950 Souih Winter Park Drive, Suila 200
Caaaelbany, FkIride 32707
1.S00,769.8704 or FSII 407.767.5309
(Exlra FirE Mode)

“SmalltalkArchitects and
Programmers”

Capitalize on your Smalltalk expertise! Haestad Methods

is a dynamic software company in Waterbury, CT. We

currently develop and market high-end Windows-based

applications. We use the most powerful tools and

techniques in the indust~, such as: ENVY/Developer,

Digitalk Smalltalk/V, and WindowBuilder Pro. We are

growing and looking for intelligent, honest, hard-working,

team-oriented people. Call us today!

Software ,Architect - Seasoned Smalltalk designer with at

least two completed software products. Assume

responsibility for the overall integrity and design of one of

our projects. Analyze user requirements; design key

subsystems and contracts.

Software Engineer - Experienced programmer with at Ieest

one year of Smalltalk and 00P, Be the Iced on a major

software subsystem. Design the classes to implement

key system contracts.

Haestad Methods, Inc.

37 Brookside Road
Waterbury, CT 06708

Attn.: John Haestad

Voice: (800) 727-6555 FAX: (203) 597-1488
All inquiries will be kapt strictly confidential.

22 THE SMALLTALKREPORT

SMALLTALK

DESIGNERSAND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smalltalk
Professionals in Various Regions of the Country.

mA
.. -----

Salient Corporation ...
Smalltalk Professionals Specializing in the

Placement of Smalltalk Professionals

For more information, please send or FAX your resumes to:

Wknl CorpOratlon
316 S. Omar Ave., Suife B.

Los Angeles, California 90313

Vok& (213) 6M-~1 FAX (213) 680-4030

WORK IN FLORIDA
SMALLTALK

DEVELOPERS

l!!!!TECHI
AD’

Tech Aid has many long-ferm assignments
in South Florida for Smalltalk developers in
all dialects. DOS, Windows, SQL, GUI,
ODBMS, and RDBMS skills a plus.

Call or send resume:

Tech Aid
P.O. Box 915134

Longwood, FL 32791
Fax: (407) 788-1279

You could, if you join Sybase. Our Enterprise
MomentumT” gives developers a new
model-based approach to enterprise-wide
applications. It allows developers to meet
the diverse needs of their users — regardless
of hardware, operating system, GUI, data
sources, or applications.

Your insight and skill may help us develop
more tools for the SYBASE MomentumT~’
family. Find out by exploring one of these
opportunities with Sybase now:

Proied Manaaer,
Entbprise Pr6g~am
Requires extensive project management
experience, preferably on large (5000+ task]
00, CASE or client/se~er software projects.

Development Manager
Your team will deliver forms management
services in a GUI database application,
Smalltalk environment, requiring extensive
expertise with these technologies.

Integrity Engineer
Requires extensive experience in developing
tests for a large 00 product, including
exposure to relational databases.

We offer an excellent compensation package
and competitive benefits. Please send, fax
or e-mail your resume, indicating position
of interest, to: Sybase, Inc., 6425 Christie
Avenue, 5th Floor, Corporate Staffing
Department, ATTN: AD Code: ED,
Emeryville, CA 94608, FAX: [510) 922-5310.
E-mail: ellendt%ybase.com. EOE/&4
employer. Principals only, please.

Ii SYBASE
ThgEnterpriseClient/ServerCompany:”

Not long ago, cliem%erver
development required massive
amounts of time, money and
expertise to combine different
and complex technologies.

~ Now Digits/k
PARTS ‘ PARTS: a rapid

application
development
too/ set, /etsyou
easi/y integrate
your software
assets into

clien~server applications.
PARTS is the om’y object-

oriented technology that /ets
you leverage your legacy code
and the knowledge of your
current staff.

Only PARTS products let
you take existing code - written
in Smalltalk4 COBOL, C, SQL
and other languages – and wrap
it into components or “parts V
Which can then be vitiua//v

categoy, calling it “the defini-
tive visual development tool’.’

And InfoWorld ranked
PARTS the #1 component-
based tool for visual develop-
ment. Info World’s Stewart
Alsop adds: “There’s nothing
like it on the PC. ”

To make large teams pro-
ductive, PARTS also suppofls
group development and version
control. Plus PARTS has a host
of graphica/ power too/s to give
you all the power of objects-
without the /earning curve.

And PARTS is from
Digitalk. The company that’s
been providing object-oriented
tools to the Fortune 500 /onger
than anyone else in the wor/d-
with over125,000 users.

Call 800-531-2344 X 610

dand ask about our
snapped together visually. “The result systems like CICS, COBOL, APPC PARTS Workbench
is srnooth-rinning cliem%erver and SOM. And PARTS lets you Evaluation Kit.
applications in a fraction of the develop on both 0S/2 and Windows. With minimum
usua/ time. For a fraction of the effort, you ‘// learn why
usua/ cost. PARTS is the maximum

PARTS suppotts all popular Only months ago, PC WEEK solution for clientherve
SQL databases like Sybase, Oracle awarded PARTS Workbench the integration.
and DB2. Plus le~acv or late model hiehest rating ever in the 0S/2

“.

	By Article Title
	Booleans
	Creating IPF help panels for Smalltalk/V 0S/2 applications: part 1
	Cross-process exception handling: part 2
	Tensegrity release 1.0 for Windows and OS/2
	The art of designing meaningful conversations

	By Author Name
	Auer, Ken
	Bush, David
	Knight, Alan
	Lam, Marcos
	Mazzara, Susan
	Oglesby, Barry
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	Getting Real
	Product Reviews

