The Smalltalk Report

January 1994

The International Newsletter for Smnlltalk

Volume 3 Number 4

CROSS-

PURPOSE

EXCEPTION

HANDLING

(PART 1)

by Ken Auer & Barry Oglesby

Contents:

Features/Articles

1 Cross-purpose exception
handling (part 1)
by Ken Auer & Barry Oglesby

. Columns

8 Smalltalk idioms:
Death to case statements (part 2)
by Kent Beck

10 Getting real:
Techniques for platform
independence
by Juanita Ewing & Steve Messick
15 Product Review:
Shoot-out at the Mac corral (part 2)
by Jan Steinman & Barbara Yates

22 In the user groups:
European Smalltalk summer school
by Rob Vens

here has been much discussion about exception handling for object-
oriented languages in recent years. Unfortunately, the discussion
has focused primarily on exception handling for a single thread of
control. Such exception handling can often cause compromises in

an object-oriented systern architecture that has legitimate uses for
both multiple processes and exception handling.

Often, multiple concurrently executing processes are necessary to provide de-
sired functionality. These processes usually operate independently and are un-
aware of each other. Only when a problem occurs must they cooperate to clean it
up. Often, a problem occurs in one process, but it is another which must respond
to it. For example, in an equipment-supervisor application, a material transfer
process that has a problem may cause an exception that should be handled by any
process expecting that material to show up at a certain place.

Most commercially available exception handling frameworks!-? and language
features* provide exception handling for only a single thread of control. While ex-
tremely useful, such a limitation can discourage or disallow the exploitation of
multiple processes to accomplish tasks for which they would otherwise provide
excellent solutions. If multiple processes are used, exceptions are either not han-
dled, or they are handled by adding excessive baggage such as instance variables
and extra code to provide explicit communication between processes.

Recently, after running head-on into these problems, we decided to extend
Smalltalk’s process and exception handling mechanisms to make the creation and co-
ordination of processes much simpler, effective, and reliable. Through iterative de-
sign and development, we have implemented some fairly simple yet powerful frame-
work extensions. We have found that these extensions sufficiently handle cross-process
exception handling in a generic, non-intrusive manner. And, although this is work in
progress, our extensions have been successfully applied to a real-world project.

These extensions are not meant to be used as default exception handling tech-
niques. They were made exclusively for use in cross-process exception handling
from within the context of the problems presented below. They may be useful in
other contexts, but they certainly should not be used in contexts where single
thread of control exception handling is desired. Great care has been taken to pre-
serve the standard approach to single thread exception handling. These extensions
have no effect on existing software.

This article, divided into two parts, describes how we have extended
Smalltalk’s process and exception handling f[rameworks to allow a powerful, flexi-
ble, and elegant solution to cross-process exception handling. Part 1 will first pro-
vide some background by describing the general frameworks provided by the ven-
dor. We will then present one problem for which no adequate solution exists.
Finally, we will discuss our solution to this problem, along with simple examples
of its use. Part 1I of this article will first describe an additional problem with no
adequate solution. We will present our solution, including some simple examples,

comtinyed on page 4...

The Smalltalk Report

E D I T o RS , JE'::'I"h';lr;h and Paul White
C 0 R N E R Carleton University & The Object Paople
SIGS PusLicaTiONS

John Pugh Paul White Advisory Board
Tom Atwood, Object Design

e are writing this as we head into the Christmas holidays, which started us thinking about Grady Booch, Rational
George Bosworth, Digitalk

a”Smalltalk Christmas Wish List.” We originally thought about going to the mall to sit on Brad Cox, Information Age Consulting

Santa’s knee with this one, but instead decided to write it here (since everybody knows Adele Goldberg, ParcPlace Systems
Santa reads THE SMALLTALK REPORT, anyway!). Tom Love, IBM
W, ful to k list sh Fi i's i . he devel t Bertrand Meyer, ISE
e were careful to keep our list short. First, it’s time to improve the development en- Meilir Page-Jones, Waytand Systems

vironment itself. Both Digitalk and ParcPlace haven’t made significant changes to the way Sesha Pratap, CenterLine Software

people browse in years. While it was the best tool available at one time, numerous changes | Cliff Reeves, IBM

1d b d . ductivity i I d at bl S d Bjarne Stroustrup, ATAT Bell Labs

could be made to improve productivity immensely and at a reasonable cost. Second on Dave Thomas, Object Technology Intarnationl

our list is to make it easier to break into the Smalltalk community. Though the language

itself is simple to explain, Smalltalk is a difficult thing to learn and many changes could be THF s"_"ALLTALK REPORT
- . . . Editorial Board
made to allow novices to understand how to use it. Third, could we have truly private fim Anderson, Digialk
methods? Fourth, could we rethink the debugging environment? We must make it possi- Adsle Goldberg, ParcPlace Systems
ble to debug complex interactions with tools other than the simple step/send and Reed Phillips, Knowledge Systema Carp.
hop/skip currently used Mike Taylor, Digilk
p/skip ¥y i Dave Thomas, Objec! Technology International

The topic of exception handling has received, proportionally, a great deal of space
within this publication. We believe this to be appropriate for a number of reasons. One, jt | Columnists
. . . . T itis a difficul - d dvi h be shared b Kent Beck, First Class Software
1s an mteres_tmg topic. T'wo, }t 1s a difficult topic, and any advice that can be shared by Juanita Ewing, Digitalk
“experts” will help us all. Third, it illustrates the power of Smalltalk, and even if the ideas Greg Hendley, Knowledge Systems Corp.
presented don’t directly assist you, we’re sure you will be able to learn from them. To this | Ed Kiimas, Linea Enginesring Inc.

. . . . Alan Knight, The Object Peopl
end, Ken Auer and Barry Oglesby of Knowledge Systems begin a discussion this month on | g, Smi?h, Knojvle d; sy:; ':“ss Comp.

introducing exception handling mechanisms for dealing with “multiple concurrently exe- Rebecea Wirfs-Brack, Digitalk
cuting processes.” Their sal take ti lin ond the level provided cur- -
g processes.” Their proposal takes exception handling beyond p ur SIGS Publications Group, Inc.
rently by Smalltalk vendors. Richard P. Friedman
Ever have a desire to return to “Smalltalk Schoal?” The description provided by Rob Founder & Group Publisher
Vens of last summer’s week-long immersion session sounds very enticing. Most of us are Art/Production
so involved in our current projects that we don’t get to take ti tt lore Smalltalk Kristina Joukhaclar, Managing Editor
. olved in our current projects we don’t get to take time out to explore Smallta Susan Culigan, Pilgrim Road), Ltd,, Creative Directon
in a manner described by him. It seems like an idea that would make sense for most of us, Gwen Sanchirico, Production Caordinator
and one our employers would see the benefits of. Plus, it would be a lot of fun—which re- Andrea Cammarala, Production Systems Coordinalor|
mains Smalltalk’s biggest drawing card! Circulation
_) B . i : Bruce Shriver, Circulation Manager
Kent Beck this month takes aim at two issues he has discussed in the past, namely the K.S. Hawkins, Fulfilment Manager
shortcomings of automatically using accessor methods for accessing instance variables Marketing/Advertising
and of case statements in the Smalltalk language. By presenting examples of each, he Thomas Tyre, Advertising Mgr—East Caast/Canada
Kk t . both. Also in this i ita Ewing is ioined by S M Gabrielle James, Advertising Mgr—West Caast/Europe
makes a strong case against bot - Also in this issue, Juanita Ewing is joined by Steve Mes- Helen Newling, Recrutmen Sakee Marager
sick in a discussion of how to achieve better platform independence in our aplications. Wendy Plumb, Advertising Assistant

They discuss ways in which we can factor the pieces of our applications that are depen- Sarah Hamiton, Promotions Manager—Pubications
Caren Polner, Promotions Graphic Artisi

dent on the environment and make them more portable. Administration

Happy New Year! William Ryan, coO

Margherita R. Monck, General Manager
David Chatterpaul, Accounting Manager
James Amenuvor, Bookkeeper

Margot Patrick, Assisiant Lo the Publisher

THE SMALLTALK REPORT (ISSN# 1056-7976) is published 9 times a year, every manth except for the Mar/Apr, July/Aug, and . S I G S

Nov/Dec combined issues. Published by SIGS Publications Inc., 588 Broadway, New York, NY 10012 212.274.0640. © Copyright

1994 by SIGS Publications. All rights reserved. Reproduction of this material by electronic transmission, Xerox or any other

method will be reated as a willful violation of the US Capyrigh! Law and is flatly prohibited. Material may be reproduced with ex-

gress ermission from the publisher. Mailed First Class. Subscription rates | year (9 issues): domestic, $79; Foreign and Canada,
94; Single copy price, $8.00. POSTMASTER: Send address changes and subscription orders to: THE SmaLLTALK REPORT, Sub-

scriber Services, Dept. SML, P.O. Box 3000, Denville, NJ 07834. For service on current subscrislions call 100.783.4903.

‘To submit articles, please send electronic files on disk to the Editors at 509-885 Meadowlands Drive, Ottawa, Ontario K2C 3N2,

Publishers of JouRNAL OF OBIECT-ORIENTED PRO-

Canada, or via Internet to pugh@scs.carleton.ca Preferred formats for figures are Mac or DOS EPS, TIF, or GIF formats. Always

send a paper copy of your manuscript, including camera-ready copies of your figures (laser output is fine), GRAMMING, ORJECT MAGAZINE, C++ REPORT, THE
. p A SmaLLTALK REPORT, and THE X JOURNAL.

Printed in the United States.

2 THE SMALLTALK REPORT

Smalltalk/V developers have come to rely on
WindowBuilder as an
essential tool for develop-
ing sophisticated user inter-
faces. Tedious hand coding
of interfaces is replaced by
interactive visual composi-
tion. Since its initial release,
WindowBuilder has
become the industry stan-
dard GUI development tool
for the Smalltalk/V environ-
ment. Now Objectshare
hrings you a4 whole new

Elle .Edll Mlew Allgn s_lze Qﬁlnn; Sun.ph.onk Agd -

g !
i WINDOWBUILDER I’RO

The New Power in Smalltalk/V Interface Development

WindowBuilder Pro/V is available on Windows for $295
and O5/2 for $495. Our stan-
dard WindowBuilder/V is
still available on Windows
for $149.95 and O8/2 for
$295. We offer full value
trade-in for our
WindowBuilder customers
wanting to move up to Pro.
These products are also
available in
ENVY*/Developer and
Team/V™ compatible for-
mats. As with all of our

level of capahility with

b products, WindowBuilder

WindowBuilder Pro! New

functionality and power i dcfauliStyle

abound in this next genera- E rogrammeiiame

tion of WindowBuilder.

i Pro comes with a 30 day
money back guarantee, full
source code and no Run-
Time fees.

Some of the exciting new features..

* ComposilePanes: Create custom controls as composites
7 of other controls, treated as
Sweer| - . . .

= a single object, allowing the
c“y:{———] —] developer higher leverage
of reusable widgets.
CompositePanes can be
used repeatedly and
because they are Class bused, they can be easily sub-
classed; changes in a CompositePane are reflected any-
where they are used.

» Maorphing: All()wa the developer to quickly change

from one type of control ®skins -
to another, allowing for | O smaitaik
powerful “what-if" style | O WindowBullder
visual development. The | © Other

flexibility allowed by
morphing will greatly enhance productivity.

= ScrapBook: Another new feature to leverage visual
component reuse, ScrapBooks provide a mechanism for
T developers to quickly
store and retrieve pre-
defined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interface com-
ponents, organized

into chapters and pages.

= Rupid Prototyping capu-
hilities: With the new link-

Link Afribule

ing capabilities, a develop- | [P A [e

er can rapidly prototype a | |fethmin

functional interface without [|merere Opens the aelected |
s . - MDISyslem 'window as a chlld of

writing a single line of MDITrancerp! the curreon window, |-

code. LinkButtons and ke

LinkMenus provide a pow-

and Wir Pro are of Obj Sy

Inc. All olher brand and product names are regi

crful mechanism for linking
windows together and speci-
fying flow of control.
ActionButtons and
ActionMenues provide 2
mechanism for developers to
attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

Action Definitian

e ot |]

* Toollar: Developers can Create sophisticated toolbars

just like the ones in the WindowBuilder Pro tool itself.

e Other new features include: enhanced duplication and
cut/paste functions, size and position indicators,
enhanced framing specification, Parent-Child window
relationship specification, enhanced EntryField with char-
acter and field level validation, and much more...

o Add-in Manager: Allows developers to easily integrate
extensions into WindowBuilder Pro's open architecture.

Catch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742

Objectshare Systems, Inc
Fax: (40B) 727-6324
CompuServe 76436,1063

5 Town & Country Village
Suite 735
San Jose, CA 95128-2026

of their

Now! Automatic Documentation

For Smalltalk/V Development Teams — With Synopsis

Synopsis produces high quality class documentation
automatically. With the combination of Synopsis and
Smalltalk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

+ Documents Classes Automatically

«» Provides Class Summaries and Source Code Listings
 Builds Class or Subsystem Encyclopedias

¢ Publishes Documentation on Word Processors

« Packages Encyclopedia Files for Distribution

+ Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

Development Time Savings

Coding Documentation

Without
Synopsis

With
Synopsis

Products Supported:
Digitalk Smalltalk/V
OTI ENVY/Developer for Smalltalk/V
Windows: $295 0S§/2: $395

Oy Synopsis Software

8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

w CROSS-PROCESS EXCEPTION HANDLING (PART 1)

...continued from page |
will provide an extensive example that incorporates both types
of extensions.

BACKGROUND

The frameworks described here are based on Objectworks\Small-
talk and the concepts or details described may or may not be
applicable to other versions of Smalltalk. Several implementa-
tion details are purposely left out since they have no impact on
the concepts that are the focus of this article.

Processes
A Smalltalk process is a2 non-preemptive, lightweight process.
A non-preemptive process will not be interrupted:

* By another, same-priority process against its will

* Mid-instruction in any case (an instruction being defined
here as anything that causes a new context to be added to
the stack)

Any block of code can be the basis of a process. Once a new pro-
cess is created, the processor must be asked to schedule the pro-
cess. A process can explicitly be asked to suspend, resume, or
terminate. A process can also be implicitly suspended by waiting
on a semaphore. A non-terminated process that has not explic-
itly been suspended is either in a waiting or executable state.
The processor is constantly responsible for deciding which
instruction to execute next, It does this by giving control to
one of its scheduled, executable processes. The processor will

choose the process with the highest priority first. If there are
multiple executable processes at the same priority level, it
chooses them on a round-robin basis.

A process will continue to execute until interrupted in one
of two ways;

* If a semaphore is signaled on which a higher priority process
is waiting, that process will be given control before the active
process’s next instruction is executed. This semaphore can
be signaled by the active process or by the Smalltalk virtual
machine (if it is a timing- or delay-related semaphore).

* A process can also voluntarily give up control. This can be
accomplished by explicitly waiting on a semaphore, by ask-
ing the processor to yield to another process at the same
priority, or by explicitly suspending itself.

Processes are typically created by sending the newProcess or
fork messages to a BlockClosure. Either message returns the
newly created process. However, the active process that created
the new process has no handle on it. Also, the new process has
no handle on its parent process. Unless it is stored explicitly
once created, the new process cannot be controlled by its par-
ent process other than via manipulation of commonly accessi-
ble objects. The parent and child processes are separated at
birth, and all records of the family tree are destroyed.

Since each process is a single independent thread of control,
the life, death, or injury of one has no implicit effect on another.
A process will execute its instructions as they are defined at cre-

4

THE SMALLTALK REPORT

Worker Process

Detector

aSignal raise
.

Worker Process

anException raise

Worker Process 1

anExceplion raise

Detector

aSignal raise

Worker Process 2

anException raise

anException raise

Figure 1. Parallel processes (current).

ation time. The processor has control over when a process is al-
lowed to continue, but does not affect the order of its instruction
execution. However, new instructions can be inserted before a
process’s next instruction explicitly via manipulation of its con-
text. The most common way for this to occur (outside of debug-
ging) is to send the interruptWith: message to a process. This mes-
sage takes as an argument a zero argument block. This block will
be executed before the process’s next intended instruction.

Exception Handling

Once the execution of a process has begun, various types of prob-
lems can occur. The method that detects a problem may not
know what to do about it. The proper way to handle the specific
problem may vary based upon some higher-level context. The
generic term for this class of problem is exception. Smalltalk pro-
vides a fairly flexible exception handling framework.

This framework is based on signals that, when raised, cause
an exception to occur. The context stack of the process in which
the signal is raised is searched until one that can handle the ex-
ception is found. The handler then acts on the exception. If no
handler is found in the context stack, several procedures are
tried, with the final one being to run the emergency handler.

Signals have a generalization/specialization hierarchy. Ex-
ception handlers will handle exceptions raised by the named
signal, or any more specific signal in its lineage. For example,
an exception handler for object errorSignal will handle excep-
tions created by raising object errorSignal or arithmeticvalue di-
visionByZeroSignal. An exception handler for ArithmeticValue
divisionByZeroSignal will handle integer divisionByZeroSignal,
but not object errorSignal. A partial hierarchy of predefined sig-
nals is as follows:

Object errorSignal

Object notFoundSignal
Object subscriptOutOfBoundsSignal
Object nonIntegerlndexSignal
Dictionary keyNotFoundSignal

Object messageNotUnderstoodSignal

ArithmeticValue errorSignal
ArithmeticValue divisionByZeroSignal

Stream positionOutOfBoundsSignal

An exception handler is simply a one-argument block that takes
an instance of exception as its argument. A handler is created
by sending the handle:do: message to a signal as follows:

Figure 2. Parallel processes (desired).

aSignal
handle: [:exception | "handling code"]
do: ["code for which the above handler applies"]
If aSignal or a more specific version of aSignal is raised during
the execution of the do: block, the execution of the do: block is
interrupted and an exception that is sent as an argument to the
handle: block is created.
A handler block can redirect the flow of control in one of
four ways:

* Refuse to handle (reject) the exception

« Exit from the handler block and the method in which it is
located with some value

* Proceed from the point at which the error occurred (only
for certain signals raised in a certain way)

* Restart the do: block.

This article will only expand on the first option, reject. When
an exception is rejected, the search for another handler will
continue up the context stack. Note that the handler block can
do anything before it rejects the exception, For example, it can
actually provide some of its own handling prior to passing it
on to some other object.

Exceptions contain certain information that may be useful
to the handler. For example, the exception can be asked which
signal was raised in order to create the exception. It is also the
exception that directs the search up the context stack for an
appropriate handler. Therefore, the exception must know at
which context the search should start. By default, it is the con-
text in which the signal was raised.

Since processes are independent once created, exceptions
search only a single context stack for a handler. This causes
problems in several realistic scenarios when multiple, concur-
rently executing processes are operating within a single system.
When mutliple, concurrently executing processes exist in one
system, they fall into two categories:

* Processes that are parallel to each other or siblings. For ex-
ample, one process may be looking for problems detected
by sensors in a robot, another may be operating the robot.

* One process is a subordinate, or child, of another. For ex-
ample, a process to operate a robot is created by, and re-
ports to, a factory supervisor process.

JANUARY 1994

u CROSS-PROCESS EXCEPTION HANDLING (PART 1)

These categories often are be combined to create a working
system, For instance, the robot-operating process is parallel to
the problem-detection process and subordinate to the factory
supervisor process. Processes have no handles on their parents
or siblings. If problems occur in one, no obvious path of com-
munication exists to another.

In Part 1 of this article, we will discuss the problem of ex-
ception handling between parallel, concurrent processes and
our solution. In Part 2, we will discuss the problem of excep-
tion handling between subordinate processes and our solution.

PARALLEL PROCESSES
It is very possible, especially in the context of machine-control
software, that the process that detects a problem is not the pro-
cess that needs to respond to the problem. For example, a pro-
cess (known as a detector) may exist whose sole function is to
monitor an actual physical device. Several additional processes
(known as workers) that depend on this device to work as ex-
pected may also exist. Currently, if the detector process discov-
ers a problem and raises a signal, only it can respond to that
signal. An exception will be raised only within the context of
the detector process. The worker processes are unaware that a
problem has occurred. This scenario is illustrated in Figure 1.
What is necessary is to also have the worker processes re-
spond to that raised signal. If the detector process detects a
problem in its device and raises a signal, an exception should
be raised not only within itself, but within any worker pro-
cesses that depend on that device. Each process can then re-
spond appropriately. This scenario is illustrated in Figure 2.
Without modifications to the current framework, a scenario
like this would require the detector processes to know all pro-
cesses that depend on their devices. In keeping with the principles
of encapsulation and proper distribution of behavior, it is not wise
to have either the detector processes explicitly know enough
about worker processes or the worker processes explicitly know
the detector processes. In either case, changing the implementa-
tion of the detector or worker processes may affect the other. For
example, if an additional worker process were necessary, the de-
tector process would have to be modified to know about it.

PROBLEM SOLUTION
To provide the mechanism for many device-dependent pro-
cesses to be interested in the raising of one signal from an inde-
pendent detector process, a new handler method, as well as a
new instance variable, was added in signal. The new method is
called onException:do:, and it employs this new instance vari-
able (called dependentProcesses) to keep track of all interested
processes. The invocation of this method is similar to that of
Signal>>handle:do: and is described as follows:
aSignal

onException: [:exception | "handling code"]

do: ["code for which the above handler applies"]
The implementation of onException:do: differs from handle:do: in
that onException:do: simply adds the active process as a depen-
dentProcess of the receiver signal, then invokes handle:do: to exe-

cute the do: block. Upon returning from this execution, the ac-
tive process is removed from the signal’s dependentProcesses, The
implementation of Signal>>onException:de: is described below:
onException: exceptionBlock do: doBlock
"Execute the code in the doBlock. If the receiver
is raised in any process, it will also be raised in
the dependent processes."
|result currentProcess |
[self addDependentPracess:
(currentProcess := Processor activeProcess). result :=
self handle: exceptionBlock do: doBlock]
valueNowOrOnUnwindDo:
[self removeDependentProcess: currentProcess]. ~result

To make use of the processes captured by Signal>>onException:do:
as dependents, a new kind of exception class was created called
MultiprocessException. In addition to providing normal exception
behavior, this new exception subclass caches a collection of pro-
cesses in an instance variable called interruptProcesses. These pro-
cesses are all those on which the raising of the signal depends.

Now, if the specific signal is raised during the execution of
the above do: block, the execution of the do: block is inter-
rupted. Depending upon the existence of dependent processes,
either an exception or a MultiprocessException is created by the
signal. If handle:do: was originally employed as the handler,
then a normal exception will be created upon raising the signal.
If onException:do: was employed, then a MultiprocessException
will be created. In either case, the new exception is then raised.

Raising a MultiprocessException causes each of its interruptPro-
cesses to handle a new exception. This is accomplished simply
by setting the interruptProcesses of the new MultiprocessException
to the signal’s dependent processes at creation time. When the
MultiprocessException is raised, it interrupts all of its interruptPro-
cesses with a block raising a new exception (based on the param-
eters set before the raise). As soon as each process is interrupted
with this exception-raising block, it stops normal execution and
begins executing its own exception handling block.

To accomplish this process-interrupting behavior, several
exception methods had to be overridden in MultiprocessExcep-
tion, most notably raise. Its implementation is described below:

raise

"Raise the receiver by raising a new Exception based upon
the receiver in each of its interrupt processes."
self interruptProcesses do:
[:eachProcess | | interruptBlock |
"Create the block to be sent to eachProcess."
interruptBlock := Processor activeProcess == eachProcess ifTrue:
[[self newException raise]]
iffalse:
[[self newException
searchFrom: eachProcess suspendedContext; raise]].

"Interrupt eachProcess with the interruptBlock."
[eachProcess interruptWith: interruptBlock] fork]. super raise

The explanation of this method is divided into three parts:

* Creation of the interrupt block for each interruptProcess. A
block of code must be created with which to interrupt each-
Process. The code in this block must first create a new ex-
ception, then it must verify that the exception starts its

6

Tue SMALLTALK REPORT

search from the correct initial context, and, finally, it must
raise the exception. The only difficulty was to decide what
was the correct initial context. If eachProcess is the active
process, then the exception created by newException is auto-
matically initialized with the correct initialContext. If each-
Process is not the active process, then its suspendedContext is
the correct initialContext and must be set (via searchFrom:).

Interruption of each interruptProcess. Once the correct inter-
ruptBlock is created, then it is a simple matter to interrupt
eachProcess (via interruptWith:) with the block.

Invocation of super raise. The implementation of raise in
exception must be invoked in case the active process is in
normal exception handling mode (via handle:do:). If this is
the case, then the normal method of finding the handler
and raising the exception must be preserved.

A simple example illustrating this enhancement follows:

[Object errorSignal onException:
[:ex | Transcript cr; show: 'Handling exception']
do:
[Transcript cr; show: 'Delay started'.
(Delay forSeconds: 5) wait.
Transcript cr; show: 'Delay ended']] fork

Execution of this block of code will result in a process being
created. This process will show 'Delay started' in the transcript
window, followed by 'Delay ended' after five seconds. If object
errorSignal is raised (via 'Object errorSignal raise') in any running
process (including this one) during the five second delay, then
normal processing would be interrupted in this process and its
exception handling block would be invoked, thus producing
'Delay started' in the transcript window, followed by 'Handling
exception' after a delay of under five seconds.

At this point, we have discussed some general background
on the process and exception handling frameworks as provided
by the vendor, as well as a problem that arises when multiple
concurrently executing processes are necessary and our solu-
tion. In part 2 of this article, we will describe an additional
problem and our solution, including some simple examples.
Also, we will provide an extensive example that incorporates
both types of extensions.

References

1. ParcPlace Systems, Inc. Objectworks\Smalltalk” User’s Guide,
Chapter 8, 1992.

2. Hinlde, B., and R.E. Johnson, Taking exception to Smalltalk,
part 1. THE SMALLTALK REPORT, 2(3),1992.

3. Hinkle, B., and R.E. Johnson, Taking exception to Smalltalk,
part 2. THE SMALLTALK REPORT, 2(4),1993.

4. Pyle, 1.C. THE ADA PROGRAMMING LANGUAGE. Prentice Hall,
Englewood Cliffs, NJ, 1981.

Ken Auer is the Director of Development Services at Knowledge
Systems Corporation, Cary, NC. He can be reached at
919.481.4000 or kauer@ksccary.com. Barry Oglesby is a member
of the technical staff of Knowledge Systems Corporation. He can
be reached at 919.481.4000 or boglesby@ksccary.com.

e /TNow supports- e N
/" Digitalk's PARTS
ParcPlace’s Smalltalk-80 /
~. e
%‘"—ﬁ" o L
ODBMS

The Objectoriented Database

O Persistent Object Storage for Smalltalk
O Handles Complex Data Types
O Object Ownership, Versioning, Security,
and Object Distribution
O Programmer and Enduser Versions
O Stand Alone or Network Configuration
O Database Classes licensed for
OEM Distribution
O Support for ParcPlace Smalltalk-80

Add-on Applications
8 DSSDe SourceCode Management
O Interface to SQL-Classes -
O Support for Digitalk’s PARTS

ODBMS
Objectoriented Technology by
VC Software

USA: VC Software Inc., Three Christina Cenore, 201 N.Walnut Street, Suite
1000, Wilmington, DE 19801 <> Other Countriecs: VC Software Consoucton
GmbH, Petritorwall 28, 38118 Braunschweig, Germany, Tel: +49-531-24 24 00,
Fax: +49-531-24 24 0-24

JANUARY 1994

MALLTALK IDIOMS

Kent Beck

Death to case statements, a2

oldonasec....
H Before I finish bashing case statements, I'd like to

return to the scene of an earlier crime, my perfidious
assault on that bastion of Smalltalk orthodoxy, the ubiquitous
accessor method. (Whew! That’s a ten-buck sentence if I ever
seen one.) I argued that the violation of encapsulation provided
by accessor methods more than offset any benefit of inheritance
reuse. I talked to several readers at OOPSLA who were offended
by that column, although no one wrote me directly. Well folks,
none of those beer-soaked conversations convinced me differ-
ently in Washington, and a couple of recent events leave me
even more sure that insisting all variable access go through a
message is a bad idea.

Here’s the basic problem: Beginners don’t get the message
that accessor methods should be private by default. They hear
the rule, access variables only through a message, and they think,
“Great, here’s one thing I can do to make sure I'm not messing
up.” They’re using their new object and they say, “Hey, if I just
had that variable over there I could solve my problem.” Next
thing you know, representation decisions have leaked all over,
none of the objects have grown the behavior they need, and
progress slows to a crawl.

I was at a client recently where they had misused accessor
methods all over the place. The biggest problem was in chang-
ing collections behind the owning object’s back. They wrote
code like this:

Schedule>>initialize
tasks := OrderedCollection new

Schedule>>tasks

~tasks
Then in user interface code they would write:
ScheduleView>>addTaskButton

model tasks add: newTask

The problem with this code is that it assumes that tasks returns
an object that responds to add:. If they changed the representa-
tion in Schedule to store tasks as a Dictionary instead of an Or-
deredCollecton, the ScheduleView code breaks. The implementa-
tion of Schedule has leaked out, and that’s exactly the kind of
problem objects are supposed to help us avoid.

Later on in this same assignment, the horror that accessing
methods are there to avoid happened to me—I changed an in-

stance variable so that it was lazily initialized. I had to change all
those methods that directly accessed the variable so they sent a
message instead. It took me all of three minutes and I was done.

The point here is not that accessor methods are useless.
There are definitely cases where judicious use of accessors can
improve code. However, teaching beginners always to use ac-
cessors before they are able to understand the need to keep
some methods private avoids reuse problems far down the road
at the cost of encouraging them to violate encapsulation.

Enough about accessors. If you don’t agree, let me know. I'd
love to see a reasoned discussion of this issue, since accessors
are accepted as an article of faith by so many people, and I see
lots of bad code being written while adhering to the letter of the
“accessor law.”

The real purpose of this article is to complete my thoughts
about case statements from last issue. QKS’ SmalltalkAgents has
introduced a case construct. I’m making the argument that case
statements in an object language are superfluous, and they pre-
vents discovering important new objects. Rather than just com-
plaining about case statements, though, I'll show you how to
turn a situation that uses case logic into a richer use of objects,
(This is typical of patterns: They don’t just describe a good or
bad situation, they tell you how to get from bad to good.)

PATTERN: OBJECTS FROM STATES

Problem

Parallel case statements are a maintenance nightmare. Chang-
ing one instance of the case without changing the others can
lead to subtle bugs. How can you use objects to eliminate case
statements?

Constraints

One of the goals of any programming activity is not to intro-
duce any more complexity than necessary. Creating methods
and classes that don’t have any payoff is a common program-
ming mistake. The solution to the case statement problem
should create only new classes and methods that pay for their
existence with reduced maintenance, improved readability, and
increased flexibility.

The solution must eliminate the case logic that causes main-
tenance problems. Why are case statements a problem? Essen-
tially, multiple case statements with the same cases introduce a
multiple update problem. You can't correctly change one state-

8

THE SMALLTALK REPORT

ment without changing all the others, and this relationship is
entirely implicit. While you might be able to keep track of
where all the cases are today, a year from now you (or worse,
someone else) will have to know to look for them all, and know
where to look.

Finally, the solution should set the stage for further growth
of our objects. Some of the most valuable objects you can find
are the ones that are not obvious from the user’s view of the
world. These are the objects that structure not the world, but
our computational model of the world. (Other patterns like this
are Objects from Collections, Objects from Instance Variables,
and Objects from Methods). Taking advantage of the appear-
ance of case logic should make programs more explicit and
more flexible.

Solution

Make an object for each state. Make a variable in the original
object to hold the current state. Move the logic in each case
into the corresponding state object. Delegate to the current
state instead of executing in the original object. Make the state
changing methods assign a different state object to the state
variable.

Example: Consider a visual object that can be in one of three
states: enabled, disabled, or invisible. The state is represented by
storing a Symbol in the variable state. A couple of the methods
might be:

Visual>>display

state = #enabled ifTrue: [...display enabled... .

state = #disabled ifTrue: [...display disabled... .
state = #invisible ifTrue: [...do nothing...

Visual>>extent
state = #enabled | (state = #disabled) ifTrue: [*40@40 .
state = #invisible ifTrue: [*0@0 .

Visual>>enable
state := #enabled

Visual>>disable
state ;= #disabled

Visual>>disappear
state := #invisible

Applying Objects from States, we first make an object for each
state:

EnabledVisual, DisabledVisual, InvisibleVisual, subclasses of Object.

We can use the variable state to hold an instance of one of
these. Moving the logic into the state objects yields:

EnabledVisual>>display
...display enabled...

EnabledVisual>>extent
~40@40

DisabledVisual>>display
...display disabled...

DisabledVisual>>extent
~40@40

InvisibleVisual>>display
"Do nothing"

InvisibleVisual>>extent
~0@0

Then Visual has to change to invoke the state:

Visual>>display
state display

Visual>>extent
“state extent

Finally, the state-changing methods have to change.

Visual>>enable
state := EnabledVisual new

Visual>>disable
state := DisabledVisual new

Visual>>disappear
state := InvisibleVisual new

Other patterns

After you’ve applied Objects from States, you may have to use
Delegate or Call Back to fully move each state’s logic into the
state object. You may be able to use Factor a Superclass to sim-
plify the implementation of the states and prevent multiple up-
date problems.

CONCLUSION

This and the previous column have shown how to eliminate
most uses of case-type logic. The remaining examples of case
statements don’t appear frequently enough to justify a new lan-
guage construct. The power of Smalltalk lies primarily in its
simplicity, out of which richness can grow without undue com-
plexity. Every new feature must pay for itself by solving a prob-
lemn affecting a large part of the community. On this grounds,
case statements just don’t cut it.

What's next? In this pattern, I referred to several others that
created new objects. I think I'll spend at least a couple more
months exploring this theme. See you in the next issue with the
second installment of “Daddy, where do objects come from?” @

Kent Beck has been discoi)ér-ir-tg Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPar Computer. He is also
the founder of First Class Software, which develops and distrib-
utes reengineering products for Smalltalk. He can be reached at
First Class Software, P.O. Box 226, Boulder Creek, CA 95006-
0226, 408.338.4649 (voice), 408.338.3666 (fax), or 70761,1216
on CompuServe.

JANUARY 1994

ETTING REAL

Juanita Ewing & Steve Messick

Techniques for platform independence

his article discusses techniques for writing platform-

independent applications and class libraries. The tech-

niques we discuss are useful for modeling environmen-
tal changes that affect your application. For example: operating
system facilities that vary from platform to platform, window-
ing libraries for Windows and OS/2 Presentation Manager, a
database connection that varies depending on the network
configuration, archiving libraries that use either PVCS or Ora-
cle for storage, a color model that depends on the current out-
put device and even Smalltalk platforms such as Smalltalk/V
and Objectworks\Smalltalk. These techniques could also be
useful as part of a system that models user-experience level.

One way or another, all the techniques in this article are
based on polymorphism. They rely on client objects sending
messages to platform-dependent objects. The client always
sends the same messages, which is where polymorphism comes
into play: Every platform-dependent object must understand
those messages. Thus, during both the design and implementa-
tion phases, it is important to think about the set of public mes-
sages for objects and the requirement for polymorphism.
This article will refer to classes providing platform services

as library classes, and the client classes that use these classes as
application classes.

INTERCHANGEABLE CLASSES

Two library classes with the same set of public messages can be
used to interface to two different platforms. Because they have
the same set of public messages, they are interchangeable.
Often, it is convenient to arrange these classes as subclasses of a
common superclass because inheritance supports common be-
havior. The superclass contains common messages, and docu-
ments requirements for creating additional subclasses. Often,
the superclass is abstract, meaning there are no instances of it.
For a discussion on creating abstract classes that are based on
similar concrete classes, (see “Abstract classes,” THE SMALLTALK
Reponr, Vol. 3, No. 2).

The currently appropriate platform-dependent class is
known as the current class. This is usually a concrete class, a
class that can have instances. Because the current class changes,
it must not be directly referenced by clients. Let’s look at several
alternatives for indirectly referencing the current class.

How do application classes reference the current class? Be-
cause the class may change, depending on the environment, ap-

plication classes cannotreference the current class by name
(Figure 1). At compile-time the current class is not known. In-
stead, application classes must reference an indirection to the
current class, so that the current class can be replaced.

Some class libraries use a global variable to refer to the current
class (Figure 2). Application code indirectly references the current
class with expressions like CurrentDatabaseInterface cancelConnec-
tion, which cancels the connection to the current database. In
most cases, a variable that is global in scope is not necessary.

An alternate solution is to ask the abstract class for the cur-
rent subclass (Figure 3). A class instance variable or class vari-
able can be used to hold the actual reference. This solution pro-
duces expressions like DatabaseInterface current
cancelConnection. A message to the abstract class to retrieve the
current class is better than a global variable because:

+ The functionality is clearly related to the class.
« The abstract class is already in the global namescope.

* The abstract class is usually named so that its purpose is ob-
vious to clients.

* The use of a class message keeps all related functionality in a
nice neat bundle that is easier to share and maintain.

Using interchangeable classes, we discuss three approaches to
portability, each appropriate for a different set of assump-
tions. The approach you select will be based on the specifics of
your situation.

MICRO-LAYERING
In the micro-layer approach to portability, we recognize that
the developer must make a portable version of a library class,
without changing its public interface. One of our goals is to
make the library class itself as portable as possible. The require-
ment is to extend an existing class to accommodate multiple
platforms. We cannot make a new class to replace the existing
class without affecting clients of the existing class.
Assumptions for the micro-layer approach are:

* The library class must be made portable.
* Clients must not be affected.

We can, however, introduce a new, non-portable class that iso-
lates the platform dependencies of our library class. Then we
rewrite the library class methods to use the non-portable class to

10

THE SMALLTALK REPORT

perform host-dependent operations. By moving platform-
dependent code into a non-portable class we’ve done two things:

« Eliminated the need to change any public protocol under-
stood by the library class

* Provided ourselves an easy way to port the non-portable code

The new class is completely under our control and can be
ported by using interchangeable classes, as described above.

As an example, let’s assume we’re creating a portable Point
class that can work with the host’s coordinate system, and that it
must work on a variety of platforms including Macintosh and
0S/2. We immediately see that coordinate system is platform de-
pendent: the x coordinate increases as we move from left to right
on both platforms, but the y coordinate increases downward on
Macintosh and upward on OS/2. To test whether one point is
above and to the left of another one, we can write for Macintosh:

Point methods

isLeftAndAbove: aPoint
"Return true if the receiver is left and above <aPoint>"
~self x < aPoint x and: [self y <aPoint y]

And for OS/2 it becomes:

Point methods

isLeftAndAbove: aPoint

"Return true if the receiver is left and above <aPoint>."
~self x < aPoint x and: [self y > aPoint y]

The different interpretation of y coordinates occurs throughout
the class and also affects other classes such as Number and Rec-
tangle. These two methods satisfy our second assumption
(clients must not be affected), but not the first, that separate
implementations are required for different platforms. Note that
most of the methods are identical; only the test of y coordinates
differs. Isolating the platform-dependent behavior in a new
class will make Point (and Number and Rectangle) portable.

Let’s introduce a class for coordinate system dependencies,
called CoordinateSystem. Using interchangeable classes, we can
design a Coordinate System micro layer for Macintosh and OS/2.
We'll call the classes MacCoordinateSystem and 0S2CoordinateSys-
tem. Both are subclasses of CoordinateSystem (Figure 4).

Since the interpretation of x coordinates is the same, we will
define the x axis protocol in CoordinateSystem. MacCoordi-
nateSystem will interpret increasing y coordinates downward
and 0S2CoordinateSystem upward. Rewriting the Point method,
we have:

Point methods
isLeftAndAbove: aPaint
"Return true if the receiver is left and above <aPoint>."
~(self coordinateSystem is: self x leftOf: aPoint x)
and: [self coordinateSystem is: self y above: aPoint y]

This method is portable, assuming the method coordinateSystem
answers an instance of the correct subclass of CoordinateSystem.
Additionally, if Point needed to be ported to a platform that in-
terpreted x coordinates increasing from left to right, it is still
portable providing a new subclass of CoordinateSystem is created.

| Abstract
! class

N

?
? Concrete
subclass
?
2 Concrete
subclass
?

Client

Figure 1. How are library classes referenced?

- Abstract
) class
Client
Concrete
subclass
Global
Variable Concrets
subclass

Figure 2. Application code sends messages fo a global variable.

/ Abstract
|
Client / class

class variable

/

Concrete

subclass Concrete

subclass

Figure 3. Application code sends messages to the abstract class.

Now let’s look at CoordinateSystem and its subclasses. We
need to define is:leftOf: and is:above:.

CoordinateSystem methods

is: FirstX leftOf: secondX
"Return true if <firstX> is to the left of <secondX>."
~firstX > secondX

is: firstY above: secondY
"Return true if <firstY> is above <secondY>>."
self implementedBySubclass

MacCoordinateSystem methods

is: firstY above: secondY
"Return true if <firstY> is above <secondY>."
~firstY <secondY

0S2CoordinateSystem methods

JANUARY 1994

11

m GETTING REAL

Coordinate

. System
Point

/

current

5

Mac
Coordinate Coggiﬁate
System
yste System

Figure 4. The major objects required to represent one standard window and one
floating window on a Macintosh.

Plattbrm
Pfga:rle > NunLZo:?bIe > Dependent
y! y! Layer

Figure 5. A portable layer that depends upon a non-portable layer for
communication with the host platform.

is: firstY above: secondY
"Return true if <firstY> is above <SecondY>."
AfirstY > secondY

MACRO-LAYERING

The micro-layer approach illustrated the use of interchangeable

classes in a microcosm. The next variation applies the same prin-

ciple on a bigger scale, as the architectural basis of entire systems.
In the macro-layer approach, we must make an entire sub-

system portable. The assumptions, as in the micro-layer ap-

proach, are:

« The library must be made portable.
* Clients must not be affected.

This is a good approach to use when developing a portable
user-interface framework. Digitalk’s Smalltall/V version 2.0 for
Macintosh uses it. A different form of it also shows up in Parc-
Place’s Objectworks\Smalltalk.

The general idea is simple: Develop a portable layer that de-
pends upon a non-portable layer for communication with the
host platform (Figure 5).

The platform-dependent layer is the service provided by the
platform that we need access to in Smalltalk. It may be a user in-
terface like Windows 3.1, a communications toolbox such as Ap-
ple’s AOCE or even a third-party product. The only requirement
is that it have a well-defined API that can be used by Smalltalk.

The portable layer implements the classes used by client ap-
plications. This is the layer most commonly used by Smalltalk
programmers. A good example is a user interface framework.
The portable classes that implement the framework can be used
by application-specific classes to define windows. The applica-
tion code is protected from platform dependencies, as long as it
uses only the portable layer, and is therefore portable.

Interfacing between the portable layer and the platform-
dependent layer is the responsibility of the non-portable layer.
This layer must do whatever is necessary to transform portable
requests, such as creating new windows, into the platform
specific requests that actually create the window. This often re-
quires transformation of data from a portable representation
into the representation used by the platform, and calling the
correct subroutines defined by the platform’s APL

To make the system run on another platform with that plat-
form’s implementation of the service, the middle non-portable
layer is ported to the new platform. If the portable layer was
implemented without relying on any non-portable assumptions
then it will work as is. Practically speaking, there may be some
code in the portable layer that will not work on the new plat-
form without modification. To ensure portability of client ap-
plications the public protocol defined by the portable layer may
not change. But applications will work just fine if the public
protocol preserves its semantics across platforms, no matter
how it is implemented.

This brings us to the issue of specifying the portable layer.
This is actually the most difficult part of creating a portable li-
brary. Since the underlying service we want to use is itself not
portable, we cannot simply look at its API and define our
portable protocol in terms of it. We have to create a framework
that can be implemented on all potential platforms. The syntax
and semantics of the framework has to be specified so that
client applications can be defined. The specification must also
define the protocol that future extensions to the framework
may and or not modify. Also, any methods that have a non-
portable implementation must be indicated. To learn more
about current research issues in object specification, see the
OOPSLA papers by Kiczales and Lamping.12

Let’s consider an example. Suppose we are creating the user-
interface framework for a family of applications for OS/2 and
Macintosh that need to use the host’s windowing system. These
applications need some “non-standard” windows that always
display on top of “standard” windows. These are sometimes
called floating windows or palettes. Looking through the OS/2
manuals, we see that this won’t be very difficult. OS/2 provides
the capability we need. However, an extremely careful reading
of INsiDE MACINTOSH reveals that we may be able to get one
window of this sort, but if we need more than one—and we
do—we’re out of luck. It turns out that we have to reimplement
a portion of the Macintosh window manager class to solve this
problem. By applying the principle of interchangeable classes to
the problem description, we can design and specify a Window-
Manager class that has implementations for OS/2 and Macin-
tosh. In our portable user-interface library we define the classes
StandardWindow and FloatingWindow to implement the two vari-
eties of window we need. These classes use WindowManager to
create and destroy windows and to make windows visible or in-
visible. We’ll also have non-portable classes, 0S2Window and
MacWindow, to implement the platform-specific window func-
tions like setting window title and size. The result is a user-
interface framework for building portable applications, and a

12

THE SMALLTALK REPORT

framework that is itself largely portable. The design includes no
inherent performance penalty for either platform.

If, on the other hand, we had tried to design the framework
based only on the OS/2 API, we probably would have arrived at
a much less portable version of the framework. It is quite likely
that our design would not have included either WindowManager
or FloatingWindow. After all, why should it? OS/2 takes care of
all the bookkeeping required. We would, of course, have Stan-
dardWindow and 0S2Window because we’re using the layering
method to isolate platform dependencies. But that alone is not
enough to ensure portability. If missing functionality must be
implemented for some platform, then the design must allow for
that. If the functionality is not part of the design, client applica-
tions will be based on a sub-optimal design, and we will be
faced with enormous backward-compatibility problems. Rather
than designing a system based on the functionality available on
a platform, we design the system to meet our requirements.

An interesting variation on the layering theme is found in
Objectworks\Smalltalk. The non-portable layer is implemented
in the virtual machine. The portable layer is implemented in
Smalltalk; it is entirely portable because all platform dependen-
cies are hidden in the virtual machine. Using this approach,
Objectworks ensures portability of the applications defined in
Objectworks\Smalltalk and also of their image file.

PLATFORM SERVER .

The last variation is a pragmatic approach that is often used to
extend the set of platforms an existing application can support.
In this approach, a platform server class is used to contain all
platform specific code that the application relies on. There is

one platform server class for each platform, providing a consis-
tent interface to platform functionality.

This can be used when an application relies on two platform
libraries that do not have an identical public interface. Our ad-
vice is to use this technique only if you do not have control of
library classes, or as a stopgap measure if you can rewrite li-
brary classes. If possible, you should refactor and expand the set
of library classes, resulting in many interchangeable classes.

Assumptions for the platform server approach are:

* Many small variations in library classes
* The developer cannot rewrite library classes

For this technique, let’s discuss an exarnple involving the platforms
SmalltalkAgents for Macintosh, and Objectworks\Smalltalk.
Suppose we have an application that must run on both. This
application requires streams and a collection that holds its ele-
ments in order. We also want the ability to do some rudimen-
tary performance analysis, and therefore need an operation that
can be used to time the execution of a block.

The way we access the required functionality is different
with each Smalltalk platform. To isolate the bulk of our appli-
cation from platform dependencies, we compartmentalize the
variations for each platform into a platform-server class. The
class ObjectworksServer is a mapping to functionality on the
Objectworks\Smalltalk platform, and the class Smalltalk-
AgentsServer is a mapping to functionality on the Smalltalk-
Agents platform.

Let’s examine a sample of methods from the server classes.
Methods that identify an appropriate class, such as the method
orderedListClass, are useful when two platforms have similar

ObjectworksServer methods

ObjectworksServer methods
orderedListClass
"Return a class that holds its elements in order.”
~OrderedCollection
readFrom: aStream through: anObject
"Return a collection of elements read from <aStream>, starting
from the current stream position up to and including <anObject>_"

~aStream through: anObject

timeToExecute: aBlock
"Return the number of milliseconds to execute <aBlock>."

~Time millisecondsToRun: aBlock

SmalltalkAgentsServer methods

SmalltalicAgentsServer methods
orderedListClass
"Return a class that holds its elements in order."

~List

readFrom: aStream through: anObject
"Return a collection of elements read from <aStream>, starting
from the current stream position up to and including <anQObject>."

| throughCollection |

throughCollection := aStream upTo: anQbject.
throughCollection add: aStream next.
*throughCollection

timeToExecute: aBlock

"Return the number of milliseconds required to evaluate <aBlock>,
rounded to the nearest ms. The computation is at best approximate
because the basic unit provided by Apple is a tick (1/60 s)."

| timer startTime |

timer := ClockDevice new.

startTime := timer ticks.

aBlock value.

~timer ticks - startTime * 100+3 // 6

JANUARY 1994

13

a GETTING REAL

classes with different names. It can also be useful to help iden-
tify dependencies and collaborations.

Ordinarily, when operating on an object, we send messages di-
rectly to the object. When we provide a mapping to that function-
ality in a platform server class, we must send a message to the
server class. The original object becomes an argument. The mes-
sage readFrom:through: provides an operation on a stream, but it is
a message sent to the server class with the stream as an argument.

|
66
One way or another, all the
techniques in this article are based
on polymorphism.)

Sometimes the server class will end up implementing func-
tionality that is simply not present on one of the platforms. The
message timeToExecute: is a mapping to existing functionality
for Objectworks\Smalltalk, but it is new functionality for
SmalltalkAgents.

DYNAMIC VS. STATIC

There is another issue, orthogonal to variations on interchange-
able classes, that deserves discussion. This is the issue of how
applications can be configured.

If an application runs on one platform at a time, developers
can use configuration management tools to build applications
with the appropriate platform-dependent classes. The result is
several versions of an application, one for each platform. We
call this situation a static configuration, and do not discuss it in
detail. There are several commercially available tools for
configuration management of Smalltalk applications such as
Team/V and ENVY Developer.

If the application must run on multiple platforms, develop-
ers can design their application to dynamically support the ap-
propriate one. In this situation, called a dynamic configuration,
the result is one version of the application that includes all plat-
form-dependent classes.

SETTING THE CURRENT CLASS
There are several different ways of installing the current platform-
dependent class. The exact mechanism depends on how often the
environment changes. Does the current class potentially change
every time it is accessed, or does the default change less frequently?
Some classes are installed when Smalltalk is started. In
Smalltalk/V for Macintosh, any object can register for
notification when Smalltalk starts with an expression like this:

SessionModel current
when: #startup
send: #setCurrent
to: PlatformInterface

The setCurrent method includes an expression to set the current
class. We use the class ServiceRegistry to identify the current
platform. The method setCurrent is implemented by the class
PlatformInterface.

setCurrent
"Set the current platform interface class based on thecurrent platform."

| platformName |
platformName := ServiceRegistry globalRegistry
serviceNamed: #PlatformName
ifNone: [*self installStub].
platformName = 'Macintosh'
ifTrue: [*self current: MacPlatformInterface new].
platformName = '0S/2'
ifTrue: [*self current: 0S2PlatformInterface new].
platformName = 'Windows'
ifTrue: [*self current: WindowsPlatformInterface new]

Another strategy is to wait until a current class is requested and
then determine the current class if necessary:

current
"Answer the interface used by the current platform."

Current == nil
ifTrue: [self setCurrent].
~Current

Even with this strategy, the old current class must be flushed at
some appropriate time, such as image start-up, so that the cur-
rent class will be installed when the class is accessed. This expres-
sion should be executed sometime during application start-up:

PlatformInterface flushCurrent

CONCLUSION

Developing platform independent applications means more
than writing code for different hardware platforms such as
Macintosh and IBM PCs. Different software platforms can also
be addressed with the same techniques.

Carefully consider all possibilities for extension of your ap-
plication while choosing design and implementation tech-
niques. If you follow the approaches laid out in the article, it
will be much easier to move your application from one plat-
form to another. There are, no doubt, other interesting tech-
niques that can be used to ease the task of porting between plat-
forms, We'd like to hear about them. Send descriptions of your
own practices to juanita@digitalk.com. &

Juanita Ewing and Steve Messick are senior staff members at Dig-
italk Professional Services, 921 SW Washington, Suite 312, Port-
land, OR 97205, 503.242.0725.

References

1. G. Kiczales and J. Lamping. Issues in the Design and Specification
of Class Libraries, OOPSLA ’92, Vancouver. pg.435-451.

2.). Lamping. Typing the Specialization Interface, OOPSLA ’93,
Washington, pg. 201.

14

THE SMALLTALK REPORT

RODUCT REVIEW

Jan Steinman ¢ Barbara Yates

Shoot-out at the Mac corral, part2

was introduced for IBM PCs and compatibles. This
product grew into the Smalltalk/V product family that
now largely dominates the IBM-compatible Smalltalk market.

Along the way, a specific need for a Macintosh product
arose, and the first Smalltalk/V-Mac, built largely from ac-
quired technology, shipped in November 1988.

As corporate MIS departments discovered Smalltalk, and
IBM itself endorsed it, more and more effort went into en-
hancing and refining Digitalk’s IBM-compatible line, while
the Mac version went through only two minor “bug-fix” up-
date cycles, culminating in June 1991 with version 1.2, which
sold for $199.95.

In 1992, Digitalk acquired Instantiations, a Smalltalk con-
sulting company largely derived from the remains of the dis-
banded Tektronix Smalltalk product group. This Portland,
OR-based group brought extensive knowledge of both 680x0
Smalltalk virtual machine implementation and Smaltalk-80 vir-
tual image internals.

It is not surprising that this flow of history should lead up
to August 1993 and the first major upgrade of Smalltalk/V-
Mac since its introduction. Version 2.0, while overdue, is im-
pressive: it boasts about three times as many classes and meth-
ods as were in 1.2. Although the price has increased by a
similar factor to $495, it is probably still the least expensive
commercial Smalltalk available today—especially if it is still
available at the upgrade price of $195 that was in effect at the
time this was written.

Part 1 of this series (THE SMALLTALK REPORT, Vol. 3, No. 3)
described a new and original Smalltalk implementation,
SmalltalkAgents, from Quasar Knowledge Systems. (A brief up-
date on their progress appears in this article.) Also available for
the Mac is Visualworks\Smalltalk-80 from ParcPlaceSystems.

(For convenience, the three dialects will be referred to as
STA, ST-80, and ST/V, respectively. Unless otherwise noted,
use of “ST/V” refers only to the Mac 2.0 version, not the other
products in the Digitalk stable.)

3 bout ten years ago, a Smalltalk product called Methods

HIGHLIGHTS AND CHANGES

Unfortunately, we must begin the feature list with an omission.
There are no release notes and no concise description of the
differences between version 1.2 and 2.0. Those already familiar
with ST/V will quickly spot major additions, but many small

improvements—and incompatibilities with version 1.2—await
discovery. This makes it difficult to plan a port; it would be nice
to know concisely what had changed, so that one could scope
the porting effort.

Among a long list of long-awaited features claimed by Dig-
italk for version 2.0 are: DAL/DAM SQL, 32-bit color Quick-
Draw, QuickTime, Balloon Help, and AppleEvents. We’ll look
at just a few new things in detail.

WINDOW INSPECTOR

A new specialized Inspector for windows is available on the
Window menu. This is a useful tool that many people end up
building themselves—we’d like to see in all dialects of
Smalltalk. It eliminates the need to open many levels of Inspec-
tor to figure out what is going on in the application window
you are developing (Figure 1).

CLASS HIERARCHY BROWSER

The Class Hierarchy Browser has a different arrangement of
panes and buttons, but otherwise it appears to be similar to the
one in 1.2. One pane lists the local and inherited instance and
class variables of the class. Selecting in this pane filters the
methods list to accessors and setters of the variable. Clicking
again on a list selection does not deselect it, so it is not obvious
how to unfilter the methods list.

Find Class in the Classes pane now works with wildcards,
but it is fussy. When searching for window classes, *wind*,
windo, *window*, *window, and *Window were all rejected with
the same message: Please enter a more specific pattern. This was
frustrating, and not very useful!

The access to the senders or implementors of a message in
a selected method requires more menu actions in 2.0 than in
1.2. We found the extra steps annoying, and we disliked hav-
ing to have an extra window open to get to the information
we wanted. Developers with small screens will really notice
this difference, although ST/V is still more screen-efficient
than STA.

Text automatically word-wraps in code panes. This feature
is replaced by horizontal scroll bars for any window in which
the user turns auto-wrapping off. ST/V’s non-word-wrapped
heritage is irritatingly apparent—method comments are for-
matted wider than the default window width, which makes for
difficult reading.

JANUARY 1994

15

m PRODUCT REVIEW

WORKSPACES

Temporary variables are automatically
generated for code written and exe-

(All classes have comments as a

cuted in workspaces. (This is obvi-
ously part of the new Tektronix her-
itage—wherever two or more former
Tek Smalltalkers gather, they bemoan

Stream...) activh_"method” on the class side, -

TypeRegistry @ canTriggerEvent: —

LindefinedObject eventsTr .

Menwing — visual .} dif Local and inherited instance and clas\
TexTwindow Unconnect.... variables; selection filters the selector:

the lack of workspace variables!) An-
other improvement is that workspaces
saved to a file and later reopened re-

lers

i Dictionary mapping event nomes to

‘h list to setters and gelters.

[

J

tain their text fonts and emphasis.

' Window Inspector S ===

Unfortunately, along with the im- A superciass of CodePane; Y Invisible L] Invisible parent
: laree i - defines <handlers> instance var{ablgld Inactive [1Inactive parent

provements come a large increase in —— REAToBuTToh %% 0 Dimmed [J Dimmed parent

the amount of time it takf:-s to open a RadioButton self 6] | dent ityDict iona

workspace from a file. This exceeds a gl ListPane handlers_ ry(Hessage(setCo

10:1 performance decrease in certain — VerticalScrollBar connection ntents:)

situations we encoundered. ListPane properties Message(accept :)
VerticalScrollBar clickTime & (MacPointer

evers—a rosowse el | ELA - b

The classic Smalltalk idependents HorizontalScroll . L=, ¢l ::I:S"-”ff 16r5B0E4 value:

changed/updatet mechanism of user) cronty N 1&f {MacPointer

interaction is showing its age, and

Smalltalk developers are clamoring for
event-driven operation. ST/V-Mac 2.0

A W 4
Inspector on the ExternalDataStructure tF
is the CodePane’s connection lo the OS.

uses a strategy for change initiation
and propagation that may be simpler
to program than the classic depen-
dency mechanism.

The advantage of true event handling is that polling of user
interface components is hidden, ideally by direct use of operat-
ing system services. Rather than polling the state of input de-
vices and locations in Smalltalk code, user actions and other
system happenings spontaneously result in the evaluation of
Smalltalk expressions.

Apparently, this is not quite the way ST/V operates—it still
has a single bottleneck Smalltalk Process that gathers and dis-
patches operating system events, so the differences tend to be
syntactic rather than semantic.

Perhaps the worst way to try to attempt to understand the
ST/V event dispatching is the way we initially tried. Merely
browsing the code of Application and related classes does not
quickly reveal how to use ST/V event dispatching effectively.
This is the approach of those who are unused to having in-
depth documentation!

Those who are used to ichanged/updatei event dispatching
may want to start with the tutorial in Chapter 9, even if they
normally do not do tutorials. The tutorial in Chapter 10 also
looks at building your application window and setting up
events. Next, an examination of the Application class in the En-
cycLoPEDIA OF CLASSES, combined with a reading of the pro-
gramming reference chapters (6 and 7), will rapidly add to
your understanding of setting up, triggering, and responding
to events.

At this point, browsing the code of existing Application sub-
classes is fruitful. Eventually, the serious Smalltalker will want

Figure 1.

to memorize Appendix C, or at least make up a icheat sheeti
from it,

To maintain one paradigm between user-initiated object
change and other abject changes, ST/V ‘events’ replace the
generic update sent to all dependents of the object receiving
changed. This somehow feels less object oriented—previously,
an object’s dependents decided whether they were interested in
that object’s happenings at runtime; now the object must regis-
ter for specific happenings, thus weakening the traditional
model/UI division of responsibilities. ST/V makes this differ-
ence a bit less onerous for pre-2.0 applications by configuring
an event and action when an application receives the addDepen-
dent: message, providing some compatibility for many cases.

Are events, as implemented in ST/V, a good thing? They are
undoubtedly valuable for capturing user actions, but they can
certainly be abused. We can’t say that the result is easier to un-
derstand, debug, or maintain than the classic “changed/update”
mechanism, and it may prove less flexible in complicated situa-
tions, but it is probably simpler to program in most cases.

Either way, developers porting to 2.0 will not be able to ig-
nore events, since they are firmly embedded in the application
architecture. Perhaps some third-party user interface builder
will come to the rescue and provide more support for putting
events in place.

BETTER DOCUMENTATION
The package includes three manuals: TuToRIAL, PROGRAMMING
REFERENCE, and ENcYcLoPEDIA OF CLASSES,—about 2-1/2

16

THE SMALLTALK REPORT

Should | Use Smalltalk/V-Mac 2.0?

STV is not the best choice.
ST-80 does this extremely
well, Consider using ST-80.

platform compatability L35

isimmediate concern

Digitalk is becoming increasingly attentive to portability issues.
Expect dialects of ST/V to grow closer, bul it will lake time.

portability with other ST/ base classes are fairly

: portable with ST-80, but anything
Smalltalks requ"ed non-trivial will require some effort.
OS dependent classes may take
. m considerable effort and Ul classes
: : ; may require a re-write, even
; Consider using STV. among ST/V dialects.
performance is ST/V finishes at the bottorm on low-level
major concermn benchmarks. However, Digitalk now has
acquired 680x0 Smalfialk VM experience;
m future releases should improve, and
low-level tests may not reflect your use.
Consider using ST/V.

working with ateam [{[8] Consider STV. s single-user
facilities are generally good.

YES

There is no credible groupware available for ST/V-Mac at this
time. Although there will undoubledly be a Team/V port, the
present lack of tools means rigorous procedures and conventions :
will be necessary to use ST/V-Mac in a team environment. '

Consider STV. It will undoubtedly

robust environment [J[§] ¢ _ :
improve with subsequent versions.

is immediate factor
YES

We and others we communicated with experienced numerous bugs and
. crashes. Although it is called “2.0," this release is a major re-wrile, and
. we feel it is of similar stability to SmalltalkAgents, a brand-new produci.

Consider using STIV. Its toolset is

rich foolset required [[8)
much better than ST/V-Mac 1.2.

YES

ST/V cannot yel compete with other Smalltalk's tools. It lacks a GUI
builder, programming fools lack features found in other Smailtalks, and
there are no third-party tools available yet. This will change, but it will take
time.

EC-Charts EEE3

Add charts to your VisualWorks palette

Dynamic Add or change data points, with minimal screen repainting.
Add or remove data serics toffrom the chan.

Imteractive Sclect data points with the mouse—EC-Charts informs
vour application.

Uses screen space effectively
Scroll the chart view in one or hoth
directions. Mark values of summary
functions in the
axis arcas. Show
thresholds using

TR

B

T
t . e grid lines,
New Vaux Sta
v PR in ifflans of dollars .
I I':l ' 1 “I - IH[0% 0% 02t 03T O+
I L:I : p‘ll Ir l_ﬂl lrr " ':_J‘H

A Tolal budget 4 Total aid 1c

P
v $350

No runtime license lee
Call for a technical paper
on EC-Charts

VisuaWaorks is a trademark
of ParcPlace Systens, inc.

[xl (II“ Sr;“\\ e
(408) 462-0641

21137 East Cliff Dr - Santa Cruz - CA 95062

times more material tan found in the 1.2 manual. We found the
encycopedia’s methods index useful as a reference for standard-
izing selector names. The reference book is well-written, and its
appendix on events is a valuable condensation of events infor-
mation. Another nice section, especially for beginners, is the
glossary, which defines most of the terms used throughout the
documentation.

Finally (and perhaps most importantly), all of the methods
we looked at had comments. A method on the class side called
COMMENT is used to provide class comments. Although using a
special method for class commentary is somewhat of a hack,
the fact that there is commentary is an area in which ST/V beats
both STA and more recent additions to ST-80.

EXCEPTION HANDLING

One reason some choose ST-80 is its flexible exception han-
dling mechanism, since ST/V had none. Digitalk now has
something similar to the PPS context-unwind/marked-method
exception mechanism, but they made it somewhat easier to use,
at the expense of being somewhat more difficult to create spe-
cial cases. For example, both exception systems have a special-
purpose do-this-thing,-and-then-whatever-happens,-make-
sure-to-do-this-other-thing mechanism, since that is a useful
way of releasing external resources such as files. In ST-80, the
mechanism involved leaks through into the method selector;
you need to use the rather unwieldy method:

[statement with possible error] valueNowOrOnUnwindDo:
[statement that always executes]

ST/V uses the simpler, more intuitive:

[statement with possible error] ensure:
[statement that always executes]

Likewise, a block that is only executed when some other state-
ment has a problem is invoked using valueOnUnwindDo: in ST-
80, and ifCurtailed: in ST/V.

Like ST-80, ST/V also has a more general exception mecha-
nism, using a block-centered, class-based approach, rather than
the Signal-centered, instance-based approach pioneered in ST-
80. For example, in ST-80:

JANUARY 1994

17

PathBrowser
— a trace and documentation 1ool for Smalltalk

Eliminate the need 1o bring up multiple windows to follow
an execution path. By using the PathBrowser you can
quickly browse the message (low an evenl creales across
multiple classes, from a single window. Select the classcs
to be traced, or have the PathBrowser automalicully gen-
erate the class list based on a primary class. Then you
need only enable the lrace, creale the evenl, & voila!

Fle Edi Smafllale Projects Tasks Irace

FiberP acknge select .Table class>>createTable:column,
lrace ;]l'.—".* ..Table class>>new L
ReportGenerator ...Table>>Inltlalize
baseLine ...ColumnDictlonary class>>new
GroupBy _l.....ColumnDictlonary>>initlalize
Insertliem
selectExecutl ..Table>>retColumns:

...ColumnDicrlonary>>addVarNam

fname: LableName
"'set tuble name"
(Cadalog IncludesKey: tableName)
IMTrue: [Catalog removeKey: tableName].
tname := tableName,
Catalog at: LableName put: self.

Browselt Software

PathBrowser for Digitalk (Win OS2 Win32) 99 Tel: (303) 730 - 0806
PathBrowser lor ParcPlace VisualWorks $149 Fax: (303) 730 - 0812
Site licenses & educational discounts. Money back 30 day guaraniee

m PRODUCT REVIEW

Number divideByZeroSignal
handle: [:exception | exception return: 0]
do: [x/y]

returns zero if y is zero, whereas in ST/V:

[x/v]
on: ZeroDjvide
do: [:exception | exception exit: 0]

does the same thing, using analagous components. ST/V is sim-
pler to use in simple cases, but requires more work to set up
new exceptions, since they must be coded as complete classes.
In ST-80, new exceptions are very simply coded in the class
protocol of objects that will be generating them, but are there-
fore not global, making the user of them work a bit more to
protect a block of code.

STA uses a completely different approach, which requires
exceptions to be coded as compiler directives. This may be the
easiest of all to use, but the STA exception mechanism was un-
documented at the time of this review; this opinion is based on
browsing examples in the STA image.

SUPPORT

Digitalk provides well-regarded suport through their Com-
puServe forum. They announce all patches and bug fixes, and
allow downloading to registered licensees. This again shows
Digitalk’s strong PC/clone bias—Mac users are more likely to

be on America Online, AppleLink, or Usenet than Com-
puServe. We've seen grumblings in the Usenet Smalltalk news-
group about CompuServe usets getting more attention than In-
ternet users.

For example, until we asked about the availability of
patches, we had no way to know they existed. We were fortu-
nate to have personal contacts among the team responsible for
ST/V (special thanks to Pat Caudill, the ST/V-Mac project
leader), so we got good response when we inquired about bug
fixes. However, we can’t write from firsthand experience
about general responsiveness of technical support for ordinary
customers. We also do not know how the typical customer
finds out about the availability of bug fixes, other than via
CompuServe—we have been licensed for ST/V-Mac since
1990, and were only notified of major upgrades available for
an additional fee.

PROBLEMS

After installation, we carefully write-protected the image, so
that we would not inadvertently change something that
would affect a measurement. We then experienced repeated
application crashes upon launching. This was extremely frus-
trating, until we discovered that you cannot run a write-pro-
tected image.

In ST/V version 1.2, a notifier tells you this and lets you
exit; in 2.0, it simply crashes into Macsbug. ST-80 happily
runs a write-protected image, allowing you to save to an al-
ternative file name upon save; STA cryptically opens a stan-
dard file dialog, and when you choose the write-protected
image, it gracefully exits without ever telling you why. We
much prefer the ST-80 tactic, and wish other vendors would
adopt it.

Other than the write-protect incident, we experienced only
one unexplained application crash. On attempting to resize a
window on a 28K file, ST/V died with error #25 (dsMemFullErr,
out of memory). On the other hand, we experienced numerous
walk-backs (with version 2.0) when trying things as reasonable
as installing Digitalk-supplied bugfix patches.

PATCHES, PATCHES
At the time this was written, there were two files of bug fixes
and a new application and image, together known as version
2.0.2, available from Digitalk. Together, they correct over 70
bugs, classifying about 25% as serious problems (e.g., walk-
backs, methods silently misperformed, crashed application).

However, we could not get the patch installer to work by
following the supplied README file. Bypassing the installer and
manually filing in the patch files worked somewhat, but we also
had to update the image’s idea of which patches were installed,
so that other files (such as the newly patched Compatibility.st)
would file in. [t took over an hour to install the patches, which
seems unreasonable—upgraders should get the new image and
application, and not bother with the patches.

Later, we looked more closely at the installer problem. Direc-
tory current, ussed by the installer, answered the top-level direc-

18

THE SMALLTALK REPORT

tory, not the actual directory from which ST/V started. We
moved our directory to the top-level folder, and the patch in-
staller worked. Incidentally, one of the patches corrected this
problem—Digitalk’s QA department must be using their pre-
scient version of the patch installer!

Fortunately, version 2.0.2 is much more stable, and all the
problems we recorded in 2.0 (except for the write-protect
crashes) appear to be solved.

COPY PROTECTION

Unlike STA, ST/V is not copy protected, and it can be moved
between machines as allowed under the U.S. copyright fair use
doctrine. (Our review copy did not come with a license, so we
cannot say that this would fall within a strict reading of the
Digitalk license, but at least it is possible.)

However, like STA (and other ST/V dialects), certain
classes (such as the compiler) are protected, and they cannot
be viewed, modified, or debugged. This is lamentable—
changing the compiler isn’t something one should do every
day, but having the option to do so may make some prob-
lems simpler. Those who are attracted by Smalltalk’s reputa-
tion as an open system have ST-80 as their only alternative at
this time.

PORTING FROM 1.2 TO 2.0

Digitalk describes 2.0 as a top to bottorn rewrite of Smalltalk/V
for Macintosh. Like all things in life, this is both good news and
bad news. We've tried to give an impression of the depth and
breadth of the good news.

The news is not entirely happy for users who have to port
their applications from 1.2 to 2.0. The lack of release notes
means that the user has no first line of approach to discovering
puzzles like removed or changed classes. (In comparison, Ob-
ject Technology International lists each changed method in
their release notes, greatly easing the porting task.)

Several developers we surveyed said the port of their 1.2
code was not simple. “I thought I knew ST/V-Mac really well,”
said a developer who had been with ST/V-Mac for three years,
“but now I'm having to relearn a lot.” The many new features
are strongly desired in the developer community, but many
were bewildered by the magnitude of the changes. A section on
porting in Digitalk’s othewise fine documentation would go a
long way to redress the lack of release notes.

Also, 1.2 contained a popular goodie called Application
Browser that aided users in creating file-out packages to rebuild
their applications in another image. Not only is this goodie
missing in 2.0, but the global name Application is taken for an
entirely different purpose, so all files made with the 1.2 Appli-
cation Browser require editing before installing them in 2.0.
Digitalk is experiencing customer pressure, and will probably
replace the Application Browser in some form.

MEASUREMENTS
Table 1, which originated in last issue’s STA article, compares
available Macintosh Smalltalk implementations. Readers

he 405 El Camino Real, #106
Menlo Park, CA 94025
voice: 415-854-5535
malltalk fax: 415-854-2557
email: info@smalltalk.com
\ tore compuserve. 75046,3160
Ask to be put on our mailing list.
Digitalk List TSS Price
Smalltalk/V Windows, 16 bit API 35495 $269
Smalltalk/V Windows, 32 bit API 5995 $899
Smalitalk/V 0S/2 5995 $859
Smalltalk/V Macintosh 5495 $269
Smalltalk/V DOS 286 $125 $69
Parts Workbench, 0S/2 $1995 $1729
Parts Workbench, Win32 $1995 $1899
Objectshare
WindowBuilder Pro, ST/V Winl6 5295 $269
WindowBuilder Pro, ST/V OS/2 $495 $459
WindowBuilder, ST/V Winl6 $149.95 $139
WindowBuilder, ST/V 0S/2 $295 $269
WidgetKit/CUA’91, ST/V 0S8/2 $295 $269
LogicArts
VOSS collection, any ST/V $150 $139
VOSS DLL, ST/V OS/2 or Win32 $595 $549
VOSS source, ST/V 0S/2 or Winl6 $1950 $1779
VOSS source, ST/V 286 $950 $369
GSoft
MathPack 3.0, PPST $395 $369
MathPack 2.1,ST/V Win,05/2 or Mac $125 $119
BusinessGraph 1.2, ST/V Win,082 orMac ~ $95 $89

should refer to that article for additional information on how
we got our numbers. Changes since that article are underlined.

Since last issue’s article, we've added two measurements. In
an atternpt to include some indication of high-level perfor-
mance, we added a simple timing of how long it takes to open a
window on a 28K styled-text file. (Only STA and ST/V 2.0 dis-
played the text appropriately styled.) While this is not a particu-
larly rigorous test, it tends to parallel the slopstone and smop-
stone benchmarks against STA and ST/V 1.2, although it
counters to some extent the results against ST-80, which has
sluggish linear-read file performance due to multiple buffering.

We also added a line for the application (vs. image only)
disk file size.

As we mentioned last month, low-level benchmarks do not
necessarily predict the performance you’ll get. To paraphrase
Mark Twain, there are lies, damn lies, and benchmarks. In par-
ticular, ST/V (and STA) is much closer to the Mac than is ST-
80, so windows open faster and menus drop more quickly than
they do in ST-80’s Mac emulation.

Most of the measurements of 2.0.2 are within 6% of those of
2.0. There are 503 new methods, which add 118K to the image
size. This seems like quite a bit for two minor revision cycles
and indicates the youthfulness of the product.

The number of classes can be misleading and does not nec-
essarily correlate with quantity of functionality, Recall that
ST/V has a class per exception type, while ST-80 has a method
per exception type. Also, 181 classes—nearly a third of the to-

JANUARY 1994

19

SMALLTALK
DESIGNERS AND DEVELOPERS

We Currently Have Numerous Contract and

Permanent Opportunities Available for Smalltalk

Professionails in Various Regions of the Country.

—~——

SALIENT

CORPORATION

Salient Corporation...
Smalitalk Professionals Specidlizing in the
Placement of Smalltalk Professionals

For more information, please send or FAX your resumes to:
Salisnt Corporation
316 S. Omar Ave,, Suite B.
Los Angeles, California 0013,

Voice: (213) 680-4001 FAX: (213) 680-4030

SMALLTALK PROFESSIONALS
IBS has multiple consulting opportunities
availableinDallas, Los Angeles, and Florida.
Requirements include 1+ years experience
in the following:

» SMALLTALK oC+

» Object Oriented Design +C

* 052
No entry level positions.

Interactive
Business
Systems, Inc.

Two Bent Tree Tower, 16479 Dallas Pkwy.
Suite 190. Dallas, TX 75248
Phone: (214) 732-7007 Fax: (214) 732-7112
24-Hour Vaice Mail; (214) 712-8720

20]3

e
o
O
<r
0
o
<r
P~
o~
o~
~
p .
(=]
p—
>
—
o
<
O
<
I
P~
~
o~
~

-
=
Ll
>
o
-
=
o
kL
o=

dd
[5-1
)
E
3
o
oy
o
c
z
d
w
3]
el
c
]
w
o
«
)
c
)
E
=
3
S
(W)
=5}
1
[y}
[=5]
(%)
_N
o
o)
—

tal—have names that begin with Mac, indicating functionality
may be distributed among more classes in ST/V than in other
Smalltalk dialects.

The first column for each implementation (the percentages)
lists that implementation’s measurement relative to the greatest
in the group. In general, lower is better, although items such as
inumber of classesi are better the higher the number.

SmalltalkAgents UPDATE
As the deadline for this article arrived, we had just received
STA version 1.1b15. Although it is a beta version, QKS assured
us that short of crucial bug fixes, what we received is identical
to what is shipped in late November as version 1.1. We’ve up-
dated the measurements table with data from the new version.

The new measurements show that QKS has not been on va-
cation these two months. Essentially every measurement has
improved in that time. The smopstones doubled in perfor-
mance, while the preferred memory size was reduced 17% and
the image plus application size went down 5%. Keep in mind
that the removal of internal debugging code probably accounts
for much of the size reduction, and possibly some of the speed
improvement as well.

More important than the measurements is that STA 1.1b15
feels much more stable than the version 1.0.1 previously re-

viewed. We experienced no application crashes or debuggers
while evaluating version 1.1b15.

Only speed and quality appear to have changed since we last
described STA. The biggest omissions of version 1.0.1 still exist:
no manual, no GUI builder, no crash recovery strategy, par-
tially implemented inspector and debugger, nonstandard com-
mand key map, etc. STA remains a product with exciting po-
tential, suitable for early adopters and pilot projects, but don’t
bet your business on it just yet.

SUMMARY

Digitalk’s Smalltalk/V-Mac version 2.0 is an ambitious upgrade
to version 1.2, and is a bargain, even at the full list price. Those
with ongoing ST/V-Mac projects should not hesitate to port to
it, although such a port may not be trivial. Three times the
quantity of code and eased access to the toolbox alone make it
worth switching for ongoing development, and the addition of
exception handling alone may be enough to justify a port of on-
going work.

However, three times the code potentially means three
times the resource consumption. Those with completed ST/V
applications may not want to port to 2.0 if RAM usage, disk
size, and performance are utmost issues. Those who are sup-
porting an existing application that must work nicely on an old

20

THE SMALLTALK REPORT

Table 1. Cemparison of available Maciniosh Smalltalk implementations. Plus or Classic might consider stay-

STA 1.1bI5 STV 12 TV 20 ENVY/ ing with 1.2. o
i Those considering new develop-
VisualWorks

— T e e ment need to ask a number of ques-
Start-up time % 16 15 73 f1% el | 100% | 48 tions before settling on ST/V. Are
Image save time? 4% | ls 1% | 33 100%) V7 4% |16 you willing to watch CompuServe for
Slopstone (no FPU)® | 100% | 0.4 38% 0054 [32% 0045 26% 0.0374 the inevitable patches and bug fixes
Slopstone (FPU)© 7% 020 30% 0070 | 26% 0059 100% | 023 " that come with a young product? Do
Smopstone (no FPU)P | 100% | 019 | 24% | o046 | 8% 003 . 2% | 0039¢ you need the utmost performance?
Smopstane (FPU)S 100% | 027 22 000 | 20% 0053 | BI% 022 Are you already comfortable with an-

S \] ? .
28K file window? ™ 0 5 T Py “ 100% | 510 otherlvend_or s product? Will you be
working with a team? Do you need to
Required memery (K) | 85% 3500 | 35% 1465 ' 65% 2654 | 100% | 409 .

e . ; : ——- | -— t——- 4 work on multiple platforms? None of
Preferred memory (K) 50% | 35000 | 20% 1953 3ex 3584 | 100% | 10003 these questions alone may rule out
Image size (K) 56% 2306f | 1ex 669 53% 2491 | 100% | 4121 ST/V, but if many of them are issues,

. Application size (K) | 96% 492f | 17% | 8 4% 22 100% 512 a different vendor’s Smalltalk may be
Number of classes' 42% 40h | 20% 165 75% 606 100% | BIIE appropriate for you.

Number of methods) | 39% 6685 | 20% 3490 | 6% 10693 | 100% | 17,2688
Jan Steinman is a partner in Byte-

2 Time in seconds, measured with a hand-held stop walch, using a fast 11 ms. disk. smiths, a consuln'ng company that spe-
s

b Mac PowerBook Duo 210: 25 MHz 68030, 12 MB RAM, BO MB disk, 1-bit LCD, System 7.1, no system extensions .) . !
or power saving. cializes in helping organizations start

€ Mac 11ci: 25 MHz 68030, 20 MB RAM, 32 KB cache, 80 MB and 1.2 GB disks, 1-bit internal video, System 7.1, no new Smalltalk projects, Jan has over 11

system extensions. ears of object experience in embedded
9The poor result is possibly due 1o memory starvation. We could not obtain “preferred” memory and had ta settle for a Y Ject exp

mere B,560K. This result was disturbing, so we repeated it—and gave up after iwo hours! systems, instrumentation, scienttﬁc vi-
© Strongly correlated with file sizes. ST-80 was actually as fast as ST/V 1.2 for very small files. sualization, ﬁnance, and telecommuni-
f - N . . . - R X R)

STA uses one file, image size is data fork size, application size is resource fork size. cations. Prior to formmg By tesmiths, he

9 Includes ENVY, which adds 126 classes and 3,213 methods. . .y
h Fewer classes than previous version. A number of dema classes appear to be "unbundled” in files, rather than be was project lea‘derf or Tektronix's
delivered in the image, although the methed caunt is actually higher in this version. monochrome Smalltalk virtual
i Obtained via MetaClass alllnstances size, which may include classes with hidden source code. im age. He can be reached at jan.-
J Obtained via CompiledMethod allInstances size, which may include methods with hidden source code.

bytesmiths@acm_org.

_
Provides objective & authoritative coverage on language g i N
advances, usage tips, project management advice, AGD e — S
techniques, and insightful applications. \ Es OURC E u,deTM
O Yes, | would like to subscribe to THE SMALLTAIX REPORT.)]
[1 year (g lssues): ix the most comprehensive guide to Smalltalk prod-
[Domestic: 0 Individual $79.00 [Institutional $119.00 uct= and services available. [U's more than 50 pages of
0 Overseas: 0 Individual $94.00 [Institutional $134.00
a élymDo a8 '5“5)6 individual $u8 al [$228 o software products idecelopment encironments,
mestic: ndividual 3148.00 nstitutional $228.00 el-Derty fools class libresios e
O Overseas: Q Individual $178.00 (1 Institutional $258.00 third-party tools. /(," 3 libra) _””(/ nored;
Method of Payment consiliants and fraining professionals;
O Check enclosed (payable to THE SMALLTALK REPORT) professional associations and wser groips;
0 Bill me cloctronic resovrees ke the Smalltall FAQ from
Q Chargemy: Visa [MasterCard O AmEx the Usenet complang.smilltall sroup:
Card No frade shows, publications, and distributors, plus
Exp. Date an annotated Smalltall bibliography.
Signature
Name The Smalltall: Resorree Guide is onlv plus $2.1
Address shipping ind handling (178 and Canada; $5.00 all other
. locationst. We aecept major credit cards, US bank-
1 Compan ') , s
-(l:-::ye Statl:)a y drawn check=. and BITS. Sorey no Purchase Orders.
Country Zip C ; P
reative Digital Systems
Phone 293 Corbett Avenue, San Francisco, CA 94114
To order, return this form with payment to 415.621.4252 » 415.621.4922 (fax)
The Smalltalk Report, 588 Broadway, Ste. 604, NY, NY 10012. 72722.3225@compuserve.com * cds@nelcom.com
Fax: 212.274.0646 Phone: 212.274.0640.

N THE USER GROUPS

Rob Vens

European Smalitalk Summer School

ne of the most satisfying things to do as a Smalltalk pro-

grammer is to be immersed in Smalltalk for five days and

nights. And the perfect venue for such an activity was the
first Smalltalk Summer School, organized by the European
Smalltalk User Group (ESUG). At a beautiful location in Brest, on
the campus of Telecom Bretagne on the French coast of the At-
lantic Ocean, 23 students from five European countries attended
five days of intermediate-to-advanced-level tutelage and pure fun.
About half came from universities and half from industry.

ESUG was fortunate in acquiring tutors like Trevor Hop-
kins, Mario Wolczko (both of Manchester University, the latter
well-known as maintainer of the Manchester Smalltalk
archives) and Patrick Barril from University Pierre-et-Marie
Curie in Paris. The courses were not committed to any
Smalltalk dialect, with emphasis on the two major dialects.

I would like to share with you some of my experiences of this
Summer School, and give some impression of how Smalltalk is
faring in Europe. The three major parts of the program were tu-
torials, workshop, and demos. Three days were devoted to tuto-
rials. On the first day, we were thoroughly informed about the
Smalltalk\Objectworks imaging model and windowing inter-
faces by Mario Wolczko. Using a wealth of examples from the
Manchester archives, we passed the evening experimenting on
the excellent computer facilities that were provided.

Patrick Barril provided remarkably deep insight into the in-
ner workings of the Smalltalk/V virtual machine. It appeared
that much is possible on this normally avoided level of
Smalltalk, and he in fact gave many the impression that there is
no reason at all to leave the virtual machine untouched.

On the second day, Mario treated us to an assortment of ad-
vanced programming techniques, like the effective use of blocks,
exception handling, metaclasses, weak references, and binary stor-
age. He also informed us of much-needed techniques to measure
and improve performance. The general attitude of the attendees,
most of whom were working on industrial-level projects, was the
need to produce industrial-quality applications. Mario’s tutorial
gave all of us better instruments to achieve this goal.

The third day was devoted to demos. As well as showing in-
teresting applications, these demos were good opportunities for
discussions with vendors. In the context of a summer school
session, much more fruitful interaction with vendors is possible
than at large conferences. They certainly could not get away
with cheap sales pitches, but were confronted with critical and
knowledgeable customers!

As was to be expected, there were demos of applications to link
Smalltalk with the rest of the world. Patrick Barril showed Dig-
itall’s PARTS, provided courtesy of the French distributor Tau
Ceti S.A,, as well as Smalltalk/V for several platforms. Clearly Dig-
italk is moving toward instance-based programming, which re-
sulted in heated discussions about the difference between their
approach and ParcPlace’s MVC paradigm. Georg Heeg Co., a dis-
tributor and vendor from Germany, showed an implementation
of distributed processing in Objectworks-Visualworks Smalltalk
called Remote Objects. Servio demonstrated their database man-
agement system, GemStone. A small company from the Nether-
lands showed a tool for project management in Smalltalk/V,
called SmallTool—something much needed by teams working on
Smalltalk applications. In the same vein, Georg Heeg Co. demon-
strated a new tool called Application Management.

On the fourth day, Trevor Hopkins gave a presentation on
Smalltalk’s contribution to the hot issue of client-server com-
puting. Providing us with advanced techniques, we felt very in-
spired to apply these techniques in our own work. Those of us
working in the field were better equipped to deliver higher-
quality applications. Mario continued his tutorial on interface-
construction and MVC in the afternoon. We certainly did not
have enough time on the computers to try out all his examples!

On the last day, two parallel workshops addressed the issues
of industrial problems like project management, fast develop-
ment under heavy time constraints, and research issues like
parallel programming, constraints, and simulation techniques.
In these workshops, we were able to share our own experiences
in these areas. It became clear during the resulting discussions
that the Smalltalk world is moving rapidly into commercial ar-
eas like banking and consulting. This creates specific problems
and demands for Smalltalk vendors. For this, a Smalltalk users
group is very important.

Ending a week of activity with this rate and intensity of in-
teraction is always difficult and somewhat painful. But all atten-
dees and tutors agreed that a new summer school next year will
definitely be organized. Cork, Ireland is a likely location. I cer-
tainly hope to see some of this year’s attendants there, as well as
many more new ones! 3

Rob Vens is secretary of USUG. He is a researcher on the Facuity -
of Management of the University of Groningen in The Nether-
lands and can be reached by email at R.W.Vens@bdk rug.nl.
ESUG, can be reached via email at esug@ibp.fr.

22

THE SMALLTALK REPORT

FORCE-FIT RELATIONAL TECHNOLOGY
AND YOU COULD REALLY HIT IT BIG.

Maybe you're beating your head against the relational you can store Smalltalk objects directly in the
database wall — trying to integrate your Smalltalk database. We make your development time more
applications with an RDBMS. Maybe you're spending productive and your object applications more efficient.
all your time debugging SQL calls instead of building Learn for yourself by calling us today for a
great applications. Or maybe you've hit the relational copy of "Object or Relational? A Guide for
performance wall because you're wasting too much Selecting Database Technology. After all, the
processing time on object decomposition and recomposition. best way to deal

Servio™ has a better way. With our high-performance with an obstacle SER\/ IO
GemStone® abject database management system, i5 to avoid it in

OBJECT TECHNOLOGY
the first place. FOR THE REAL WORLD

Call 1 800-243-9369 for a free copy of “Object or Relational? A Guide for Selecting Database Technology”

Servio is a trademark and GemStane is a registered trademark of Servio Corporation.

LOOK WHAT HAPPENED
WHEN DIGITALK
BROKE INTO THE BANK.

Congratulations to
Bank of America on their
new 11-state wide area net-
work. A system they call “the
most sophisticated distributed
network in the world.”

With good reason.
Their network configuration
fools have already won the
Computerworld 1993 Award
for Best Use of Object-
Oriented Technology within
an Enterprise or Large
System Environment.

Of course, that's what
happens when a company
like Bank of America turns
to a powerful technology like
Digitalk’s Smalltalk/V.

LIKE MONEY IN THE BANK.

Why are so many Fortune 500
companies like B of A switching to
Smalltalivv?
Smalltalk/V lets
you show proto-
types of enterprise-
i, wide systems in
weeks instead of
months. In fact,
systems as ambi-
tious as Bank of
America’s can be
\ II \ I I\ - completed in as
> MAELLE [iftle as 18 months.

SMALLTALK/V. 100% PURE OBJECTS.

B

In addition, our Team/V Group
Development Tool lets large teams of
programmers use version control to
easily coordinate their work. Plus
you'll be surprised at how quickly your
in-house staff becomes productive
with Smalltali/V.)

The bottom line is Smalltalk'V
helps a company get more done in
less time. Which can save very large
amounts of corporate cash.

RATED #1 BY USERS TOO.

On behalf of Computerworld,
Steve Jobs presented the award to
Bank of America. But industry

luminaries and Fortune 500
managers aren't the only
ones who have recognized
the value of Smalltalk/V.
Users have discovered that
Smalltalk/V is the only
object-oriented technology
that's 100% pure objects.
With hundreds of reusable
classes of objects, thousands
of methods and 80 object
classes specifically designed
to build GUIs fast. Which
means no more time spent
writing code from scratch.

BANK ON SMALLTALKY.

- So it's no wonder that
50 many companies are
doing award-winning work with
Smalltalk/V. Incidentally, Smalitalk/V
applications can be easily ported
between Windows, 05/2 and
Macintosh. And you can distribute
100% royalty-free.

For information on how Digitalk's
Smalltalk/V can save you time and
money, call 1-800-531-2344
department 310 for our special White
Paper. And be sure to ask about Digitalk’s
Consulting and Training Services.

Call right now, and see how
Smalltalk/V can yield a maximum
return on your investment.

DIGITALK

	By Article Title
	Cross purpose exception handling (part 1)
	Death to case statement (part 2)
	European Smalltalk summer school
	Shoot-out at the Mac corral (part 2)
	Techniques for platform independence

	By Author Name
	Auer, Ken
	Beck, Kent
	Ewing, Juanita
	Messick, Steve
	Oglesby, Barry
	Steinman, Jan
	Yates, Barbara
	Vens, Rob

	By Topic
	Getting Real
	In the user groups
	Product Review
	Smalltalk Idioms

