
\

The International Newsletter for Smalltalk Programmers

September 1993 Volume 3 Number 1
BUILDING

OBJECT-ORIENTED

FRAMEWORKS

by Nik Boyd
Contents

Features/Articles

1 Building object-oriented
frameworks
by Nik Boyd

Columns

0 Smailtalk idioms:

Inheritance: the rest of the story
by Kent Beck

10 The best of comp.lang.smalltalk:

Esdending the environment (part 1)
by Man Knight

23 GU/s: Keeping multiple views
up-to-date
by Greg Hendley & Erk Smith

26 Book review: SMALLTALK

PROGRAMMINGFORWINOOWS

reviewed by Dan Leaage

Departments

27 Highlights
❑
bject system architects have long understood the value of frame-
works. Frameworks provide a powerful way to organize and build

interactive object systems. While classes define the structure and

behavior of individual objects, frameworks define the structure

and behavior of interactive object systems and subsystems (archi-

tectures). Just as classes provide leverage from the reuse of solutions to compo-

nent problems, frameworks provide leverage from the reuse of solutions to sys-

temic problems. Classes and frameworks complement each other for object

modeling coordination.

Object system architects have sought ways to discover, describe, and define

useful frameworks. This article explores some issues related to designing and

building object systems, especially using frameworks. This article proposes that

frameworks can be made first-class objects and describes the implementation ofa

Framework superclass for Smalltalk.

First-class frameworks provide a way to formalize the relationships between

the objects in a system and factor out their patterns of interaction. Framework

classes provide new opportunities for design, development, and reuse in object

systems. They can be used to create very general or specialized event-driven sys-

tems. By making frameworks first-class objects, they derive and supply the same

benefits as other objects: They can be built and reused with existing Lools.

HOW THIS WORK EVOLVED
Smalltalk’s browsers provide essential tools for quickly building and evolving ob-

jects. These tools organize and present objects and their definitions. The internal

workings of these browsers can be quite complex. As a result, the classes that im-

plement these browsers tend to have many methods.

The complexity of these browser classes contributes significantly to the

difficulty of developing new tools for Small talk. This observation leads naturally

to the following question: How can these browsers be broken down into more

easily integrated and reusable components? The Model-View-Controller (MVC)

framework and its alternatiw+~ provide great value, but do not completely re-

solve the problem of component integration.

Early experiments with refactoring some new tools led to ways of loosely cou-

pling their components using a kind of “smart” linkage. These component con-

nections included their own behavior. After exploring some ahernatives, it be-

came obvious that these experiments had produced a way of implementing

mediators.q Patterns began to emerge when the browser components were cou-

pled together using mediators. This observation led naturally to the realization

that some of these interaction patterns could be factored out and reused. Such

refactoring created first-class framework objects whose behaviors are governed by

interaction contracts.s Framework classes map interaction contracts directly onto

inheritance hierarchies.
‘-(llllirlll,d011p,l#../.

I

‘l’he-Srniiitai’Report~
Editors 1

Iohn Pugh and Paul White (

Zarleton Umversily & The Object People I
I

SIGS PUBLICATIONS

4dvisory Board 1
rom Atwood, Object Design

%dy Booth, Raiimm

>eorge Bosworih, Digildk

3rad Cox, Information ~ge Consulting I

Adele Goldberg, ParcPlace Systems

Tom Love, IEM I

Bertrand Meyer, ISE

Meilir Page-Jones. Wayland Systems
I

Sesha Pratap, Centerline Software

Cliff Reeves, IBM 1
Bjarne Strouatrup, ATAT Bdl Labs 1

Dave Thomaa, Ob)ect Technology Iniernat,nnaf

I

THE SMAUTAM REPORT
Editorial Bosrd

I
I

Jim Anderson, D,gitalk

Adele Goldberg, ParcPlam Systems
1

Reed Phillips, Knowledge Systems Corp.

Mike Taylor, Digildh (

Dave Thomae, Ob@ Tachndcgy International

I Columnists 1
Kent Beck, First class software

Juanita Ewing, Digtalh
I

Greg Hendley, Knowledge Syslems Corp.

Ed Kfimaa, LinesEnginewing h, 1

Alan Knight, The Objecl People I

Eric Smith, Knowledge Systems Corp. 1

Rebecca Wt-fa+rock, Dlgilalk I

1

SIGS Publications Group, Inc. I
Richard P. Friedman
Founder & Group Pubhsher 1

Art/Production
Kristina Joukhadar, Managing Edmm

1

Susan Culligan, Pi!grimRind, Ltd.,Creah-eDmet,co ;

Karen Tongiah, Production Ed!tm ,
Gwen Sanchirico, Produ.lion Coordinator I
Roberi Stewart, Computer Syslems Caordlnalor !

Circulation
I
1

Stephen WSoule, Circulakm Manager

Marketing/Advertising
,

James O. Spxmer, Direclc+ of ❑usinessDevetcpment I

Jaeon Weiakepf, Advertismq Mgr-Eas! Coast/Canada {

Hohy fv%ti, Advertising Mgr—Wesl Coast/Europe ,

Helen Newling, Recru+rmemt%les hfaragw

Sarah Hamilton, Pmmdcms Manager-%blidms

JarI Fulmer, Promtions Managef<mferen.es

Caren f%ner, Pmmoriom Graphic Adist

Administration
David Chatierpaul, Acco.nling Manager

James Amenuvor, ❑rxAkeeper

Margot Patrick, Assistant 10 Ihe Publisher

Claika Johnston, Conference Mamger

C\ndy Baird, Conference Technical Manager

Margherita R, Monck
General Manager

I
1
I

I
1
1

(

1

I

1

EDITORS’
CORNER I

Paul white)ohn Pugh

t’s been a busy spring and summer for conferences. Here area few Smalltalk-related per-

spectives on those that one or the other of us has attended recently.

In May, Digitalk held their second conference for developers, DEVCON’93 in Costa

Mesa, CA. The audience, which was populated by many representatives from banking and

insurance companies, reflected very much the move of the MIS community into Small talk

development. The conference program catered to this community with a heavy emphasis on

the use of Smalltalk/V and PARTS in client-server computing. In one of the liveliest presen-

tations, Amarjeet Garewal from the Bank of America described his firm’s client-server de-

velopment, ACA (A Cooperative Application). ACA facilitates distributed computing using

Smalhalk and legacy systems, and was an award winner in the Object Applications category

at the recent ObjectWorld conference. Watch for an upcoming article from Amarjeet in the

REPORT. For Smalhalk aficionados who wanted to learn more of the “meta-world;’ of

Smalltalk, Dave Smith from IBM give an inimitable reprise of his “Behavior of Behavior”

presentation, SMALLTALKREPORT columnist Kent Beck dispelled a few Smalltalk myths and

provided some invaluable insights into how to write high-performance Smalltalk programs.

It was also Digitalks 10th anniversary-they threw a good party!

June was the month for the large ObjectWorld conference in San Francisco. The

Smalltalk story of note there was the demonstration of Hewlett-Packard’s Distributed

Smalltalk product—the first complete implementation of the Object Management

Group’s CORBA specification for distributed computing. Using Distributed Smalltalk,

programmers can access distributed objects transparently without regard for whether the

objects are local or remote. At the conference, users of Distributed Smalltalk in the HP

booth were able to access objects residing in a Gemstone database in the Servio booth.

Distributed Smalltalk consists of approximately 150 classes that sit on top of ParcPlace

Systems’ VisualWorks product. Watch out for upcoming articles on distributed comput-

ing with Smalltalk in future issues.

For the past few years, many people have been discussing the issue of frameworks as a

mechanism for achieving reuse in object-oriented systems. For most, however, the issue of

finding these frameworks is elusive, to say the least. As this month’s lead article, Nik Boyd

provides a description of how frameworks can be made first-class objects by introducing a

Framework abstract class to Smalltalk and provides examples illustrating how best to use it.

Three of our columnists check in this month. Alan Knight addresses the issue we

raised in our last editorial, namely making extensions to the base Smal[talk environment,

in his column, he reports on “home-brewed” enhancements that have been posted to the

Internet news group. In his column this month, Kent Beck continues his discussion of

using inheritance effectively by introducing a pattern to be applied when attempting to

make decisions concerning the factoring of subclasses. Greg Hendley and Eric Smith are

back, describing how to take advantage of the object-dependents mechanism provided

by Smalltalk when trying to keep multiple windows that are displaying inter-dependent

information in sync. Finally, Dan Lesage reviews Dan Shafer’s new book, SMALLTALK

PROGRAMMINGFOR WINDOWS.

Enjoy the issue—and welcome to our third year!

..—

lIIF. S$IAL1.rM.K Rwos’r (IS!NZ 1056-7976)is puhlishrd 9 limesa ymr.cvcv month CXCCPI(or the h4;mlApr. 1uly/Aug, .md Nm,llh.c
combined is.sum.Puhli$hcd hy S1[;S l’uhlic ationsInc.,588 Ilnmdmy, NLW York NY I(K1I! ? IHi.l,(hl(t. O,(:iq,yright 1993 by SK ;S
Puhlim(iom. All righis rcscww,I IIrprcductiun of (his nm{crial hy clcdronic wansmi~ioo, Xcrm or im>yoihcr mc(hod will hc (rmtml M
a w,illiul vitdmion 0[Ihr US Copyrighl IJW :md is Ildtly pmhihkd. hldcrid nv,lyhr rcpmduwd wiih cxprc+ pxmi~sion lmm ihc pul+
Iishcr, M~ilcd Fim 0ss. Suhwrip (ion mlr.$ I ymm(Y is.sues1:domestic, %5: I:t,rcig” and (>mm.to, SMk Sillglr copy price, W(K). 1,(>S1.
MA STEk. !iuml addrms changes md suhwrip (ion orders IW Till S.ihml AM Ibwmm, Suhwrihtr Smvi.x, l)rpl. SM 1,, 11,[). lh,x 3(x)0,
Duwillc, NJ 07ii34. For swvice on current subscriptions call 000.783.4903. Submit articles 10 the Editors m 509-Mi5 Mcaduwl.nds
Drive, Ollawa, Ontario K2C 3N2, Cmwda, 613.2252..912 (v), 613.225.5943 (O.

PRINTED IN THE UNITED STATES.

2

-.

~SIGS
,,1,!11! !,l,)...

Publishers of JOLRNAL OF OBJECT-ORIENTED PRO.
GRAMMING,OBJECTMAGAZINE,THE C++ REPOFO,THE
SMALLTALMREPOFW,THE INTECINATIONAL00P DISEC-
TIJRY,and THE .XJWRNAL.. . . -..

THE SMALLTALKREPORT

Object Transition
by t)esi~

APPRENTICE PROGRAM .“’

+
ADVArVCED TRA/iV/NG :....:

ANALYSIS & DESIGN +

*
A

MENTORING

WSTOM CONTRACTS ““

Object Technology Potential

Object Technology can provide a

company with significant benefits:

● Quality Software

● Rapid Development

s Reusable Code

● Model Business Rules

But the transition is a process that

must be designed for success.

Transition Solution

Since 1985, Knowledge Systems

Corporation (KSC) has helped

hundreds of companies such as

AMS, First Union, Hewlett-Packard,

IBM, Northern Telccom, Southern

California Edison and Texas instru-

ments to successfully transition to

Object Technology.

KSC Transition Services

KSC offers a complete training

curriculum and expert consulting

services, Our multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:
9

●

●

●

Introductory to Advanced

Programming in Smalltalk

STAP’M(Smalltalk Apprentice

Program) Project Focus at KSC

00 Analysis and Design

Mentoring Process Support

KSC Development Envhonment

KSC provides an integrated applica-

tion development environment

consisting of “Best of Breed” third

party tools and KSC value-added

software. Together KSC tools and

services empower development

teams to build object-oriented

applications for a client-server

environment.

Design your Transition

Begin your successful “Object

Transition by Design’! For more

information on KSC’Sproducts and

services, call us at 919-481-4000

today. Ask for a FREEcopy of KSC’S

informative management report:

SofhwrrtJAssh by Dtsi,ym

KnowledgeSystemsCorporation 114 MacKenan Dr.

Cary, NC 27511

OBJECT TRANSITION BY DESIGN (919) 481-4000

!!, lyy2 K,Mnq]cLJ~c,!iyjtc’in.s (klrporotioll

,..conlilflmfjionl pilgc I

—. — .— . . . —. —.

This article describes the results ofthcse experiments: The

role that frameworks can play in system design, and how

framework classes can be used to define the structure and co-

ordinate the behavior of objects in systems. We begin by ex-

ploring some issues related to object design and system design.

OBJECT DESIGN AND SYSTEM DESIGN
We ofien solve large problems by breaking them up into

smaller problems and combining the solutions (divide, under-

stand, integrate: solve c roagsda). Just so, we can divide large

systems of interacting objects into smaller collaborations, or

subsystems. This allows us to better understand and manage

the structure and behavior of the larger system.

Two key concerns of object system architects are the right
j~ctoring of behavior and the right coupling of objects. Al-

though different aspects ofa design, factoring and coupling de-
cisions rsfien influence each other. For example, creating a new
object class presents a question that arises frequently in object

system design: Where does the new class belong in a class hier-

mchy? This critical design activity incorporates both factoring

and coupling decisions because objects serve as the essential

unit for both factoring and coupling in object systems.

The class location decision can be made easier by looking at

the proposed service responsibilities of the new class and asking

some questions. Does the new class provide the same (or sub-

stantially similar) services when compared to another existing

class? Does it add new services or change the implementation of

some services? Does it remove any services? When a new class

shares (and perhaps adds to) the public interface of an existing

class, the new class is a good candidate for subclassing the exist-

ing class. When the public interface of the new class is not sub-

stantially similar, but needs the services of an existing class, the

new class should be a client of the existing class. When a new

class shares some portion of the public interface of an existing

class, the hierarchy may need to be revised, splitting out the

shared interface into a new, more general superclass shared by

both the existing and newer subclasses. Finding the best loca-

tion for object behaviors is the essence of right factoring.

RIGHT FACTORING

Factoring characterizes how well responsibility for services are

distributed throughout an object system or class hierarchy.

Ideally, each unique piece or pattern of behavior has a unique

location within each object system or class hierarchy.

Classes may be organized initially based on data and the

operations on that data. However, classes should finally be or-

ganized based on their service responsibilities and collabora-

tions. Each object in a system is assigned responsibility for

providing certain services to its clients. Responsibility-based

design (RBD) takes the client/server approach to its logical

conclusion in the design of finegrained objects and collabora-

tive subsystems. b-g

Many experienced object designers have suggested that

good class hierarchies tend to be deep arui narrow-A hierarchy

is considered deep when there are many intermediate super-
— — .—— —. —— — —.

4

■ BUILDING OBJECT-ORIENTED FRAMEWORKS
-. —.

classes between the roost specialized ckisses and the top of thr

hierarchy. A hierarchy is considered narrow when each class in

the hierarchy adds relatively few public services.

Class libraries tend to evolve over time until they become

stable and mature. However, we must be careful if we don’t

want such stabi]ity 10 tns%snthat they ossify! This can happen in

large systems when a fcw basic objects are used rcpeatcclly. cre-

ating many dependencies. The stabili[y crefited by such dqwn-

dencies may argue a~~iost redesign, creating a kind of inertia.

Early design evolution should be encouraged in order to

prevent premature stability. Object modelinglt] can help to ac-

celeriite the process of evolution during class and system de-

sign. Design iteration provides opportunities for revisiting and

revising object and system designs through rc$w(ori)~g.1 I

Refactoring applies one or more kinds of behavior preserving

transformation to an object model. The behavior of the modeled

objects is redistributed so that they are simpler and provide bet-

ter opportunities for reuse. Even fairly stable class hierarchies

may be improved by subjecting them to rcf,~ctoring.lz

One frequently used example of rcfactoring is generaliza-

tion. When two or more subclasses share some common be-

havior, a new more general superclass cm bc created by factor-

ing out the shared behavior.

Many of the transformations permitted hy rdactoring can

be automated. Automating the refdctoring process could even-

tually lead to the development of a kind of “lint” eliminator for

object designs.

RIGHT COUPLING

Coupling characterizes the relative visibility and indcpcndeoce

of objects in relation to each other. Ideally, ohjccts m-rd classes

should only be visible to [hose clients that need to see them.

When one object depends implicitly on another, they zre

tightly coupled. Object instances are tightly coupled to their

classes. Whco one object depends directly on the visibility of

another, they arc cloudy mupled Smalltalk instance, class, and

pool variables arc arc closely coupled to the instances that ref-

erence them.

When one object references another only indirectly through

an opaque reference or through some accessing or structural

triiversing message(s), it depends only on sonm portion of the

other’s public interface and may be loowl~~coupkd. Table 1

summarizes the relationships between visibility and coupling.

Thus, appropriate visibility is essential for achicviog right

coupling. Oflen, the success of a large programming project

hinges on right coupling. Right coupling can only be achieved if

the system architect has an awareness of coupling and visibility

Table 1. Relationships between visibilityand coupling.
.— .—.— —..——.—. .-.

THE SMALLTALKREPORT

Without
Synopsis

Coding Documentation

stall Finish

Now! Automatic Documentation
For SmalltaMfDevelopment Teams — With Synopsis

Development Time Savings
Synopsis produces high quality class documentation

automatically. With the combination of Synopsis and

Smalltsdk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

● Doeurnents Classes Automatically

● Provides Class Summaries and Source Code Listings

● Builds Class or Subsystem Encyclopedias

● Publishes Documentation on Word Processors

● Packages Encyclopedia Files for Distribution Products Supported:

● Supports Personalized Documentation and Digitalk SmalltalIW Windows
Coding Conventions

$295
Digitallc Smalltalk/V 0s2 $395

(0S/2 vemion works with Team/V and Pads)

DarI Shafer, Oraphic User Interfatxs, Inc.:

“Every serious Smalltalk developer should take a ~ Synopsis Software
close look at using Synopsis to make doeumentation 8609 Wellsley Way, Raleigh NC 27613
more accessible and usable.” Phone 919-S47-2221 Fax 919-847-0650

With
Synopsis

A A

stall Fhhh

.—. .-
— .— .—

issues, and has tools that provide him with real options for deal-

ing with those issues.

Component classes, module classes,]’ and frwncwork

classes complement one another in controlling coupling and

visibility in Smalhalk systems. They also provide complemm-

tary mechanisms for factoring. The issues raised regarding the

Factoring of behavior and the coupling of objects can be dealt

with formally by designing objects using contracts.

DESIGNING WITH CONTRACTS

Contracts are design abstractions, They provide high-level de-

scriptions ofi

“ The behavior (and structure) of a component object

“ The collaborations between the components that form a

subsystem

“ The interactions between the participants in a framework.

Classes define the service capabilities of their instmlces.

These services cnn be organized using protocols Protocols are

generally used to represent the contracts provided by objects.

Protocols generally characterize the services they organize us-

ing descriptirms derived from verb phrases such as irsitializing-

rdeming (instances), nccessing (some state information), com-

pll(ing (some value).

Sometimes a complex set of related services can best be im-

plemented and simplified by assigning responsibility for some

contract(s) to a separate class. The set of resulting classes can
-. ..— —.

SEPTEMBEIS1993
then be organized as collaborators in a subsystem. llcspnnsibil -

ity-based designg can be used when defining and refining the

contracts fulfilled by components and subsystems.

In Smalltalk, module classeslJ can be used tu organize and

provide opaque access to subsystems. Like component classes,

module classes can be instantiated. Whether through the mod-

ule class or one its instances, each module serves as a gnteway,

providing access to the services of its internal subsystem.

Interaction-oriented design can be used when defining and

refining the interaction contracts fulfilled by frameworks. In

interaction-oriented design, the interactions between objects

are first-class entities in the design space.5 Using friimework

classes, these first-class designs cisn be irnplermmtatcd as first-

class objects.

THE FRAMEWORK SUPERCLASS

Listings 1 and 2 provide the Smalltdk source code that imple-

ments the Framework superclass. The Framework superclass is

intended to be subclasses to create both gcncrd and SpcCii~l-

ized frameworks. The Framework superclms is rcsponsihlc for

providing the following services:

. Building a framework from participants

“ Resolving roles for participants

. Defining roles and their responsibilities

. Validating participants for roles

“ Translating events into messages
5

-—.-
■ BUILDING OBJECT-ORIENTED FRAMEWORKS
When a framework instance is built, some of the partici-

pants are components, but some may be other frameworks.

These nested frameworks are given special treatment during the

assembly of the framework in which they are embedded. Each

nested framework is checked for unresolved roles. If any un re-

solved roles are found, they are filled using participants from

the embedding framework by matching their role names. Thus,

naming the roles and participants in a network of frameworks

is an important activity.

This feature allows system architects to design and build net-

works of interlocked frameworks. Small frameworks and their

components can be integrated so that events propagate through

the network to produce the overall behavior of a large system.

Within a framework, each object has a role and must supply

certain services in order to fulfill that role. An interaction con-

tract defines the responsibilities of the objects that form a be-

havioral composition. The services each object must render in

order to participate in a role maybe defined explicitly as part

of a framework class. When these specifications are defined for

the roles of a framework class, they are verified when each in-

stance of the framework is assembled.

Although framework role validation is feasible within any lan-

guage system, it is easiest to implement when the Iangwage sup-

ports reflection directly. Reflection provides objects with access

to information regarding their own behavior. .%smetimes this

language feature is described as object self-knowledge. Smalltalk

is one of the few commercial languages that support reflection.

The use of reflection by framework classes for validating

role participants presents an interesting opportunity. This

reflective information can be used to support the intelligent as-

sembly of object frameworks. In Listing 1, the #assembleAs:

method shows how the Collection class may be extended to

support framework assembly from anonymous participants.

If the service requirements defined for each role differ

sufficiently, they may be used to identify the role players

needed from a collection of anonymous participants. Each

anonymous participant can be examined to determine its most

likely role within a framework based on the service require-

component couplings I pane menu

subpane

Airrter-framework coupling

framewrrrk mediator

Figure 1. Key diagram,

1

1

6

ments of each role. Once the roles of all the participants have

been identified, the frdmework can be built without any need

to explicitly specify their roles.

EVENT NOTIFICATION AND TRANSLATION

The MVC framework and other similar ones typically broad-

cast event and change notifications to dependents. While this

may be sufficient for simple frameworks, more complex frmrw-

works need something more: the ability to target specific

framework participants for event or change notification. For

this reason the Framework class supports both kinds of

notification mechanisms:

self notify #someParticipant
that: #somethingHappened.

self someParticipant
notifyThat: #somethingHappened.

The #notify:that: request extends the Object class to provide

event notification targeted at specific named dependents. The

#noti&That: request extends the Object CIWSto provide broad-

casting of events to all dependents (see Listing I). The Frame-

work class rnwrridcs #notif@rah to support targeting specific

named participants. It also rsverrides #notifyThat: to transla[c

events into actions.

SOME EXAMPLE FRAMEWORKS
The first two examples are described in Rcfercncc 5. Listing 3

shows a frarnewcsrk class that captures the SubjectView contract.

The SubjectView contract manages n collection of views so tha[

they al] retlect the current value of a subject. fly factoring out

the behavior related [o the contract into a separate framework

class, the services that the subject and view cla.wcs must sup-

port are drastically reduced. This factoring allows these classes

to be simplified to their essential behavior without concern for

how they are used in a broader context.

Listing 4 shows how ButtonGroup, a specialization of the

SubjectVlew contract, can be captured as a framework suhdms.

The ButtonGroup shows which button of a group of radio but-

tons is selected. Here again, the behavior required of the Button

class is reduced, eliminating its need to retain any framwvork

specific behavior.

The next example is derived from efforts [o rcfactor son-w

browser classes. A brief overview will suggest how such rcLlc-

toring may proceed. The Framework superclass is subclaswd by

a hierwchy that supports the redirection and translation of the

SubPane events used in Smalltalk/V. The class SubPaneMediator

guides the interactions between one of the SubPane subclwses

(i.e., Button) and some other component(s).

The component used by these mediators in ~ddition to the

subpanes is a SelectionList. The SelectionList class rememlwrs

the selection of a single item from a list of items. The itm-n list

may bc either an IndexedCollection or an OrderedDictionary Tht

selection index of the list is either an ordinal number or an or-

1-(1!11;11111,({(1!1p(ly 1.{..,
TIIk SMALI.TALKREPORT

INc. The New Power in Svzal[tulkJV Interface IXvdoprneni

Snydlkdk/V devekqwrs havf.! come to re]y on WindovvIluikim Pro/V is fivfiil:lhlc on Windows kx $295

Windmvlluikler :1s‘m
cssenti:d I(x)l for dcvek)p-

ing sophislimtd user intw-
lkes, Tdi[ms hmrd coding
of intcrfwws is repklcul hy
intemctive vi.sud conlposi-
tion, Since its initial rehaw,
WindmvBuilcter 11;1s
hrmmc [he induslry stm-
cl~rd GUI development tool
for the Sndltdk/V cnviron-
mrmt, Now Ol)jectsh~re
brings you :1 whole new
level OFafmhility with
Wirrdow]luikkr Pro! New
Functionality find power
:ltrmmcl in this next ,gmera-
tim of Wkrdowlluilcler.

File Edn View Allm Size Ocdlmm Scrmdmnk Add

;md 0S,/2 Ior .S495. our sP.lrt-
rkd Wincl(J\\’I)Llilcler/V is
still fiv:lild>le on Windows
for .$149.95 :Ind 0S/2 for
S295. We offer full VtilLIL’

trde-in for our
WindowIluilder cuslonwrs
wmting to move LIp to PrO,

These products me A)
Zv;lil:d>lc in
ENVY ‘i~c[vloptv” :[nd
‘Pcmn/Vl”~lcnmptihle fnr-
nx[ts, As with d] d’ our
products. WindowI)uiklcr
Pro comes wilh 030 ckly
money hock gummtcr?, full
SOLlrcc code :Ind no I{Lm-
Tinw fees.

Some of the exciting newfeatures ...
. (.olll] 311,sit~’I]:lllc’,$: Crctite custom controls :1s composites

1
Slrect

of other controls, trrntecl m
:1 single object, allowing the

IsEE3kl
;” devdoper higher b’er+ge

d’ rcusahlc widgets,
Cmnpositd%ms mn he
used rme~ledlv ;md

lmaLlse they me Cltiss hwsed, they m’n Iw V.;sily sull-
CIWNXI;clxmges in a COmposi tcPme xrc rdlectd my-
whcre they are Lw4.

● M(mphing: Allows the dewdoper to quickly ch~nge

D

Smalflalk from orw type of control ■ sfdh
Wi.dmv8uilder ‘.
Olher to mother, allowing for

L

,3 SmnlHaIk

powerful ““wl~~t-i~ style O WlndowEMdcr

‘ vism I clevdopnwnt. The C, Other

llexihility ;dk)wd by
morphing will g-rwdy cnh~nce productik,ity.

● SC I-:Ipll(x)~: Armtlmr new fexturc to ICVCr.IgLh~,isu;d
conum-wnt reuse. Scmr-dkmks moviclc [I mechanism for
- dcvclrmcrs to mic!ilv

1’ ,; Ill f:lvorite intcrfnce conl-

into cl~dpters mcl ptiges.

● R;lpicl Pr(]tl)lyping C;lpcI-
hi!itics: With the n~~- link-
ing cupd>ilitics, ;1 devclnp-
cr cm m pidy pro[otype a
functi(mxl intmhr lvithout
writing a single line of
code. LinkIl uttons md
Linktdc’ms provide d p(m’-

- ActinILrin,

erful rndxmism for linking

%rs:::~~ windows togc’lhcr xnd ,spe~i.
1 fying tlow of control,

II 1,1 II ActionMrmues provide :,

Miens without l~,lving [0 write code, Tlww Ii3[urcs
greatly errhxnce pr(duc[ivity during prototyping.

● ‘1’[xd[l:lr: llwelopers cm Cre:ltc sophistir,uecl tmdlmrs

just like the orm in the Window13uikkx Pro tool itsc’lf.

● ()[lwr nL,\v f~murcs inclllcic: tmhmcccl duplimti(m md
cut~paste functions, size and position inclic,uors,
cnhmrcul Fr.uning .Spccificdti(m, lkmmt-Chikl wind(nv
rchtionship specifimtim, mlxlncd FMryFickl ~vith dxlr-
:Icter :md fickl Icvd V,llid:lti(m. wd much more...

(h[ch tlw cx:itement, g(~ Pro!
Cd Ol@Tsharc h)r more int(mnati(m.

(408) 727-3742

Ob)ectdmre Systems, Inc 5 Town & Cnunt~ Village
Fax (408) 727-ti324 Suite 735

CompuSewe 76436,1063 San Jose, CA 95128-2026

W,ndowBuilderandWindowBuilderPm are lmdemadu of ObjecLahareSyslmns, In. All otherbrandand pmdud nameswe rqslwed Wadem.wk..1 lhe,rrespective companw

MALLTALK IDIOMS Kent Beck

Inheritance: the rest of the story
I
n the June issue where I took on accessor methods, I

stated that there was no such thing as a truly private mes-

sage. I got a message from Nikolas Boyd reminding me

that he had written an earlier article describing exactly how to

implement really truly private methods. One response I made

was that until all the vendors ship systems that provide

method privacy, Smalltalk cannot be said to have it. Another

is that I’m not sure I’d use it even if I had it. It seems like

some of my best “reuse moments” occur when I find a sup-

posedly private method in a server that does exactly what I

want. I don’t yet have the wisdom to separate public from pri-

vate with any certainty.

On a different note, I’ve been thinking about the impor-

tance of bad style, In this column, I always try to focus on good

style, but in my programming there are at least two phases of

project development where maintaining the best possible style

is the farthest thing from my mind. When I am trying to get

some code up and running I often deliberately ignore good

style, figuring that as soon as I have everything running I can

simply apply my patterns to the code to get well-structured

code that does the same thing. Second, when I am about to

ship a system I oflen violate good style to limit the number of

objects I have to change to fix a bug.

What got me thinking about this was a recent visit I made

to Intelliware in Toronto. Turns out Intelliware is two very

bright but fairly green Smalltalkers, Greg Betty and Bruno

Schmidt (he’s not nearly as German as his name). They hired

me to spend two days going over the code they had written for

a manufacturing application. The wonderful thing was, they

had made every mistake in the book. It’s no reflection on their

intelligence everyone makes the same mistakes at first.

What made their boo-boos so neat was that I was able to go

in and, in two days, teach them a host of the most advanced

Smalltalk techniques just by showing them how to correct er-

rors. I’d say, “Oh, look, an isKindOf. Here’s how you can get

rid of that and make your program better at the same time.”

Because I had a concrete context in which to make my obser-

vations, they could learn what I was teaching both in the con-

crete (“Yes, that does clean up the design”) and the abstract

(“Oh, I see. 1 can do that any time I would have used

isKindOE”).

So, go ahead. Use isKindOf. Use class == and == nil. Access

variables directly. Use perform: a lot. Send a message to get an
8

object that you send a message to. Just don’t do any of these

things for long. Make a pact with yourself that you won’t stand

up from your chair (or go to bed, or ship the system, or go to

your grave. ..) without cleaning up first.

Some people are smart enough to write clean code the first

time. At least, that’s what they tell me. iMe, I can’t do that. I

write it wrong, and then fix it. Hey, it’s not like we’re writing in

C++ and it takes an hour to compile and link our programs.

You may as well be making your design decisions based on

code that works. Otherwise, you can spend forever speculating

about what the right way to code something might be.

PAllERN: FACTOR A SUPERCLASS

As an alternative to the Separate Abstract from Concrete pattern,

I’d like to present the way Ward Cunningham taught me to make

inheritance decisions. It is very much in keeping with what I

wrote above about letting your “mistakes” teach you the “right”

thing to do. When you are programming like this, it feels like the

program itself is teaching you what to do as you go along.

CONTEXT

You have developed two classes which share some of the same

methods. You have gotten tired of copying methods from one

to the other, or you have noticed yourself updating methods in

both in parallel.

PROBLEM

How can you factor classes into inheritance hierarchies that

share the most code? (Note that some people will say that this

isn’t the problem that inheritance should be solving. You

wouldn’t use this pattern if that was your view of inheritance.)

CONSTRAINTS

You’d like to start using inheritmce as soon as possible. If you’re

using inheritance you can often program faster because you

aren’t forever copying code from one class to another (what Sam

Adams calls “rape and paste reuse”). Also, if you are using inher-

itance, you don’t run the risk ofa multiple update problem,

where you have two identical methods, and you change one but

not the other. Ideally, for this constraint, you’d like to design

your inheritance hierarchy before you ever wrote a line of code.

On the other hand, designed inheritance hierarchies (as clp-

posed to derived inheritance hierarchies) are seldom right. In
—. —. .— -..

THE SMALLTALK REPORT

—. .- —. h, 1[

DO YOU KNOW
SMALLTALK?

At Boole & Babbage, we talk big about
our UNIX and mainframe products.

If you want an unparalleled technical
opportunity to work with a world-class

team in a company with 25 years
experience as an innovator, bring your

Smalltalk and 00D skills and talk big to:

E Book &
Babbage

Group Staffing DRRSR
510 Oakmead Parkway
Sunnyvale, CA 94086
FAX: (408) 737-2649

or email (ASCII and Postscript only):
info@ boole.com

EOE
principals only

L — —.._— —. .—. — — .—. — ..—. –.— . . .

.-
fact, by making inheritance decisions too soon you can blind

yourself to the opportunity to use inheritance in a much better

way. This constraint suggests that you should make inheritance

decisions only after the entire system is completed.

SOLUTION

If one of the objects has a superset of the other object’s v~ri-

ables, make it the subclass. Otherwise, make a common super-

class. Move all of the code and variables in common to the su-

perclass and remove them from the subclasses.

EXAMPLE

It is difficult to come up with an example of inheritance that

isn’t totally obvious. The problem is that before you see it, you

can’t imagine it, and afier you see it, you can’t imagine it any

other way. So, if this example seems contrived, don’t worry,

your own problems will be much harder.

Here is an example in VisualWorks I ran across a couple of

months ago. I had Figurel, a subclass of VisualPart. It had to be

dependent on a several other objects, and it had to delete those

dependencies when it was released.

Class:Figurel
Superclass:VisualPart
Instance variables: dependees

Figure>>irdtidize
dependees := OrderedCollectionnew

Rather than use the usual addDependenk way of setting up de-

pendencies, I implemented a new message in Figurel called de-

pendOn:.

Figurel>>dependOn:anObjeet
dependees add: anObject.
anObjectaddDependent:self

When the figure goes away, it needs to detach itself from every-

one it depends on.

Figurel>>breakDependents
dependees do: [:each I each removeDependen~selq.
super breakDependents

Then I created a Figure2. To get it up and running quickly I

just copied the three methods above to Figure2 and set about

programming the rest of it.

It was when I went to create Figure3 that I decided to take a

break and clean up. I created DependentFigure as a subclass of

VisualPart, gave it the variable dependees and the three meth-

ods above, made Figurel and Figure2 subclasses of it, deleted

their implementations of initialize, dependOn: and breakDepen-

dents, and then implemented Figure3.

OTHER PAITERNS
\Vhile you are factoring the code is often a good time to ap-

ply Compose Methods so you can move more code into the

superclass.

CONCLUSION
I have presented a pattern called Factor a Superclass as an al-

ternative to Separate Abstract from Concrete for creating in-

—— ——..
SEPTEMBER 1993
heritance hierarchies. Using Factor a Superclass, you will end

up with superclasses that have more state. I’m not sure if this

is a good thing or not. On the plus side, you will probably be

able to share more implementation. On the minus side, you

may find yourself applying the pattern several times to get the

final result. You might factor two classes to get a third, then

notice that once you look at the world that way you can factor

the superclass with a previously unrelated class to get a fourth,

and so on.

Beware of juggling inheritance hierarchies too much. You

can waste lots of time factoring code first one way, then an-

other, and find that in the end you aren’t that much better off

than you were when you started. Objects can survive less-than-

optimal inheritance much better than they can encapsulation

violations or insufficient polymorphism. Most expert designers

agree that great inheritance hierarchies are only revealed over

time. Make the changes that you can see are obvious wins, but

don’t worry about getting it instantly, absolutely right. You are

better off getting more objects into your system so you have

more raw material from which to make decisions. ❑

Kew Beck has been dimoveriizg Snudkdk idiomsjior cifht ycrm at

Tektronix, Apple Crrmputer, and A4ad%r Compurcr. Hc is also the

fou~der ofFirs((%SS So@vrrrc, which develops and rlish-ibutes rm/gi-

necring products for Wrdltdk. He cm be remhed at Firsf (lm SofI -

ware, P.O. Box 226, Boulder Creek, CA 95006-0226,408.338.4649

(voice), 408.338.3666 (Jhx), or 70761,1216 otz Compuscrw.
9

HE BEST OF comp.lang.smalltalk Alan Knight

Extending the environment
(part 1)
T
he Smalltalk development environment is excellent in

many ways, but stagnant. The basic tools haven’ t

changed much from when I first used Apple Smalltalk-

80 on a Lisa in 1986. At that time Smalltalk and LISP systems

led the way in interactive development environments. Now

these environments exist for many languages, some of them

very competitive with Smalltalk.

To be fair, there have been great improvements in some ar-

eas, mostly in the area of add-on products. These include GUI

builders, team programming tools, profilers, and database in-

terfaces. The basic tools—the browsers, inspectors and the de-

bugger-remain almost unchanged. This is not because they

defy improvement.

Fortunately, one of Smalltalk’s strengths is the ease with

which it can be customized and extended. In this column, the

first of two parts, 1’11discuss some simple extensions to these

tools. Part two will look at some of the packages available that

make more substantial changes. The main focus will be on

ideas or on code available over the net rather than commercial

products which are better covered in a product review.

AREN’T IMPROVEMENTS THE VENDOR’S JOB?

Ideally, users shouldn’t have to write or acquire extended tools.

The development environment is a strong selling point for

Smalltalk, and one might expect the vendors to put some effort

into improving it. From the vendor’s point of view, however,

there are good reasons not to change the environment.

“ Backward compatibility. Everybody gets annoyed when

system code changes. If users don’t think the changes are

worth breaking their code for, they’ll be upset.

. Disagreement. Any vendor-imposed changes to the envi-

ronment will be unpopular with some users, and ques-

tionable changes run the risk of a backlash rivaling that

was received by the New Coke.

. Priorities. Vendors have limited resources, and are kept

very busy developing new products and fixing the major

problems with existing ones. The base environment isn’t

bleeding too badly, so resources go elsewhere.

“ Lack of competition. With the recent growth in Smalhalk’s

popularity, many users are new to the language and come

from areas such as mainframe COBOL or 4GL development.
10
They’re still too dazzled by the very idea of an incremental

development environment to complain about its deficien-

cies, Competition from other languages isn’t strong enough

yet to inspire changes, The most likely source of improve-

ments may be new Smalltalk vendors who need to worry

more about carving a niche than backward compatibility.

“ Extensibihty There are relatively few complaints about

the environment, because any user with sufficient time

and skill can change it to suit themselves.

IT’S UP TO YOU

You can’t count on the vendors for improvements, so it’s up to

you to take responsibility for your own development environ-

ment. You don’t have to rewrite the debugger, but don’t be afraid

to make changes or to explore the changes others have made.

At this point, careful readers may recall my March/April

1993 column, where 1 urged great caution in making systcm

changes. This appears to be a contradiction, but it’s really just a

trade-off. To be sure, there arc risks in changing the system.

New releases or add-on products will need to be checked more

carefully for conflicts and small mistakes can destroy an image.

Frequent back-ups are in order.

On the other hand, changing the browsers or inspectors is

much less risky than changing deep system components such

as the compiler or the process scheduling mechanisms. Even

wi [h the risks, the increased productivity can be well worth the

trouble. As always, it’s best to limit changes in system methods

to small “hooks” that call your own code. This helps minimize

the problems with new releases.

WHAT NEEDS CHANGING

Development environments are a religious issue, and everyone

has a different opinion on the perfect environment. Neverthe-

less, here’s a short wish list of ideas. Note: Not all these ideas

have been implemented, and if they have, the author is not

necessarily in a position to distribute the code. The best place

to look for code is the Smalltalk tlp archives (st.cs. uiuc.edu or

mushroom. cs. man. ac.uk), where the authors have gone to the

trouble of cleaning things up and releasing them to the public.

Code written for personal use often requires significant effort

to adapt and separate from other extensions.

This column mentions extensions from three different peo-
.—.

THE SMALLTALKREPOSIT

. — —. .-
ple on the net. Deeptendu Majumder (dips@ cad.gatech.edu)

has released his extensions up in a package called ISYSE, avail-

able from the archives.

Bruce Samuelson (bruce@ling.uta. edu) may get around to

cleaning up and releasing his code, but is not in a position to do

so at this time. Gene Golovchinsky (golovch@ie.toronto. edu)

hasn’t packaged his extensions, but is willing to be pestered

about them.

Automatically writing access methods

One of the most common system extensions is a mechanism to

generate access methods for instance variables. These methods

aren’t difficult to write by hand, but they occur so frequently

that a tool can be very convenient.

It’s important that the tool be selective. Not all variables

should have access methods (or some of them should be

clearly marked private, depending on your philosophy) so the

user must be able to select which methods to generate. The

tool should also provide documentation in the method. The

user should be able to (if not forced to) provide information

on the type of the variable and its purpose. This information

should already be in the class comment, but it doesn’t hurt to

duplicate it, A really sophisticated tool would check the class

comment for the information and update it if necessary.

Find class

1use the “Find class” feature very frequently, especially in Dig-

italk dialects. Unfortunately, the basic Digitalk implementation

is brain-dead, and the ParcPlace one, while better, still doesn’t

do what I want.

“ Ignore case. This is much faster and more convenient. (1s

it Fi[ename or FileName?)

. If the name matches a class (e.g., set), go directly to it

without presenting a useless list of one class to choose

from. In general, I prefer tools that can skip over lists with

only one item.

“ If the name doesn’t match a class, append a wildcard and

present a list of those it matches (e.g., sett gives mea list of

#(Settee Setter Settlement).

- If I explicitly type a wildcard, always give me the list (e.g.,

set’ gives #(Settee Setter Settlement)).

SmalltalldV’s debugger

If you’ve used both Smalltalk-80 and Snlalltalk/V, onc of the

most frustrating things about V is its debugger. TCIthe un-

trained eye, both debuggers are very similar, and in fact \f offers

the nice additional feature of breakpoints. The problcm is that

when evaluating an expression inside the debugger, V evaluates

it as a method in self (the receiver of the current message), not

the context of the current method. In the Smalhalk-80 debug-

ger you can highlight any text in the current method and evalu-

ate it. In the Smalltalk/V debugger this only works if the text

doesn’t reference method arguments or locals.
-.

SEPTEMBER 1993
The most irritating thing about this problem is that I don’t

know how to Fsxit. Digitalk hides the source to their compiler,

and although I’ve come up with a few bizarre ideas that might

work, I’ve never had time to really work on it. If anybody has a

fix for this, please let me know.

Browsing inherited methods

I don’t know how many requests I’ve seen for a for a browser

that shows all methods in a class, inch.rding inherited methods.

The basic functionality is very simple, and the real problem is

providing a good user interface. ParcPlace does provide this

capability with the FullBrowser, but it’s a poor implementation

and only available in the APOK add-on package. It’s a good ex-

ample of why we might not want the vendors deciding for

themselves how to improve the environment. Most of the ex-

tended environments described in part 2 provide this capabil-

ity in some form.

Resizing panes

Bruce Samuelson describes a useful feature to augment the

browser with:

. . buttons for resizing browser windows horizontally and

vertically, and reproportioning the line separating the up-

per panes from the method

This is an increasingly common feature in user interfaces, and

one that can be very useful. Smalltalk/V Mac has a convenient

“zoom” feature that makes the text editing area fill the entire

window, but this would be more flexible.

Gene Golovchinsky writes:

I would like to see more buttons on the screen for common

commands rather than entries in pop-up menus. I invari-

ably pick the wrong one, or keep moving between copy,

paste, and accept. Then I accidentally pick cancel, and have

to repeat the whole process again!

I’m not sure we want to add too many buttons, but a few in the

right place would be nice. Certainly, it’s much nicer having

buttons in the debugger for single stepping than having to use

a pop-up menu. For operations like cut and paste I prefer to

have keyboard short-cuts.

Renaming classes in SmalltalkA/

Smalltalk/V still docsn’t support renaming classes or chonging

the definition of classes with instances. It shouldn’1 be that

hard to implement, and I believe the capabilities are available

as part of their Team/V package. Why is such a lmsic capability

bundled into a t~anl progrmnming tool and not in the basr inl-

agc? Only Digitalk can tell.

COGNITIVE OVERLOAD

While all of the above are useful, they arc only minor improve-

ments. There arc more general issuesLhat need 10 be ad-

dressed. Deeptendu Majumder raises the issue of cognitive

overload in the Smalltalk environment:
—____ .—. .——.—...——.

■ THE BEST OF COMP.LANG.SMALLTALK

.-. .-

One thing that irritates me more and more these days is

how my screen gets out of control with a multitude of win-
dows. . . . I sometimes wonder if there is some kind of

study. . . about determining the most suitable ST program-

ming environment. . ..1 sometimes very strongly feel the

environment can be “smarter” about . . . reducing the cogni-

tive overload and maintaining easily identifiable cues

about what info is available only for a mouse click.

Controlling windows
The largest single factor in cognitive overload must the num-

ber of windows Smalltalk produces. I usually have 10 to 20

windows open simultaneously and I’m sure I get as high as 50

now and then. With this many windows, it’s vital to have

mechanisms to control the complexity.

Craig Latta (latta@xcf.berkeley. edu) writes:

I find that simply having a good window manager goes a

long way toward reducing the cognitive load. The main

problem I would have otherwise is with hordes of windows

crowding the screen, and subsequently losing track of par-

ticular windows. Things like icon managers (as in ‘twin’ on

X platforms) reduce this problem significantly.

A good window manager and a large screen are vital elements

for Smalltalk work. One technique I use is to make use of win-

dow and icon positions. Certain windows (e.g., the system

transcript, a workspace with useful expressions, my list of

things to do) are always open, and I make a point of always

keeping them in the same place. I also try to keep their icons in

standard places, but not all window managers maintain the po-

sition of icons (MS-Windows doesn’t).

fi Wt-iting Smalltalk code is akin to

authoring hypertext 9

Another technique is to put more information into window

titles. By hooking into the browser selection mechanism, the

window title can be made to indicate the current class and

method. This makes navigating among icons easier, and can

also be used with window managers that allow you to find win-

dows by title. With a bit more effort, it should be possible to

change the window icon to convey more information.

If your window manager doesn’t manage windows and

icons well, it’s possible to make up some of the difference in

Small talk. Gene Golovchinsky writes:

I added an entry to the Launcher menu that displays a list of
all current Smalltalk windows, and indkates the minimized

ones. If I pick from this menu, it raises that window. Just to-

day I saw that something similar is available in the archives!
.— .—.————

12
Reducing the number of windows

Managing windows is all very well and good, but do we really

need all those windows in the first place? Jaap Vermeulen

(jaaptl%equent.tom) doesn’t think so. Hc writes:

With new tools to replace the browsers that allow better in-

dexing, searching, shortcuts, and backtracking, you might

need fewer windows. Finally, if the inspectors and debug-

ger would become a little smarter and not throw up win-

dows all over the place, we really would start talking.

Inspectors are one of the worst culprits in creating excess win-

dows. A tool that allowed graphical inspecting of many objects

at once, following links between them, could reduce this con-

siderably. There is a simple tool of this type included with the

HotDraw application framework. I believe First Class Sotlware

(408.338.4649 (voice), 408.338.3666 (fax), or 70761.1216 on

CompuServe) has a graphical inspecting tool for Snlalltalk/V.

Too many browser operations spawn a new window in

which to present their results. The only concept of backtrack-

ing is to go back to the window you started the operation from.

For operations like senders, this is simple tu change and makes

the function easier to use. Gene Golovchinsky writes:

I’ve augmented the MethodListBrowser to add the ability to

add a specific method to the list. It works like the Messages

menu item, but instead of spawning a new window, it adds
the entry to the list. If there is more than one item, it

prompts for the one to add. I find this tool handy for

traversing long chains of message sends and keeping them
all in one place.

Unfortunately, it’s not so easy to reduce the number of win-

dows generated by some of the other operations.

HYPERTEXT MECHANISMS

Gene Golovchinsky writes:

Writing Smalltalk code is akin to authoring hypertext; per-
haps some insight can be gained from perusing that litera-

ture. Along those lines, this environment seems like an

ideal vehicle for implementing all sorts of hypertext behav-

ior. [n fact, the existing browsers have many of these fea-

tures already.

Indeed, Smalltalk browsing sh~res many characteristics with

hypertext browsing and suffers many of the same problems.

There’s an enormous amount of information, only a small part

of which is relevant at any given time, and it’s easy to become

lost in the irrelevant.

Messages

Many browser improvements are intended to quickly find rele-

vant information while avoiding that which is not relevant. If

you can follow a link directly to what’s important, you don’t

need as many windows open looking for it.

One such feature is the messages menu item mentioned

above. This allows you, when browsing a method, to find im
——— -...——

THE SMALLTALK RKPOFIT

Just touch a button 10

Add chans to your Visua/Worhspalette
~lW?lfC Add or change alar, points, with mininml smern rq-miniing,

Add nr remove diita .sericsto/fum the chart.

~fif-e Sclwt d..m points with the mnusc-lX-Chdrrs inkmns
your application.

Uses semen space elTeU/uefy
6n*$

0 Im?mmm
.%xnll ihc chart view in onc m both

--&---li ~~ ‘ : ‘u

,!!,

ditutimrs. Mark values nf summwy 1W

Functinns in the 19%5
-. .-

a.., a,. h.,,n,,,, u,=d, ,

axis arms. Show 1936
,“ . //”

.
, j,,” I ,hrcshnldsusing ::.,. ..: ,’,..‘

.... . ,“..., @ lines.. -:..:‘. . , ,. 1=9
~;” r ~.-:“ .“’ “ 1390

NEW Voss %a IWI -—

.{. i.

No runtime license fee

Call ~or a tedmkal immsr A [-lsf (“ li(~ Jol[\, III

on EC-Sha/ts” - (408)462-0641%AVOkisaIrzdenwk
01Pmck SysiRm,kc. 21137 Edst Cliff Dr Santa Cnw. CA 95062
plementors or senders of any of the messages sent by that

method. The messages sent become hypcrtcxl links.

One problem is that Lhe number of methods found can be

too large to work with. Thus, it’s useful to restrict the methods

considered. One way is to allow “local” senders/implementors,

selecting only methods within the current class or perhaps

within its sub/superclasses.

Bruce Samuelson has another mechanism:

,.. ‘my senders’, ‘my implementors’ which only look at the

changes tile...

Also, we may want to browse a method that isn’t sent from the

current message, m- we maybe in a text editor instead of a

browser. Gene Golovchinksy describes a menu item that opens

a browser on the class or method named by the currently se-

lected text. I have a similar extension, but I separate the”

browse/senders/implementors/class references behavior and

use keyboard shortcuts to invoke them. Keyboard shortcuts are

a little faster, and work in workspaces as well as browsers, but

are less mnemonic and not as flexible.

OpemLing on text is a nice feature, but one that works best

for zero- or one-argument messages. Multi-keyword messages

don’t usually occur in text in the right form. It should be possi-

ble to use the Smalltalk parser to extract possible message

names, but I haven’t tried this.

Deeptendu Majumder added a feature for finding imple-

mentors of a method whose name is not known. The base im-

age allows wildcard searches on method names, but force a

choice from a menu of possible names without seeing imple-

mentations.

,. all I did was add an extra list to the browser that grabs

all those things that otherwise show up in the menu. When

1am not sure exactly which method I am looking for, I can

select entries from this list one after another and browse

their various implementations. 1 can then change the selec-

tion template from within the list and grab a whole new set

of message names.

Searching for strings

The link you need may not be the name of the method or a

message that it sends. Just today I wanted to search for a

method that didn’t send a particular message, but containccf

(I1c nanw of that message in a comment. 1 h~d previously com-

mented out that message smd, closed the window, fire-l forgot-

ten the method name. Bruce Samuelson writes of a feature hc

implcmcnteci:

. . . search for a string (e.g., opem) in methods and class

comments. This can operate on. ,. categories, classes, or

protocols. This is useful for maintaining comments and for

finding code for which standard searches break down.

Lost in hypertext tools

All the mechanisms Iistcd above are valuable tools for search-
SEPTEMr3En 1993
ing. Unfortunately, if we implemented them all in a single inl -

age I suspect users would merely find themselves lost in hyper-

text mechanisms instead of (or as well as) lost in the code. As

Deeptendu Majumder writes:

There are so many small enhancements that can be done

that I found it is not very productive to undertake the ef-

fort without a serious study of overall needs rather than

trying to attack small segments of the problem,

Next month, we’ll examine some more radical extensions that re-

place the basic tools instead of patching or adding a few features.

ERRATA

In the June 1993 column 1 published code for testing dictio-

nary performance under OhjectWorks\Smalltalk release 4.o.

Unfortunately, 1 didn’t test this code adequately, and Bruce

Samuc]son, the author, hm pointed out that, due to thil]l~~~,

(his code dots not work with relcfisc 4.1 or Visual\$rorks. Tim-c

we two problems. First, [he wny hashing is dent has changtd,

so the results will bc in error. Second, the method sortedEle-

ments has been removed, so the rncthod will produce .] wdk-

back. A new version, which will also work with olher hash

table classes, is available from the Smalltalk archives ~t

st.cs.uiuc.edu. ❑
13

■ BUILDING OBJECT-ORIENTED FRAMEWORKS
—..

w)
dered dictionary key. SelectionLists also notify their dependent

mediators when their list or selection changes:

“fromwithin #li.sb”
seti notifyThat:#listChanged.

“fromwithin #select:”
seti notif@hat: #selectionChanged.

Listing 5 shows the code for the SubPaneMediator classes. The

kinds of SubPaneMediators that use SelectionLists include those

depicted in the following hierarchy

Object

Framework

SubPaneMediator

ListItemChooser

ListViewer

ListButton

MenuButton

ToggleButton

The ListItemChooser class manages the interdictions between a

SelectionList md a SubPane (GUI widget). The ListViewer class

manages the interactions lwtwcen a SelectionList and a ListPane.

The ListButton classes miinage the interactions between a Selec-

tionList and a Button in two varieties. The MenuButton class pops

up a menu rrfthe list items when clicked, allowing onc of the
14
items to be selected. The ToggleButton cycles through the list of

items, showing the next item description on the button FJCC.

Now, consider how these small framework classes might

he used to refactrsr a browser such as the Smdltalk/V

ClassHierarchyBrowser (CHB). The CH13 has five suhpanes:

a class hierarchy ListPane, a viiriables ListPane, a methods

ListPane, a RadioButton group, and a TextPane.

For this discussion, we will rcplacc the RadioButton group

with a specialization of the ToggleButton. This MetaChoiceTog-

gleButton framework wi]] LMCa two item list: #(class instance)

for selecting either class methods or instance mcthock.

For each of the ListPanes, we specialize the IistViewer franle-

work with ClassListViewer, VariableListViewer, and Method-

ListViewer frdrneworks. Each of these small frameworks serves

as the owner for their respective subpanes. As such, they ac-

crcte the behitvim from the CHFI related to those panes, ill-

eluding menus, list maintenance, item selection, and propagil-

tirm of notifications and changes throughout the overall

framework network (see Figures 1 and 2).

This brief outline indimtes how such rcfictor-ing can pro-

ceed. However, note that fllrthcr evolution and improvements

can he made through additional rcfactoring and framework

creation. [n the end, the responsibility of the browser class can

be reduced to assembling a network of objects tha[together

produce the [)VCrd]l browser behavior.
I

selectionL]st

(SelectionList)

hierarehy
(ClassListView)

classesMenu

(Menu)

selectionList
seleetionList

(SelectionList)
95

(SclcctionList)

metaChoice I I variables

(MetaChoiceTogglcBu[ton) (VariableListView)

manager variabIesMcnu
(CHBManager) = (Menu)

% “~ “ i \ 7

selecLionLis[

(SclcctionList)

widcct (Button)

I I T%’ (McthOdLis’vie

I li I

El text (TcxtPanc)

I
I

hmethudsMcno

(Menu)

Figure 2. CHB frameworks.
Tti E SMALLTALK REPCIIIT

TUNING COMPONENT COUPLING

The Framework superclass uses loose coupling as a technique

for achieving component integration and coordination. The

implementation suggested in this article makes use of a kind of

Dictionary to bind framework participants into their roles. This

technique of loose binding allows frameworks to be evolved

and extended quickly through several iterations.

Although this technique requires little in the way of over-

head, a small amount ofperformance can be lost when the

role participants are resolved dynamically. A number of op-

tions exist for tuning the performance of frameworks buih us-

ing these techniques.

The Framework class uses a class named SmartDietionary (SCC

Listing 1). In addition to the messages understood by IdentityDic-

tionary, SmartDietionary responds to the typical accessor idioms:

componentName “getter”

componentName: anObject “setter”

These protocols are supported by ovcrrid ing the #respondsTo:

and #doesNotUnderstand: methods. These protocols w-e also

supported by the Framework class. In addition to this implici[

form of component access, the Framework class supports the

following form of indirect access:

componentName“indirect getter”
“self partnerNamed:#componentName!

componentName:anObject“indirect setter”
self

fo~ #componentName
use: anObject.!

This support for the dynamic binding of roles can be replaced

by ordinary instance varidies and their accessors. However, in

order to gain the benefits of rapid design evolution, this should

be done (if done at all) only after the design of tht framework

class has stabilized.

componentName“direct getter”
“componentName!

componentName: anObject “direct setter”

componentName := anObject. !

PARTICIPANT INTERACTION STYLES

One of the principal uses of any framework class is to mediate

the interactions of its participants. Because participants are

luosely coupled, the methods of a framework class have this

peculiar aspect: Participants are rrhv(lys accessed through re-

quests to self. So, sornc of the framework r-mthods provide ac-

cess to components or their state(s), while others trmslate

events into aclions.

The event handling methods ofa frammvork class serve as

templates that guide the exchange of information between

the framework particip~nts. The expressions used by these

event handling methods generally fall into one of the follow-

ing basic patterns:
SEPTEMBER 1993
eventName

“Requestinformation or a change of state.”
‘self someComponentrequest

eventName

“Exchange information between components.”’

self someComponent binaryKeyword:

self anotherCOmponent request.

eventName

“Notify another participant (framework) that something happened

(translating the event name).”

‘self

notify #framework

fhab #somethingHappened

eventName

“Forward this event to another participant (framework).”

‘self

notify #framework

that: #eventName

SPECIALIZING FRAMEWORKS

New frameworks can ciien be discovered when reusing exist-

ing ones. Sometirncs it is more convenient to attach custom

behavior to an existing framework rather than create a new

framework subclass.

The Framework superclass supports the prototyping of new

behavior by allowing-the usage rrf blocks as comp&ents. When

a message is rerfirected through #doesNotUnderstand:, the

Framework superclass checks to see if a block has been defined

to handle the message selector. If the framework can handle

the message with a block, the Mock is evaluated with the mes-

sage receiver and its arguments (if any).

After a new framework has stabilized, the developer may

decide to create a new framework sLdIc]ass, moving its special-

ized behavior from blocks into mclhr)ds. When this occurs, the

developer is faced with a decision: What should the scope of

visibility for the new class be? Very general friirneworks should

probably be visible tn the whole Srnalltalk system. However,

some frameworks should only be visible to the clms(es) that

need them. Module classesl~ can be used to hide specialized

framework subclasses.

For example, in our consideration regarding browsers, we

found tha[they will ofien need specialized frirmeworks for

managing the interactions between the subpanes from which

they are composed. F.irch of the ListItemChooser subclasses can

be further specialized to create customized mediators that

manage the overall interactions betw’een the various subpatws

that make LIp a browser. Rather than expose these specialized

frmncworks to the whole of Smirlltdk, they cm be hidden

within the browser class if it is implemrmted as a mudule.

GENERAL OBSERVATIONS

Many patterns of interaction between objects in a system ap-

pear over and over again in other systems. %mmtimes these

pnttcrns arc formed into J loose composition of abstract classes

like the ,MVC framework.’ Following the flow O(messages
15

■ BUILDING OBJECT-ORIENTED FRAMEWORKS
through such an implicit “second-class” framework can be

difficult. However, these patterns of interaction can be cap-

tured and reused explicitly by framework classes. Because the

message flow is more explicit in framework classes, they are

much easier to understand.

As noted perviously, good class hierarchies tend to be deep

and narrow. The hierarchies created by framework classes tend

to be deep, narrow, and thin. The methods themselves tend to

be small (thin), because they coordinate only the interactions

between the objects that participate in the framework.

Many object designers have claimed that frameworks are

difficult to find. Actually, frameworks are not hard to find at all!

They simply have not been noticed much. They tend to be like

thin oils that lubricate the rneshings of larger objects. Any pat-

tern of interactions between objects maybe captured as a frame-

work. However, the resulting framework may be so specialized

thal it is better to leave the intcriictions built into the colkthorat-

ing classes. Frameworks serve best when they capture and factor

out the semantics rsfevent-driven interactive systems,

Sometimes it is expedient during prototyping to develop a

system that is closely coupled. Afier completing the prototype,

some parts of the design can be revisited and the coupling

loosened for better reusability. Loosely coupled objects tend to

be more reusable and more resilient to design and system evo-

lution. Framework classes provide a new option for refactoring

through decoupling.

FUTURE WORK

The current implementation of the Framework superclass uses a

simple collection of method names for role validation. It would

be better if each role were defined using a specification object,

in particular an object type. Object types use method signatures

to specify the types of each argument and the method result.

When these specification objects become available, framework

role validation can evolve to use them. Object types will provide

better constraints to qualify components for roles.

CONCLUSION
This article has presented a new view of object frameworks:

How framework classes can simplify the design of component

classes by factoring out the behavior found in interactive sys-

tems. Component objects become simply clients and/or service

providers, reducing or eliminating the-additional responsibili-

ties of complex coordination between objects,]n addition to

simpli~lng existing components, refactoring may create new

components. Such refactcrring improves the reusability of all

the components that form a system and creates reusable

framework objects. lZi

Acknowledgments
Several individuals inspired me wi[h their intm-m[and

thoughtful critiques during the evolution of lhese ideirs. Special

[hanks to Jean-Francois Cloutier, Tracy Trmclm, Oleg Arsky,

and Jim Carlsledt.
16
References

1.

2.

3.

4.

i. .

6.

7.

tl.

9.

1().

Krasrmr, GE., and S.’~. Pope. A cooklmok k-wusing the modcl-

view-contmllcr user intcrfaw pardigm in Small talk-80, Ioul{h,a I.

OF ~11JE(;l-t)ItIl.XTEl) plUl(;l(Ahl MING] (3):26–49, 1~~~.

Shari, Y-P. An event-driven model-view-controller frmnework for

Srmrlltalk, onl~cl-orun.rtl~” II JWGRAMMIN(; SYSTEMS, l.AN-

(; UAGES, ANII API~I. ICATIONS CO NI~ERENCE, A(;M, Ncw Orleans,

LA, 1989.

Shari, Y-P, Mnl)k A UIMS for Sm~lltalk,. (>~Jtcr-C)~[F.NTt.]~ PM-

(; RAMMIN(i Svsrmi.s, LA X(; L;AGE.,s AND AIJI~I. ICA.rIONS (l) KFI; R-

EN(:E, ACM, ottaw~, ON-l, 1990.

Sullivan, K.]., and D. Notkin. Reconciling environment inicgration

and compnnent indcpcndcnccl “~n,lNsAc,rloN.$ OX SOITTWANI: [N-

GIN EF,RIN(;, ACM, Ottaw& ONT’, 1990.

Helm, R., 1.M. Hollmd. and l). Gangupwlhyay. (hnwacts: Spccitj-

ing hchaviord compnsitiom in nbject-oriented sys(cnls, OI]IIX:T-

@IENTEn ~lr(I[;llAMMIsG SYSTFMS, [. AN(;uA(;Is, ANI) Al,lJl.I(:A-

TIONS CONFEREN(:L, ACM, [)ttirwiil (>NFI”,1990.

Wilkcrson, B. How, to design an ohjcct-based application, 1)1:-

VEI.OP, Apple Computer, (;upcrtino, (1A, April, 1990.

Wirfs-l]rock, R., Jnd R.E. juhnson. A surwy ofcurrcnt reseal-ch in

nhjcct-oriented cksign. (;OMM LINICATIIINS I)F nilACM

33(9):104-124, 1990.

Wir(s.l]rt)ck, I{., ;Inci B. i$rilkcrs(~n. Object-uricn[ed design: A rc-
.,.

S~ollSlhl]l t~-[>aSCCi irppmach, (~ HJE(:l-OKIEN’rlll [)lU)(; liA\l.M 1>,(;

Syswkls, 1. AN(;1,AI;E5, ANn Alll,l I(:AI IONS (; OSII;IIIN(:I;, ,A(;kl,

Ncw Weans, LA, 1989.

\flirfs.l]rock, 1{., B, \Vilkcrs[)n, l.. \$7icner. l)]sI(;xIN(; ollJl:(;l’-

(kiww) SOFTWAIW Prcnticc Htll, F.nglcwood (liffs, NJ. 1W).

Rumhtugh, J., N1. Blaha, lir. I%mcrlnni, l:. Eddy, }\’. I,orcnscn.

OHJlc’r-ORIENrF.II° k’toI)lI.IN(; ASI1 lkslGs, Prcnliw Ilall, F.ll@

wnod Cliffs, NJ, 1991.

1I. Opdykc, W.F. Itcticloring nhjcct-oriented fmmcworks, l]hl) thesis,

Uniwxsity nf [Ilinnis at Urbilllil-(;h;l]ll~l~ig]l, 1992,

2. (link, W,R. intct-faces and spcciiications fnr (he !imalltalk-flo

collection cla. wcs, (>llJE(:I -(~llIEN’ll:l) ~llo(;NAMhl[N(; $iYW!hlS,

LANI;LA(;I,S, ANl) AI~I,I.I(:ATI(INS (;ONFEIILN(:Ii, A(;M, V~lncouvcr,

11(:, 1992.

3. I]oyd, N. Modules: Encapsulating hchavior in Sm,]lkalk, ‘1’rII;

SMAI.I.T.AI.Kll~l,t)wr l(j), 1993.

“The foUowing code extends the baseline SmaUtalk classes to support

certain aspects of framework assembly, event handhng, and role

validation.”

!CoUection methods !

assemblers: frameworkClass

“Answer a new framework assembled from the receiver.”

I framework I

framework := frameworkClass new.

self do: [:each I view useBestRoleFor: each].

‘framework resolveRoles! !

!Object methodsFor: ‘accessing named dependents’ !

dependentNamed: name

“Answer the named dependent, or nil.”

“self dependentNamed: name ifNone: [nil] !

dependerrtltamed: name ifNone: aBlock

“Answer the named dependent, or evahrate aBlock.”

“self namedDependents

detect: [:d I d name= name] ifAbsent: aBlock!

namedDependents

“Answer any named dependents attached to the receiver.”

“seti dependents

select: [:each I each respondsTo: #name] ! !

!Object methodsFo~ ‘performing optional behaviors’ !

ifUnderstood: selector do: aBlock

“Evaluate aBlock if the receiver understands selector.”

“(self respondsTo: selector)

ifTrue: aBlock

ifFalse: [self]!

ifUrcderstoodPerform: selector

“Answer the result of the selected method, or the receiver.”

(self respondsTo: selector) iffalse: [‘self].

%elf perform: selector!

ifUnderstoodPerforrm selector with: argument

“Answer the result of the selected method, or the receiver.”

(self respondsTo: selector) iffalse: [‘self].

‘self perform: selector with: argument!

ifUnderstoodPerform: selector withAIL arguments

“fmwer the result of the selected method, or the receiver. ”

(self respondsTo: selector) iffak.e: [“self].

‘self perform selector withArguments: arguments! !

!Object methodsFor: ‘notifying dependents of events’ !

notitjr name that: eventName

‘(seLf dependentNamed: name)

notifyllah eventName!
SEpTEMBEn 1993
notify name that: eventName with: argument

‘(self dependentNamed: name)

noti@Thab eventName

with: argument !

notify name thak eventliame withAIL arguments

‘(self dependerctNamed name)

notifyThat: eventName

withAlk arguments!

notifyThat: eventNarne

“Answer the final result of noti~ng all the dependents that eventName

occurred.”

I result I

self dependents do: [:d I

result := d notifyThati eventName].

‘result!

noti!jft%at: eventName with: argument

“Answer the final result of notifying atl the dependents that eventllame

occurred.”

I result I

self dependents do: [:d I

result := d notifyThat: eventName

with: argument].

‘result!

no ti~at: wentName witlullk arguments

“Answer the final result of notifying all the dependents that eventName

occurred.”

I result I

self dependents do: [:d I

result := d notifyThat: eventtkurce

wWW: arguments].

“result! !

!Object methods For: ‘responding to requests’ !

respondsToAlk symbolSet

“Answer whether the receiver responds to all of the messages in

symbolSet.”

symbolSet do: [:each I

(self respondsTo: each) iffalse: [“false]].

‘true!

servicesRejectedFrom: symbolSet

“.%mwerthose service requests from symbolSet to which the receiver

does not respond.”

‘symbolSet reject [:each I seti respondsTo: each]!

value

“lmswer the receiver.”

“self! !

!UndefinedObject methodsFor: ‘catching dependents access’ !

namedDependents

“nil has no dependents.”

‘Array new!
—.

17

■ BUILDING OBJE~-ORIENTED FRAMEWORKS
noti&That: eventName

“Do nothing, as nil has no dependents.”!

noti@’hat: eventName with: argument

“Do nothing, as nil has no dependents.”!

not&f’hat: eventNamewithAlkarguments

“Donothing, as nil has no dependents.”! !

Identi~Dictionary subclass: #SmartDictionary

instanceVariableNames: “

classVaciableNames: “’

poolDictionaries: “ !

!SmartDictionarymethods !

respondsTo: selector

“Answer whether the receiver can respond to the message selector.”

I colons I

(super respondsTo: selector) ifhe: [%ue].

(self includesKey selector) iPFrue: [‘true].

colons := selector occurrencesOfi ($:).

colons = 1

doesNotUnderstand aMessage

“If the receiver can handle aMessage selector, do so. Otherwise, treat

aMessage like super would.”

I name I

name := aMessage selector.

(self respondsTo: name) ifFake: [

‘super doesNotUnderstand: aNessage.].

“handle getter.”

(self includesKey name) ifTrue: [“self at: name].

“handle setter.”

name := name asStriccgcopyWithout: ($:).

“self at: name as$mrbol

put aMessage arguments first. ! !

Object subclass: #Framework

instanceVariableNames: ‘name pacts’

classVariableNames: ‘‘

poolDictionaries: “ !

!Framework class methodsFor: ‘creating instances’ !

assemble: frameworkName from parts

“self new

name: frameworkName;

parts: parts;

resolveRoles!

new

“super new initialize! !

!Framework methodsFor: ‘initializing - releasing’ !
18
initialize

name := nil.

parts := SmartDictionary new. !

release

I objects I

objects := self parts.

parts := SmartDictionary new.

objects do: [:each I each release].

%uper release! !

!Framework methodsFor: ‘accessing components’ !

name

“name!

name: pactName

name := partName. !

partNamed: partName

‘self partNamed: partName itlJone: [nil]!

partNamed: partName itlione: aBlock

I part I

part := parts at: partName iFAbsent: [‘aBlock value].

part isliil ifllue: [“aBlock value].

‘part!

partNames

“parts keys!

parts

‘pacts values!

pacts: partsCatalog

parts := partsCataiog. ! !

!Framework methodsFor: ‘assembling frameworks’ !

bestRoleNameFor: part

“Answer the roleName that best fits the part, or nil.”

I roleName roleSize roleSecvices I

roleSize := O.

roleName := NL

self class roleNames do: [:each I

seti class ifUnderstood: each do: [

roleSecvices := seLfclass perform: each.

roleSemices size > roleSize it%ue: [

(self canUse: part as: each) itTrue: [

roleName := each.

roleSize := roleSecvices size]]]].

“roleName!

useB estRoleFor part

I roleName I

roleName := seU bestRoleNameFo~ part.

roleName isNil ifFalse: [

self for: roleName use: part].! !
TIIE SMAI.I.TALK REPONT

—.

S

!Framework methodsFor: ‘defining roles’ !

addRolesNamed: roleNames

roleNames do: [:roleName I self for: roleName use: nil].!

for: roleName use: anObject

(self binders includes: roleName) ifFaLse: [

“parts at: ro[eName puti anObject].

self

perform: (self binderFo~ roleName)

with: anObject. !

when: eventName do: aBlock

seti for: eventName use: aBlock. ! !

!Framework methodsFo~ ‘binding components’ !

resolveRoles

I framework I

parts associationsDo: [:model I

framework := model value.

(framework isKindOf Framework) itllue: [

framework name: model key.

framework resolveRolesFrom: parts]].

self validateParts. !

resolveRolesFrom: partsCatalog

Ipartl

self unresolvedRoleNames do: [:roleName I

part := partsCatalog ah roleName ifAbsent: [nil]

self for: roleName use: part].

self validateParts. !

unres olvedRoleNames

“parts keys select [:roleName I

(self partNamed: roleName) isNil]! !

!Framework methodsFor: ‘triggering wents’ !

noti~: partName that: eventName

“fmswer the result of notifying the named part that eventName

occurred.”

“(self partNamed: partName)

noti&That: wentName !

notify partName that: eventName with: argument

“Answer the result of notitjing the named part that eventName

occurred.”’

“(self partNamed: partName)

notifyThat: eventName

with: argument!

noti~ partName that: eventNanre rvithldk arguments

“Answer the result of notifying the named part that wentName

occurred.”

“(seLf partNamed: partName)

notifyllah eventName

withAlk arguments! !
..— -.

EPTEMBER 1993
!Framework methodsFoc ‘translating wents to messages’ !

respondsTo: selector

(super respondsTo: selector) ifTrue: [‘true].

(parts respondsTo: selector) it%ue: [Wrue].

‘false!

notifyl’hat: eventName

“Answer the result of performing eventName, or t-he receiver if

eventName has not been implemented.”

‘self ifUnderstoodPerform: eventIVame!

noti&That: eventName with: argument

“Answer the result of performing wentName, or the receiver if

eventName has not been implemented.”

‘self ifUnderstoodPerforrm eventName with argument!

notifyThak eventName witlullb arguments

“Answer the result of performing eventName, or the receiver if

eventName has not been implemented.”

“self ifUnderstoodPerform: eventName

withAR: arguments! !

!Framework methodsFor: ‘validating role services’ !

canUse: part as: roleName

self class ifUnderstood: roleName do: [

‘part respondsToAlk

(self class perform: roleName)].

“true !

validate: part as: roleName

I services I

(self canUse: part as: roleName) il’hue: [‘self].

services := self class perform roleName.

services:= part smvicesRejectedFrom: services.

“self error

‘Supplied’, roleName storeString,

‘ cant respond to ‘, services first store String !

validateParts

pacts associationsDo: [:each I

self validate: each value as: each key].! !

!Framework methodsFo~ ‘binding components - private’ !

binderFor: roleName

“Answer the selector that can be used to bind a component to

roleName.”

‘(roleName, ‘:’) as$nnbol!

binders

“Answer all the selectors that can be used to bind the components of a

framework subclass. ”

I supers methodNames I

methodNames := Set new.

supers := self class allSuperclasses removel.ast; yourself.

supers sise >0 ifhue: [supers removelast].
.-.

19

■ BUILDING OBJECT-ORIENTED FRAMEWORKS
supers do: [:s I
methodNamesaddAlhs methodDictionarykeys].

methodNames:= methodNamesselect: [:n I
n last== ($:)].

methodNames:= methodNames collect: [:n I

n copyWithout: (5:)].

“methodNames!

doesNotUnderstand: aMessage

‘Try handling aMessage, assuming it is accessing the parts of the

receiver. If the part accessed is a block context, answer the result of

evaluating the block with the receiver and arguments from aMessage as

arguments. Otherwise, answer the accessed part. If aMessage does not

access a part, let the superclass handle aMessage.”

I part I

(parts respondsTo: aMessage selector) iffalse: [

“super doesNotUnderstand: aMessage].

part:= self pattNamed: aMessage selector ifNone: [

‘parts perform: aMessage selector

withArguments: aMessage arguments].

part isConterct ifTrue: [

aMessage arguments isEmpty ihre: [

‘part value aMessage receiver].

apart value: aMessage receiver

value: aMessagearguments].
*part! !

“The following example is derived from the contract SubjectView

described on page 171 of [HHG90].”

!SubjectView class methodsFon ‘validating roles’ !

roleNames

A #(subject view)!

subject

- #(value value:)!

view

a #(showvalue:)! !

!SubjectView methodsFor ‘supporting subject’ !

setValue: value

self getVahre = value ifTrue: [‘self].

self subject value: vahre.

self noti@. !

getVahre

‘self subject value!

notify

self views do: [:view I self update: view].!

attachView: aView

self validate: aView as: #view.

self views add: aView.!
20
detachView aView

self views remove: aView. ! !

!SubjectView methodsFo~ ‘supporting views’ !

update: aVlew

self draw aView.!

draw aView

aView showValue: self getVahre. !

setSubject: aSubject

self validate: aSubject as: #subject.

self subject: aSubject.

self views == self ifTrue: [self views: Set new].! !

“sample use of the framework’

SubjectVlew new

setsubjeck VahreHo[der new;

attachView BarGraphVlew new;

attachView DialGaugeView new;

attachView Percentag eVlew new;

setValue: 75. !

“The following example is derived from the refinement of the

SubjectView contract called ButtonGroup on page 173 of [HHG90].“

SubjectView subclass: #ButtonGroup

instanceVariableNames: “

classVariableNames: “

poolDictionaries: “!

!ButtonGroup class methodsFor: ‘validating roles’

view

“ #(value chosen:)! !

!ButtcmGroup methodsFor: ‘supporting buttons’ !

select: aButton

self setValue: aButton value. !

update: ahrtton

self getValue = aButton value

ifhue: [seti choose: aButton]

iffalse: [self unChoose: aButton].!

choose: aButton

aButton chosen: true. !

unChoose: aButton

allutton chosen: fake. ! !

Framework subclass: #SubPaneMediator

instanceVariableNames: “

classVariableNames: “

poolDictionaries: “ !
THE SMALLTALK REPORT

!SubPaneMediator methodsFo~ ‘binding components’ !

supportedEventHandlers

A #(

clicked:

doubleClickSelect:

getContents:

getMenu:

getPopupMenu:

select:

)!

handlerFor: event

‘self supportedEventHandlers detech

[:evh I event= (evh copyWithout: ($:))]

ifNone: [nil]!

support: event For: subPane

I selector I

selector:= self handlerFor: event.

selector isNil iffrue: [‘self].

subPane when: event perform: selector. !

supportEventsFor: subPane

subPane class supportedEvents do: [:event I

self supporb event for: subPane].!

claimOwnershipOfi subPane

subPane ifUnderstood: #supportedEvents do: [

subPane owner: self.

self suppoctEventsFor: sub Pane].!

for: partName use: anObject

I selector I

super for: partName use: anObject.

seti claimOwnershipOf anObject. “if SubPane” ! !

!SubPaneMedlator methodsFor ‘handling events !

clicked: subPane

self noti~hzti #clicked. !

doubleClickSelect: subPane

self notifyl’hak #doubleClicked. !

getContents: subPane

self iflhderstood: #getContents do: [

sub Pane contents: self getContents].!

getktenw subPane

self ifUnderstood: #getMenu do: [

subPane setMenu: self getMenu].!

getPopupMenu: subPane

self ifLlnderstood: #getPopupMenu do: [

subPane setPopupMenu: self getPopupMenu].!

select: subPane

self noti&That: #selected. ! !
SEPTEMBER 1993
SubPaneMediator subclass: #ListItemChooser

instanceVariableNames: “

classVariableNames: “

poolDictionaries: “ !

!ListItemChooser class methodsFor: ‘validating roles’ !

roleNames

A #(selectionList widget) !

selectionList

A#(

list

items

selections

selecLlnderc

selectedIndex

selectItem:

selectedItem

select:

selection

)! !

!Listl temChooser methodsFor: ‘accessing component states’ !

getContents

*self listItems!

listItems

‘self selectionLkt items!

ListSelections

“seti selectiordist selections!

selectedIndex

‘self selectionLkt selectedIndex!

selectedItem

‘self selectionlist selectedItem!

selection

“self selectionLkt selection!

selectionList

‘self partnerNamed: #selectionList!

widget

‘self partnerNamed: #widget! !

!ListItemChooser methodsFor: ‘changing component state’ !

changeList

self selectionLkt list self getList.

“note: getList should be implemented by subclass

method or proto~e block!

selecffndex: index

self selectionList selectIndex: index. !
21

■ BUILDING OIJJECF-ORIENTEDFRAMEWORKS
selectIterrr item

self selectionList selectItern item. !

selectObjech selection

self selecliocrList select: selection. ! !

ListItemChooser subclass: #ListViewer

instanceVariableNames: “

classVariableNames: “

poolDictionaries: “ !

!ListViewer class methodsFor ‘validating roles’ !

widget

“#(

deselect

restoreWithRefresh:

selection:

selection

)! !

!ListViewer methodsFor: ‘translating events’ !

deselected

self widget deselect. !

listChanged

self widget restoreWlthRefresh self selectedItem. !

selected

self selecthrdex: self widget selection. ! !

!LiWViewermethodsFor: ‘changing component state’ !

showSelection

self widget selection: self selectedIndex. ! !

ListItemChooser subclass: #ListButton

instanceVaciableNames: “

classVaciableNames: “

pooloictionaries: “ !

!ListButton class methodFor: ‘validating roles’ !
TO SU

THE SMAL
CALL 212.274.0640 O

212

22
widget

“super widget, #(contents:)! !

!ListButton methodsFor: ‘translating events’ !

clicked

self listSelections size >1 iffrue: [

self widget contents: self nextSelection].!

listChanged

self selectionCharrged. !

se~ectionChanged

seLfwidget contents: self selectedItem. ! !

ListButton subclass: #MenuButton

instanceVariableNames: “

classVariableNames: “

poolDictionalies: “ !

!MenuButton class methodsFor: ‘validating roles’ !

selectionList

‘super selectionList, #(popUpItems)! !

!MenuButton methodsFo~ ‘changing component state’ !

nextSelection

“self selectionfist popUpItems! !

ListButton subclass: #ToggleBrrtton

instanceVariableNames: “

classVariableNames: “

poolDictionaries: “ !

!ToggleBrztton class methodsFor: ‘validating roles’ !

selectionList

‘super selectionList, #(selectNext)! !

!ToggleButton methodsFo~ ‘changing component state’ !

nextSelection

‘self selectionList selectNext! !
BSCRIBE TO

LTALK REPORT
R FAX YOUR REQUEST TO

.274.0646.

~IIE SMAI.I.TAI,K REPOFIT

mUIS Greg Hendley & Eric Smith

Keeping multiple views up-to-date
-”-
I
n many Smalltalk applications, it is possible for the end-
user to have several independent windows providing

views of the same information (Figure 1). There maybe

several instances of one kind of window or parent and child

windows that, though very different in appearance, share

some overlap in the information they present. To prevent in-

consistencies between windows, the changed-update (also

known as object Dependents) mechanism can be used to in-

sure that all views the end-user has opened on a particular ob-

ject are kept up-to-date with that object’s most recent idea of

what it looks like.

For example, if the user has a view of a Customer object that

he opened directly and another view of the same Customer that

was opened as a consequence of browsing a ServiceAgreement

object, any changes make to one view of the Customer should

be immediately reflected in the other. The user should not see

two different views and be Iefi to figure out which one is the

most current.

BACKGROUND

The application architecture outlined in previous columns

(THE SMALLTALK REPORT, May 1992 and October 1992) will be

employed here. For those who have not yet been exposed to

the Interface-Control-Model architecture, a brief glossary of

terms is provided here.

. ~nter-ace, The component of the user interface whose job it

is to present information to the end-user and accept input

events from same, The interface translates user input to se-

mantic actions such as mouse-clicks to selection or menu

selections to commands. The interface has very little

knowledge of the structure of the application of which it is

a part. It has virtually no knowledge of the domain model

(see below).

“ Control. The control layer of an application is the conlpo-

ncnt that understands the semantics of the application as a

whrrle. This is where commands identified by the interface

are actually carried out. The application conlro] under-

stands the relationships among the various domain model

objects it works with. It also knows about the consequences

of commands. This is the point where all the “brains” ofthc

apphcation (as the end-user sccs it) reside.
——..——.-.. .——

SEPTEMBER 1993
Model. The model is the meat of the system. This is where

the real information is modeled (hence the name). lf we

were working with a circuit design application, this layer is

where objects such as Circuit, Transistor, Diode, etc. would be

found. These objects have only the most limited under-

standing that there is a user interface above them. They

have no direct knowledge of user interface issues.

OBJECT DEPENDENTS

Both major dialects of Smalltalk provide essentially the same

Object Dependents facility. The idea is that a client object,

which wdnts to be informed when some other object changes,

registers itself as a dependent of that object. Since the requisite

behavior for maintaining dependencies is implemented in the

class Object, all objects may have dependents, be dependent on

other objects, or both.

The detailed operation of (lbject Dependents is a topic for

another time. We’ll have to be satisfied with just a quick look

at the top level of the behavior. In the simplest terms, an object

which has changed and may have dependents sends ilself a

ch-mged message. This results in each of the dependents, if any,

of the object in question being sent a matching updnte mes-

sage. A list ofpmsible changed messages and their matching

update messages is presented below

changedmessage
changed: argo
changed: argo with arg1
changed: argo with:argl with: arg2

r= ‘--“-‘“‘--”“:‘--““< .-,
-:.-h8 “2241 4974s99

MallSbp ,?161a

W skillsEch

Zlp Zrsll -

—.

Name: SIrIUScybemti= cum.
ri

~dres 1211 one Thousand S1.
644s

Mdl slap 2167a

Cly sill”. ❑ .zm

C“timn - ‘“ii 544’

Detail.! Contd,.”. —:.

—.
Figure 1. Two windows on a single Customer.
———

23

■ GUIS
66 Whenever some aspect of Domain

Object that might be of some importance

to the outside world changes, the

method of the domain object that

actually changes the value performs an

expression of the form self changed:

attribute. 9

updatemessage
update:sender
update:argo
update:argo with arg1
update: argo with wgl with arg2

An object, A, may register itself as a dependent on another ob-

ject, B, by sending B the message addDependenti with itself, A, as

the argument. All dependents of an object are removed by

sending the object the message release.

A NOTE FOR DIGITALK USERS

Digitalk does not provide one method that is very useful in

dealing with Object Dependents. The missing method is

Object>>removeDependenti and a possible implementation is:

Object>>removeDependent: aDependent
“Remove a single object from my list of dependents.”

I dependents I

(dependents := Dependents at: self ifAbsent: [A nil])
remove: aDependent
ifAbsent: [].

dependents isEmp& ifhue: [self release]

Digitalk users should also beware of the confusion possible be-

cause ViewManagers implement their own independent changed-

update framework, which is unrelated to Object Dependents

though it uses much the same protocol. To avoid problems, we

won’t be sending changed messages to view managers.

TWO VIEWS ON ONE OBJECT

TO keep all of the windows csn a particular domain model ob-

ject current, the domain model objects will germ-ate self

changed: messages whenever some aspect of their state has

changed. It is assumed that when an view is opened on any dy-

namically updatable domain object, that the application control

object registers itself as a dependent of the domain mode] otr-

ject it is representing to the user. This will insure that the appli-

cation control will receive the update: message when the state of

the domain model object changes. It is also assumed that the

responsibility for undoing the dependency link when the win-

dow is closed irk-r resides with the application control object.
24
SE17NG UP

When a window is opened on J domain object, using an

openOn: message for example, the window informs its applica-

tion control object thirt this domain object is to be its model

object. It is ~t this time that the application control object

should register itself as a dependent of the domain model. The

following methods illustrate this set up:

CustomerEditor>> openOn: aCustomer

“Scheduling – Open myself up as a window

on the given Customer.”

self control domainModel: aCustomer.

self open

CustomerEditorControl>> domainModek aCustomer
“Accessing – Set my reference to my domain model object.
Matre myself a dependent of this object.”

domainModel notNil iffrue: [domainModel removeDependent: selfl.
aCustomer notNil ifTrue: [aCustomer addDependent: selq.
dornainModel:= aCustomer

Given this set up, Figure 2 provides an illustration ofa gcncrir

scenario for what happens when some attribute of a displayed

domain object is changed by the user in one of two views on

that object. ln this exwnple Control A and Control B are both de-

pendents of Domain Object.

1. The user uses some control in the window to alter the value

of an attribute of the dom~in object being presented to him.

For example, a thr namt of a Customer maybe changed.

2. As a result ofmanipu]ating a mntrrr], z command message is

forwarded to the fipplication control object ofthe window the

user is working with. In the case ofchanging the customer’s

name, this might be a message like cmdSetCustomerName:.

3. In the course of processing the command message, Control A

sends a message to the Domain Object to inform it lha[it

must change some of its internal state. To continue the cus-

tomer name example, this would likely involve sending Do-

main Object the message name:.

4. Whenever some aspect of Domain Object that might be of

some importance tn the outside world changes, the mc[hod

of the domain object that aclua]ly changes the value per

I

kg i

1
window A user Wfmdow S

Athibute

6 2
invalidateAttribu:e crndSetAttribute: ‘f..’

irvalidateAttlhkte

Conhol A

3
Control B

attribctc ‘f..,

5
update: 7

update:
Oomain Object

Figure 2. Keeping two windows up to date,
THE SM.41.r.T.41.KRF.PONT

-..
forms an expression of the form self changed: attribute. The

parameter attribute varies depending on just what pm(of

the dumain model object was altered. For the change rrf

name cxmnplc, this argument would likely be mImc. In such

a case, the setter method for nmme in the class Customer

might look like the follmvio~

Customer>>name:aString
“Accessing – Set my name. Update anybody who’s interested.”

name := aString.

self changed: name

5. Whenever an object is sent the changed: message, as in

event 4, all other objects which have been register-cd as de-

pmdents on the receiver of the changed: message receive

update: messages. The argument passed along with the

update: nwssage is the same as that passed in with the origi-

nal changed: message which stm-tcd the process.

6. In processing the update: message, the applimtion control

compares the argument with those identifying aspects ofthc

domain model in which it is interested. If a match is found,

then the associated interface object is informed that some of

the data it is displaying is no longer valid and must be up-

dated. This is done by sending the interface object a message

tha[tells it just what data needs to be redisplayed. If this were

a view on the Customer as in the preceding examples, the

method for update: would look, in part, like the following.

CustomerEditorContrcl>>update: aspect

“Updating – Some part of my domainModel has changed. See if

it is a part in which I’m interested. If it is, then direct

the userInterface to update it. ”

aspect = = #name

iflrue: [“ self userInterface invatidateName].

aspect = = #company

ifTrue: [A self userInterface invalidateCompany],

A super update: aspect

7. As Control B is also a dependent of Domain Object ii will also

receive an update: message of the same form as that received

by Control A in event 5. This provides application B with an

opportunity to keep its view of the domain object up to

date even though application A wm the source of [he

change. Application B dots not need to know the source of

the change. All it needs to know is what change took place.

This update: message provides it with this information. The

two views of Domain Object remain in sync.

IL Control B will handle the update: notification in much the

same way as did Control A in event 6.]n F~ct, if these are the

sarnc kind of views of Domain Object, then it will handle the

message in exactly the same way. The end result is that a

message will be Passed on [o Window B telling ii that it must

refresh the display uf the changed item.

Aticr the list of dependents of Domain Object is exhausted, that is

each member of that list has received and processed the update:

mcssfigc, the process of changing an attribute of the domain
SEPTEMHER 1993
model objtct is cornpletc. Only at this point dmx [he processing

of the cmdSetAttribute message from tnwnt 2 complete.

Note that the domain model obiect did not ncc(i to know

much about the application to provide this nolitica[ion. All it

nmxled to know is when to yell, “1’vc changed!” Othcr objects

may or rniry not be interested. 1[they’re no[in[crestcd, they

just won’t listen.

a Objects mayor may not be

interested. If they’ re not interested, they

just won’t listen. 9

CLEANUP
When any of these windows arc shut down, the dependency

links with the domain model objects must be broken. This is

best done using the removeDependent: message. When a win-

dow is closed it must, before it goes away entirely, pass on to

its control object a message allowing it to clean up as well. A

message like cleanUp will do nicely:

CustomerEditorModel> >cleanUp

“I’m about to be terminated, cleanup

any messes I’ve left laying about.”

self domainModel removeDependent: self

The Object Dependents mechanism cm lM particularly uwful

for keeping collections of information up to dale dynamicirlly.

This will be the topic ofa future column. El
25

~ ‘----- ‘--by Dan Lesage

SMALLTALKPROGRAMMING FORWINDOWS
by Dan Shafer with Scott Herndon and Laurence Rozier
Prima Publishing

Roclin, CA
phone: 916.786.0426
fax: 916.786.0488
$39.95
ISBN 1-5595B-237-5 1993
I
am waiting for the day of the truly paperless book. The day

when reading on an electro-lurnincscent or photo-polar-

ized device provides me with as little eye strain as reading

flat paper. I am sure that Dan Shafer is waiting for this day as

well. On that day, the problem of publishing a timely technical

book about riipidly changing technology will no longer exist.

Eighteen months ago, 1 reviewed Shafer’s original Smallta]k

book, entitled PRACTICAI. ShlAL1.TAI.K(’~HE SMALLTAI.K RE-

PORT, October 199 1). One of the issues 1 raised in that review

was that the book presented examples in Smalltalk/V 286, just

when Digitalk was moving toward PC desktop integration with

Windows and 0S/2 Presentation Manager. The paradigm used

for modeling these new user interfaces had changed drmtically

from Model-Pime-Dispatcher. MPD lost its sex appe~l for soh-

ing UI problems, although the fundamentals of Srnalltalk were

the same. Real-world Smallta]k dcvekspment had moved on to

a different pwadigm.

Shafer’s new book, which uses V Windows 2.() as its base, is

more timely than its predecessor. However, it is interesting

that Digitalk’s focus has moved onto Parts, once again leaving

Shafer to play catch-up. What we need is the ability to publish

a book directly from a Srnalltalk image!

Once dgiiin the focus ofthc ncw book is a practical intro-

ductory guide for novice Srnalltalk users. It acts as a supple-

ment to the material provided by Digitalk. The format ofthe

book is similar to [he previous one. Aller two introductory

chapters, it leads the rcadtr through chapter pairs. The first

chapter of each pair in[rodums important Smalltalk classes.

The second of the pair highlights [he LISCof these classes within

a working ex~mple ~pplic~tion.

The book describes seven detailed projects. The first is a List

Prioritize that prompts the user to prioritize text entries. The

second consists of a Counter widget that introduces interaction

between subpanes. The third project is a Calendar application

that displays monthly pages, allowing you to nivigate dates,

highlighting holidays and the current dale. The fourth applica-

tion is an Appointment Book built by extending the calendar

application in the third project. The Appointment Book intro-
duces the ViewManager class. The fourth project also demon-

strates how to manage multiple window in[crflction by adding
26
a text basccl appointmcn t window to the calendar. The fifth

project is is Bar Gmph Editor and Viewer. The sixth consists of

a Form Designer that demonstrates huw to create a user inter-

face layout from a Smallta]k oudinc. The Iwl project consists

of a Clock that also hooks into the Calendar application. l“he

clock is rcsponsihle for displfiyiog the time find sounding

alarms and chimes. The Clnck project demonstrates [he multi-

processing capability built into Smalltalk and how [u LISC it in

combination with ViewManager.

1 found that the example pmjccts contained within the

book had greater relevancy to developing real applications

lhan the ones presented in ~IL+(:”rI(:AI. Shl,41.1.’r,4l.K.(hly thf!

List Prioritimr, Cnunter, and Iksr Graph Vimvcr appear as u}J-

grnded versions of cxamphx used in the prcvinm book. The re-

maining projects simulate the process of bui]ding real npplic~-

tions. They require the developer to add new functions to

existing sofhvarc rather than create dcsigos from scmlch.

Changing the Calendar viewer into a time-hascd Appointnwn[

Book typifies how Smallta]k developers mLISI constantly reor-

ganize their code to accommodate ncw requirements. The Clock

project, which is the cumulative tffcct of thtsc rcquirenwnts,

prrsvidcs new Smalltrdk progriumncrs with insight into the

power of classes such as Time, Processor and Context (blocks).

This last project ~im-mnstratcs how to make these clasws co-

Iabora[c to simulate lhc lwhavior being moddcd. The result of

completing the Iasi proicc[is ~ scnst ofsatisfirclion i~nd

confidence. [kwclopcrs ShOLIILl feel comfortable hruwsing the

class h icrarchy as they develop mm-c complex applications.

The hook includm a 3.5-inch diskt(tc thal contains Y \\’im

dews 2.() code, so browsing [he cwmnplcs is easy. Just remcm-

Iwr to remove the diskette immcdia[cly when you huv [he hook

or you will find tha(titicr a while, the soti back cover will look

like ii has been run over hy an ofkc chair!

There apprar tn be some errors wi[hin the printed Srmdltdk

coclc that do not appm- on the disket[cs. Pages 184 through

186 conksin numerous syntax errors and Crroncoudy rcpcatcd

code. Unless yOLIarc a rnasochis[, Y(JLI should hroww the code

from your imagt rather than read the hook to cnwwr corrcct-

ncss. Of course, that means yULIneed your pqwrk)ss book

again, as yOLItly frurn Buston 10 Ottawa. Hmmm...
THS SMALLTAI.K REPORT

.

Shafer>s style of writing in this book is down to earth. This

should appeal to new programmers, but there are instances

where I found the style to be a little subterranean. On page

141, for example, Shafer writes:

(It’samazing to think one can actually get paidjor doing Ibis

kind of work, isn’t it?)

I hope I never accidentally put that into my application

comments!

On the plus side, this book has really made strides in the

area of integrating an application into its surroundings. Ap-

pendix B discusses DDE and DLL interfaces and provides an

example of adding a DDE link to the Calendar application

from Microsoft Excel. The DLL example shows how to use

multimedia extensions in combination with a sound board.

The example demonstrates how to modify the C~lendar pro-

ject to play a sound file instead of beeping for alarm events.

The end result of all these enhancements gives a Calendar

application that is comparable in function to the Microsofi
Windows desktop calendar. I believe that most programmers

would classify this to be a true application, albeit a simple one.

Shafer demonstrates the use of fast protr)typing a’ :ha-

nism for building applications. Throughout the book, he pro-

poses designs that have minor flaws contained within them. He

then leads the reader through the analysis required to correct

the problem. This highlights an important point pertaining to

the design of graphical applications. Most of the discovered

problems have to do with event handling, sequencing, bad ini-
SEPTEMBESS 1993
tialization and proper notification of change. To further crml-

plicate the analysis, these problems occur within a multi-

window, multi-pane, multi-widget environment. This is also

true in the real world: The hard pmt is not defining the visual

aspects, it is getting the glue right. This book does an excellent

job in highlighting these kinds of problems and demonstrating

the type of analysis is required to correct them.

Once you overcome the silly book cover, the cartoons on

the back and the fact that the publisher’s name is aboul 3 times

the size of the author’s, the content of this book will be very

useful to new Smalltalk programmers. The calendar applica-

tion can form the basis of an introductory Smalltalk course. I

know of one company that has modeled part of its internal

training examples on those presented in the book. This book is

a colossal improvement over its predecessor and it demcm-

strates what it takes to start building applications under Win-

dows using sma][,~ik. 1 recommend this book to new Smalltalk

programmers who wish to quickly develop small scale applica-

tions within the Windows environment. El

Dal] Lcsagr ;~responsible@ Distributed Systems Frarnrworks at Ob-

ject Technology lnlernfrtionfll [m. This rnem]s Wa(he gets to act a5

(rid urbiter bef ween wry unlike pieces o~hmdware a)ui ~ofiw(rrc,

protocol mbirer Iretwmw cohrhomting ckmrs ilI frflnwwork5, per5ml-

nc/ m-biter betwrcn team members mui aqurous medium arbiter he-

twecu aggrcmivc piscfltorifll numbers of his nquaria. 11occmionally

means tlwrthc gCIJ10develop sojiwfl re in .%urlhdk. Hc mu be

reached at 613.820.1200 or danr?oti. o)l.cu.
.— ..—

Excerpts from industry publications
SOM
In practice, [lB,M’s] SOM (Systcm Object Model) will allow

programmers to “package” objects into blocks of code, of class

libraries, that can be readily accessed from a C++ or Smalltalk

program. Next month, IBM will extend SOM with a full

CORBA (Common Object Request Broker Architecture)

model. This Distributed SOM, or DSOM, spec will let objects

be transparently accessed either locally or across a network.

IBM reveals Ifs new software ‘ob~ect”-we,Alexm!er Wol[e,

EK(-TI?Q:JCENCM :Iuw, Twi ~,5/17193

POINTER-SAFE
At least triggers are specified in an SQL varkmt. SQL has no

pointers and there is no need to worry about wild stores. Even if

the application is written in a language that is not pointer safe

(e.g., C) a wild pointer or running off the end of an array will

not corrupt the database. However, most object database ven-
dors and at least one relational vendor allow behavior specified

in C or C+ + to be optionally linked into a server process, and

server processes contain very large caches of data. The problem

in the relational environment is that the rows in the mche are

assumed to satisfy all integrity constraints and that the cache is

ofien shared amongst multiple clients. A seemingly experienced

apphcation developer once told me, in all seriousness, that ma-
ture C code doesn’t produce any wild stores (and you wonder

why DBAs sometimes seem par%moid). A wild store in this sce-

mu-io can result in corrupted data being committed to the

database. And the corrupted data might not have been read by

the offending application program. Many object databases have

the same problcm with behavior specified in C or C++. These

databases tend to bulk copy their caches to disk at transaction

commit. This is one of the major reasons why I have always be-

lieved that a pointer-safe language such as Srrdtdk is a much

better data-manipulation language that C or even C++.

ODBMS: Teur down the wI!s, jmob Stem, OWCT MKA.’IW, 7 8/9.3
27

Congratulations to
Bank of America on their
new n-state wide area net-
work. A system they call “the
most sophisticated distributed
network in the world.”

With good reason.
Their network configuration
tools have already won the
Com~uterwor/d 1993 Award
for Best Use of Object-
Oriented Technology within
an Enterprise or Large
System Environment,

Of course, thatk what
happens when a company
like Bank of America turns
to a powerfu/ technology /ike
Digitalk’s Smalltalk/V

of methods ;nd 80 object
classes specifically designed
to build GUIS fast, Which

Why are so many Fortune 500
companies like B of A switching to

Smalltalk/V7’
Smalltalk/V lets
you show proto-
@pes of enterprise-
wide systems in
weeks instead of
months. In fact,
systems as ambi-
tious as Bank of
America k can be
comp/eted in as
little as 18 months,

In addition, our Team/V Group
Development TOOIlets large teams of
programmers use version control to
easily coordinate their work. Plus
you’ll be surprised at how quickly your
in-house staff becomes productive
with Smalltalk/V

The bottom line is Smalltalk7V
helps a company get more done in
less time. Which can save verylarge
amounts of corporate cash.

luminaries and Fortune 500
managers aren ‘t the only
ones who have recognized
the value of SmalltalkA(
Users have discovered that
Smalltalk/V is the only
object-oriented technology
thatk 100% pure objects.
With hundreds of reusable
classes of obiects, thousands

means no more time spent
writing code from scratch.

So itk no wonder that
so many companies are

doing award-winning work with
Smdltalk/V Incidentally Sma//talk/V
applications can be easily ported
between Windows, 0S/2 and -
Macintosh, And you can distribute
100% roya/ty-free.

For information on how Digitalk’s
Sma/ltzdk/V can save you time and
money call l-800-531~2344
dep@ment 310 for our specia/ White
R@x And be sure to ask about D@italkk
(Consulting and Faining Services.

//’ Call right now and see how
On behalf of Commlterwodd, ; Smalltalk/V?an yield a maximum

Steve Jobs presented the award to / return on vour investment

	By Article Title
	Building object-oriented frameworks
	Extending the environment (part 1)
	Inheritance: the rest of the story
	Keeping multiple views up-to-date
	Smalltalk Programming For Windows -- Book Review

	By Author Name
	Boyd, Nik
	Beck, Kent
	Hendley, Greg
	Knight, Alan
	Lesage, Dan
	Smith, Eric

	By Topic
	Book review
	comp.lang.smalltalk
	GUIs
	Smalltalk idioms

