The Smalitalk Report

The International Newsletter for Smalltalk Programmers

February 1994 Volume 3 Number 5

HEN DO YOU seek help for using an application? If you are like
many people, you consult documentation only when you feel
confused and frustrated with the application you are trying to
use. On-line help systems, at their best, can bring instant relief to
the frustrations of using a new or complex application. When
well written and organized and when supplied with tools for retrieving informa-
tion easily, they give instant instruction on using an application. At worst, they
raise your level of frustration, which caused you to seek help to begin with. On-
line help that is poorly written and organized or that does not provide the right
help in the right context is a hindrance rather than a help.

Many factors, including writing style, the tools used to create the help panels,
and the tools used to link them to an application, make the difference between a
help and a hindrance. Digitalk’s Smalltalk/V for OS/2 provides classes for linking a
Smalltalk application to help panels created using IBM’s Information Presentation
Facility (IPF). Creating truly helpful help panels for applications in Smalltall/V for
0S/2 can be a challenge, but with a clear understanding of IPF and some enhance-
ments and extensions to Digitalk’s classes, you can greatly improve the conve-

CREATING IPF
HELP PANELS FOR

' SMALLTALK/V
. 0sA
APPLICATIONS:

PART 1

by Marcos Lam
and Susan Mazzara

Contents;

Features/Articles

1 Creating IPF help panels for
Smalltalk/V OS/2 applications:
part 1
by Marcos Lam & Susan Mazzara

8 Cross-process exception
handling: part 2
by Ken Auer & Barry Oglesby

Columns

12 Getting Real:
The art of designing meaningful
conversations
by Rebecca Wirfs-Brock

15 The best of comp.lang.smalltalk:

Booleans
by Alan Knight

19 Product Review:
Tensegrity releass 1.0 for
Windows and OS/2

by David Bush

nience and readability of your help panels. Part 1 of this article explains some of
the features of IPF, how it processes help requests, and some of its essential re-
quirements for tagging help panels. Part 2 explains the Digitalk classes that support
IPF and suggests ways to enhance and extend them to create helpful help.

WHAT IS IPF?

IPF is part of the OS/2 software developer’s toolkit and consists of a tag language for
marking text, a compiler for formatting the marked text, and a viewing program for
opening on-line documents and hooking context-sensitive help into an application.
On-line documents are books, with tables of contents and indexes, presented on line
instead of on paper. You display an on-line document by executing the IPF viewing
program. On-line documents are not connected to an application; they are simply on-
line versions of books. Context-sensitive help is displayed by selecting an item from an
application’s window, such as a menu or menu item, and pressing F1 to get help for
that item. Once you have started the help system in this way, you can read through it
like a book. IPF combines features of on-line documentation and context-sensitive
help in a compiled help library. A help library is a single file that contains the help
panels for an application. For on-line documents, these files have the extension .INF,
and for context-sensitive help the extension .HLP. If you tag your source files properly,
the same source files can be compiled into an on-line document or a context-sensitive
help library.

Figure 1 is an example of an IPF help panel. The cover-page is the main help win-
dow and contains controls for the help system. It has menus and buttons for search-
ing and browsing the help library. The help panel itself contains the text of the help
system. Hypertext and hypergraphic links connect to other help panels in the library.

continued on page 4...

EDITORS’
CORNER

ver the past year or so, there has been a shift from discussion of object-oriented language is-
sues to methodology issues. The “language wars” have abated in favor of the “methodology
wars.” Thinking positively, this has resulted in lots of discussion about important issues that
otherwise might have remained ignored. More recently, there has been voluminous discus-
sion about the merits (or otherwise) of the growing number of CASE tools that have
emerged to support the various methodologies. On the front line however, the managers of
large Smalltalk projects are looking for guidance on sound project management practices—
a topic on which the object-oriented community is far less voluble. We have talked to
enoupgh managers charged with the task of managing medium to large-scale Smalltalk devel-
opments to recognize how strongly they feel they are entering uncharted territory and how
frightening that feeling can be.

The “science” of project management has improved dramatically over the last decade.
Uunfortunately, most of the tools and techniques developed for traditional systems simply
don’t apply to Smalltalk projects. Issues like scheduling and planning, staffing and budget-
ing, project tracking and metrics need to be revisited when placed in an object-oriented
context. Managers are being sold on a new software lifecycle but when they ask the obvious
question of how to manage it, there seem to be few answets. This is, of course, great for the
consulting business but not so great for the people with their necks out on the line. Advice
such as “keep a good project log so you can do better the next time” is not acceptable.
Hopefully, there will be lots more discussion on this topic soon. If you have thoughts in this
area we would like to hear from you.

Now to this issue. In the first of two articles, Marcos Lam and Susan Mazzara take a
look at the problem of creating “helpful” help systems and in particular discuss how the
classes provided in Digitalk’s Smalltalk/V for OS/2 can be extended and enhanced to im-
prove the convenience of linking Smalltalk to help panels created using IBM’s Information
Presentation Facility (IPF).

In the second part of their article, Ken Auer and Barry Oglesby continue their discus-
sion of problems inherent in handling exceptions across processes in a generic non-intru-
sive fashion.

In the “Art of Meaningful Conversations,” Rebecca Wirfs-Brock describes her experi-
ences in using the notions of use cases and system/actor conversations to guide the object
modeling process. Finally, Alan Knight's watch on the Smalltalk bulletin board focuses on
the recent controversy over Boolean variables.

This issue’s product review represents our first look at the growing number of object-
oriented database systems that may be used with Smalltalk. This month, David Bush takes a
look at the Tensegrity product from Polymorphic Software.

John Pugh

Paul White

Toen Ry \Q i

=

THe: Smatrtark REparT (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec com-
bined issues. Puhlished by $1GS Publications Inc., 588 Broadway, New York, NY 10012 212.274.0640. © Copyright 1994 iy SIGS Publications.
All rights reserved. Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of
the US Copyright Law and is flatly prohibited. Material may be reproduced with enpress permission from the publisher,

Mailed First Class. Canada Post International Publications Mail Product Sales Agreement No. 290386, Subscription rates | year (9 issues): do-
mestic, $79; Foreign and Canada, §94; Single copy price, $8.

POSTMASTER: Send address changes and subscription orders to: THe SMaLLTaLK REPorT, P.Box 2027, Langharne, PA 15047. For service on
current subscriptions call 215.785.5996.

To submit articles, please send electronic files on disk to the Editors at 509-885 Mcadowlands Drive, Ottawa, Ontario K2C 3N2, Canada, or
via Inlernet to pugh@scs.carletan.ca Preferred formats for figures are Mac or DOS EPS, TIF, or GIF formats, Always send a paper copy of your
manuscript, including camera-ready copies of your figures ([aser oulput is fine).

PRINTED IN THE UNITED STATES.

The Smalltalk Report |
Editors

John Pugh and Paul White
Carleton University & The Obijeci Peaple |

SIGS PUBLICATIONS

Advisory Board ‘
Tom Atwood, Object Design
Grady Booch, Ratianal |
George Bosworth, Digilalk

Brad Cox, Information Age Consulting
Adele Goldberg, ParcPlace Syslems
Tom Love, IBM

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems |
Sesha Pratap, CenterLine Software |
Clift Reeves, IBM |
Bjarne Stroustrup, AT&T Bell Labs

i Dave Thomas, Object Technalogy International (

THE SMALLTALK REPORT
Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems

Reed Phillips, Knowledge Systems Corp.

Mike Taylor, Digitalk ‘
. Dave Thomas, Object Technology International

Columnists \
Kent Beck, First Class Software

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Syslems Corp.

Ed Klimas, Linea Engineering Inc. .
Alan Knight, The Object People |
Eric Smith, Knowledge Syslems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managing Editor

Susan Culiigan, Pilgrim Road., Ltd., Creative Direclion
Seth J. Bookey, Production Editor

Andrea Cammarata, Electronic Publishing Coord.
Margaret Conti, Production Assistant
Circulation

Bruce Shriver, Circulation Director

K.S. Hawkins, Fuifilment Manager
Marketing/Advertising

Shirley Sax, Director of Sales

Gary Portie, Advertising Mgr—East Caast/Canada
Gabrielle James, Advertising Mgr—West Coasl/Europe
Helen Newling, Advertising & Exhibil Sales

Wendy Plumb, Recruitment Advertising

Sarah Hamilton, Manager of P ions and Ry h
Caren Polner, Promolions Graphic Artist
Administration

William J. Ryan, Chief Operations Officer
Margherita R. Monck, General Manager

David Chatterpaul, Accounling Manager

James Amenuvor, Baokkeeper

Amy Melsten, Assistant 1o the Publisher

" Publishers of JOURNAL oF OBJECT-ORIENTED PRO-
GRAMMING, OBJECT MaGAZINE, C++ REPORT, THE
SMALLTALK REPORT, and THE X JOURNAL.

2

THE SMALLTALK REPORT

FORCE-FIT RELATIONAL TECHNOLOGY
AND YOU COULD REALLY HIT IT BIG.

Maybe you're beating your head against the relational
database wall — trying to integrate your Smalltalk
applications with an RDBMS. Maybe you're spending
all your time debugging SOL calls instead of building
great applications. Or maybe you've hit the relational
performance wall because you're wasting too much
processing time on object decomposition and recomposition.

Servio™ has a better way. With our high-performance

GemStone® object database management system,

you can store Smalltalk objects directly in the

database. We make your development time more

praductive and your object applications more efficient.
Learn for yourself by calling us today for a

copy of “"Object or Relational? A Guide for

Selecting Database Technology.’ After all, the

SERVIO

OBJECT TECHNOLOQGY
FOR THE REAL WORLD

best way to deal
with an obstacle
is to avoid it in

the first place.

Call 1 800-243-9369 for a free copy of “Object or Relational? R Guide for Selecting Database Technology”

Servio is a trademnark and GemStone is a registered trademark of Servio Corporation.

Now! Automatic Documentation
For Smalltalk/V Development Teams — With Synopsis

Development Time Savings

Synopsis produces high quality class documentation

automatically. With the combination of Synopsis and Coding Documentation
Smalltalk/V, you can eliminate the lag between the Without

production of code and the availability of documentation. Synopsis

Synopsis for Smalltalk/V

+ Documents Classes Automatically With

+ Provides Class Summaries and Source Code Listings Synopsis

» Builds Class or Subsystem Encyclopedias
+ Publishes Documentation on Word Processors

« Packages Encyclopedia Files for Distribution Products Supported:
« Supports Personalized Documentation and Digitalk Smalltalk/V
Coding Conventions OTI ENVY/Developer for Smalltalk/V

Windows: $295 0S§/2: $395
Dan Shafer, Graphic User Interfaces, Inc.:

“Every serious Smalltalk developer should take a E Syn opsi s Software

close look at using Synopsis to make documentation 8609 Wellsley Way, Raleigh NC 27613

more accessible and usable.” Phone 919-847-2221 Fax 919-847-0650
-..continued from page 1 RETRIEVING HELP PANELS

Aside from writing style, two factors contribute to effective =~ Context-sensitive help provides help for the part of the win-

help panels: how easily you can retrieve them in context and dow that has focus:
how easily you can move from one help panel to another. The » Extended help for a window or dialog. Extended help is the
first factor is largely determined by the interface between the main help panel for a window or dialog. It contains intro-
help system and the application. The second factor is deter- ductory material about an application or the current win-
mined by the tool used to create the panels. dow or dialog of an application for one that has multiple

views. You invoke it by pressing F1 when the window opens.

* Help for menus and menu items. Help for menus and menu

Coverpage —— RTINS items explains how to use the application’s commands. You

invoke it by clicking on a menu itemn and pressing F1.

" The abject browser presents Information about Y

;la:esl Qﬁ.‘;u‘::lg:]e:dr.(-.:'.';'f.'.‘.'.é'.;f;ll:f.ils,':;:!,s.f.(i?d teut * Help for subpanes and buttons. Help for subpanes and but-
Hypertext link 'f‘.li"li‘:;‘:g.:;";.‘é“’;.?tﬁ‘;"ia! n ::'55:;?.’ YW T tons explains the contents of the subpanes on a window or

o of yoor apptcaten.) T Aty the dialog and the function of its buttons. You invoke it by

The lollowing Is an llustralion of the object browser shifting focus to the subpane or button and pressing F1.

window. For more information on each part of the
window, place the mouse polnter over the letters to
lhe left of the lllusirallon and double click mouse

butlon 1. Processing a Help Request
To communicate with IPF to display information from a help

Hypergraphic lin
library, an application does the following:

1. Sets up a help table and help subtable. The help table associ-
ates an application’s windows with their help subtables and
extended help panel ID. The help subtable associates the win-
dow’s controls, such as menus, menu items, buttons, and en-
try fields, with a particular help panel in the help library.

Search and browse
butions

Figure 1. Sample help panel.

4 THE SMALLTALK REPORT

Request

l

HM_HELPSUBITEM_NOT_FOUND

|

Request Anolher Panel

l

Help Subtable

Confral ID Resaurca D

i ?g_ur_e 2. How ii;lz_lzl;aé_e_sses heI-F; .r_eques‘ts._m

2. Initializes the HELPINIT structure. The structure contains
values, such as the name of the help library, that IPF re-
quires to create a help instance.

3. Creates a help instance through the API WinCreateHelpIn-
stance with the HELPINIT structure as one of the parameters.

4, Associates the help instance with the application window by
issuing the API WinAssociateHelpInstance with the help in-
stance and handle of the window as parameters.

When IPF receives a help request, it looks up the help subtable to
determine the ID of the help panel that corresponds to the control
for which you have requested help information. IPF then displays
the help panel. This process is illustrated in Figure 2.

When IPF receives a help request for which it cannot find
the corresponding help pane, it sends the HM_HELP-
SUBITEM_NOT_FOUND message to the application. (The receiver
must either answer true to instruct IPF to display no panel or
false to display the extended help panel.) The application can
respond in one of the following ways:

* Do nothing—ignore the message and answer true
* Display its own window and answer true

* Send the HM_DISPLAY_HELP message to IPF to instruct it to
display a particular help panel and answer true.

* Answer false to display the panel for extended help.

This process is illustrated in Figure 3.

Terminating a help instance

An application terminates a help instance by calling the API
WinDestroyHelpInstance with the handle of the help instance. It
is important that an application destroy help instances to free
memory and release the link to the help libraries. Destroying
help instances is particularly important during the develop-
ment of a help system. Information development is typically it-
erative: information developers write help panels, compile
them, test them, and then rewrite them. If the link between the
application and the help library is not released, the help library
cannot be replaced with a new version,

Na Entry

NAVIGATING THROUGH HELP LIBRARIES WITH IPF
To see an overview of the help library and read through a
context-sensitive help library like a book, you can start with
the table of contents, or page through the panels using the
previous, back, and forward menu commands and buttons.
Other ways of navigating through help panels are hypertext
and hypergraphic links. Hypertext links connect words and
phrases to other panels. Hypergraphic links connect areas of
a bitmap to other panels.

Contents

You can open the contents window for a help library with
a menu command or a button. The contents window lists
all level-one headings and can be expanded to show any other
heading levels defined in the help library. To compile a good,
comprehensive table of contents for a complex Smalltalk appli-
cation, all help panels for an application or a particular tool in
an application must be included in a single help library. This
requirement can be problematic for Digitalk because its help
classes show an incomplete understanding of how IPF retrieves
help panels and some rather simplistic assumptions about ap-
plications. These problems and how to solve them are the sub-
ject of part 2 of this article.

Hypertext and Hypergraphic Links

Text or graphics in a help panel can link to a heading or a foot-
note. A heading link displays another help panel. A footnote
link displays a small window inside the current help panel.
Links can be internal or external. An internal link displays help
from the same help library as the current panel. An external
link displays help from a different help library. Each type of
link is described below with suggestions about how to use
them in an on-line help system.

Heading links Heading links give quick access to more infor-
mation about a topic or step-by-step instructions for perform-
ing an operation related to the current panel.

Footnote links Footnote links are an effective way to define
terms. If your application introduces many new terms or ideas,
a footnote link can make these new terms more accessible to
your users.

Internal links An internal link is a link to another panel within
the same help library. If the current help panel is number 2000
in the help library called ONLINE.HLP, for example, then an in-
ternal link might display panel number 2005 in ONLINE.HLP.

External Links An external link is a link to another panel in a
separately compiled help library. If the current help panel is
number 2000 in the help library called ONLINE.HLP, for example,
then an external link might display panel number 3010 in ON-
LINE2.HLP.

TAGGING HELP PANELS
To create a help library, you tag the help text with IBM’s stan-

FEBRUARY 1994

m CREATING IPF HELP PANELS FOR SMALLTALK/V OS/2 APPLICATIONS: PART 1

dard generalized markup language (SGML) and then use the
IPF compiler to format the text into .HLP files. SGML tags have
the following format: :tagname attributes.

Some tags require an ending tag: :etagname.

SGML defines tags for nearly every conceivable purpose in
publishing, whether in book or on-line format. IPF interprets a
small subset of these tags. The tags that most concern a
Smalltalk application developer are heading and linking tags
because these are the ones that determine which help panels
are displayed when you request help for an application.

Heading tags

IPF heading tags have a tag name and several attributes that
control how the help panel is identified, formatted, and ac-
cessed. The following example shows the heading tag and at-
tributes that play an important role in retrieving help panels.
The text in italics uniquely identifies each help panel.

:h# res=# id=identifier global.Help Panel Title
This tag contains the following parts:

= :h# is the heading level. You can create heading levels one
through six. Heading level two is subordinate to level one, level
three subordinate to level two, and so on. This hierarchy per-
tains only to how headings appear in the library’s table of con-
tents. You can access any heading level through an F1 request.

« res= is the resource ID. IPF requires this numeric ID in help
subtables to associate a control with a help panel and to
process internal hypertext and hypergraphic links.

» id= is the ID. IPF requires this alphanumeric ID to process
external hypertext and hypergraphic links.

* global. IPF requires this attribute to mark the help panel as ac-
cessible through an external hypertext or hypergraphic link.

Hypertext link tags
IPF’s tag for creating hypertext links is coded differently ac-
cording to the type of link you need to make in your help

panel: heading or footnote, and internal or external. The fol-
lowing are examples of each:

Internal heading link Internal heading link tags have the fol-
lowing format:
link reftype=hd res=#.selection text:elink.
« :link is the link tag.
« reftype=hd is the type of link; reftype=hd creates a link to an-
other help panel.

= res= is the resource 1D of the panel to which we are linking.
IPF requires resource IDs for internal hypertext links.

» selection text is the text that is sensitive to the link request.
This text is highlighted (usually with color) in the help panel.

= :elink. is the link ending tag.

External heading link External heading link tags have the fol-
lowing format:
link reftype=hd refid=identifier database="'filename’ selection text:elink.
= :link is the link tag.
« reftype=hd is the type of link.

- refid= is the ID of the panel to which we are linking. IPF re-
quires IDs for external hypertext links.

- database= is the name of the help library containing the help
panel to be linked to.

- selection text is the text that is sensitive to the link request.

« :elink. is the link ending tag.

Footnote link All footnote links are internal and tagged as follows:

:link reftype=fn refid=identifier.selection text:elink.

« :link is the link tag,

» reftype=fn is the type of link; reftype=fn creates a link to a
footnote.

« refid= is the ID of the footnote tag to be linked to. A foot-
note tag has the format :fn id=identifier.footnote text.

HM_HELPSUBITEM_NOT_FOUND

Ignore Help Subtable

Display Appliction
Window
Reques! Another Panel

[T

Display Exiended Help

" Figure 3. How IPF processes help panels it cannot find.

No Entry

* selection text is the text that is sensitive to the link request.
« :elink. is the link ending tag.
Hypergraphic link tags
IPF’s tags for creating hypergraphic links serve two pur-
poses:

1. The artwork tag imbeds a bitmap into a help panel and
names a link file that defines the sensitive areas of the
bitmap.

2 The link tags associate each sensitive area with an inter-
nal or external help panel or a footnote.

The following are examples of each.

Artwork tag Artwork tags have the following format:

THE SMALLTALK REPORT

:artwork name='filename’ linkfile='filename'.
- :link is the artwork tag.
* name= is the name of the file containing the bitmap.
* linkfile= is the name of the file containing the link tags.

Link files A link file contains the following tags. The link tags
in this example link to an internal help panel. You can also link
to external help panels or footnotes.

cartlink.

-link reftype=hd res=32114 x=10 y=337 cx=25 cy=25.

:link reftype=hd res=32101 x=10 y=300 cx=25 cy=25.

:eartlink.
Link files define areas of a bitmap that are sensitive to hyper-
graphic links. The link tags have some additional attributes for
defining areas of sensitivity:

« x= and y= coordinate where the sensitive area begins.

* cx= and cy= define the extent of the sensitive area along the
x and y axis.

LIMITS OF IPF

From the perspective of application development and linking
applications to IPF help libraries, IPF has some limits that, if
overcome, would make IPF easier to develop with and use:

= An application cannot ask a help library if it has a certain
help panel by its resource ID or alphanumeric ID.

* Whenever a help library is asked to display a help panel that
it does not have, IPF always responds by displaying a mes-
sage box saying “Linking not found”. Since users are not
generally aware that IPF is the source of the help panels, this
message is cryptic, and it is not possible to prevent the
message box from appearing or replace the puzzling mes-
sage with a more informative one.

IPF AND DIGITALK

When you need to link IPF help panels to a Smalltalk/V OS/2
application, IPF’s requirement to use resource IDs for context-
sensitive help and internal links and IDs for external links is an
important issue. Attempting to use these tags differently results
in compiler errors in IPF. Digitalk’s implementation of its help
classes, however, requires the use of IDs for context-sensitive
help. If you attempt to make an external link to a panel that
also provides context-sensitive help according to Digitalk’s
guidelines, HelpManager returns an error. Digitalk’s help classes
render context-sensitive help and external links incompatible
and greatly reduces your readers’ options for retrieving infor-
mation. Part 2 of this article explains the specific requirements
of Digitalk’s help classes and their limitations.

Marcos Lam is a member of the technical stajj’ and Susan Maz-
zara is a technical writer at Knowledge Systems Corporation.
Both have worked on the development team for CoDesign, a
Smalltalk development environment that integrates design and
code. They can be contacted at Knowledge Systems Corporation,
114 MacKenan Drive, Cary, NC 27511, 919.481.4000.

FEBRUARY 1994

ODBMS 2.0
Smalitalk Object Management

Client-Server Architecture

Object Management supporting
Versions, Transactions, Distribution
Multimedia-Objects

Objects to RDBMS

Available as
Single User, Network and Server Version

Supports Smalltalk under
Windows, Windows NT, OS/2, Unix

Successful applications:

Smalltalk Team Development
Personal Data Manager
Configuration of Complex Systems

Objectoriented Technology by
VC Software

USA: VC Software, Houston TX
w: (713) 333-8936, £ (713) 333-3743

VC Softw
etritorwall 28, 38118 Braunschwei
v: +49 531 24240-0, f: +49 531 24240-24

USA: Object Power, Harvard MA
v: (508) 4%6.3354 £ (508) 263-0696

UK: , London
v: +44 71 43 9481 £ +44 71 436 0524

CROSS-PROCESS

EXCEPTION

HANDLING: PART 2

Ken Auer and Barry Oglesby

HE FIRST PART of this article (SMALLTALK RE-
PORT 3[4]) provided some general background
on the process and exception handling mecha-
nisms as provided by the vendor. In addition, it
described a problem that arises when dealing
with parallel, concurrent processes, as well as our extensions to
the current framework that provide a solution to this problem.
In this issue we describe a problem that arises when dealing
with master/subordinate processes and present our solution
with some examples. Further, we provide an extensive example
that incorporates both types of extensions.

MASTER/SUBORDINATE PROCESSES

A single controlling master process often creates one or more
subordinate processes to complete a single task. The master
often is required to know about problems that occur in its sub-
ordinates but, once forked, a process is independent, so even if
the master keeps a handle on its subordinates, the subordinates
cannot communicate directly with their master. A typical sce-
nario in machine-control software, for example, is for a ma-
chine supervisor process to create one or more subordinate
processes to control the machine’s resources. In the current
framework, if one subordinate fails the master does not find
out unless the subordinate has a direct handle on its master. If
a problem occurs in a subordinate process, the resulting signal
raised will only be handled by that subordinate. Its master does
not automatically respond to that signal. Figure 1 demon-
strates this scenario.

Further, because
the master does not
know that a subordi-
nate failed it cer-
tainly doesn’t know

Subordinale Process

Master Process

i——— e - e ———l why it failed or what
Figure 1. Master-subordinate processes (current). should be done
Subordinate Process about it. FOF €xam-
Master Pracess ple, depending upon

the reason for the
failure, the master
might create a new
subordinate to com-

Figure 2. Master-subordinate processes (desired).

plete or restart the failed one’s task or, in the worst case, simply
terminate its other subordinates.

This problem can be solved on a case-by-case basis by set-
ting up semaphores or some other explicit communication be-
tween processes to communicate their progress or lack thereof.
However, the master usually doesn’t care about the subordi-
nates unless something goes wrong. Additionally, the master
may often need to do multiple tasks that would preclude it
from either waiting on a semaphore or polling some variable
every so often to find out if there’s a problem. Instead, if the
master process could be notified in case of exception, then no
explicit communication would be required.

A subordinate process could signal an exception in the rnas-
ter process by interrupting it with the appropriate block. How-
ever, this would mean that the subordinate must have an ex-
plicit handle on its master accessible. Additionally, it would
have to explicitly set up its own exception handlers to act ap-
propriately.

What is desired is to have the capability to allow both the
subordinate raising a signal and its master to automatically re-
spond in the appropriate manner. In Figure 2, a signal raised in
the subordinate process is handled not only by that subordi-
nate but also by its master with no explicit communication.

PROBLEM SOLUTION

Usually, the only time that both master and subordinate pro-
cesses are known is at creation time. Once a process is execut-
ing, its knowledge of related processes is gone unless common
variables hold the information. This need to maintain such
variables has been replaced by a new method implemented in
BlockClosure called forkAt:forwardExceptionsTo:. In this method,
an exception handler that handles Signal noHandlerSignal is
wrapped around the block before creating the process. At the
time of invocation, the handleBlock encapsulates within it the
master process. If an exception occurs in the subordinate pro-
cess, a signal will be raised. Because no handler exists for this
signal, an exception on the NoHandlerSignal will be created with
the original exception as its parameter (see Exception>propa-
gatePrivateFrom:). The exception handler defined in forkAt:for-
wardExceptionsTo: can and will handle this exception. It will do
so by passing the exception as an argument to its handleBlock.
The master process (which was encapsulated within the handle-
Block) will be interrupted with a block raising the exception’s
parameter (the original exception). This will cause the normal
processing of the master process to be interrupted and excep-
tion handling to begin.

Additionally, other methods have been added to BlockClo-
sure to use this root method to allow the flexibility to create
parallel and subordinate detector processes. The implementa-
tion of these methods is as follows:

forkAt: aPriority forwardExceptionsTo: aprocess

"Create and schedule a process running the code in the receiver

at aPriority Any unhandled exceptions raised by this new process
will be forwarded to aprocess. Answer the new process."

~[Signal noHandlerSignal

8

THE SMALLTALK REPORT

REPORTOIRE

A REPERTOIRE OF QUERY AND REPORTING TOOLS FOR VISUALWORKS

[
nE=—"1

G
\w Smalltalk solutions since 1989

All product names are registered trademarks of their
handle: [:ex |
aprocess interruptWith:
[ex parameter
searchFrom: currentprocess suspendedContext;
raise]]
do: [self value]] forkAt: aPriority

P

forkForwardExceptionsTo: aprocess
"Create and schedule a process running the code in the receiver.
Any unhandled exceptions raised by this new process will be
forwarded to aprocess. Answer the new process."

~self
forkAt: processor activePriority
forwardExceptionsTo: aprocess

forkSubordinate
"Create and schedule a subordinate process running the code in the
receiver. A handle to the master process to this subordinate is
captured so that exceptions raised by the subordinate can be
handled by the master, Answer the new process."

~self forkForwardExceptionsTo: pracessor activeprocess

Two simple examples are defined below.

Example 1
This example illustrates the master process handling an excep-
tion occurring in its subordinate process:

Object indexNotFoundSignal
handle:
[:ex | Transcript cr; show: 'Master handling exception']
do: [| delay |

"Create and fork subordinate process."

Ad-hoc query and reporting
Integrated with Visual Works
Database or object model access
Shared reporting repository
Portable font and printer support

Synergistic Solutions, Inc.

15 Stanford Drive » Kendall Park, Nj 08824
908.422.0450 Voice 908.422.0901 FAX
70233, 2017@Compuserve,com

[| collection |

collection := OrderedCollection with: 1 with: 2.
collection at: 3] forkSubordinate.

"Repeat master process forever."

delay := Delay forSeconds: 5.

[Transcript cr; show: 'Master process alive'.
delay wait] repeat)

Execution of this block of code will cause a subordinate pro-
cess to be forked from a master process. The subordinate’s task
is to create an OrderedCollection of two elements and access the
third element of this same OrderedCollection. This, of course,
results in the raising of object indexNotFoundSignal. Because
this process was forked as a subordinate, the normal execution
of the master process (which is executing an endless loop) will
be interrupted, and its exception handling block will be exe-
cuted. This will result in “Master process handling exception”
being written to the transcript window.

Example 2
This example illustrates both the subordinate and master pro-
cesses handling an exception occurring in a detector process.

Object errorSignal
handle:
[:ex | Transcript cr; show: 'Master handling exception']
do:
[| delay subordinate |
"Create and fork subordinate process."
subordinate :=
[Object exrorSignal

FEBRUARY 1994

m CROSS-PROCESS EXCEPTION HANDLING: PART 2

handle: [:ex |
Transcript
show: 'Subordinate handling exception'.
ex reject]
do:
(| detay |
delay := Delay forSeconds: 3.
[Transcript cr; show: 'Subordinate process alive'.
delay wait] repeat]] forkSubordinate.
"Create and fork simulated detector process.”
[| simulatedErrorSignal |
simulatedErrorSignal := Object errorSignal newSignal
notifierString: 'simulated extemnal error'.
(Delay forSeconds: 5) wait.
simulatedErrorSignal raise)
forkForwardExceptionsTo: subordinate.
"Repeat master process forever."
delay := Delay forSeconds: 3.
[Transcript cr; show: 'Master process alive'.
delay wait] repeat]

Execution of this code will cause a subordinate process to be
forked from a master process and a detector process to be
forked with the first subordinate process as its dependent pro-
cess. Additionally, an exception handler will be wrapped
around the subordinate as well as the master process. Now
when the simulated error signal is raised, the resulting excep-
tion will be handled first by the subordinate’s exception han-
dler. After the subordinate process is done, it is rejected, and
handled by the master’s exception handler. The transcript win-
dow will first show “Subordinate handling exception” followed
by “Master handling exception.”

EXTENSIVE EXAMPLE

For the exception handling enhancements presented in this ar-
ticle to become clearer, a more robust, concrete example will
be presented. This example will embody both enhancements
described above. .

The example is very loosely based around a simulation of
machine-control software. In broad terms, a manufacturing
machine normally accepts some kind of raw material, pro-
cesses it, and produces a finished product. The machine could
be anything from a shop lathe, which accepts a piece of wood
as the raw material and produces a baseball bat, to a semicon-
ductor manufacturing machine, which accepts silicon wafers as
the raw material and helps produce finished computer chips.
To produce a finished product, in addition to the raw material,
many machines require the use of another kind of material,
namely a tool, to facilitate the processing of the raw material.
For example, a chisel or gouge tool is necessary for a lathe to
correctly shape the wood to produce the bat. Further, for the
lathe to produce the bat, both the wood and the chisel must be
present at the same time in the machine.

For the simulation, class MachineResource was added to the
hierarchy as a subclass of Object. The responsibilities of Ma-
chineResource are to accept material, process it, and pass it
along (either to the next MachineResource or out of the ma-
chine). A MachineResource forks several processes concurrently
in order to accomplish its tasks. Among them are processes to
facilitate the arrival, processing and departure of material. For

this example, the material arrival behavior will be the primary
focus. The arrival behavior itself is divided into three main
processes, namely the overseer or master process and two sub-
ordinate processes. The overseer coordinates the activities of its
subordinates, allowing them to proceed when required and to
stop when necessary. The main task of the two subordinates is
to wait for material to arrive. The first subordinate waits for
the raw material (e.g., the piece of wood); the second subordi-
nate waits for the tool (e.g., the chisel). Neither subordinate
knows about the other. If one fails, it performs its own excep-
tion handling to clean itself up then rejects the exception. This
provides a path to its master, which performs its own excep-
tion handling.

For the purposes of brevity, implementations of many
methods are left out and only trimmed-down versions of sev-
eral pertinent MachineResource methods are included, namely
the material arrival overseer process (the master process) and
the raw material block (converted to the material arrival sub-
ordinate process). A partial implementation of the overseer
process is described below:

materialArrivalOverseerprocess

"Answer the material arrival overseer process.

This process coordinates the activities of its
subordinates."

~[self class failedToArriveSignal
handle:
[zex |

Transcript cr; show: 'Overseer handling exception'.
"real exception handling code goes here"]

do:
[Transcript cr; show: 'Overseer starting'.
"Fork subordinate material and tool processes."
self forkMaterialArmmivalprocess.
self forkToolAmrivalprocess.
[*Wait for notification of material and tool arrival."
self waitForMaterial AndToolToArrive.
"As soon as both the material and tool arrive,
signal subordinates to begin looking for the
next material and tool."
self getNextMaterialAndTool] repeat]] newprocess

This process starts by sending messages, each of which results
in the fork of a subordinate process. The method forkMateri-
alArrivalprocess forks the subordinate process (via forkSubordi-
nate), which facilitates the arrival of the raw material. The
method forkToolArrivalprocess forks the subordinate process
(via forkSubordinate), which facilitates the arrival of the tool
material. Once these subordinates are forked, the overseer goes
into a repeat loop. In this loop, the overseer waits for
notification that both the tool and material have arrived (via
waitForMaterialAndToolToArrive). Upon receiving this
notification, it allows the subordinate processes to continue
(via getNextMaterialAndTool). This entire block of code is
wrapped by a normal exception handler (via handle:do:), which
is sent to a new signal called FailedToArriveSignal. If an excep-
tion occurs and FailedToArriveSignal is raised in the overseer
process or either of its subordinates, the handleBlock will han-
dle it. FailedToArriveSignal has two more specific signals: Tool-

10

THE SMALLTALK REPORT

FailedToArriveSignal and MaterialFailedToArriveSignal.
The implementation of the BlockClosure that is converted to
the subordinate raw material process is as follows:
forkMaterialArrivalprocess

"Fork the material arrival process as a subordinate process.
This simulates the arrival of the raw material."

~[self class materialFailedToArriveSignal
onException:
[zex |
Transcript
show: 'Material process handling exception'.
“real exception handling code goes here"
ex reject]
do:
[Transcript cr; show: 'Material process starting',
[self waitForSignalToContinue.
Transcript cr; show: 'Waiting for raw material'.
self simulateMaterialArrival.
Transcript cr; show: The material has arrived',
self notifyThatMaterialHasArrived] repeat]]
forkSubordinate

This process repeatedly waits for a signal to continue (via wait-
ForSignalToContinue), simulates the arrival of a material (via
simulateMaterialArrival), and notifies all interested parties that
the material has arrived (via notifyThatMaterialHasArrived). This
entire block is wrapped by a new exception handler (via onEx-
ception:do:) which is sent to the MaterialFailedToArriveSignal. If
an exception occurs and MaterialFailedToArriveSignal is raised
by any process anywhere in the system, this handler will be
called upon to handle the exception. After performing its own
exception handling, the handler will reject the exception to al-
low its master to do any additional handling.

A test interface was built so that a simulated hardware error
could be easily introduced to the MachineResource. Upon
notification that an error has occurred in the material handling
hardware (accomplished simply via executing MachineResource
materialFailedToArriveSignal raise), the exception handler for the
material process (as well as any other dependent of this signal)
will be called upon to handle the exception. First, the handler
will print the message “Material process handling exception”
to the transcript window, perform any real exception handling,
and, finally, reject the exception. The material arrival overseer
process will then provide any additional handling. The handler
for the overseer process will first print the message “Overseer
handling exception” to the transcript, then perform any real
exception handling.

CONCLUSIONS
Through some fairly simple extensions to the already powerful
and flexible exception handling framework in Smalltalk, we
have sufficiently addressed several problems inherent in han-
dling exceptions across processes in a generic, non-intrusive
fashion. Certainly, additional scenarios not yet raised exist in
which these extensions would prove very useful. On the other
hand, scenarios yet to be uncovered most likely exist in which
our solutions will not apply.

Due to the openness of Smalltalk’s implementation, we

405 El Camino Real, #106
Menlo Park, CA 94025

-, voice: 415-854-5535
N fax: 415-854-2557
i email: info@smalltalk.com
compuserve: 75046,3160
Digitalk List TSS Price
Smalltalk/V Macinosh or Windows, 16 bit APl $495 $269
Smalltalk/V Windows, 32 bit AP 5995 $899
Smalltalk/V 0572 $995 $859
Parts Workbench, 0572 $1995 $1729
Parts Workbench, Win32 $1995 $1899
Objectshare
WindowBuilder Pro, ST/V Win16 $295 $269
WindowBuilder Pro, ST/V 0S8/2 $495 $459
WindowBuilder, ST/V Winl6 $149.95 $139
WindowBuilder, ST/V 0S/2 $295 $269
WidgetKit/CUA'91, ST/V OS2 $295 $269
LogicArs
VOSS collection, any ST/V $150 $139
VOSS DLL, ST/V OS/2 or Win32 $595 $549
VOSS source, ST/V OS/2 or Winl6 $1950 $1779
VOSS source, ST/V 286 $950 $869
GSofl
MathPack 3.0, PPST $395 $369
MathPack 2.1, ST/V Win, 05/2, Mac or 286 $125 $119

BusinessGraph 1.2, ST/V Win, 0S/2 or Mac $95 $89
LPC Consulting - Special through Februan' 28, 1994.

ODBTalk ST/V Winl6 or Win32 5199 $189
Smalltalk Store exclusives
XoterX Package Manager $125

Smalltalk Starter Kit includes ST/V for Win16. WindowBuilder, XoterX
Package Manager, and two books — Discovering Smalltalk and Deyigning
Object-Oriented Software. Everything you need to learn Smallialk!

Total list price for Lhe Siarter Kit is over $895 TSS Price: $495

were able to extend exception handling entirely in the
Smalltalk language itself. Additionally, the fact that everything
in Smalltalk is an object, including processes, Signals, and Ex-
ceptions, allowed us to solve the problem in an object-oriented
fashion, employing encapsulation, inheritance, and polymor-
phism in our solution.

Conceptually, these solutions could be applied to other ob-
ject-riented languages that have an open process creation and
exception handling framework. [

References

1. ParcPlace Systems Inc. OBjecTworks\SMaLLTALK USER’s GUIDE,
1992, Chap. 8.

2. Hinkle, B, and R.E. Johnson. Taking exception to Smalltalk, part
1, THE SMALLTALK ReroRT, 2|3], 1992.

3. Hinkle, B, and R.E. Johnson. Taking exception to Smalltalk, part
2, THE SMaLLTALK REPORT, 2[4], 1993.

4. Pyle, I. C. THE ADA PRoGrRaMMING LanGuack. Prentice Hall Inter-
national, Englewood Cliffs, NJ, 1981.

Ken Auer is the Director of Development Services at Knowledge
Systems Corporation, Cary, NC. He can be reached at
919.481.4000 or kauer@ksccary.com. Barry Oglesby is a member
of the technical staff of Knowledge Systems Corporation, Cary,
NC. He can be reached at 919.481.4000 or boglesby@»ksccary.com.

FEBRUARY 1994

11

ETTING REAL

The art of designing

Rebecca Wirfs-Brock

meaningful conversations

N MY LAST column, I introduced a framework for devel-

oping and describing use cases (see Fig. 1). Use cases, sce-

narios, or scripts are roughly synonymous terms for im-

portant ways to focus our design activities. In this column,
we'll see how use cases, systern/actor conversations, and sup-
porting object designs fit together. We'll explore some issues
surrounding the development of these models. We’re still learn-
ing about where certain techniques work well and where they
fall short. There are several helpful hints and some pitfalls. First,
let’s briefly review this framework.

USE CASE FRAMEWORK

A high-level scenario is a textual description of some process
or business transaction that our system must support. Large
system development efforts may generate a wealth of detailed
process descriptions. Less formal designs still benefit from
writing high-level descriptions of desirable actor activities.

We prefer to transform these high-level descriptions into
conversations before we model with objects. This forces us to
separate out what the actor does and expects from our system’s
behavior. We purposely leave out details from conversations
that should be recorded elsewhere. We omit complex condi-
tional logic from conversations (e.g., if this happens and such
and so is true and x is not, then. . .). Supporting information
belongs in detailed process descriptions or other design docu-
ments. We focus on designing the flow of the conversation be-
tween the actor and our system.

There are two central parts to a conversation: a description
of the actor’s inputs to our system, and a corresponding de-
scription of our system’s responses. Together, these “side-by-
side” narratives capture a dialog between an actor and our sys-
tern. We also list alternatives to the main course. These
alternatives represent a reasonably complete list of conditions
that object designers must be able to detect and to design ap-
propriate responses for. We also list constraints, timing con-
siderations, reasonable
actor or system default
behaviors, and other out-
standing issues and de-

high level description

of business scenario
....... / hDW .
! system/actor

conversation ‘:hm sired outcomes (as we
ow
;. detailed dialog <_<whal " | think of it) when record-
: how - | ing each conversation.
© _initial object modsl ‘< what - | FiBure 2 shows a sample

conversation for begin-

how
detailed object model ‘/

Figure 1. A use case design framework.

ning a session at a video

kiosk.

Conversations guide our initial object modeling activities. We
develop a high-level view of key objects and their interactions for
each system response side of a conversation. We start by selecting
candidate objects according to their roles and stereotypes. If we
already have a rough idea of our objects from previous modeling
sessions, it is easier. We still review these partially completed ob-
jects and our assumptions about them before plunging into
modeling, If this is the first time, we obviously spend some time
picking out and discussing candidates and their possible roles.

We use whiteboards a lot during modeling sessions. We
record responsibilities and collaborations on design cards. We
also draw and redraw potential collaboration sequences, wave
our hands, and run through consequences listing pluses and
minuses and looking for better ways to distribute object re-
sponsibilities. We construct an object interaction diagram de-
picting what each object does and roughly how it collaborates
with others. The results of all this activity are a better under-
standing of our design and an updated issues list!

Figure 3 illustrates object collaborations for beginning a
video kiosk session. This diagram shows a collaboration se-
quence that supports either a regular or preferred customer.
Beginning a session involves signing on and picking a transac-

Conversation: Begin Session

Actors: Reqular Customer or Preferred Customer

Overview: A customer identifies herself to our Video Kiosk application.
After she has signed on, she can rent, reserve, cancel reservations, or
Ppreview movies.

Context: The video kiosk application screen is currently displayed.

Actor Action Model Response

Initiate Session Present greeting

Prompt customer for ID

Receive customer info
Validate it
Prompt for permissible actions

Enter unique ID

Select action Transfer to selected action

Alternatives:

1. User mis-enters identification

Sign customer on as a guest, after informing her

2. User's account is overdue by 30 days or more than $50
Inform user and ask if she wishes to make a payment.

Timing Considerations:
Time out and terminate session if user doesn't respond in n minutes.

Reasonable defaults/other considerations:

Make it very easy for guests to sign on. They shouldn't have to identify
themselves in the same way as other customers.(Note that the
conversation for a guest's beginning a session may be shown in another !
conversation or it may not, depending on how different or important it is.) |

Figure 2. Beginning a session.

12

THE SMALLTALK REPORT

tion from among renting a movie, previewing, and canceling
reservations, and reserving movies. Responsibilities were
parceled out among Session Manager, Transaction Manager, Cus-
tomer and Customer Database objects in this modeling session.
Because the diagram was entered into a computer, it looks
more polished than it actually should. The collaborations
aren’t finished. What may look like message names are rough,
and more akin to responsibilities than precise message signa-
tures. We've shown sequences of important collaborations,
and also shown responsibilities that the Session Manager per-
forms itself (collaborations 1, 2, and 5 in the diagram).

FINDING THE RIGHT SIZE USE CASE

Finding the right size for a use case is largely a matter of personal
choice. I have carefully laid out a long string of system/actor
events and asked colleagues and design students to split them
into meaningful units. We all try to follow these guidelines:

* Look for meaningful sequences that form some namable
subtasks.

* Don’t look for “reusable chunks” to start.
* Find an all-encompassing name to call this activity.
« Clearly name the subtask using a single action name.

* Look for loops or repetitive event sequences.

How people group tasks together varies widely. Some have a
hard time justifying their decisions (“it just feels right” isn’ta
justification). It really is a matter of how much or how little
detail you can handle, and what hidden assumptions you are
making about the underlying complexity of the task. Working
in a team, over time, the group as a whole usually develops a
collective sense of the right size for a use case. The above
guidelines are useful hints, not rules.

DULL CONVERSATIONS

Sometimes conversations that you generate from use cases are
too simplistic. This is often the case with event-driven systems.
Picking an item off a menu doesn’t often generate an interesting
conversation, either. If you have this problem, look at grouping
more tasks together. Perhaps your application isn’t very conver-
sational by nature. An actor might initiate a lot of complex tasks
for your system to work on, but the interactions to get them
started may be pretty
straightforward. A
command-driven
monologue isn’t that
interesting. Don’t force

3. displavAttionChikes()

1. padt uskmertic) aCuslomer

ui

1 presentGreetingt)

2 umgeldn

L ot Tilknwsthelraramt o | COMVETSations.
@ DEALING WITH
@ SLIGHT VARIATIONS
ON A THEME
Actors can be users or
| other systems. Further
distinctions can be
made between actors.

Figure 3. Object collaborations for beginning a
video kiosk session.

EC-Charts 23

Add charts to your VisualWorks palette
Dynamic Add or change data points, with minimal screen repainting.
Add or remove data series to/from the chart.

Interactive Select data points with the mouse—EC-Charts informs
your application.

3 rmans.
2000 2000 o

Uses screen space effectively o oo
Scroll the chart view in one or both
directions. Mark values of summary

- functions in the
vt et axis areas. Show

1984
1985
1986

IS EE " thresholds using ~ |"%
; o | prid tines. 1998
. 1989
B) e I o 1930 -
New Voax Snrwm _‘_'L_'—lﬁ
. 1 r bilions of dolkars 011 02% rcm " on
AR I O Y & i e
I 1—1_ t 1Iﬂl 11. I I{I 1 T p_r_[:; W Net Incams B Revenve ~— lncome as °
B S0 5
N 6
. A q
" :I [H 3] A:] L) 1 2
g T a
b
M’N $350 4 Toial budgel A Total aid tc

No runtime license fee
Lall for a technical paper
on EC-Charts

VisuaMWorks is a Irademark
of ParcPlace Systerns, Inc.

[wf (: ||” 50”\\ e
(408) 462-0641

21137 East Cliff Dr - Santa Cruz - CA 95062

I've seen applications that have dozens of different types of
users and dozens of external systems to which they have to
connect. Different actors may need or are privileged to con-
duct slightly different dialogs. Even when performing even the
same task, different actors often need to have slightly different
conversations. Wading through all this takes a lot of time. The
bottom line is that unless a conversation or alternative radi-
cally differs from a previously documented one, I find it per-
fectly acceptable just to record the differences. Unless it is that
different, I don’t bother building a collaboration for each slight
variation, either. My goal is to produce and build designs, not
generate lots of paper to wade through. Consequently, I make
sure to record new responsibilities and collaborations on de-
sign cards, but I don’t necessarily show a lot of other support-
ing diagrams if it isn’t warranted.

WHAT REALLY GOES ON DURING MODELING?

I can’t ignore the big picture while designing the objects for a
particular conversation. I don’t know anyone who can. Too
many side excursions into the weeds can be frustrating. How-
ever, remembering consequences of prior modeling decisions
and checking for possible inconsistencies is extremely impor-
tant. Consolidating and unifying design is a constant back-
ground mental process that should be allowed to bubble to the
surface at times.

For example, if I know what Session Manager should do, 1
don’t park my understanding of its other duties elsewhere while
designing how to begin a kiosk session. If I did that, I might add
to its pre-existing responsibilities in an inconsistent way.

FEBRUARY 1994

13

» GETTING REAL

PathBrowser
— a trace and documentation tool for Smalltalk

Eliminate the need to bring up multiple windows 1o follow
an execution path. By using the PathBrowser you can
quickly browse the message flow an event creates across
multiple classes, from a single window. Select the classes
to be traced, or have the ParhBrowser automatically gen-
erate the class list based on a primary class. Then you
need only enable the trace, create the event, & voila!

FRe Edit Smailak Projects Tasks Trace

FiberPac] selecl - Table class>>createTable:c
trace off -.Table class>>new

ReportGenerator .y dti
bazeLine ...ColumnDlictionary class>>new
GruupBy . ColmnDl >>initlalize
Inrertitem
seloctExecutlonily Toble>>yetColamns:

...ColumnDicUonary>>sddVarNsm
ame: LableNmme
"' set table nxma”

(Catalog InclndesKey: tableName)

UTrue: [Catalog remeveKey: LasbleName].
(nsme ;= (sbleNmme.
Catalog st tableNmme put: selfl.

Browselt Software

PathBrowser for Digitalk (Win OS2 Win32) 399 Tel: (303) 730 - 0806
PathBrowser for ParcPlace VisualWorks $149 Fax: (303) 730 - 0812
Site licenses & educational discounts. Money back 30 day guaraniee

SHOWING MODEL RESPONSES

Typical object collaboration diagrams look either deceptively
simple or overly complex. They don't reflect the thought or ef-
fort that went into producing them. To understand their sig-
nificance, it is necessary to know what are key objects and what
level of detail the designer intended to model. To find this in-
formation, we need to look at supporting documents such as
emerging class designs, prior conversations, and other sup-
porting evidence. Designers can also help others through their
design. Diagrams alone can't show the significance of key de-
sign decisions. This information is hard to find in class specifi-
cations, too. That’s why designers need to tell us what they
considered to be important.

For example, our Customer Database object isn’t a simple-
minded database interfacer. It doesn’t just humbly reconstitute
customer objects from stored information. Sure, it encapsu-
lates details of some relational database interface objects. But it
is really smart. It detects whether a customer is typical, pre-
ferred, or a guest and dynamically builds the right kind of Cus-
tomer object based on a number of decisions it must make
(e.g., is the customer late paying her bill, how many rentals has
she made recently, etc.) You can’t see those interior details un-
less we show the Customer Database object in much further de-
tail on this diagram. However, when we were focusing on the
high-level objects and their interactions, we didn’t want to
clutter up our diagrams with too many lower-level details.

HOW DETAILED SHOULD AN OBJECT DIAGRAM GET?
[used to have a problem showing message sends to self. It
seemed like too much detail too early. Now it doesn’t bather

me if it is done sparingly. Designing an object involves decid-
ing what it does itself as well as all of its collaborations. If you
haven’t internalized that you need to send messages to self to
create well-designed objects, you need to show this detail. If
you know this, but your peers still find it confusing, you prob-
ably need to show them that detail. Diagram details are a mat-
ter of personal discretion, design team standards, and need to
comprehend. Either too much clutter or too few details can
cause problems.

One important thing to note about our begin session col-
laboration diagram is that we showed interactions with the
user interface as dashed lines. We knew which abjects collabo-
rated with the user interface, but we didn’t how they collabo-
rated. We didn'’t show this detail on purpose. We did this for
several reasons. We wanted to first concentrate on the interac-
tions between business abjects, controllers, service providers,
information holders, and the like.

If we ignore the interface details for just a bit, we can plug
our design into a variety of different user interface solutions af-
ter understanding our object model. We wanted to give our-
selves the freedom to explore potential user interface designs as
a separate activity.

We also didn’t want to overly constrain our design with
user interface requirements. Employing this tactic prevents us
from embedding a detailed, quirky understanding of particular
user interface objects. I personally don’t have a big problem
with setting aside the user interface details until [know what
the other objects generally have to do. I advise you to worry
about the details of that after the interplay between other ob-
jects settles down,

Following this strategy causes some feedback and tuning of
both our conversation and the objects that interact with the
user interface when we actually do attend to those details. If we
limit the number of objects that actually interact with user in-
terface objects (which is always a good design principle to fol-
low), the impact of this fine tuning can be minimized.

CONCLUSION

There are open issues about use cases, conversations, and ob-
ject modeling. However, there is a big payoff in designing this
way. Use cases and conversations guide design activities, Tying
our model back to conversations, use cases, and supporting
documentation is one big step in the right direction. My goal
in applying these techniques is always to enhance my abilities
to communicate with non-object experts and improve my abil-
ity to produce the right design solution to the right problem. [

Rebecca Wirfs-Brock is the Director of Object Technology Services at
Digitalk and co-author of DEsIGNING OBJECT-ORIENTED SOFT-
WARE. She has 18 years experience designing, implementing, and
managing software products. For the last nine years, she has focused
on object-oriented software. She imanaged the developrent of Tek-
tronix Color Smalltalk and has been immersed in developing, teach-
ing, and lecturing on object-oriented software. Comments, further in-
sights, or wild speculations are greatly appreciated by the author. She
can be reached via email at rebecca@digitalk.com. Her U.S. mail ad-
dress is Digitalk, 7585 S.W. Mohawk Drive, Tualatin, OR 97062.

14

THE SMALLTALK REPORT

Booleans

over Boolean variables. That’s right, Boolean variables. If
you don't think true and false are the stuff of impas-
sioned debate, read on.

This month’s column focuses on the recent controversy

IFNIL
Jack Shirazi (js@biu.icnet.uk) started the debate by asking:
How many times have you written

something isNil ifTrue: block1 ifFalse: block?2.

How come there isn’t a ifNil:ifNotNil: method as standard?

Several people explained how to write ifNil:ifNotNil: and what
a wonderful language Smalltalk is because it allows you to write
your own control structures. He then explained further:

I am obviously aware that I can add the method! ;-) It was

specifically the loss in performance that concerned me ...

Why isn’t it there and optimized like the other ones.... It is

the only choice method that I can think of, which would be

used as much as ifTrueifFalse:

It’s certainly true that a lot of Smalltallk’s conditional statements
are used to test for nil values. Mario Wolczko
(mario@cs.man.ac.uk) provided some quick statistics.

I counted how many methods in a standard 4.1 image in-

clude code like

a isNil ifTrue:

x == nil ifFalse:

nil "= z ifTrue:

and so on, That is, how many methods could be written
more concisely if ifNil:, notNil:, ifNil:notNil:, etc., were
available.

Out of 8,494 methods in the image, 704—i.e., 8% or 1 in
12 of all methods—had such a test. Seems like things would
be a lot cleaner if it were to be added and used.

He also did a small experiment on the relative performance of
user-added control structures.
Numbers taken from a Sun IPC, repeating 1,000,000 times:

|b] b :=nil_ nil isNil. b yourself "to establish a baseline"
|b| b :=nil_ nil isNil ifTrue: [b yourself]

2,339
2,792

HE BEST OF comp.lang smalltalk

Alan Knight

|b] b := nil. nil ifNil: [b yourself] 13,912
(with the obvious definition of ifNil: in UndefinedObject)

You pay a high price for really building the block and
sending the message. ... Of course, you could always mod-
ify the compiler to treat your construct specially, too—this
is left as an exercise for the interested reader :-)

Jan Steinman (jan.bytesmiths@acm.org) proposes a slightly

different syntax. He writes:
One of the more common usages of nil tests is to guard
against passing that nil along the way. Many times I’ve
wanted the equivalent of the C ?: operator, which, given
bool ? trueVal : falseVal returns one or the other. So I imple-
mented ?. I chose a binary selector so that it could be easily
placed “in-line” without parentheses, and I added the block
test so that you can do things of arbitrary complexity in the
“not nil” case.

He provides code for a ? operator, which allows expressions like
the following:

variable ? defaultValue
self keyword: SomeClass defaultInstance ? 'hi there'.
foo ? [foo == ‘initial value']

So far, this hasn’t been too controversial. Few people would ob-
ject to a few extra control structures to make dealing with nil
easier. Kent Beck even discussed the ifNil: construct back in the
February 1993 issue of THE SMaLLTALK REPORT. A ? operator
looks a little too much like C for some people’s taste, but
they’re free to call it something more Smalltalk-ish or not to use
it at all. The controversy started when SmalltalkAgents actually
implemented many of these ideas in a way that left many peo-

ple unhappy.

SmalltalkAgents

In case you hadn’t heard, there’s a new Smalltalk implementa-
tion for the Mac, called SmalltalkAgents, and produced by a
company called Quasar Knowledge Systems (QKS). This new
implementation received a lot of attention on USENET for two
reasons. First, it departs significantly from traditional Smalltalk
implementations in many areas, and the design choices have

FEBRUARY 1994

15

m BEST OF COMP.LANG SMALLTALK

generated a lot of discussion. Second, David Simmons (whose
signature describes him as the Chief Technical Officer of QKS),
has posted several lengthy articles describing and justifying
those choices.

Note that this article deals with one minor design choice and
the discussion it generated on USENET. This is not representa-
tive of the general discussion on SmalltalkAgents, and should
not be taken as any kind of a review. If you want a review, see
Jan Steinman’s article in the Novemnber/December 1993
SMALLTALK REPORT.

Since I don’t have access to a Mac at the moment, I haven't
been able to try out SmalltalkAgents yet. I am, however, ab-
solutely delighted to see a new Smalltalk implementation. There
hasn’t been enough meaningful competition in the Smalltalk
market so far, and the existing vendors have been able to get
away with far too much for far too long.

ifTrueOrAlmostAnythingElse:
What was the design choice that generated such controversy?
Alun ap Rhisiart (vollrath@vax.oxford.ac.uk) describes it as
follows:
STA has adopted C’s concept of Booleans. ifTrue:[] will exe-
cute the true block for any receiver that is not false, nil, or
zero.

35 ifTrue:[Speakers beep]

will beep. Now suppose you want to protect yourself from
errors where an object (almost any object) has been passed,
but you are expecting a Boolean. You might have some-
thing like this

param

ifTrue: [true block]
ifFalse: [false block]

now you have to write

param == true
ifTrue: [true block]
ifFalse: [false block]

Since when you write ifTrue: you normally mean just that,
it is tedious and error prone to have to keep in mind that
this is not really a truth test, in spite of what it says. Tests
of truth value, and tests of existence (instantiation) are se-
mantically different, and C simply has this wrong. Occa-
sionally, you can drop a message send by writing object
ifTrue:[] instead of object isNil ifTrue:[], but you have to
pay heavily for that by having a difficult time tracking
down a class of bugs, which should have raised an excep-
tion right away.

I have to say that my first reaction to this is to agree completely
with Alun. Booleans aren’t numbers. Numbers aren’t Booleans.
UndefinedObjects aren’t anything. Mixing them all up can only
lead to trouble. This is particularly true in a dynamically typed
language, where you rely on strict message protocols to catch

stupid typing errors. One of my most common stupid mistakes
is to write a method that should return a value and then forget
to return anything, returning the receiver by default. This is
usually caught the first time you call the method, but wouldn’t
be with an implementation like this.

isNilOrZeroOrFalse
This is not the only change. At least ifTrue: and its relatives are
defined as errors for non-Booleans. Extending them will only
allow code that would otherwise crash. SmalltalkAgents also
redefines isNil in the same spirit.

0 isNil ==> true

nil isNil ==> true

false isNil ==> true

anythingElse isNil ==> false

This is much worse, in that it can easily break existing code. For
example, user-input mechanisms (prompters, input fields, etc.)
that expect the user to enter a number, might return nil for an
illegal value. If the value is checked using isNil, illegal values
can’t be distinguished from the number 0.
Another opinion. Rik Fischer Smoody (riks@cse.ogi.edu)
writes:
I remember systems that can’t tell the difference between 0,
nil, and false. (One such system is still in widespread use.)
Let’s not go back.
I am in favor of adding ifNil: to the lexicon of Smalltalk.
It is not instead of ifTrue:, but in addition. Semantics is re-
lated, not equal.

OTHER LANGUAGES DO IT THAT WAY

Cisn't the only language with ambiguous Boolean semantics.
For one thing, there are probably lots of other weakly typed
languages close to the hardware whose conditionals are based
on bit patterns rather than logic. On the other hand, there is
LISP. This is a language that is in many ways similar in phi-
losophy to Smalltalk and had a lot of influence on Smalltalk’s
early design.

LISP has conditional statements that take any object, and
use nil (which is also the empty list) for false. Any other object
counts as true. There may or may not be distinct true and false
objects. LISP doesn’t normally count 0 as false, but it does
count the empty list, which might be even worse when general-
ized to Smalltalk. I shudder to think of isNil implemented as
~self isEmpty.

In fact, when I checked which objects counted as false with a
LISP user (Andrew Rau-Chaplin, arc@dimacs.rutgers.edu) he
described it as:

One of the most implementation-specific issues in LISP,

and in my experience one that causes some of the most dev-

ilish compatibility bugs.

Apple’s new object-oriented language Dylan, which is very
strongly influenced by LISP, has a special distinguished object
for false, and treats all other objects as true. Dylan doesn’t

16

THE SMALLTALK REPORT

seem to have a nil, though, and it uses false in many places
where Smalltalk would use nil. It does support the slot-initial-
ized function, which tests for uninitialized variables (which
would be nil in Smalltalk). They also warn that it may be an
expensive operation in many implementations, and that there
is no portable way of setting a slot to the uninitialized state
once it has been given a value.

66

You could always modify the compiler

to treat your construct specially, too—

this is left as an exercise for the
interested reader.

*

Marks Stumptner (mst@vexpert.dbai.tuwien.ac.at) points
out that:

Booleans have a clear specification and mixing them in with

everything else should not be done without a very good rea-

son. Note that the LISP/Scheme way of dealing with

#true/ #false/nil predates their object-oriented extensions.

The very fact that they do have a “real” false that can be

tested for while being “mostly” the same as nil shows that

there’s something fishy here.

IN DEFENSE OF SmalitalkAgents
I've given a lot of space to those criticizing the way SmalltalkA-
gents treats Booleans. David Simmons (quasar@gks.com) has
also written eloquently in defence of the QKS implementation,
and some of that is reproduced below, with occasional com-
mentary.
Why have #(isNil ifNil: notNil ifNotNil:) be true/false for both
zero and nil?

1. We factored the class library so that nil has a numeric
“value” of zero. Thus, nil can be used in any mathemati-
cal operation. foo := nil. x := 10 + foo. is OK. So isNil is
consistent with the numeric behavior. It would be a mis-
take to have defined isNil the way we did if it was the
only way to test for identity of UndefinedObject instances.
However, it is not, and in fact it is not the uniform
Smalltalk identity #== test.

2. Nil is the default value for all variables until initialized.
The STA definition of isNil/notNil can therefore speed up
code significantly. We use it in tests for bit flag opera-
tions as well, such as:

userFlags ifNotNil: "or notNil ifTrue: {
(7 asBitValue & userFlags) ifTrue: [eventList add: #Closed].
i

3. In many other languages, the nil concept is expressed as
zero and is used interchangeably. This enables the lan-
guage to put the equivalence to good effect in expressing
algorithms concisely, although it is sometimes a prob-
lem for those languages in that they cannot differentiate
nil from zero. In Smalltalk nil is a first class object and
thus it can be differentiated explicitly via the #== opera-
tion. So in Smalltalk having the (STA) equivalence gives
us the ability to be concise, but not suffer from the in-
ability to differentiate nil and zero.

For example, in STA it is more efficient to scan col-
lections (especially sets and their subclasses) using the
isNil test.

We define hash tables with two forms of entry:

= Nil. Free slot that has never been used before

= Zero. Free slot that has been used before.

This allows us to delete entries from the hash table with-
out restructuring until the empty % tag falls to some
threshold.. .. Without this technique, a hash table must
be restructured whenever an entry is removed (or some
other form of used-free slot tagging must be employed).
We scan for empty slots via #isNil. We scan for valid en-
tries via == nil.

Judge for yourself, but to me the only one of these that works at
all is the efficiency argument. I see no great advantage in being
able to use nil in arithmetic. In fact that opens up a whdle range
of questions. What is the result of nil isZero? How about nil re-
spondsToArithmetic? Is 0.0 isNil true?

Being able to write concise, expressive code is nice, but it’s
an argument for adding useful messages, not changing the
clearly defined semantics of existing, widely used operations.
Even for the sake of efficient code, new structures ought to be
sufficient.

I’'m not sure what the “many other languages” that work
this way are. C is the only language I know of that works that
way. It wouldn’t shock me if FORTH did. I doubt there are
many languages at as high a level as Smalltalk that do.

Efficiency is the only argument I find reasonable, and there
are limits to what I'll do for efficiency.

1. We believe that all objects should have a Boolean equiv-
alent.

2. (<expression>) asBoolean ifTrue:... in loops and other
tests should be as fast as possible. That’s why almost all
implementations of Smalltalk inline them in the first
place. It is very common to need the asBoolean test.
Without it, code must be “structured” with extra state-
ments to convert, flag, and track true/false object cases
for all forms of flow control statements. The most com-
mon cases looking like foo isNil if..., foo == false or: [foo
== nil]) if..., etc.

FEBRUARY 1994

17

u BEST OF COMP.LANG SMALLTALK

This can lead to unnecessary and sometimes confusing
code....

3. Having the equivalence enables efficient constructs
where a method returns nil, false, zero as a simple thee-
way subswitch. The compiler uses this to very good
effect since it allows us to keep the code simple and
make it faster, but carry additional information in the
return value, too.
(result := foo <operation>) ifFalse: [*result]. "Sender at some level
above will look at the result and have extra information about the
operation.”

Vvs.

(#(case1 case2 case3) includes: (result := foo <operation>))
ifTrue:
[~result].
Overall, we find that having this freedom has led most
of our users (and ourselves) to be able to write algo-
rithms that are clear and expressive of their real intent.
It is also the case that not having to coerce objects to a
Boolean prior to their use in flow control methods im-
proves execution speed. The potential drawback is that
a “sloppy” design would result in erroneous flow con-
trol logic not being caught via a mustBeBoolean error.
This reflects a poor design and the ability to generate
an exception for this single example of coding (logic)
mistake is not significant when compared against the
myriad other coding construct errors that are possible in
Sn;lalltal.k.

Well, I'm happy that the QKS staff believe objects should have a
Boolean equivalent, but I don’t share their faith. I also don’t see
that passing nil/false/zero as a specially encoded three-way
switch, as described in point 3, is a particularly good thing.

That leaves us with efficiency again and the argument that the
loss in error checking isn't very significant. I might believe the
loss of error checking isn't a big deal, but the efficiency im-
provements had better be very impressive.

A COMPROMISE
Finally, here is something that makes me happy and perhaps
provides evidence that USENET can have influence on the real
world. David Simmons writes:
As of release 1.1 of SmalltalkAgents,... we provide a com-
piler directive called ANSI Compliant: that enforces Boolean
testing for: #(ifTrue: ifFalse: ifTrue:ifFalse: whileTrue whileFalse
whileTrue: whileFalse: and: or: xor:). We may enhance it in
the future to also ensure strict nil testing for #(isNil notNil
1fNil: ifNotNil: ifNil:ifNotNil:).
We always use strict nil testing for #?.
This is particularly nice, because this flag can be set at the level
of a method, a class, or a library (a module construct added in
SmalltalkAgents). This means it is possible to have system code
using the non-ANSI semantics (without which it would proba-
bly break) while writing all user code “properly.”

ERRATA

As usual, I have something to apologize for. This time it's my
passing reference to First Class Software’s Object Explorer, a
Smalltalk add-on for visually working with object structures. I as-
sumed this was for Smalltalk/V, but it is in fact for VisualWorks
version 1.0. First Class Software can be reached at 408.338.4649
(voice) or 408.338.1115 (fax). [haven’t even seen a demo of Ob-
ject Explorer, so please don’t take this as a recommendation.

Alan Knight works for The Object People. He can be reached at
613.225.8812, or by email as knight@acm.org.

The Smalitalk Report

provides objective & authoritative
coverage on language advances, usage
tips, project management advice, A&D
techniques, and insightful applications.

Don’t miss out!

1 Yes, | would like to subscribe to THE SMALLTALK REPORT.

3 1 year (9 issues):
Domestic 1 Individual $79
Overseas 0 Individual $94

1 Institutional $119
0 Institutional $134

1 2 years (18 issues):
Domestic Q Individual $148
Overseas J Individual $178

1 Institutional $228
2 Institutional $258

Method of Payment

1 Check enclosed (payable to THE SMALLTALK REPORT)
(Chechs for US dollars musl be drawn on US bank)

3 Bill me
0 Chargemy: 0 Visa |1 MasterCard iJ American Express

Card No.
Exp. Date
Signature

Name
Address
Title Company
City State
Country Zip
Phone

To order, return this form with payment to
The Smalitalk Report
P.O. Box 2027, Langhorne, PA 19047
For faster service, fax: 215.785.6073

- 18

THE SMALLTALK REPORT

RODUCT REVIEW

David Bush

Tensegrity Release 1.0
for Windows and OS/2

oriented database system for use with Digitalk’s Smalltalk/V

for Windows 2.0 (16-bit version) and Smalltalk/V for OS/2
2.0. Any object can be made persistent and stored in a Tensegrity
database. Persistent objects can reference any other object in the
image or in the database. Persistent objects are defined just like
nonpersistent ones and respond to messages in the usual way.

The package comes with a comprehensive tutorial that in-

cludes examples of converting an existing application for use
with Tensegrity.

POLYMORPHIC SOFTWARE'’S TENSEGRITY is an object-

VERSIONS

Single- and multiple-user versions of Tensegrity are available.
The single-user version is for developing and testing applica-
tions that will be used by a single user on one machine. The
multiple-user version is for developing and testing applications
that will be executed on more than one machine on a network.
Tensegrity works with any network protocol supported by
Windows or OS/2. There are no application coding differences
between the single- and multiple-user versions of Tensegrity.
So a multi-user application could be developed, but not tested,
with the single-user version.

FEATURES

Persistent object storage

Tensegrity provides a way to store and retrieve an object’s data
and store a copy of its class definition on some medium outside
the image. That medium could be any device that can be ad-
dressed using the file system—a hard drive on the user’s ma-
chine, a hard drive in another machine on the network, or a
CD-ROM, among other things. So, you can store objects using
Tenseprity, exit the Smalltalk application without saving the
image, restart the application, connect to the Tensegrity data-
base, and find your objects just as you left them.

Any object can be made persistent by sending it the #persis-
tent message.

Tensegrity does not store the compiled methods of an ob-
ject’s class, so if you want to distribute a predefined database,
the classes of the objects in that database must be defined al-
ready in the image that will connect to the database.

When you change the definition of any class that has some
instances in the Tensegrity database, you will have to send a
new version of the image to the end user as well.

NEW CONCEPTS

You’ll need to understand a few new concepts before using
Tensegrity. For example, all database access must be done within
a transaction. Atomic blocks provide an easy way to access the
database without dealing with the details of transactions. You
also need to understand how persistent objects are structured
and stored. These new concepts are simple and easily learned.

Transactions
All database access must occur within a transaction. Transac-
tions provide the locking mechanism necessary to ensure data-
base integrity. Accessing a persistent object from within a trans-
action is a simple matter. Here’s an example:

aTransaction := Transaction newRW.

aTransaction makeCurrent.

persistentCustomerSet add: aCustomer.
aTransaction commit; release.

This example creates a read/write transaction and adds a cus-
tomer to a persistent collection. The transaction is then com-
mitted and released.

Atomic blocks

Atomic blocks are macros that make accessing persistent ob-
jects even easier than using transactions explicitly. To add an
object to a persistent collection just do this;

[persistentCustomerSet add: aCustomer] atomic.

This has the same effect as creating a transaction, adding the
object, committing, and releasing the transaction. Atomic
blocks can be a great time saver and will be sufficient for most
database access. Most single-user applications will probably
never need to use anything but atomic blocks.

Different flavors of atomnic blocks provide for retrying a
transaction that failed a number of times or performing an-
other block in case of an error.

Object complexes

Object complexes are used to define the locking boundaries

around objects. An object complex can contain one or more ob-

jects. When a persistent object is accessed within a transaction,

the complex in which that object resides is locked. So you need to

be careful which objects you put together in the same complex.
An object complex is created whenever you make an object

FEBRUARY 1994

19

m PRODUCT REVIEW

persistent. So if you create a collection of all the accounts a
bank owns, it would be best to create the collection and make it
persistent, then create an account, make it persistent, and add it
to the collection. That way, each account will be in its own
complex. When one account is accessed within a transaction,
the others will not be locked.

An object complex is also the unit of exchange between the
persistent store and memory. When an object is accessed within
a transaction, its entire complex is brought into memory. It is
wise to limit the size of an object complex. It’s also a rather
good idea to have objects that are accessed at nearly the same
time in the same complex.

Obiject containers

Tensegrity stores objects complexes in object containers. Each
object container consists of two files. Most single-user applica-
tions will probably store all objects in a single container. Multi-
ple-user applications may store some objects on a drive that is
accessible to other machines on the network and other objects
on a local drive. It is up to the developer to decide where the
containers reside. Containers can have a user-defined name or
a Tensegrity-generated name.

Object identity

The '= =' message should be avoided in applications that use
Tensegrity. The results will be unpredictable because of the
mechanism Tensegrity uses to reference persistent objects.
Tensegrity provides the #areYou: message, which serves the
same purpose. It will work regardless of whether the two ob-
jects being compared are persistent.

Garbage collection

We've come to take garbage collection for granted with Smalltalk.
It just happens. Not so with Tensegrity. The application designer
must be sure to give end users access to Tensegrity’s garbage col-
lection facility or provide some means of automatic garbage col-
lection, perhaps based on elapsed time or growth in size.

Class mutation
When Tensegrity tries to access an object in the database that
has a class definition different from the one in the image, it sig-
nals the UnknownClass exception. Your application is then re-
sponsible for asking Tensegrity to update the class definition in
the database and initializing any added variables. The update is
done with the #updateSchema message. It can take a bit of time
as it sweeps the database of objects that aren’t referenced.
When an instance variable is added to a class definition, it
will be added to any existing instances of that class and given
the value nil. This can be a bit of a problem if that instance vari-
able needs to be initialized. One way around this is to create
variable access messages for each instance variable, which might
look something like this:

accounts

~(accounts isNil

ifTrue: [accounts := BTreeSet new]
ifFalse: [accounts])

Then, instead of using an instance variable like this:

accounts add: aNewAccount.
do it like this:

self accounts add:"aNewAccount.

Exception handling system

The Exception Handling Systern (EHS) is a gemn of Smalltalk
genius that comes along with Tensegrity. It's based on the pub-
lic domain EHS written by Hal Hildebrand. The EHS provides
a way of protecting blocks of code by trapping errors and pro-
viding an opportunity for recovery. Proper use of the EHS can
prevent the end user from ever seeing a walkback or runtime
error window. It can also help the developer produce code that
is more efficient and simpler to read.

Types of exceptions

There are two basic types of exceptions: FatalEvent and Proceed-
ableEvent. A fatal event is an exceptional event that cannot be
resurned. Perhaps the error can be corrected and the process
restarted. A proceedable event is exceptional event that can be
resumed.

Types of exception handlers

Context handler A context handler is used to protect a Context.

A context is a block of code enclosed with square brackets. Here
is an example of a context handler that allocates more memory

when the LowOnMemory exception is raised:

[self addNewAccounts]
when: LowOnMemory
do: [zevent | self allocateMoreMemory. event restart].

There is a special type of context handler called the Finally
block. It is used when you always want a block of code to exe-
cute, even if the code within the executed block fails. Here is an
example of unprotected code:

line := stream nextLine.

stream close.

In the above example, if the #nextLine message fails, it will
cause a walkback and the #close message will not be executed.

[line := stream nextLine] finally: [stream close].

In the example above the stream will be closed even if the
#nextLine message fails.

Class handler A class handler is like a context handler except it
applies to all messages in the class and all messages sent by
them.

Tensegrity includes a new class hierarchy browser that sup-
ports class handlers. There is a radio button added in the top cen-
ter pane below the instance and class radio buttons. When the

20

THE SMALLTALK REPORT

INC.

Smalltalk/V developers have come to rely on

WinDOowBuUILDER PR

The New Power in Smalltalk/V' Interface Development

WindowBuilder as an

WindowBuilder Pro/V is available on Windows for $§295

and O8/2 [or $495. Qur stan-

essential tool for develop-
ing sophisticated user inter-
faces. Tedious hand coding
of interfaces is replaced hy
interactive visual composi-
tion. Since its initial release,
WindowBuilder has
become the industry stan-
dard GUI development tool
for the Smalltalk/V environ-
ment. Now Objectshare
brings you a whole new

Elle Edh Mlzw ﬁllgn Slze Qpllnns Sunplmnk Mll

dard WindowDBuilder/V is
still available on Windows
for $149.95 and OS/2 for

$295. We offer full value
tracle-in for our
WindowBuilder customers
waunling to move up to Pro.
These products are also
available in

L ENVY/ Dereloper and
Team/V™ compatible for-
mats. As with all of our

level of capability with

products, WindowBuilder

WindowBuilder Pro! New

functionality and power

Pro comes with a 30 day
I moncey back guarantee, full

ubound in this next genera-
tion of WindowBuilder.

I source code and no Run-
Time fees.

Some of the exciting new features..

« CompositePanes: Create custom controls as composites
i of other controls, treated as
Slre:l:r 3

| 1 1 single object, allowing the
o[] swe[
Zip: F

developer higher leverage
of reusable widgets.
CompositePanes can be
used repeatedly and
because they are Class based, they can be easily sub-
classed; changes in a CompositePanc are reflected any-
where they are used.

s Norphing: Allows the developer to quickly change

maiftalk ¥ from one type of control Tsuns ———%
i dowulder to another, allowing for | O smainalk
powerful “what-if” style | O windowBuilder
visual development. The | ©Oter

flexibility allowed by
morphing will greatly enhance productivity.

e ScrpBook: Another new feature to leverage visual
Lomponent reuse, ScrapBooks provide a mechanism for
L developers to quickly
:::E store and retrieve pre-
| defined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interface com-
ponents, organized

into chapters and pages.

* Rapid Prototyping capa-
bilities: With the new link-
ing capabilities, a develop-
er can rapidly prototype a
functional interface without
writing a single line of
code. LinkButtons and
LinkMenus provide a pow-

Selecta ViewManger Cluss:
DiakBrawser [|-u..n L]
FileFlader ; ndenl
FreeDiswing

GrephicaDemo kil | |Sibling

IcoaE dior
Opeoa the selected
(ncame T window a1 8 child of

MDISysicm
MOITranscript the cirren! window.,

ilder and Wi

Pro are of Obj

Inc. All other brand and product namaes are

erful mechanism for linking
windows together and speci-
fying flow of control.
ActionButtons and
ActionMenues provide
mechanism for developers to
attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

Actina Definidun
Mume: Cancel

e ToolBar: Developers can Create sophisticated toolbars

just like the ones in the WindowBuilder Pro tool itself.

o Other new features include: enhanced duplication and
cut/paste functions, size and position indicators,
enhanced framing specification, Parent-Child window
relationship specification, enhanced EntryField with char-
acter and field level validation, and much more...

* Add-in Manager: Allows developers to easily integrate
extensions into WindowBuilder Pro's open architecture.

Catch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742

Objectshare Systems, Inc
Fax: (408) 727-6324
CompuServe 76436,1063

5 Town & Country Village
Suite 735
San Jose, CA 9512B-2026

g ol Iheir respeclit p

u PRODUCT REVIEW

handlers radio button is clicked, all the handlers for the selected
class appear in the list pane where messages are usually displayed.

Class handlers are added much like methods. When you cre-
ate a new class handler, the class hierarchy browser fills the
method pane with the pattern used for creating a class handler.
When you save the handler, the class hierarchy browser asks
you to which exception the handler is tied.

When an exception occurs, any context handler that exists for
that exception is executed. If there isn’t one for that exception,
the class handler for that exception is executed if it exists. If no
exception handlers exist for that exception, a walkback appears.

Collection classes

Tensegrity adds some new B-Tree-based collection classes.
They are optimized for use as large persistent objects. These
new collections can also be nonpersistent objects.

RUNTIME
A runtime license must be purchased before an application that
uses Tensegrity can be distributed. A special runtime DLL
comes with this license. The DLL that comes with the develop-
ment version will not allow a runtime application to be tested.
All testing must be done within the development environment
until the runtime license is purchased.

Afer a single-user runtime license is purchased, an unlimited
number of applications that use Tensegrity can be distributed.

SUITABILITY

The word fensegrity was coined by R. Buckminster Fuller, fa-
mous for the geodesic dome among other things. Tensegrity is
a combination of tension and integrity. Fuller believed a struc-
ture that had tensegrity could be scaled up or down in size
while remaining sound and efficient. Although I haven’t used
the Tensegrity Database System for any huge projects yet, it
does seem to possess this quality.

The most important application I developed with Tensegrity
has object containers that range in size from 20K to 300M. The
contained objects range in variety from strings of text to a
trained neural network. It runs in a single-user environment.

Debugging an application that uses Tensegrity can be a bit
trying at times. Read and write conflicts can be difficult to find.
Polymorphic Sofiware is working on a set of user interfaces that
will help with debugging and managing Tensegrity databases.
This will be a welcorne addition to a very strong package.

Employees of Polymorphic Software maintain a presence in
the Digitalk Forum on CompuServe (GO DIGITALK). There is
plenty of discussion of Tensegrity as well as other object-oriented
databases that work with Digitalk’s versions of Smalltalk. B

David Bush founded Object Evolution after five glorious years as a
systems engineer at EDS. Object Evolution, located in Kailua,
Hawaii, sells asynchronous communications classes for
Smalltalk/V for Windows and OS/2. He can be reached at
dbush@uhunix.uhcc. Hawaii. Edu. Comments and criticism are
welcome.

22

SMALLTALK

ARCHITECTS/DEVELOPERS

Minneapolise AllantasRaleigh
NY e« Boulder

As a leader in |he delivery of Object-Oriented System
Integration Services, SHL Systemhouse inviles you lo
explore challenging and unique oppariunities within our
organization. SMALLTALK opportunities exist in Min-
neapolis, Allanta, Boulder, Raleigh and NY, lor Techni-
cal Architects, Project Managers, Senior Software
Developers and Software Engineers.

We seekclient/server, object-orienied prolessionals with
impressive industry credentials who share our world-
wide commiiment to excellence. These results-oriented
information professionals must thrive on challenges and
possess exceptional lechnical skills as well as business
advisory experience.
For Consideration send your resume in conlidence ta:
Michelle Hayden Dept. SMA294
SHL Systemhouse
950 South Winter Park Drive, Suile 200
Casselberry, Florida 32707
1.800.769.8704 or Fax 407.767.5309
(Extra Fine Mode)

212.274.0640 (v) or 212.274.0646 (f)

by

SHLSYSTEMHOUSE

RECRUITMENT

To place a recruitment ad, contact Wendy Plumb at

“"Smalltalk Architects and
Programmers"”

Capitalize on your Smalltalk expertise! Haestad Methods
is a dynamic software company in Waterbury, CT. We
currently develop and market high-end Windows-based
applications. We use the most powerful tools and
techniques in the industry, such as: ENVY/Developer,
Digitalk Smalltalk/V, and WindowBuilder Pro. We are
growing and looking for intelligent, honest, hard-working,
team-oriented people. Call us today!

Software Architect - Seasoned Smalltalk designer with at
least two completed software products. Assume
responsibility for the overall integrity and design of one of
our projects. Analyze user requirements; design key
subsystems and contracts.

Software Engineer - Experienced programmer with at least
one year of Smalltalk and OOP. Be the lead on a major
software subsystem. Design the classes to implement
key system contracts.

Haestad Methods, Inc.
37 Brookside Road
Waterbury, CT 06708
Attn.: John Haestad

Voice: (800) 727-6555 FAX: (203) 597-1488

All inquiries will be kept strictly confidential.

THE SMALLTALK REPORT

SMALLTALK
DESIGNERS AND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smailltalk
Professionals in Various Regions of the Country.

——

SALIENT

CORPORATION

Salient Corporation...
Smalltalk Professionals Specializingin the
Placement of Smalltalk Professionals

For more information, please send or FAX your resumes to:
Salient Corporation
316 8. Omar Ave., Suite B.
Los Angeles, California 90013.

Volce: (213) 680-4001 FAX: (213) 480-4030

WORK IN FLORIDA

SMALLTALK
DEVELOPERS

TECH/
AID’

Tech Aid has many long-term assignments
in South Florida for Smalltalk developers in
all dialects. DOS, Windows, SQL, GUI,
ODBMS, and RDBMS skills a plus.

Call or send resume:

Tech Aid
P.O. Box 915134
Longwood, FL 32791
Fax: (407) 788-1279

You could, if you join Sybase. Our Enterprise
Momentum™ gives developers a new
model-based approach to enterprise-wide
applications. It allows developers to meet
the diverse needs of their users — regardless
of hardware, operating system, GUI, data
sources, or applications.

Your insight and skill may help us develop
more tools for the SYBASE Momentum™
family. Find out by exploring one of these
opportunities with Sybase now:

Project Manager,
[]
Enterprise Program

Requires extensive project management
experience, preferably on large (5000+ task)
00, CASE or client/server software projects.

Development Manager

Your team will deliver forms management
services in a GUI database application,
Smalltalk environment, requiring extensive
expertise with these technologies.

[] []
Integrity Engineer
Requires extensive experience in developing
tests for a large OO product, including
exposure to relational databases.

We offer an excellent compensation package
and competitive benefits. Please send, fax
or e-mail your resume, indicating position
of interest, to: Sybase, Inc., 6425 Christie
Avenue, 5th Floor, Corporate Staffing
Department, ATTN; AD Code: ED,
Emeryville, CA 94608, FAX: (510) 922-5310.
E-mail: ellend@sybase.com. EOE/AA
employer. Principals only, please.

The Enterprise Client/Server Company™

FINALL

CLIENT/SERVER
INTEGRATION.

5

Not long ago, client/server
development required massive
amounts of time, money and
expertise to combine different
and complex technologies. =

T

GUI e T SOL |l

[

—— Now Digitalk = .

PARTS. _: PARTS® arapid | =l 11100 "'"
application =l " (' smanmancv'(M=l
development “,‘ | ' “”‘ ‘

i

tool set, lets you
easily integrate
R B your software
Dl(!1 l \[]\ assels into
client/server applications.

PARTS is the only object-
oriented technology that lets
you leverage your legacy code
and the knowledge of your
current staff.

Only PARTS products let
you take existing code —written
in Smalltalk/V, COBOL, C, SQL
and other languages - and wrap
it into components or “parts’
Which can then be virtually

i“,
I |
m}

ol

iy
o

m
iy

my
A

N
I\E,l..U
ﬁ

I
li

0

Il
|

.uu]
|

[}

i
'“‘

)

I

i

|
\I

iy

il

i

I}

snapped together visually. The result
is smooth-running client/server
applications in a fraction of the
usual time. For a fraction of the
usual cost.

PARTS supports all popular
SQL databases like Sybase, Oracle
and DB2. Plus legacy or late model

systems like CICS, COBOL, APPC
and SOM. And PARTS lets you

develop on both 0S/2 and Windows.

RATED #1-TWICE.

Only months ago, PC WEEK
awarded PARTS Workbench the
highest rating ever in the 08/2

PARTS. THE CLIENT/SERVER INTEGRATION TOOL.

category, calling it “the defini-
tive visual development tool”

And InfoWorld ranked
PARTS the #1 component-
based tool for visual develop-
ment. infoWorld’s Stewart
Alsop adds: “There’s nothing
like it on the PC.”

To make large teams pro-
ductive, PARTS also supports
group development and version
control. Plus PARTS has a host
of graphical power tools to give
you all the power of objects—
without the learning curve.

10 YEARS EXPERIENCE.

And PARTS is from
Digitalk. The company that’s
been providing object-oriented
tools to the Fortune 500 longer
than anyone else in the world-
with over 125,000 users.

Call 800-531-2344 X 610
and ask about our
PARTS Workbench
Evaluation Kit.

With minimum
effort, you'll learn why
PARTS is the maximum
solution for client/server
integration.

DIGITALK

	By Article Title
	Booleans
	Creating IPF help panels for Smalltalk/V 0S/2 applications: part 1
	Cross-process exception handling: part 2
	Tensegrity release 1.0 for Windows and OS/2
	The art of designing meaningful conversations

	By Author Name
	Auer, Ken
	Bush, David
	Knight, Alan
	Lam, Marcos
	Mazzara, Susan
	Oglesby, Barry
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	Getting Real
	Product Reviews

