
The International Newsletter for SmalItaIk Programmers

July-August 1993 Volume 2 Number 9
SMALLTALK

DEBUGGING

TECHNIQUES

By Roxie Rochat
6 Juanita Ew-ng
Contents:

Festure

1 Smslltalk debugging
techniques
by Roxb Roohat & Juami%
Ewing

Articles

4 Debugging objects
by Bob Hihktb, WckiJones, &
Rat@hE. Johnson

8 ~plications of Smslltslk in
aclentific and engineering
computation
by Richard L. Peskin

Columns

11 l?m W ofcomp.&sng.sma#talk
Good code, bad hSCkS

byAlm Kn&ht

15Sma//talk I&ms: Inheritance:
the rest of the story
by Kent 8eck

26 Rvduct News and Highlights
•!l
xpert Srna.lltalk users are characterized not only by their program-
ming skills, but by how quickly they locate and correct errors. Not
only do they use debugging skills to fmd bugs, but also to under-
stand existing code. To reuse code effectively, you have to under-
stand it, so debugging skills are important tools for maximizing

reuse and minimizing work.
This article describes debugging techniques for both Objectworks\Smalltalk

and Smalltalk/V. Although written for novice Smalltalk users, it assumes a basic

familiarity with Smalltalk terminology and the environment, including browsers
and debuggers.

Many expressions in this paper are common to ObjectWorks and Digitalk
SmaUtalk systems. Expressions that are not annotated apply to both Smalltalk sys-
tems. Unless otherwise noted, the Objechvorks expressions given in this article are
applicable for

“ Objectworks\Smalltalk 4.1

“ VisualWorks 1.0

“ ENVY/Developer rl.41a for Objectworks\Smalltalk and VisualWorks.

The Smalltalk/V expressions have been tested Unden

. Version 2.0 of SmalltalkN for 0S/2

s Version 2.o of Smalh.alldV for Whdows

“ ENVY/Developer rl.4 la for SmalltalldV for Windows

If you are using other versions of Smalltalk, use the expressions presented in this

article as a starting point.

WHO AM 1?

A major component of the debugging process is the collection of information
about the objects and their current state. Transcript messages allow you to gather
information about objects over time. Inspectors allow you to see objects and their
internals in a static state. Careful planning with respect to naming and object
identity can help you focus on easily collecting relevant information. This section
reviews debugging techniques involving the Transcript, inspectors, and factors re-
lating to object identity.

hello world, or printf, in Smalltelk

The Smalltalk equivalent of the C printf function is to write to the Transcript win-
dow, (You do leave your Transcript open, don’t you? The system writes error

messages to the Transcript so if you collapse or close it, sooner or later, you’ll be
sorry.)

Information you print in the Transcript can be used to determine when a par-
ticular method is called, to examine arguments, or to examine data calculated by
continued on page 1#...

The Smalttath Report
Edii
John Pugh and Paul White

Cmfaton Unfvaraity & The Objact People

SIGSFwaLfcAnoNs
AdvisoIYBead

I Torn AtW&d, O@fTecfmobgyhtamdional

GradySooth, Ratimal

George Boaworfh, Oigfinlk

Brad Cox, Infwrnmion ~e Consukirg

Chuck Duff, Symantec

Adele Goldberg, PnmPbca Syatams

Tom Love, Ccmauftam

Sertrand Meyer, ISE

Meifir ~-Jonee, Waybnd Syahms

Seeha Pratap, -nlerLins SDftwsre

Bjarne Stroustrup, AT&T Sefl La&

Dave Thomas, Objeci TecfmobW International

THE 5M4UTAM REPORT

Ediial Board
firnAnderson, Oighafk

A&de Gofdberg, %rcpfam systems
Reed Phillips, Knowbdge Systems Crop.

Mika Taylor, E@irnfk

Dew Them= III@ Tecfmdogy Intarnaibnd

Columnists
Kent Beck, firm cbsa %4iware

Iuanita Ewing, Oigdalk

Greg fiendley, f(nawtadga ~MS carp.

Ed Kfimss, Linaa EWinearing Inc.

Man Knight, The object Pan@

Eric Smith, Knnvdedee Syabms Carp.

Rebeca Witfs-BrOchl Oigitatk

51GS Publiins Group, Inc.
Richard P. Friedman
%mdar & Group Wiw

Art/Production
Kriatina Joukhadar, Managing Edflw

SUW CuH~, P#grkm Road, Ltd., ~ EX6

Karen Tongiah, Production Edflar

Gwen Sanchirico, production coordinator

Robert Stewart, Camp.tm SYSWIM Cnordinaior

Circulation
SlephenW.Soufe,GrcdatimManagar

Ken Mercsdo, Ftiimant Managw

Markating/Advertising
farmsO. -r, OimdOr d BuSneas Oa+xmnt

Iaecm Weiakopf, AdvellisingMgr-Ed Cnasucanada
H@ Mainfr% Advdsbg F&-W* Cmat/Euqe

Helan NewSng, Fkcnhm4&4ea ManagEr

Sarah Herrtifmn, ~ -r~

Ian Fukner, ~ wnnger~ccsa

Cemn Pofner, PmmOLms GI+%cAiiat

Adminiatrtion
David Chetterpaul, Accounting Managar

James Amenuvor, Scc.kkaaper

Dyfan Smii, Special Aasknani la the PuMahar

Cfaire Johnatc$t, cmfmm=a k-qar

Cindy Saird, Con ferema Tachnica.1Managar

Mergheriia R. Mcmck
Gmaral Managar
EDITORS’
CORNER I

John Ptmh Paul White

n
.——a.

evelopers who use Smalltalk have always had a real love/hate relationship with their devel-

V opment environment. We’ve always been fascinated listening to Smalltalkers describe the
toolset in their environment. When describing Smalltalk to “outsiders,” they defend it

with an emotional fervor, noting how flexible it is and how rich a toolset it actually pro-
vides. But if you have a chance to speak with these same people alone, you’ll hear a very
different story. The fact is that the base Smalltalk development environment is in desperate
need of a major overhaul. It has become Smalltalk’s “legacy system.” One of the first things
that appealed to us about SmaUtalk back in the early days was its rich development envi-
ronment—it was definitely the best on the block. Since then, no significant changes have

been made to the way in which people interact with the system. Sure, minor improvements
have been made at times but there have been no qualitative improvements to the browser,
the inspector, or the debugger. Even the tools that do exist need to be more polished (Ever
listen to someone use the “Find Class” option in Di@talk’s browser-the groans over a lack
of wild card are universal). Even team development tools such as Team/v and ENVY don’t
improve to any significant extent the way in which we interact with Smalltallc

So why don’t we see better toolsets coming to market? We suspect the answer is simple a
lack of motivation on the part of the vendors. There is a greater return to be made by provid-
ing add-on facilities such as interface builders and database intert%es than there is by aug-

menting the tools that already exist io the base image. Will third-party developers take up the
challenge? We hope so, but we are not terribly opdrniitic. Perhaps the forthcoming Object
Explorer tool form First Class Scdlware, which attempts to visualize the relationships between
objects, will set a trend. Of course, many Smalltalk programming shops have built “in-house”

extensions to the environment that they use on their projects and those of their clients. But
most organizations don’t want to be tool builder% they’re application developers.

On a more positive note, four of the m-tides in this issue do illush-ate just how rich an en-
vironment Smalltalk has. Each takes a different perspective, with two focusing directly on
the debugging process and the techniques that can be usedto understand what is taking

place inside your systems. Roxie Rochat and Juanita Ewing are featured this month with
their hints on debugging. They have included a number of debugging techniques, including
ones for debugging code that does not allow for the normal “selfhah” approach to work.

MO on the topic of debugging, Bob Hinlde, Vicki Jones, and Ralph Johnson return
this month with a description of how Smalltalk can be extended in ways that will allow for
non-intrusive debugging to be tied out.

Alan Knight and Kent Beck also touch on the issue of debugging with Smalltalk. Kent re-
turns to his discussion of the conflicting roles played by inheritance in Smalltalk and intro-
duces two new patterns that describe rules that can be applied when making inheritance deci-
sions. Alan tackles the issue of recognizing “good code” by characterizing the elements of

good coding techniques.
Finally, Richard Peskin provides us with a glimpse into work that is being done to

make Smalltalk more appli~ble to scientific and engineering computing. As he points
out, this area has not received much attention from the Smalltalk community lately, even

though much of Smalltalk’s early history involved serving this community.

—L–

THR SMAUTAI.S KEPD Vbllstud 9 ~= a Y=L ewy month esmpt fnr the Mar/Apr, Jufy/A dN k

cat% Grnup, s80 Broadway, New York, W 1~122 12.274.126@.IQ@P’& :993 b;SIGS
Publications, I.. Alf rights reserved Sepmducdon of thii matmiaf by electronic trm.smtiom Xems m any other meihcd w+Jlbe
treated asa witffd violation of tbe US Cqyrigbt law and is flstfy pmbibked. Matmbt maybe rqmidoced with expreis penntiion from
he publi.shem MaiJed First Cfau Subscripdm mtes 1 yew, (9 issud domestic, SSS,I%miwI and Canada, $90, S@ qy ptie, S9.00.
POSTMASTER Send addre+s changes and subscription orders to THE SMALLT.US FtJPDEIT,Subscriber .%rvi-s, Dept. SML P.O. IfDS
X00, Denvilfe, NJ 07S34. Submit arddm tn the Sditom at 91 Sa-nd Aw?nwc, Ottawz Ontario KIS 2H4, Camda FLU service on CIU-
rentuubsuiptilmcdarm.7s3.4!m3. m-inlet+ in the unitedstati

2

■SIGS
PUBLIGATILINS

Pubfbhers of JOURNALOF OBJECT-ORIENTED PRO-
EWMMMG, OBJECTWGAZNE, THE C++ REPORT,THE
SMALLTMKREPORT,THE INTERNATIONM00P OIREC-
row, and THE X JWRNAL.

THE SMALLTALK REPORT

SHARE

❑g . ~
f

6 g WINDOWBUILDER p~” ●

INc. 7beNewPower in SmalltalWVInterjuce Dezdoprnent

Srnd[lPJ1k/Vdevek)pers lMve come [o rely on Win&nvBuilder Pro/V is awikrble on Windows for S295
Whkclow13uikleras ‘an
essential [001 for devekkp-
irrg sophistirdted user inter-
faces. Tedious hand coding
of interfaces is replaced by
interactive visual composi-
tion, Since its inittidlreledse,
Winclowf)uikler hds
become the industry stan-
&drd GUI development tool
fOr the srndkdlw environ-
ment. Now Objectshdre
brings you a whole new
level of capability with
WindowBuilder Pro! New
functionality and power
abound in this next genera-
tion of WindowBuilder.

mxl 0S/2 for $495. Our srJn-
&Jrd Winck)wBuik_kr/~ is
still awdilableon Windows
for $149.95 and 0S/2 for
$295. We offer full vdkw

tmde-in for our
wkrdowBuilcler customers
wdnting to move LIp tO Pro,
These produrxs are also
available in
ENVY~lDevelo@r and
Tearn,W~ comp~tihle for-
mak. AS with all of our
products, WindowBuilder
Pro comes with a 30 ckay
money back guarantee, full
.Source code and no Run-
Time fees.

Some of the exciting newfeatures...
● Colllpo.silt’l);]nc’.s:”Credte custom controls as composites

BZ;2
because they are Class based, they can be emily sub-

classect; changes in a CompositePane are reflected any-
where they are used,

s .Mm-phing:AMowsthe developer to quickly change

D

mdthlk fmm OSW ~pf? Of COfltrO1 “Skills
■

Wlnddullder
Olh*r to another, allowing for

m

O Smnlimlk

powerful “what-if” style O WlndwBulIder

visual development. The O Lllher

flexibility allowed by
mcrrphing will greatly enhdnce productivity.

● !icmpIkx)k: Another new feature to leverdge visual
ccsmponent reuse, Scrapbooks provide a mechanism for

● Mpid Proto[y pingcapw
I -b.. m-”-. m.=.. I

er cm rapidly prototype a

‘1
lF,M,,
Ichll.

functional interface without
writing a single line of
code. LinkButtons and lb%= I

biliti;s: With the n~w l~nk-

1

,~ul

~l;&;~-:r—””s-”----” H Ting capabilities, a develop- ~E=~,_.

-“

n

OPCWti mlcdcd
wlndmw●s . tid d
h M.lHll I.+1*.

LinkMenus provide a pow- m-

D
erful mechanism for linking

,h.S.= - windows tot3ether and speci-

‘ ‘b ~~f~==~:~eam- - -- mechanism for developers to
attach, create, and reuse

aclions without having to write code. These features
gredy enhance productivity during prototyping.

● Ttx)1lk[r: Developers can Create sophisticated toolbars

just like the ones in the WindowBuilder Pro tool itself.

● Otlw>rneu’ featurcs in(’]LMIC:enhanced duplication and
cutipaste functions, size and position indicators,
enhanced framing specification, Parent-Child window
relationship specification, enhdnced EntryField with chAr-
acter and field level validation, and much more...

● Ad&in .~klIMgL’r: A]lows &Vr210pCrS [0 f%dSl]Y ifl[@YdW

extensions into WindowBuilder Pro’s open architecture.

Catch the excitement, go Pm!
Call Objectslmw fm- more infOrmatiOrt.

(4o8) 727-3742

Objectshare Systems, tIIC 5 Town& tiuntry Vi
F= (408) 727-6324 Suke 735
CompuServe 76436,1063 SsnJose, CA 9512S-2026

W#ndowBuild.rand Whdw.@.ildw Pm am kndem.wksof ObjsclshareSyslerm, Inc.All cdlmrbrawdand pmd.cf ..- are regislemdIrademmksof Ih.ir rmfmdive mrnpmies

Debugging
objects

Bob Hinkle, Vicki Jones, and
Ralph E. Johnson
Q
s the premier object-oriented programming lan-

A guage, Smalltalk should give programmers easy
access to objects. However, during debugging it
can be very difficult to get your hands on a par-

ticular object. For example, suppose you’re devel-
oping a program that stores some objects in an OrderedCollec-

tion, but when it tries to retrieve them later, some are missing.
You might like to add debugging code to OrderedColleclion
methods such as add: and remove: to detect when objects are
taken out of the OrderedCollection,but any changes would affect
every OrderedColleclionin the system, bringing your image to a
crashing halt, This article will show how to solve this and simi-
lar problems by letting you modify code and add breakpoints
that affect only one particular object, rather than all objects in

a given class.This approach of defining only object-specific
methods is similar to what Kent Beck has described. w Our so-
lution relies on the use of a new kind of class and on some
small but powerful variations on CompiledMethodsand Compil-
ers. Besides being useful in their own right, we feel these exten-

sions again illustrate (as in our previous articless,a) how power-
ful SmalItalk’s reflective features are, as they allow
programmers to adapt and extend the environment to suit

their needs. The solution described here is specific to
Smalltalk-80, since it relies on Smalltalk-8tYs architecture for

classes, metaclasses, the compiler, and compiled methods and
on the complete availability of source code for these system el-
menl +As a result, our extensions may not apply to Smalhalk

V er... onments, although something similar maybe possible.

LIGHIWEIGHT CLASSES

The first step to debugging objects is to be able to modify
methods on a per-object basis. In Smalltalk, methods for an

.- —.——.— -.—— — —. —-—.—
* Snurce code for the object debugging package is avaiSable by anonymous ftp Srom

st.cx.uiuc.edu. Lunk for the FLIeObjectDebugging.st in pub/st80_r41.
4

object are defined in that object’s class and are stored in the
class’s method dictionary. To change a method for a particular

object requires that the object have its own private class. We
will give an object that we want to debug its own class by in-
serting a new class between the object and its real class. We
could create a (perhaps temporary or anonymous) instance of

class Classfor this purpose, but that’s a little heavy-handed: In-
stances of (lass have many instance variables and a lot of be-

havior aren’t needed for our purposes. For example, Classadds
variables and functionality to define new class and pool vari-
ables. In addition, class inherits from ClassDescriptionvariables

and code to support adding new instance variables and class
organizations. All of this is unnecessary for a lightweight class,
so we defined LightweightClass to be a subclass of Behavior. Ete-
havior is the superclass of ClassDescription,and it defines the
code needed for the interpreter to do method lookup. (For

more information on the roles of Behavior, Class,and ClassDe-
scription, refer to the chapter titled “Protocol for Classes” in
Reference 5.) Since Behavior is a simpler starting point, in-
stances of LightweightClass will be smaller than instances of

Classand will require less memory and time to allocate, initial-
ize, and finalize. That makes it easier and less expensive to cre-
ate lightweight classes on the fly to modify, even if only tem-
porarily, some object’s behavior.

Before explaining LightweightClass in detail, it’s helpful to
review the way things work normally in Smalltalk. When an

object is sent a message, the system tries to find a method cor-
responding to the message’s selector in the method dictionary
of the object’s class. If no such method exists, the system will
look in that class’s superclass, and so on up the chain of super-

classes until a method is found or the end of the chain is
reached. Furthermore, when a method is added to a class or
changed, the new code is compiled by an instance of the class’s

compilerclass (which by default in the system is SmalltalkCom-
piler). The result of compiling is an instance of CompiledMethod,
which will be stored in the class’s method dictionary with its

selector as its key. The source code for the method is not stored
directly in the CompiledMethod,but, instead, is written into the
change log, and the CompiledMethodis given a pointer to its file
and offset.

Our implementation of lightweight classes changes this
normal scenario in three ways. The first and most important

change inserts a I.ightweightClass in between an object and its
real class (or what we will call on-~”mdclass, since it was the

class by which the object was originally created), with the ob-
ject’s class being changed to the LightweightClass, and the
Iightweightclass’ superclass set to the object’s original class. In
this way, any message sent to the object will first be looked up
in the LightweightClass’smethod dictionary. If a method is
found there, it will be used to respond to the message, and it

will be unique to that particular object. Otherwise, message
lookup will continue to the LightweightClass’superclass—the
object’s original class—and, hence, will proceed as usual for
objects of that class. Figure 1 illustrates this relationship be-
tween an object, its original class, and its lightweight class.
THE SMALLTALK REPORT

Ju61 mreh 8 buttmr to

I Add chafts to your Visua/Wlls palette
~/WR?fC Add or change data poinls, with minimsl screen repainting.

Addorremovedataseriesto/fromthechsrL

//l@f~ SeIeztdata~ints withthemouse-EC-Chartsinforms
your application.

UseS scfeen space etTedfvefy
8-S

0 lm?mmma
Scroll the chart view in one or hnth

-4--; - ‘ IEl#

,,, ,

directiorm Mark values of Summary IW4

tunctions in the 1905

.,7.A,mm ,,,, WO,,d,) -
ax.k areas. Show

1W6

.
m.,

., . .: “ . . thresholds using
i M7

‘.,.-A),,
grid lines.

IWB.
-.

... .%’ ?. . 1989
. . f :C~. . . . “0 1890

hkw Yrms ST* 1991

I ., ““ i- ,ffi ,a7 ,88 ,89 ’70 ?1 ’72 ,73 74 75

] Noruntirneliceneefee

I Call fora techn/calpaper m E A (:“Iiff Sc)ftw -m-c

on EC-Cha/ts (408)462-0641
WwdWorL9kam&mfh
d FWC%M Sysb, Ire 21137 East Cliff Dr. Santa Cruz CA 95062
rlA Date
class

day 97
year: i 993

L J

mA Dale
class

day: 98
yeaf: 1993

c1
Dale

nmthndDlctlonary

superclass

L

4 MelhodDictionary

●

●

●

day

Way

●

●

●

\ MethodDiclionary

●

●

●

day

’42

●

●

●

Figure 1. The relationship batween an object, ila original class, and ik

lightweight claas.

In Figure 1, when the day message is sent to the object

marked A, a corresponding method is searched for starting in
Date, the object’s class. This method returns the value of the
day instance variable, which (for A) is 97. However, when the
day message is sent to object B, message lookup begins in its
class, which is an instance of LightweightClass. The method in
the lightweight class’s method dictionary is defined to return

42. Thus, object Bbehaves differently from A and all other in-
stances of Date.

The two other changes pertain to source code management.
The code for methods in lightweight classes can’t be stored in
the change log, since the lightweight class isn’t named in the
system dictiona~, and it has no category or protocols like nor-
mal classes. (And in any case, the lightweight class maybe an
entirely dynamic object that is created while running a pro-
gram, but which does not persist from one programming ses-
sion to the next, so that storing code for it in the change log
would make no sense.) Instead, we store the code directly with
the method it produces, which required us to create a new kind
of compiled method, CompiledMethodWithSource.Finally, to
produce these kinds of compiled methods, we exploited the
“pluggabili& of the compiler and created a new subclass of

SmalkaUcCompiler.We’ll describe these two changes atler first
looking at LightweightClass in detail.

As a subclass of Behatior, LightweightClass adds only one in-
stance variable, name, which is convenient for telling
lightweight classes apart. In addition to accessor methods for
this variable, IightweightClass defines three other methods of
interest: initializeWithSuper:, which initializes a new lightweight
class; compile:notifying:ifFaiE, which adds a new method to a
lightweight class; and compilerClass,which defines the kind of
compiler to use for methods in a lightweight class.

A new lightweight class is normally created by sending
becomebghtweight to an object. This method is defined in Ob-
ject as follows:

beeortsetightweight
I lightweightClass I

self Iightweightclass isNil
JULY-AUGUST1993
iflhte: [
Iightweight(lass :=

tightweightClaw newWithSupecseLfclass.
seti ehangetlassToThatOt7lightweightClassbasicttew]

If the receiver of this message already has a lightweight class,
nothing more is done. Otherwise, newWithSupec is sent to cre-
ate a new lightweight class whose superclass will be the receiver
object’s original class. The message changeClassToThatOfiis then
sent to the receiver to insert the lightweight class before the ob-
ject’s original class. Because some objects (notably immutable

objects like SmaUIntegers, Characters, tie, and false) can’t have
their class changed, becomeLightweight can’t be sent to them,

but it can be sent to all others,
The newWithSuper: method creates a new lightweight class

and then sends it the irtitializeWithSupe~ message, where the
parameter is the object’s original class. This initialization
method gives a default name to the lightweight class, creates a
new method dictionary for it, and sets its superclass to be the
class passed in, so that any messages not found in the
lightweight classquote method dictionary will be looked up in

the object’s original class.
The solution described in the preceding paragraphs makes

sure that messages sent to a lightweight object are first looked

up in the object’s lightweight class as desired. However, class
messages will not work correctly as the solution has been pre-
sented so far. For example, if aDayis a lightweight instance of
Date, sending “aDayclass mmeOfDa~ 1“ should be the same as
sending “DatenameOfDay:I,” but aDay’sclass is art instance of
IightweightClass, so “aDayclass mmeOfDay I“ will try (and fail)
to find a method for the message nameOfDay defined for
5

■ DEBUGGINGOBJECTS

continued on page 24...
LightweightClass.This problem exists because classes have sev-
eral roles, including roles as method repositories and as reposi-
tories for shared information (in this case, the names of the
days of the week). We want the lightweight class to play the
first role and the object’s original class to play the second, but

Sma]ltalk expects one entity to play both roles. (Alan Borning
summarizes the various roles of class and suggests an alterna-
tive approach in Reference 6.) Our solution to this problem is

to separate out the role of method repository, which we did by
creating a new method for all objects called dispatchingClass.
The definition of dispatchingClass in Object is the same as that
of class—it uses a primitive to directly access the object’s class

from the object’s memory structure. When an object is made
lightweight, its lightweight class is stored in the memory struc-
ture and thus returned as the value of dispatchingflass. In addi-
tion, LightweightClass overrides the class method to be:

class
‘self dispatchingClasssuperclass

This will return the object’s original class, as desired, since
newWithSupen installed the original class as the lightweight
class’s superclass.

The IightweightClass method cornpile:notifying:ifFaiL is
needed when a method is defined in a lightweight class and is
implemented as:

compile:codenotifying:requester ifPaJkfeilBksck
“Compilethe argument, code, as source code in the context of the
receiver and install the result in the receiver’smethod dictionary.
Theargument requestor is to be notied if an error occurs. The
argument code is either a string or an object that converts to a string
or a PositionableStreamon an object that converts to a shing. This
method *does*save Lhesource code. Evahratethe tiiLBlockif the
compilationdoes not succeed.”

I methodNodeselector save method oldMethod I
save := code asString copy.
methodNode:= self compilerClm new

compile:code
in: self
nolifyimg:requestor
ifpait failBlock.

selector:= metbodNodeselector.
method:= methodNodegenerate.
method sourceCode:save.
oldMethod:= self compiledMethodAbselector ifAbsent: [nil].
(oldMethodnotNil and: [oldMethodisBreakpoint])

ifl’rw [oldMethodclienti method]
ifpalse: [self addselecton selector withMethod:method].

‘selector

There are two major differences between this method and the
compile:notifying: ifhik method as defined in Behavior. First,
this method saves the source code that was passed in and

passes it along (using the sourceCode: message) to the Compiled-
MethodWithSourcethat’s generated from the message send
“methodNode generate.” Also, the code checks to see whether
the method being compiled used to have a breakpoint and, if
so, preserves the breakpoint in the method dictionary. (This
logic will be explained in detail in the next section.)

The final LightweightClassmethod is compilerClass,which
6

simply returns a new class, LightweightCompiler,to be used when
compiling lightweight class methods. Creating a new compiler
class sounds overly ambitious, but it’s actually quite simple,
since the new class has only one method, newCodeStieam; the
rest are inherited straight from SmalltalkCompiler.This method

is used to create a new CodeStream for use by the compiler. Since
CodeStreamgenerates CompiledMethodsby default, we changed it
to be pararrseterized by the kind of method generated, and so
LightweightCompilerimplements newCodeStreamsimply by re-
turning a CodeStreamthat will generate instances of Compi[ed-
MethodWithSource.The implementation of Compi[edMethodWith-

Source is just as simple. We changed three methods so that the
sourceCode instance variable is interpreted as a source string
(rather than a pointer to a file and offset), and the rest of its
functionality is inherited from CompiledMethod.

With these few changes we now have an easy way to change
the behavior of individual objects. We still need a good inter-

face for doing that, though, and we’ll describe our approach
for that after first looking at breakpoints.

BREAKPOINTS

One of the typical things a programmer wants to do while de-
bugging objects (and ollen in other debugging, as well) is to
add “self halt” to a method—effectively adding a breakpoint. As
it turns out, there’s a simple way to add an initial breakpoint
using the same technique that we used above with Lightweight-
Compilerand CompiledMethodWithSource;we’ll simply create a

new class of compiled method, BreakpointMethod, and a com-
piler for generating instances of it. This variety of breakpoint
has three advantages over the “self halt” version: They are easier
to add and remove, since it’s done by menu rather than by typ-
in~ they don’t affect the various change mechanisms, so the

change set and change log don’t include trivial changes for
adding (and presumably later removing) a halt in a method;
and they are invisible in source code, so a programmer who is

browsing or debugging a breakpointed method will see only the
normally defined code—the breakpoint is invisible. The one
disadvantage of our technique is that you can halt only at the
start of a method, though our design maybe adaptable to cover
breakpoints throughout a method’s body.

BreakpointMethod is a subclass of CompiledMethodwith one
instance variable, clientMethod. In addition, we added a new in-
stance variable, agent, to CompiledMethod.When a breakpoint
is set on an existing CompiledMethod,a new BreakpointMethod is
created, and these two instance variables are changed so that
the BreakpointMethod’s clientMethod is the CompiledMethod,and
the CompiledMethod’sagent is the BreakpointMethod. The body

of a BreakpointMethod is always the same: It’s the expression
‘Notifier handleBrealcpoint.” Thus, when a BreakpointMethod is
executed, this expression is evaluated, and Notifier responds by

updating its stack, replacing the BreakpointMethod with its
client—the original CompiledMethod-and opening a debugger
with that method in the top context, In this way, the Break-
THESMALLTALKREPORT

Object Transition
by t)esi~

ANAL YSIS & DESIGN

MENTORING

CUSTOM CONTRACTS “’“

/TEAM TOOLS ..

Object Technology Potential
Object Technology can provide a

company with significant benefits:

● Quality Software

● Rapid Development

● Reusable Code

● Model Business Rules

But the transition is a process that

must be designed for success.

Transition Solution
Since 1985, Knowledge Systems
Corporation (KSC)has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,

IBM, Northern Telecom, Southern

California Edison and Texas Instru-

ments to successfully transition to

Object Technology.

KSC Transition Services
KSC offers a complete training

curriculum and expert consulting

services, Our multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions, KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

Introductory to Advanced

Programming in Smalltalk

STAPTM(Smalkalk Apprentice

Program) Project Focus at KSC

00 Analysis and Design

Mentoring Process Support

I(SC Development Environment
KSC provides an integrated applica-

tion development environment

consisting of “Best of Breed” third

party tools and KSC value-added

software. Together KSC tools and

services empower development

teams to build object-oriented

applications for a client-server

environment,

Design ywr Transition
Begin your successful “Object

Transition by Design’! For more

information on KSC’Sproducts and

services, call us at 919-481-4000

today. Ask for a FREEcopy of KSC’S

informative management report:

So/lware Assefi by Desi@.

Is Knowledge Systems Corpor#on 114 MacKenan Dr.
Cary, NC 27511

OBJECT TRANSITIO NBY DESIGN (919) 481-4000

~ 1992KIIOWI+P Systems Corporation.

Applications of
Smalltalk in
scientific and
engineering
computation

Richard L. Peskin
1992 marked Smalltalk’s 20th anniversary. While using
Smalltalk for simulation was an important goal for the environ-
ment, applications to “real” scientific and engineering simula-

tion and modeling have been few. In earlier Smalltalk systems,
slow (and expensive) hardware together with slow interpreters
were adequate reasons for the scientific community to ignore

Smalltalk Addiction to FORTRAN and conservatism com-
pounded the problem.

Today’s modern Smalltalk systems running on high perfor-

mance workstations have removed some of the traditional barri-
ers to the use of the language for scientific computing. While in-
terpretive environments are generally an order of magnitude

slower than optimized compiled code for numerically intensive
tasks, techniques to integrate compiled code segments into
Smalltalk applications can overcome this deficit. The advantages
of Smalltalk’s graphid interface and its ability to promote pro-
totyping offer much for scientific computing.

To address the issues and problems presented by scientific

applications of Smallhlk, Kent Beck of First class Software ad
I organized a workshop at 00PSLA ’92 in Vancouver. Atten-
dance was by invitation only. Ten position papers were pre-

sented during the morning session, the afternoon session was
devoted to informal workgroups that delved into design and
implementation specifics. The position papers covered a wide
range of domain-specific topics concerned with applying
Smalltalk to scientific and engineering computation. However,
all the papers were characterized by certain commonalities, one

of these being that Small talk’s flexibility does admit strategies to

overcome weaknesses such as computational performance. I
opened the meeting with some overview comments and noted
the rising interest in object-oriented computing within the sci-
entific and engineering community. Furthermore, with the
rapid increase in hardware performance, we can expect more

applications of interpretive environments to scientific and en-
gineering problems. This is already evident in journal articles
8

where languages like Lisp, Prolog, Smalltalk, etc. are taking
place alongside FORTRAN and C. However, this domain com-

munity is very demanding; if existing O-O environments are
not suitable, users will create ones that are. Sather is an exam-
ple.

1also emphasized the need for robustness, completeness,
and correctness in Smalltalk implementations if they are to

meet the needs of the scientific community, Support for exter-
nal programs, inter-application communication, distributed
and parallel computation, and numerical and symbolic com-
putation classes are just some of the features needed, but are
currently either absent or minimally present in Smalltalk sys-
tems. This level of support maybe a tall order for a language

with only one or two vendors and no “standard; one reason
for the popularity of Lisp among the scientific community is its
standards and its multi-vendor support.

The bottom line is that the scientific and engineering com-

putation community will adopt O-O systems and do want the
prototyping flexibility offered by an interpretive environment
with dynamic binding. If Smalltalk is to be chosen by more
than just a token few, its user community and vendors will
have to work together to meet the needs of scientists and engi-
neers. The 00PSLA workshop was set up to be one forum to

assist in this process. To this end, vendor representatives were
invited to attend, and ParcPlace Systems had a representative
at the workshop. The morning presentations were further di-

vided into general topics (mathematics, engineering computa-
tion, scientific computation, and scientific data management)
and application papers. However, these boundaries were not

sharp. Professor David Rector of the University of California,
Irvine opened the morning session with a discussion of his
work in the development of a Smalltalk-based system to teach
numerical analysis to students. He presented several examples

of how current Smalltalk standard implementations fail to pro-
vide needed support. One example is the absence of precise in-
terval subdivision (which he has corrected). He suggested im-

plementing a new iterator, map: [aBlock], so that collection
operations return correctly (e.g., so that collect over a dictio-
nary returns a diclionuy, etc.), and he showed how this applies
to a differential equation solver method. Rector suggested a
separate class, auanti~, under Object, because Number is not ap-
propriate to hold integral domains and fields such as complex
numbers, polynomials, quaternions, etc. He also pointed out
that class Array is not the proper container for Veetors and Ma-
trices. In particular, the many varieties of matrices implies the
need for a more general class to deal with these objects. This
subject became the topic of one of the atlernoon working
groups.

Alan Knight, formerly of the Department of Mechanical
and Aerospace Engineering at Carleton University, presented

an overview (co-authored with N. Dai) of Smalltalk in the con-
texts of applications to finite element method solvers. Drawing
on five years of experience in attempting to use Smalltalk for
this type of problem, he listed the major problem areas of per-
formance, portability, graphics, and user-interface facilities.
THESMALLTALKREPORT

ODBMS

ODBMS
The ObjectOriented Database

❑ Persistent Objeet Storage for Smalltalk
n Handles Complex Data .T~es
❑ Objeet Ownership, Verslonm~ Security,

and Objeet Distribution
o pm-er and Enduser Versions
u s-d None or Ne~ork confi~tion
❑ Database Classes licensed for

OEM Distribution
❑ SUppofi for PamPlace SmallMk-80

Add-cm Applications
U DSSm so-de Management
•l ln~~ ~ SQ~l~ses
0 support for Digidk’s PARTS

ODBMS
Objeetoriented Technology by
VC Software

USA VC So&arc Inc., Thee Christina Ccnuc, 201 N.WdnutS- Suite
IWO,WItmingtnU DE 19B01 c. Other Ceunnies VC Sutlwwc Conmnmtion
GmbH, Pemiturwatl’28,38118 Bmmmh~ Germany, Tek +4%531-2424 00,
Fam +49-331-2424 LLZ4
Approaches to performance improvement include use of prim-
itives and high-performance libraries, and improved imple-
mentations. Knight pointed out that Smalltalk’s claimed high
portability falls short of the mark in practice, both in portabil-
ity between versions and limited number of supported plat-
forms. Smalltalk’s integration with other languages needs to be
improved, as do graphics (particularly 3-D graphics) for sci-
entific and engineering applications. The integration and
graphics issues were also discussed in other papers at the work-
shop. Weaknesses in the user interface, particularly the need
for good widget toolkits was mentioned, and he emphasized
the need for significant improvements in the debugger.

Dr. Rob Gayvert of RIT Research Corp. discussed the use of
Smalltalk in scientific computations, with emphasis on appli-
cations in speech and signal processing. He also emphasized
the need for improvement in the numeric array and matrix
classes, listing specific new protocols for both numeric array
and matrix classes. His group has implemented these in

Smalltalk/V Mac. His suggested strategy for domain-specific
classes (such as may arise in nonlinear equation solvers) is to
implement first without regard to performance and then to
optimize. The RIT group has implemented inter-application
communication (specifically AppleEvents) as well as exten-

sions to the ToolBox access in Smalltalk/V Mac. This greatly
increases the potential for access to external data sources, ap-
plication servers, etc. This should be a standard feature in fu-
ture Smalltalk releases, Gayvert showed examples of his system

improvements, namely the speech processing application. Bet-
ter numeric and matrix classes, IAC, etc. allowed the construc-
tion of tools to do speech processing, which have both algo-

rithmic power and good graphical presentation for the user.
His conclusion is that, with proper additions and improve-

ments, Smalltalk has strong potential for scientific and engi-
neering applications.

Dr. Sandra Walther of Rutgers, in a paper I co-authored,
reviewed some features of the Smalltalk-based SCENE system,
a software environment to support numerical experimentation
in science and engineering. Some features of importance in
this environment include user extensibility and configurability,
automatic programming, computational steering, distributed

storage, and parallel/distributed processing, The talk focussed
on the strategies used to handle very large data sets-sets so
large that their representation in Smalltalk as data objects is
impractical. The large data sets were implemented as active
processes running on a (server) platform. In this way, one can
handle these sets efficiently, but to users of the Smalltalk inter-
face the sets appear as manipulatable objects. Practical use of
this scheme requires some good interprocess communications,

and a means for users to tailor particular data sets to meet their
needs. The latter facility is provided by an object editor tool that

is used to create and compile new C code for the active data set
and tailor menus and other interface items in response to user
directives.

In conclusion, Smalltalk can be appended to handle large
data sets and other scientific computational requirements.
JULY-AUGUST1993 9

■ SCIENTIFICAND ENGINEERINGCOMPUTATION
These facilities provide Smalltalk-like incremental compilation
and dynamic binding features outside of the actual Smalltalk
environment.

The portion of the workshop devoted to applications be-
gan with a talk by Jan Steinman of Bytesmiths. He described

his work in using Smalltalk to develop laboratory instrumen-
tation interfaces. He introduced the concept of the “abstract”
instrument object (instances of an InstmmentObject class),
which allow standard abstractions of physical instruments and

effects a basis for common data acquisition protocols, Other
features, such as appropriate abstract protocols, were also dis-
cussed. As an example he described the Tektronix instrument
ensemble control system, a stack-based machine architecture
for controlling instruments and returning results via a graphi-

cal interface. This was developed under the object paradigm in
Smalltalk. The position paper by P. Johnson and D. Herkimer
of Martin Marietta was not presented, but copies were avail-
able. The paper describes a space vehicle launch simulator

written in Smalltalk/V Mac. Among the issues discussed were
the need for support for parallel computation abstractions in
Smalltalk that would provide a framework for implementa-
tion of parallel computation of numerically intensive portions

of these complex simulations. This paper also pointed out the
need for better numerical classes in Smalltalk. Brian Remdeios
of BC Research presented a Smalltalk application designed to
simulate control functions for an IC engine. The hierarchical
nature of class structure allows encapsulation of various en-
gine component parts into a single functional representation
or the ability to study individual components, In this applica-
tion, Smalltalk was able to facilitate inter-object communica-
tion, but it was suggested that a class to handle more general
transfer functions between objects would be helpful. The pa-
per discussed how Smalltalk models of this type could be used
to implement non-brittle (e.g., fuzzy logic) decision process
simulations.

David Jones of Prior Data Science presented a paper on al-
gorithm objects. While the specific application discussed was
taken from the domain of geometric models, this paper pre-

sented a controversial proposal, namely, to collect algorithms
(methods) under a single class(ClassAlgorithm). This is a radi-
cal departure from current Smalltalk practice where algorith-

mic methods are associated with specific class behaviors. Un-

der the ClassAlgorithm proposal, algorithms together with the
their documentation etc. would be found in a single class, sup-
ported by its own browser and other interface features. Users
would have a single point of reference for all algorithms, and

class behaviors would be implemented via dispatch from Class
Algorithm. This proposal was the subject of one of the afier-
noon working groups.

Judith Cushing of the Oregon Graduate Institute dis-

cussed the subject of computational proxies. The difficult is-
sue here is how to render results computed by different sci-
entific programs comparable. The emphasis in this paper was

on the computational chemistry domain, but the central is-
sue of how to design object-oriented databases that can cap-
10
64
Modern Smalltalk systems running on

high performance workstations have

removed some of the traditional barriers

to the use of the language for scientific

computing.
99
—.

ture both syntactic and architectural complexity associated

with the output of various scientific computational systems

all of which produce data relevant for a given domain exper-

iment or simulation, Implementation approaches in C++
were discussed, and these were related to possible Smalltalk
implementations.

The final paper in the first session of the workshop was pre-
sented by Annick Fron of DEC European Technical Center in
France. She described an interesting application of Smalltalk to
the simulation of an MIMD embedded computer system. The

simulation relied on processes and monitors, The result is a
tool that has been used for embedded signal processing appli-
cations. This type of tool is very useful in design and debug

stages and can ease problems associated with integration on
final target architectures.

The aflernoon sessions were devoted to in-depth considera-
tions of topics that arose during the presentations. Informal
groups examined issues such as the need for better mathemati-
cal algorithms and better organizations for algorithms, inter-
facing Smalltalk to parallel and distributed computing, and
mechanisms for handling scientific data in Smalltalk environ-
ments. Suggestions from these sessions included the need to
re-examine algorithms and algorithm classes, the need for bet-
ter integration of Smalltalk into scientific computing environ-
ments, the need for better class support for parallel and dis-
tributed computing interfaces, etc. One important conclusion

of the workshop was that this event should be repeated, per-
haps on a regular basis. There was a general feeling that the sci-

entific and engineering community was ready for Smalltalk.
The critical question is whether Smalltalk is ready for that
community. ❑

.— -
Richard L. Peskin isProfessorof Mechanical and AerospaceEngi-
neering at Rutgers Universitywhere he is directorof the CAIP Center
Computational Engineering SystemsLab. He has been involvedw“th
enp’neering and scienfij$caspectsof Smalltalksince 1984. He is one of
the designersof the SCENE (ScientificComputation Environmentfor
Numerical Experimentation) system,a Smalltalk-baseddistributed
computing environment that implements computationalsteering
toolssuch as interactivescientificgraphics and data management,
automaticequation solvers,and mathematicalexpert systems,He
can be reached via email atpeskin@caip.rutgers,edu.
THESMALLTALKREPORT

HE BEST OF comp.lang.smalltalk Ail.znKnight

Good code, bad hacks
T
here have been many attempts to define the elements
of Smalltalk style. Some of them even agree with each
other. Almost all of them share a common point of

view, that of a programmer striving to write good code. Henna
Segel (honna@bnr.ca), on the other hand, approaches the
problem as someone evaluating a Smalltalk program, trying to
recognize bad code:

I’m in the curious position of evaluating a prototype writ-
ten in Smalltalk without prior knowledge of Smslltalk. I

could distinguish a terrible hack from good work in C-
what do I look for in Smalltdk? What’s a prime symptom
of work that will be scary to modfi and extend?

THE BASICS

Dan Benson (benson@siemens. siemens.tom) writes

As a first pass, I’d look at the class hierarchy. See if the
names of the classes match the concepts intended for the
prototype. For instance, if the prototype is supposed to be
an airline reservation system you might expect to fid

classes representing Tiekats, AirWes, Reservations, Airports,
and so on. If the class names are way off the mark, I would
be a bit skeptical. Next, see if there are any class comments
to see whether the programmer was conscientious or at
least considered that someone else might read the code.

Some of the other things you can look for without getting
into actuaf code are the organization of the class hierarchy
(to see if it makes sense intuitively), the method categories
(to see how well the various tasks were separated), md, per-

haps, the number of instance variables and the names used
(there shouldn’t be too many instance variables per class,
and the names should be intuitive or at least informative).

The most obvious thing to check, of course, is the opera-
tion of the prototype itself. How well does it do what it’s
supposed to do? Are there any bugs? If so, how serious are
they? Is it a matter of changing the interface or would it in-
volve mod@ing the underlying model, or perhaps starting

all over?

There’s good advice here, and most of it can be applied by
someone who doesn’t know Smalltalk well. Coincidentally, I’ve
actually seen an airline reservation system written in Smalltalk
JULY-AUGUST1993
that did not have classes representing Tickets, Airlines, Reserva-
tions, or any of the other obvious domain objects. Sure enough,
it was bad code.

One cifthese remarks, however, does seem questionable to
me. We are to check to see if the class hierarchy “makes sense
intuitively.” That’s pretty vague, especially for someone who’s
unfamiliar with Smalltalk. While the hierarchy should make

sense intuitively, this suggestion needs to be defined more
clearly.

For myself, I would say that classes in an inheritance hierar-

chy should have a clear logical relation. This relation should
probably be expressible as either “is-a” or “is-implemented-
like.” This is not a two-way relationship. Not all classes that
have these relationships should be in the same inheritance tree.

This still leaves much room for judgment, as it should, but I

hope it helps weed out some of the worst offenders (such as
those using the “sounds-like” or “was-implemented-the-same-
day-as” relations to determine their class hierarchies).

DOCUMENTATION

Jack Woehr (jax@well.sf.ca. us) has a simple recipe:

Good Smalltalk comes accompanied by good documenta-
tion, a separate document explaining the author’s intent,
and probably by a glossary of objects and their methods.

Bad Smafltalk comes without such documentation.

Strictly speaking, the quality of the documentation and the
quality of the code should be independent. If you take away the
documentation, the quality of the code remains the same. All

of us have written good code that we never quite got around to
documenting properly.

Practically speaking, however, good code and good docu-
mentation are inseparable. This is especially true for code that
tries to be reusable (and these days, we’re all writing reusable

code). When I intend to use a class, the first thing I do is look
for the class comment. ANtoo ofien, the second thing I do is
curse the author for not providing one.

ParcPlace, to its credit, provides comments for all of its sys-
tem classes. Digitalk doesn’t support class comments directly,
but it’s easy to establish a convention for class methods con-
taining comments.
11

■ THE BESTOF COMP.LANG.SMALLTALK
OTHER CRITERIA
Frerk Meyer (frerkt%k.telematik.informatik.uni-karlsruhe.de)

provides a whole list of criteria. His suggestions are somewhat
more difficult for novices to apply and subject to some excep-
tions. I’ll discuss them one at a time.

Use Global Variables Sparingly

Bad—the use of global variables

This is pretty standard, even for non-O-O programming.
Globals have their uses, but they definitely should not be used
to excess because they introduce extra dependencies between

classes and generally pollute the namespace.

Separate Domain and Interface

Bad—instance variables in the model holding view, con-
troller, or window information

This is ParcPlace-specific, but the underlying idea is universrd.
The domain model should not concern itself with the way in
which the interface presents information. While this is very

important, it is something that maybe difficult for Smalltalk
novices to judge and difficult for Smalltalk programmers to do
well.

The simplest method of checking for this separation is to
examine the instance variables and methods of the domain

model for obvious interface information. This will find some
violations, but assumptions about the interface can leak into
the domain model in many subtle ways. There’s always a

temptation to introduce just a few lines of code that are
ever-so-slightly dependent on the interface. Maybe it doesn’t
really belong in the interface, either. Besides, it would take so
much longer to do it properly, and we’re not likely to change
that part of the interface. . . . These temptations should be
resisted.

Greg Hendley and Eric Smith discussed these issues in some
detail in a two-part article titled “Separating the GUI from the
application” (THE SMALLTALKREPORT, May 1992 and October

1992). They advocate introducing a “control” layer into the in-

terface that acts as a buffer between the interface visuals and

the domain model.

Avoid Long Methods

Bad—methods that are larger than one screen (usually)

It’s pretty much a consensus that Smalltalk methods should be
short. Long methods are probably trying to do more than one
thing and should be broken up into their components. Long

methods aren’t always bad, but the presence of large numbers
is a definite danger sign.

A notable exception is for automatically generated meth-
ods, such as WindowBuilder’s horrendously long open meth-
ods. But since these methods are not intended to be modified
by humans, this is not so much of a problem.

I notice that Digitalk’s compiler is much slower for long
12
methods. This can, however, be considered a feature (though I
doubt it was intended as one) since it motivates programmers

to break up their code into smaller components.

Avoid System Changes

Bad—making changes to system classes instead of sub-
classing

After some discussion, the consensus on this point was that
adding methods to system classes is fine, but modifying exist-
ing methods is to tse avoided. System changes are a problem

because your changes are likely to be incompatible with others,
including those in the next Smalltalk version, They’re also
more likely to make your system crash during development. If

you have to modify a system method, it’s usually best to make
the modification as small as possible. Ideally, you should just
insert a hook that calls your own code.

Keep Instance Creation Simple

Bad—using class method new more than “super new
initialize

It’s common practice in Smalltalk to override the method new
to automatically initialize instances of the class, changing the

code to:

new
‘super newinitialize

Other common changes are to override new to be an error or
to return an already existing instance. Adding much more
functionality than this to the method is considered bad form.
Again, it’s better to provide a hook to more extensive code in a

method like initialize.

Use System Classes

Good—using system classes wherever possible

If code that serves a purpose is already available, it should be
reused, A an extreme example, code that uses fixed-size ar-
rays, but goes through complex manipulations to mimic the
behavior of OrderedCollectionwould be bad. Similarly, code
that avoids the normal user interface mechanisms and gets

mouse or keyboard input directly is probably bad. It maybe
trying to do something that is not normally possible through

those mechanisms, but even then it is preferable to extend the
UI mechanisms rather than go around them,

Work within the System

Good—using MVC, dependency mechanisms, and processes

Again, if the mechanisms are there, it’s best to work with them
rather than against them. They can, however, be overused.
Kent Beck writes, in “Abstract Control Idioms” (THE

SMALLTALKREPOILT,July/August 1992), about the advantages

and disadvantages of the dependency mechanism.
THESMALLTALKREPORT

PostScript Objects

from Magus!

Magus ViewT~ – The revolutionmy PomScript-lmguagc rendering
Iibrwy from ?v@us. Now itvfiilable as .pmts” for Digikdk.s PARTS
Workbench. as a CIMS Iibrwy for Smnllkdkll’. m in C-DLL form.

Work in the environment of your choice to rtipidly wsemble PostScript
imaging appl ic~tions. Enjoy the power of object-orienled Postscript
rcnderirrg+nd rsrdy from Magus.

. Create front ends for document imaging systems - (tispltiy
PostScript files, or use PostScript as the imngc definition Iongufige

. Enhancecollaborative applications soch as electronic mail or

other “groupware” - support documents with complex gmphics
and fonts

. Create host-based PostScript drivers for non-PostScript printers

. Bring a new level of fidelity to print-previewing in your applications

Magus View is available in DLL form for 0S/? 2.0 and Micrmso~l
Windows 3.1, Pro~mmmirrg interP~ces me provided for Smtilltalk. C

and Digiitilk’s PARTS Workbench, Prices start at $495 for J single
Magus View Developers Kit.

m

PO Box 39(YXI5. Mount~in View CA 94039-0965. USA
(NM))X411-MJ37. (4 I5)940-1 109. sale.s@magus.com
He summarizes the disadvantages as “debugging and per-

formance.” Dependency-based code can be much more

difficult to follow and debug than normal code. When it’s put
together properly, it will often work immediately. When it
doesn’t, tracking down the problem can be painful.

I wouldn’t consider processes to be a necessary feature of

good code. Multi-threaded code introduces many complica-
tions, and I avoid it unless I really need it.

Choose Names Carefully

Good—using expressive naming of classes, methods and
variables, and using the class document feature

Definitely, Naming things properly is very important. One of
my biggest complaints about both Digitalk and ENVY/Devel-
oper is how difficult they make it to change class names.

PUT CODE IN THE RIGHT PLACE

Charles Lloyd (clloyd@gJeap.jpunix.tom) adds several points,

Place Code Well

A series of messages sent to some object other than self is
probably badly placed code. That series should be moved
to the class of the receiver.

Note This is the hardest thing to do well in O-O program-
ming, but it pays very high dividends when done well.

Breaking up methods in this way has several advantages. As
we’ve already mentioned, it’s good practice to break up long
methods into logically connected units. A series of messages to
some other object makes a good candidate for such a division.

Since they have an object in common, they should probably be
moved to a method in its class. This also provides an opportu-

nity to use polymorphism (i.e., providing different implemen-
tations of the same function in other classes).

Avoid Checking Types Explicitly

Encoding type information

You should never see any checks for “type” information.
AJI type information should be impJicit in the class of the
receiver. Exceptions to this rule are few and far between.

It’s usually bad style to ask the type of an object. Frequent use
of class tests or isKindOf is a characteristic of poor code.

Ideally, rather than testing the type, code should request
that an object carry out some action. The object is then re-

sponsible for doing the appropriate thing based on its type, but
this is done through the method dispatch mechanism, rather

than explicitly in code.
If it’s necessary to determine some characteristic of the ob-

ject, it’s better to do so by sending a message asking about the
characteristic. Thus, it’s better to say
JULY-AUGUST1993
anObject isCollefion ift’rtte: [. . .]

than

(anObjectistCindOfiCollection)ifTruK[...]

The second form confuses an attribute of the object (whether it
responds to basic collection protocol) with the class hierarchy
(whether it inherits from the class Collection).

As a concrete example of how this can be dangerous, con-
sider a system that works with vectors. We may wish to treat
instances of Point as two-dimensional vectors. Code that sends
the message isVector will work fine for points. Code that relies

on isKindOfiVector will fail.

Put Conditional Behavior in Subclasses

Introduction of instance variables

Instance variables should be added sparingly. If you think
you need hr instance variables to model your subclass,
consider introducing M subclasses (Mvery close to N)
where each new subclass introduces a minimum of new
variables.

Introducing subclasses where other languages might use enu-
merated “type” variables is ofien good style. It is a problem if

instances may change their type, but, otherwise, it can be very

useful. In many ways, it’s similar to the previous point. Instead

of having conditional statements on the enumeration, we sim-
13

14

ArtBASE.
Distributed
Smalltalk and

ODBMS
forVisualWorks- and Objeotworks@

any object and class extended by
the abilltyto become pereiatent
and to be shared by multiple
users

fulltransactionmanagement

all advantages of Smalltalkkept
alive

almost no changes to exiatlng
applicationsto mnvert them
to a database

delivered in source code

ArtlnAppleSLtd.
Kremeleka13
s4503 Bratislava
Slovakia

fax: +42-7-m 779

O(llhflpolg$ %b;x%q~axe
■ THE BESTOF COMP.LANG.SMALLTALK

ply ask instances to perform some function. They will auto-

matically do it in the appropriate way, and the language mech-

anisms will do the testing for free,

FAILURE MODES

We can also look at bad code by considering how it might have
gotten to be bad, Maybe the author didn’t understand
Smalltalk or OOP fully. Maybe it was a quick hack by someone
capable of doing better work. Maybe it was written by some-

one who didn’t understand the domain andlor requirements.
Maybe it really was written by an idiot. Maybe it was once
good code that’s had too many patches and has never been
consolidated.

Most of these problems can be recognized the same way
they would be in any programming language, and only a few
have 00P- or Smalltalk-specific aspects.

Quick hacks, for example, can usually be identified by their
shoddy documentation and comments. The comments that do
exist are often incomprehensible notes from authors to them-
selves, ofien of the form “fix this later. ”

It’s usually easy to tell when the author didn’ t understand
the paradigm and wrote FORTRAN, C, or COBOL with
Smalltalk syntax. There is often excessive use of type informa-
tion (as described above), internal representations are almost
always exported, and collections with encoded meanings are
often used as data structures.

The most common symptom of exporting too much repre-
sentation is the presence of direct get/set methods for every
variable in a class. Some schools of thought hold that all vari-

able references should be made through get/set methods. In
this case, the code will have such methods, but many of them

should be clearly marked as private.
Programmers who aren’t used to opaque data types will

often use collections as data structures. For example, they
might represent a circle by an array whose first element is the
centre point and whose second is the radius, instead of intro-
ducing a new class Circle.Juanita Ewing discusses this common
error in “Don’t use Arrays?” (THE SMALLTALKREPORT,May

1993). ❑

CONCLUSION

Although it’s far from complete, I hope this brief overview
provid~s some help to those of you trying to distinguish good

Smalltalk from bad Smalltalk. If you’re writing code, this col-
umn should provide some things to strive for or avoid.

Alan Knight worksfor The ObjectPeople,509-885 Meadowlands

Dr., Ottawa,Ontario, K2C 3N2. He can be reached at 613.225.8812
or as knight@mrco.carleton.ca.
THESMALLTALKREIJORT

MALLTALK IDIOMS

Inheritance: the rest
of the story

Kent Beck
Of the three tenets of objects—encapsulation, polymorp-
hism, and inheritance—inheritance generates by far
the most controversy. IS it for categorizing analysis

objects? Is it for defining common protocols (sets of mes-
sages)? Is it for sharing implementation? Is it really the com-
puted goto of the nineties?

The answer is Yes. Inheritance can (and does) do all of the
above at different times. The problem comes when you have a

single-inheritance system like Smalltalk. You get one opportu-
nity to use inheritance. If you use it in a way that doesn’t help
you, you have wasted one of the most powerful facilities of the
language. On the other hand, if you use it poorly, you can mix
up the most ridiculous, unmaintainable program gumbo

you’ve ever seen. How can you walk between the rocks of un-
der-using inheritance and the chasm of using it wrongly?

What’s the big deal? Inheritance is the least important of
the three facilities that make up objects. You can do valuable,
interesting object-oriented programming without using inheri-
tance at all. Programmers still quest after the Holy Grail of in-
heritance because of the potential it shows when it works well.
When you need an object and find one that is factored well
and does almost what you want, there are few experiences in
programming better than making a subclass and having a
working system after writing two or three methods.

In this and my next several columns, I will focus on various
aspects of inheritance. I will present a variety of strategies for
taking advantage of inheritance, in the form of patterns. While
I don’t necessarily use all the patterns in my own program-
ming, casting the strategies in terms of patterns makes it easier
to compare and contrast them.

PAllERN: COMPOSE M~HODS

This pattern is the cornerstone of writing objects that can be
reused through inheritance. It is also critical for writing objects
that you can successfully performance tune. Finally, by forcing
you to reveal your intentions through method names, it makes
your programs more readable and maintainable.

Context

You have some code that behaves correctly (it does no good to
beautify code that doesn’t work, unless you have to make it
work). You go to subclass it, and realize that to override a
method you have to textually copy it into the subclass and
JULY-AUGUST1993
change a few lines, forcing you forever after to change both

methods.

Another good context for this pattern is when you are look-

ing at a profile that looks flat; that is, no single method stands

out as taking more time than others. You need further im-
provement in performance and believe that the object can de-
liver it.

Problem

How can you write methods that are easy to override, easy to
profile, and easy to understand?

Constraint
Fewer, larger methods make control flow easy to follow. Lots
of little methods make it hard to understand where any work is
getting done. Lots of little methods named by what they are in-
tended to do, not how they do it, make understanding the

high-level structure of a computation easy. Your programming
time is limited. You only want to perform manipulations of the

code that will have some payoff down the road. Each message
sent costs time, and execution time is limited. You only want
to cost yourself execution time if the result will provide some
advantage at some point. You don’t want to introduce defects

in working code. The manipulations must be simple and me-
chanical to avoid errors as much as possible.

Solution

Make each method do one nameable thing. If a method does
several things, separate out one of them, create a method for it,
and invoke it in the original method. When you do this, make
sure that if the same few lines occur in other methods, those
methods are modified to invoke the new one as well.

This solution ignores the cost of message sending. You will
get faster programs by using messages to structure your code
so that you can more easily tune them than by reducing the
number of messages. It also assumes that the eventual reader of
the code is comfortable piecing together control as it flows
through lots of small methods.

Example

A method for parsing a stream to eliminate lines that begin
with a pound sign might look like this at first:
15

■ SMALLTALKIDIOMS
parse:aStream
I writer I
writer:= String new writeStreaml
[a.%eam atEnd] whileFabe:

[(aSbeam peekFoK$#)
ifTnre: [aStreamrestOtline]
iffalse: [writerneztPutAlh astream restOfLine]]

Applying “ComposeMethods” to parse: to separate line parsing

from the overall parsing control structure we geti

parse:a.%eam
I writer I
writer:= String new writeStream.

[aStream atEnd] whileFalsa
[selfparseLine: astream onto: writer]

parseLine:inStreamonto: outsheam
(astieampeelcFo~$#)

ifl’rue:[“aStreamrestOfLine].
outstreamnextPutAILtibeam restOfLine

Notice that by creating parseLine:onto: we are now able to use the
return control structure to make the submethod easier to extend.
Applying it again to factor out the outputieam creation, we ge~

parse:astreanc
I writer I
writer:=selfoutputStream.
[*earn atEnd]whileFalse:

[selfparseLine:astreanronto:writer]

outputsheam
“StringnewwriteStream

Applying it to parseLine:onto: to separate the choice of what is a
comment from the behavior when a comment is found we geh

parseLine:inSbeamonto: outStream
(selfpeelcForCommenhinstream)

ifl’me:[in.%eamrestOfLine].
out.%eamnerrtPutAlbin*eam restOfLine

peelrForCommenhaStream
‘a.%eampeelrFoc$#

Apply it to peekForCommenk to separate the character you are
looking for from the way in which you look for it:

peelrForComment:astream
“aStieampeekFo~sell conmcentCharacter

concncentCharacter
“W

The final code is much easier to modify in a subclass if you
want to change the comment character, write onto something

other than a string, or extend the parsing to deal with special
cases other than comments.

PAllERN: SEPARATE ABSTRACT FROM CONCRETE

This is a pattern I learned from Ken Auer of Knowledge Sys-
tems Corporation. He told me about using it to great advantage
16
in a financial services application in which there were many

kinds of financial instruments, all implemented similarly.

66 By understanding the options and

trade-offs involved, you can use it to

your advantage. ~

Context
You have implemented one object. It has some methods that
rely on the values of variables, and others that do not. You can

see that you will have to implement many other similar objects
in the future.

Problem

How can you create an abstract class that will correctly capture
the invariant part of the implementation of a family of objects
with only one concrete example?

Constraint
You want to begin using inheritance as early as possible to speed

subsequent development, and you want you inheritance choices
to be correct so you don’t have to spend time refactoring later.

Solution
Create a state-less superclass. Make it the superclass of the class
you want to generalize. Put all of the methods in the subclass
which don’t use variables (directly or through accessors) into
the superclass. Leave methods that rely on instance state in the
subclass.

This solution strikes a balance between inheriting too early
and too late. By making sure you have one working class you
know you aren’t using inheritance entirely on speculation.

Exemple

Let’s say that we have an RGBColorrepresented as red, green, and
blue values between Oand 1. We can then write methods like:

hue

“Complicated code invoking the instance variables red, green, and

blue...”

saturation

“Complicated code involving the instance variables red, green, and

blue...”
value

“Complicated code involving the instance variables red, green, and

blue...”

complement

‘self species

hue: (self hue + 0.5) fractionallart

saturation: self saturation

value: self value
THE SMALLTALKREPORT

Voss
Virtual Object Storage System for

Smalltalk/V
Seamless persistent object management

for all Smalltalk/V applications
● Transparent acc=s to all kinds of Smalltalk objects on disk.

9 Transaction commit/mllback of chang~ to virtual objects.

● Access to individual elements of virtual collections for ODBMS up

to 4 billion objects per virtual space; objects cached for speed.

● Multi-key and multi-value virtual dictiomries for query-building
by key range selection and set interwalion. Partial and concatenated

keys supported,

● Works directly with third party uwr interface & SQL classm etc.

● Class Rcstmcture Editor for renaming classes and adding or

removing instance variablm allows applications to evolve,

_ Shared access to named virtual object spares on disk; object

portability between images. Virtual objects arc fully functional.

● Source code supplied.

V055/0S2 S1%0, VOSS/ Windows s19.50, VCSS5/2S6 395(I
VOS5/0S2 DLL (excluding source cede) S35.
‘The VOS5 Collection’ - source cock for nom~,iriud mllcctimm cmly,

(Windows and 0S/2 versions), with VOSS/0S2 Demonstration - $1S0
Quantity dixo””ts from 30% for two m more copies. (Ask for details)
Visa, MasterCard imd EumCard accepted. Plmsr add $15 for shipping.

[Ofllc
●

Logic Arts Ltd 75 Ifen-,ingford Road, Cambridge, CBI 3BY England
A R T S TEL+Mzn212392 FAX: +44 223245I7l C1510rs)40,3M
Applying “Separate Abstract from Concrete” to RGBColor,we
create Coloras RGBColor’ssuperclass. We move complement to
Color,because it doesn’t rely on any instance variables directly.

We leave hue, saturation, and value in RGBColorbecause they
do rely on variables.

Now, if we want to create Colorsubclasses that store color

values in other ways, they can inherit complement as long as
they implement hue, saturation, and value.

When you apply this pattern, you will often find that meth-

ods which were implemented initially as requiring variable val-
ues can be recast by applying “Compose Methods” so they can
be moved into the superclass.

CONCLUSION
Now that I have written down Separate Abstractions Concrete,

I’m not sure I entirely agree with it. I like to have mm-e than
one concrete example before I try to generalize. I use two

different patterns, “Factor Several Classes” and “Concrete Su-

perclass” in my own programming. I will present these pat-
terns in the next issue.

Inheritance is strong medicine. Only by understanding the

options and trade-offs involved can you avoid the pitfalls and
use it to your advantage. If you use different patterns for apply-
ing inheritance, please send them to me. ❑

Kent Beck isfounder of First ClassSojlware.He can be reached at

408.338.4649 (v), 408.338.3666 (f), or via CompuServe at

70761,1216.
July 16-19, 1993
OBJECT EXPO EUROPE
London, Eng/and
44.0.306.631.331
44.0,306.631.696 {fax]

hly 19-23, 1993

IBM CONFERENCE ON
OBJECT-ORIENTED SD TOOLS
Toronto, Canada
512.838,8019

August 2-10, 1993
DESTINATION C++
New Yark, NY
Washing/on, D.C.
Toron)o, Canada
Chicago, /1
Hou5ton, TX
10SAnge/es, CA
212.274.9135

August 10-12,1993
SUN OPEN SYSTEMS WEST
Anoheim, CA
5) 2.250,9756

Sept. 26-Ott. 1,1993
OOPSLA
Washington, D.C.
212.869.7440

September 21-23,1993
UNIX EXPO
New Yark, New York
800829-3976
201-346-1602 (fax)

October 13-15,1993
INT’L SYMPOSIUM &
EXHIBITION ON 00P
Frank lurt, Germany
49.61732852

Octeber 10-22, 1993
C++ WORLD
Da//as, TX
212,274,9135

Nevember 15-16,1993
COMPUTER WORLD EXPO
Frank futi, Germany
800225-4698

December 9-10, 199~
DATABASE WORLD
CLIENT/SERVER
Chicago, /1
508-4703880/0526

April 2s.28,1 994
XWORLD’94
New York, NY
212.274,9135

JULY-AUGLKT1993 17

.continuedfiom page1 ■ SMALLTALKDEBUGGINGTECHNIQUES
the method. Data you write to the Transcript should be
identified, and should include some formatting such as tabs
and carriage returns. Here is an example of an expression that
would be inserted in the method of a class that understood the
total message:

Trassaaiptcr; show Total=‘ ,selftotal printShing.

This expression prints the string Total =’concatenated with the
string result of sending the total message to the receiver. The
comma in the above expression is a message that returns the
receiver concatenated with the argument, another string. Use it
when you want to append a string. In this example, the result
of the total message is an integer, so printstring is used to ob-
tain the string equivalent.

Use a global variable to control printing information to the

Transcript, setting it to hue or false from a workspace when
you want to turn printing on or off. In this expression we use a
global named Debug

Debugift’rw ~ansaipt cr; show’starlingcalculations...’]

Instead of setting the global to a boolean, you can set the global
to an integer that controls how much detail you print:

Debug~ 4 ifl’nre ~aoscript show”detaled information”]

In Objechvorks, you’re not restricted to a single Transcript. If
you would like to create customized transcripts to separate
different types of messages, refer to the Creating a transcriptwirr-
dmvsection on creating transcript windows in Chapter 21, “Text
and text views,” in the OBJECTWORKSSMALLTALKUSER’SGUIDE.

Menu Hooks for Inspectors

Printing a lot of information out to the Transcript can get
rather tiresome. An attractive alternative is to open an inspec-
tor on key objects at strategic points in the code or, better yet,
to provide an easy way for the developer to access an inspector.
When you are creating new window applications, it’s handy to
include an inspect item in the window’s menu during the ini-
tial development phase. This is a quick and easy way access the
objects behind the window.

Inspect is implemented by Object, so you don’t have to pro-
vide a new method if you’re happy bringing up an inspector on
the object that accepts responsibility for menu messages. If you
do need to customize the inspect action from a window, pro-
vide a new message rather than overriding the inspect message.
If you override inspect, your customized method, instead of the

inherited method, will be executed by the system whenever the
inspect message is sent to the object. Opening an inspector
from an inspector, for example, uses the inspect message. If
you want to inspect the selected item in a list directly from a
menu, implement a new message called inspectSelectedItern
and avoid overriding inspect.

Object identity
Situations arise in which you need to compare two variables to
see if they reference the same object. For example, you might
18
be stepping through two similar sets of actions that involve a
particular object. One works and the other doesn’t, so you
need to determine whether the two variables reference exactly
the same object.

Object identity is determined with the== message, which

answers whether the receiver and the argument are exactly the
same object. In contrast, the = message is used to determine
object equality It answers whether the receiver and the argu-
ment are equivalent:

#asdf = #asdf “true: Symbotsare unique.”
‘Ssdf== ‘asdf “Hse: .Wings are not unique.”

If the two objects are not in the same context (i.e., you have

captured them in separate inspectors), you can assign one to a

global variable and use the object identity message to deter-

mine equality.

GlobalOne:= selJ name. “in one inspector”
self name = = GlobalOne. “in a different inspectof

Don’t forget to remove global variables when you’re through

with them

SmaMalkremoveKey#GlobalOne

Use standardized names, such as an unusual prefix, to identify
temporary globals.

Older Smalltalk systems supported as hash as a means of
uniquely identifying objects. In current Smalltalk systems, nei-
ther of these messages uniquely identify an object.

Names

It is ofien a good idea to add a name or id field to an object
strictly for debugging purposes, particularly when instances
cannot be uniquely identified by their instance variables or
when they are distinguished in obscure ways. If you’re going to

be dealing with multiple instances of a class, it may otherwise
be hard to keep track of which object is which.

You also can specialize the method printOn: for your new
classes. The printable representation can incorporate a name to
help identifi the object.

printOrrastream
“Adda printable representation of thereceiver to ~Stream>,
Usethe fuUNamefield to identify thereceiver.”
super printOn: aStream,
aSbeam nerttPutML‘ on’.
aStreanrnextPutAILself fullName

A good printable representation can speed debugging, because

it lets you quickly ascertain when two objects are equal or how

they were created. However, be aware that assumptions in a

specialized printOru method might not be correct. For example,

some instance variables might not have been initialized. If so,

the previous method should be checked to see if the name were

nil before printing it.

WHERE AM I AND HOW DID I GET HERE?

An object encapsulates both behavior and data. In addition to
THE SMALLTALKREPORT

gathering information about the data in your application, you
may need to collect information about the dynamic state of
your application. Two keys to understanding the dynamic state
of your application are identifying where you are in the dy-
namic sequence of message sends and identif@g how you got
there.

We also present two alternate ways to access dynamic state:
locating code of interest via user input and using key entry
points.

Identifying the Current Context

When you need to identifj the method you are executing,

print an identification expression to the Transcript. The fol-

lowing prints the class and message name as it appears in the

debugger’s stack (e.g., Class(Superclass) >>methodName).For Ob-

jectworks:

“if it’s not in a block”

Transcript show thisContext printString; cr.

Debug iffrue: ruse this expression in a block”

Transcript show thisContext sender home printString; cr].

For Smalltalk/V

CurrentProcess waJlcbackOn: Transcript maxLevels: 1.

Audible Feedback

Another alternative to writing to the Transcript is to use sound
to give audible feedback that a method has been executed. This
is particularly useful in situations where the display system is
not available. For example, in Smalltalk/V the GO file is pro-
cessed before the display system is available. Insert these ex-
pressions to ring the bell. For ObjectWorks:

Screen default ringBeK

For Smalltalk/V:

Terminalbell.

Catching It in the Act
If you would like to examine code behind a specific action, but

don’t know where to find the method, you can interrupt it by
typing the program interrupt while executing the code of inter-

est. In Objectworks, the default program interrupt is CTRL-C>.
In Smalltallc/V, it is the platform interrupt key (<(XRL.-BRIO

under 0S/2 and Windows, <command-.> on the Mac).
For example, if you want to know how the rubberbanding

code works when drawing a line in a graphics editor:

1. Perform the appropriate action, such as holding down the
left mouse button and dragging the cursor.

2. While you move the mouse, press the program interrupt.

3. A notifier appears that allows you to open a debugger and
examine code in the stack. You can see flow of control in
JULY-AUGUST1993
the debugger, and can examine method arguments and
temporaries.

Timing can sometimes be a problem —for some operations
you may need to try this several times until you catch it at the
right place.

Sometimes a program interrupt can save you from a bad
situation. If you make a simple change to your code and see a
garbage collection cursor instead of what you expect, you may
have created an infinite loop. The following is a typical exam-
ple of a class method that inadvertently causes an infinite loop:

new
‘self new iniJiaJise”this should be a call to super instead of to sel~

In this method, the user intended to invoke the inherited
method called new, but instead called the same method, result-
ing in an infinite loop.

If your application is in an infinite loop, you can interrupt
it with a program interrupt. Atler interrupting the application,

use the debugger to look at the stack and locate the error, fix
the error and then either close the debugger and start again, or

resume the execution from the debugger.
Be careful when you interrupt a method with a program in-

terrupt. Instead of closing the notifier or debugger, you may
need to resume or proceed from the debugger if you are in a
loop that needs to finish execution to restore the state of the
cursor, signal a semaphore, or complete some other clean-up
activity.

Alternative to Walkbecks and Notifiere

You may not want to open a debugger and, instead, prefer
some other way to view the context information. If you are de-
bugging low-level code and are concerned that an interruption
might leave the image in an unstable state, you can print out
information about the current context as described below. It
can also be useful if you are sending a beta release to customers
or if you are working on an embedded application in which
there is no access to a user interface. The following expression
prints the execution stack on the Transcript. For Objectworks:

TranscriptCI;show (Noti6erViewshortStackFocthisContext).

For Smalltalk/V

CurrentProcesswaJlcbackOn:TranscriptrnaxLevels:10,

You can also print this information to a file. For Objectworks:

I file I
file :=‘errors’asFilenameappendSheam.
filecr;nexWutAW (NotifierView shortStackFo~ thisContext).

file close

For Smalltalk/V:

I file I
file :=FilepathName:‘errors’.
filesetToEnd.
CurrentProcesswaJkbackOn:filemasrkvels: 50.
file close
19

■ SMALLTALKDEBUGGINGTECHNIQUES
Source Code for Blocke

Although the source code is not always available, the following

expressions are sometimes helpful for examining the source
code for blocks (Smalltalk/V) or BlockClosuresor MethodCon-
texts (Objectworks). For Objectworks:

aBlockCtosuremethod getSource

aMethodContext sourceCode

For Smalltalk/V for 0S/2:

aBlockhomeContextmethodsourceString

Decompiling a Method in Objectworks

If the source code for a method is unavailable, the ObjectWorks
browser allows you to view a decompiled version of the
method: The comments are gone, certain expressions are opti-
mized, and the temporary variable names tl, t2, and so on are
used in place of the original argument and temporary variable
names.

Even when the source code is available, you can view the
decompiled version of the method if you hold down the shift
key when you select the method name in the ObjectWorks
browser. This technique is useful for finding obscure bugs such
as when Iiterals have been unknowingly altered. Many pro-
grammers think that Smalltalk literals are immutable, and do
not realim that they can be altered. The following example il-
lustrates detection of an altered literal array,

A method initializes an instance variable to reference a lit-
eral array

initialise
arrayConstant:=#(1 Z3 4)

The programmer intends this to be a constant, but later uses
an expression such as the following to alter the array

arrayConstanta~ 1 puk 100

This alters the contents of the literal array in memory, so the
original contents of the array are not restored even if the origi-
nal initialize method is re-executed, You can check the con-
tents of the literal array by decompiling any method that refers
to it. After altering the array, the decompiled contents of the
initialize method are:

arrayConstant:=#(100 23 4)

If you recompile the method from the source, the original con-
tents of the literal array are restored. This is a particularly nasty
bug to locate, so be forewarned. To prevent this type of bug,
some programmers provide accessing methods for important
Iiterals, and return a copy of the literal instead of the original,
Because the original literal is never returned, inadvertent alter-
ations are made only to the copy.

Entry Pointe

Sometimes you just want to know how a window is opened or
what happens when a menu item is invoked. Instead of inter-
20
rupting it, sometimes it’s easier to trace the action down from
a few well-known entry points.

For example, the ObjectWorks Launcher lets you open
browsers, workspaces, and other windows, The code behind

this master menu is found in LauncherViewand VisualWorks
UIVisualhuncher class methods. Browse all implementors of

‘*enu*’to see menu initializations for other windows: select im-
plementors from the VisualWorks Launcher Browse submenu
or the ENVY Launcher DiVY>browseimplementors... alternative.
The string “enu” matches selectors such as menu and fileList-
Menu regardless of the capitalization.

The file menu in Smalltalk/V contains items to open
browsers, workspaces and other windows. The class Apptica-
tionWindow supports the file menu, and contains entry points
to tools. Browse the class to examine the methods that open
windows.

WHERE AM I GOING?

This section highlights techniques that allow you to temporar-
ily halt or gain more control over the execution. Some tech-
niques, such as slowing down the action in your application,
are oriented towards graphical operations.

Breakpointa

Although Smalltalk has a well-earned reputation for its debug-
ging environment, current implementations place some re-
strictions on breakpoints, In Smalltalk/V, you can set break-

points from a debugger. In Objectworks, you have to
recompile a method and insert code to stop execution. Remov-
ing the code to stop execution also requires recompilation.

In both Smalltalk systems, one of the first debugging tech-
niques you learn is to send the message halt to any object.
When executed, it prompts you to open a debugger. In a de-
bugger, you can execute expressions and inspect the current
object, its instance variables, and any method temporaries. The
message error: also prompts you open a debugger, and uses its
argument in the title of the walkback or notifier, These expres-
sions can be inserted in a method or executed in a workspace.

selfhalt.
selferror:‘Invaliddata during retrieval’

However, you quickly learn that this needs to be used with

caution. If you place the expression inside a loop, a notifier ap-

pears each time the loop is executed. You can guard the ex-

pression if you know exactly when you want to break:

i >10 iflme [se~ halt]

Or you may choose to control the execution dynamically. For

example, the following expression halts only if the shift key is

pressed. For ObjectWorks:

InputState detiuk shiftDovmfiw [selfhalt]

For Smalltalk/V

(Notier isKeyDown:VkShiR)ifhue: [selfhalt]
THE SMALLTALK REPOIIT

If the code is being executed from a controller method in Ob-

jectworks, you can use the simpler:

setisensor shlftDown ihre: [self halt]

If this interferes with other tests for the shift key, you can also
test for the Meta, Option, Ah (if it isn’t commandeered by
your windowing system), or Ctrl keys. For more information,

see the section on sensing input near the end of Chapter 18,
“Application framework,” of the USER’S GUIDE FOROBJECT-

wORKS\SMALLTALK.

For SmalltaWV, you can use platform-dependent keys with
expressions such as the following. For Smalltalk/V for Win-

dows, use:

(Notier isKeyDown: VkControl)ift’rue:[seJfhalt]

You can also gain control over the execution of non”-primitive
expressions executed in the context of a workspace, debugger,
or inspector. For example, execute do it on the expression be-
low, which sends the halt message to 3:

3 halt raisedTo: 2

In the debugger, step or skip through the messages until you get
to the raisedTo: message and then send or hop. You can’t step

into a primitive, such as integer addition, from the debugger.

Slowing Down the Action

Sometimes you don’t actually want to stop the action; you just
need to slow it down a little. For example, you’re looking at
code that draws a complicated figure with a loop and you want
to see each line segment drawn, one at a time. You might use a
delay in the loop For ObjectWorks:

Cursorwait showwhile: [(Delay frdtilliseconds: 800) wait]

For Smalklk/V for 0S/2:

CursorFtarragerwaitchangeFo~[Dostibrarysleep:800]

In ObjectWorks, don’t forget to send the wait message to the
delay. You can create an instance of a Delayanytime you like,

but it doesn’t actually stop the action until the wait message is
sent.

Or, you might choose to wait until a mouse button is
clicked For Objectworks:

CursorcrossHti showWhila

[ScheduledContioUers acsiveContioller sensorwai~oEutton;
waitCJickButton]

This expression waits until all mouse buttons are up and then
waits again until one is pressed. For SmalltalldV

CursorManager execute changeFo~

[Notier consumeInputUntik [:event I

event selector =#buttonlDowm].

Notifier consumeInputUntil: [:event I
event selector = #buttonlUp:]]

This expression waits until the left mouse button is pressed
and then released.

The first expression makes sure you aren’t in danger of run-
JULY-AUGUST1993
ning on through the whole expression just because the mouse
button was still down from a previous operation such as a
menu invocation.

Changing the cursor while the system is sleeping or waiting
for a button press is a good visual reminder of your program’s
action. There are a number of other cursors available, and if

you have multiple delays in a method, you can use different
ones to give you feedback about the state of the execution.

A delay can also give you time to interrupt a method with a
program interrupt if you so choose.

HOW DO I GET OUT?

One of the best things about the Smalltalk environment is that
you can change almost anything you like. One of the worst
things about the Smalltalk environment is that you can change

almost anything you like. If you happen to alter your environ-
ment in an undesirable way, you can also find yourself in big
trouble.

Although you might be able get yourself out of a tight spot

if you have enough time, skill, and patience, you may find that
it’s best to quit out of an image and recover desirable changes
in a fi-esh image rather than to undo the damage.

Quitting while You’re Ahead

If your normal means of exiting is blocked, you can oflen exit
by evaluating an expression. In Objectworks, the magic expres-
sion to gracefully shut down the image when all else has failed

is:

ObjectMemoryquit

or

ObjectMemoryquitPrimitive

In pre-4. 10bjectworks, this message was sent to Smalltalk in-
stead.

In Smalltak/V, the expression is:

SmalltiUcesit

If your image seems dead and you don’t get any response tlom
typing, first try the program interrupt and attempt the exit
procedure again. If that doesn’t work, then, for ObjectWorks,
use the Emergency Evaluator to evaluate the exit expression:

1. Type <CTRL-SHI~-C>to bring up the Emergency Evaluator.

2. Type the exit expression ObjectMemoryquit.

3. Type <ESC>to evaluate the expression.

In Smalltalk/V for 0S/2, use the WindowListprovided by 0S/2
to remove an unwanted process:

1. Type 4XIU-ESC>to bring up the WindowIist.

2. Select the top-level Smalltalk/V Window or the Transcript.

3. Bring up the menu and select Close.

0S/2 also notices if a process is not responding to events and
prompts you to exit the process.

In Smalltalk/V for Windows, you can use the WindowList
21

■ SMALLTALKDEBUGGINGTECHNIQUES
provided by Windows to remove an unwanted task with the
End Task button. A more reliable method is to type <CTRL-ALT

DEB. The first 431UAL.T-DEb allows you to exit the current
process. Another <CTRLALT-DEballows you to reboot the
machine.

Afier exiting, use the appropriate utilities to recover the
changes you want to keep, being careful not to restore the
method or methods that caused the crash.

An Advanced Emergency Procedure for Obiectworks
If you’re feeling more adventuresome and know exactly what

you did wrong, ObjectWorks allows you to recompile the

offending method instead of quitting. For example, you insert

a self halt in a critical method such as the otherwise empty con-
tiolhitializel method and quickly realize that you should have
done this in a subclass when you see all the notifiers pop up.
Since <CTRL.-C>,the program interrupt key, doesn’t help, you
type cwSHIn-b to bring Up the Emergency Evaluator and

then evaluate the following expression to restore the original

method:

Controller compile: ‘controUrritialize “self ctassitied:

‘basic contiol sequence’

Don’t be concerned about making the method pretty or get-
ting the protocol exactly correct; you can and should fix those

details once your environment is back to normal again.

OTHER DEBUGGING AIDS
Wap to debug problems areas varied as the bugs themselves,

but the following tips include advice about general approaches
to object-oriented debugging, techniques for graphical debug-
ging and ways to add shortcuts to access frequently used de-
bugging expressions.

Isolate Debugging Code in a Suhdass

Whenever possible, isolate your debugging code in a new sub-
class. You can copy methods from the superclass or override
them to add debugging information. This is most useful when
you are primarily interested in finding out how the current sys-
tem works and your debugging activities are confined to halts
and monitoring activities such as printing to the Transcript. If
you are trying to find a genuine bug and functionally changing
code, you have to remember to copy the changes back to the
real class.

Graphieel Feedback

When you’re debugging graphical applications, you need a lot
of visual feedback If your application is interactive, you might

need to understand where the cursor is located and how to

manipulate it,

In ObjectWorks, you can find out where the cursor is rela-
tive to the window with the expression:

ScheduledConhollersativeConboller sensor cursorPoint

You can position the cursor explicitly with:
22
-

SeheduledConbollers activeConholler sensorcursorPoinP aPoint

You can ask the user to interactively designate an area on the
screem

Rectangle fromUser

Indicate an area with a filled rectangle:

ScheduledControllersacbveControllerview graphicsContext
displayRectangle (Or@Oextent 10@100)

In Smalltalk/V, there area similar set of expressions. To find

the location of the cursor in screen coordinates usc

Cursorsense

To translate to coordinates for a pane use:

CursorsensemapScreenToClientia%re

To set the location of the cursor relative to the screen origin:

Cursoroi%e~aPoint

You can ask the user to interactively designate an area on the
screen

DisplayrectangleFromUser

You can also indicate a screen area, in this case by filling the

rectangle with a solid red color:

Displaypen fik DisplayrectangleFromUsercolo~ ClrRed

Magic Dabugging Keys

If you find that you use certain debugging expressions fre-
quently, you can modify your programming environment to
add these expressions with function keys or keyboard

equivalents.
For ObjectWorks, we use function keys to insert some of the

debugging expressions mentioned previously.
The ParagraphEditor’s initializeDispatchTable class method

controls the binding of keys to actions. Rather than adding to
this method, the following code creates a new method for the

debugging bindings:

ParagraphEditorclaas
ilsiualkAdsWo“ “ nsToDiapatehTable

“Initialize additioml keyboarddispatch keys.”
“ParagraphEditorirrilialiseDispatchTable.
ParagraphEditorini&lizeAdditiorrsToDispatchTable.”
KeyboardbindValue:#displayHaltKeyto: #F5.
KeyboardbindValue:#displayGuardedHaltKey:to: #F6.

ParagraphEditor

Ulaym- aCharEvant
“Replacethe cmrent text selection with a debugging statement–

initited by #F5.”
self appendToSeleclion:‘selfhalt.v withCRs.

sUsplayGuardadEal* aCharEvant

“Replacethe current textselection with a debugging statement–
initiated by #F6.”

self appendToSeletion: ‘InputState default shiftDown
ifl’nre:[selfhalt].\’ wittrCKs.

Aller compiling those methods, be sure to execute
THE SMALLTALK REPORT

ParagrapbEditosinitilisaDiepatchTable.
ParagraphEditoriniUaUsaAdditionaToDispatthTable.

These bindings are valid only for windows created after initializ-

ing, so open a new Browser or Workspace to test the additions.

For SmalltalldV, we use keyboard abbreviations. Afler typing
an abbreviation, type Shift-Space to expand the abbreviation.

Execute the following code, customizing as appropriate:

Srndltallrah #AbbreviationspuEDictionarynew.
Abbreviations

ah ‘gh’puti’(NotifierisKeyDown:VkShift) ifllue: [self halt] .’;

ab ‘h’ put’CumentProcess walkbackOn: Transcript maxi.evets: 1.’

In Smalltalk/V for 0S/2, add the following method

TextPane
eharaeterInpuh aChar

“Processa charactertyped by the user.”

I abbrevDict left right c scontiue newLine I

abbrevDict:= SmaMaUr

at :#Abbreviations

ifAbsenti [Aself basicCharacterInputi aChar].

(aChar = Space and: [Notier isShifLDown])

ifhre: [selfgetPMSeledion.

left:= right:= setEnd -1.
s := String new.

[c:= self charAk left.

(contiue := (c not.tW and [c isAlphaNumeric]))

iffrue: [s := (String with: c), s].

continue]

whileTrue: [left:= left - 1].

new:= abbrwDict ah s ifAbsenk [Nl].
new notNlitTrue: [seh selecthdexl%ornleft to:right].
‘seKnsert new].

‘super characterInput aChar

In Smalltalk/V for Windows, copy the text from the TextPane
method characterInpuk to a new method called basicCharacter-
Input:.

TextPane
basicCharacterInput:aChar

“Private- the user typed aChar.”

seti isGapSelection

ifFalse: [selfhideSelection].

newselection:= seLfreplaceWthChar: aChar.

modified :=hue.

self

selectAfte~ newSelection comer;

makeSelefionVisibl&

displayChangesForCharInput;

showSelection

Then, replace the original characterInput: method with the
following:

TextPane
duuaderInput alliar

“Processa character typed by theuser.”

I abbrevDict left right c scontinue line new I

abbrevDict:= SmalltaUr

at #Abbreviations

ifAbsent [’%elfbasicCharacterInput: aChar].

(aChar = Space and: [Notifier isKeyDown: VkShift])

ifTnre: [left:= right:= selection comer x.
JULY-AUGUST 1993
line := textHolderlineAt: selecSion corner y

s:= String new.

[c:= line ak left.

(continue:= (c notNil and: [cisAlphaNumeric]))

iffnre: [s := (String with: c),s]

iffalse: [left:= left+ 1].

(continue and: [Iett > l])]

whilellue: [left := left - 1].

new :=abbrevDict at: s ifAbsenk [Nl].
new notiilifllue:

[selection

selectBefore: left @ selection comer w

selectTo: right @ selection corner y.

self replaceWithTesrt: new.

selecbon seledfter: left + new sise @ seledion comer y.

self forceSelectionOntoDisplay.

“oil]].

‘self basicCharacterInpuh aChar

Be careful when entering this method in the browser, as mis-
takes will prevent subsequent character input from text panes,
such as in the bottom pane of the browser.

CAVEATS
Please note that the debugging techniques advocated in this ar-
ticle may violate normal programming guidelines. Some of the
expressions use globals or “private” methods; others, like mov-
ing or warping the cursor, are expressly prohibited by user in-
terface style guides. Use them judiciously.

CONCLUSION

While this article has presented a collection of Smalltalk de-
bugging techniques, it is impossible to describe the most
efficient debugging strategy for any particular situation with-
out knowing where the problem lies. Of course, if you knew
where the bug was in the first place, you wouldn’t need to de-

bug it.
These debugging hints won’t make you an expert overnight.

Effective debugging requires creativity and experience and
there are few shortcuts, but assembling an arsenal of debugging
techniques can shorten development time and improve code
quality. ❑

Acknowledgments
We’d like to thank the following people, who provided prob-

lems, solutions, or otherwise helped debug the debugging pa-
per: Ken Auer, Duane Campbell, Andrew Cornwall, Tom
Hendley, Tom Heruska, Larry Jundt, Cary Laird, Mike Lucas,
Pat Martin, Angie Muher, Kim Rochat, Brian Wilkerson.

. .-—
RoxieRodmt is Seri&r Tech_nicsdSpecialist in Advanced–SystemDe-
velopmentmrd ProcessInstrumentation Technolqy atFisher-Rose-
mount Systems Inc., J7J2 Centre Creek Drive, Austin, TX 78754,

512.832.3583, She cmsbe reached via email at rochat@fisher.com.

Juanita Ewing is n senior stafimember ofDigtalk Profaional Ser-
vices,921 SW Washington, Suite 312, Portland, OR 97205,

503.242.0725. She isiscohnnistfor THE SMALLTALKREPORT.
23

.contimmd from page 6 ■ DEBUGGINGOBJECTS
*asS6mnds I

ml~]Tq
clienlMothod

E===
Figure 2. The relationship between Comp]kdkkthods end the BreakpointMethods

that represent them.

pointMethod itself is invisible in the debugging process, since it
is removed from the execution stack before the debugger
opens. In addition, BreakpointMethods implement the getsource

message by returning their client’s source, and so breakpointed
methods can be browsed directly.

The new variable agent is needed to make CompiledMethods
with breakpoints print out well. Every CompiledMethod has an
instance variable called mclass, which refers to the class in
whose method dictionary the CompiledMethod should be
found. When CompiledMethodsprint themselves out, they look
in their mclass to make sure they really are defined there ; if

they aren’t, they will print out as an unboundMethod. Since
BreakpointMethods replace their client in the method dictio-
nary, all breakpointed methods wordd print out as unbound-
Methods, which is confusing and aesthetically unpleasing. We
solved this problem by adding agent. Now, when a Compiled-
Method prints out, it checks to make sure that its agent is
defined by its mclass, and if so it prints out normally. Most
CompiledMethods are their own agents, but breakpointed
methods will have their agent set to the BreakpointMethod
that’s representing them, and so they’ll print out correctly.
Figure 2 illustrates this relationship between CompiledMethods
and the BreakpointMethods that represent them.

In Figure 2, the asSeconds method for Date-the Compiled-
Method marked A—is a normal method. Its mclass is Date, it is
its own agent, and it is referred to directly by Date’s method
dictionary. However, a breakpoint has been placed on the day

method for Date. The #day entry in Date’s method dictionary
refers to the BreakpointMethod B, whose clienttkthod is the
CompiledMethodC.CompiledMethodC,in turn, refers to Break-

poirthiethod B as its agent. This way, even though Compiled-
Method Cis not referenced by Date’s method dictionary, its
agent—BreakpointMethod B—is, so CompiledMethodCwill print

as a well-defined method rather than as an unbound one.
24
%’

We added breakpoints to the system by creating three
new methods in Behavior, thus making breakpoints in all
kinds of classes, including instances of both Class and
LightweightClass. The first method, isBreakpointAt:, tells
whether the specified method in the Behavior has a break-
point set or not. The second, breakpointCompilerClass, returns
BreakpointCompiler, which is the compiler used for all classes
to create new breakpointed methods. The third method, set-

BreakpointAt:, is the main one and is used to set or remove a
breakpoint. It’s implemented as:

WrealqoinWk aSeleetor

Icrnl

c := self whichClassIncludesSeleeto~ aSelector.

c isNil iffme: [Ase~.

m:= c compiledMethodAh aSelector.

self == c

ifmre [

m isBreakpoint

ifTrue: [m client mclass == self

ifl’roe: [self addSelecto~ aselector

withMethod: m client]

ifFalse: [self removeSelector a.selector]]

ifFalse: [self addSelerto~ aSelector withMethod:

(BrealrpointMethod on: m

selecto~ aselector

irtlass: se~]]

iffalse: [

m isBreakpoint ifTnre: [m:= m client].

seLfaddSelecton a.selector withMethod:

(BreakpointMethod on: m selectoc aSelector iRClass: sell)]

If the receiver Behavior is the class that defines the method cor-
responding to the parameter selector and if the method is al-
ready breakpointed, the code removes the breakpoint by test-
ing whether the BreakpointMethod’s client is defined in the
receiver or not. If it is, the BreakpointMethod is replaced by its
client in the receiver’s method dictionary but if it isn’t, the
BreakpointMethod is simply removed from the receiver’s
method dictionary (thus leaving the client in whatever other

method dictionary it resides). If the method isn’t break-
pointed, the code creates a new BreakpointMethod for it and
adds it to the receiver’s method dictionary. Finally, if the

~ LlghtruelghtclassBrowser ~

I
-..-,-
belwen:and:
craws Ill

psDaya
“Thismethod has been sp+claliied fw MS one object,-

’42

x .
. “ oaksMay asoays .
self 33697

self asoeys
~yr

v

Figure 3. The lightweight claes browser
THESMALLTALKREPORT

method corresponding to aselector isn’t defined in the receiver,
a new BreakpointMethod is created and installed in the re-
ceiver’s method dictionary.

As with lightweight classes, we need a new compiler class,
BreakpointCompiler, to implement breakpoints, Once again,
though, this class is almost trivial, since it only needs to define

newCodeStreamto return a CodeStreamthat creates Brealcpoint-
Methods.

PUITING THINGS TOGETHER

To exploit the functionality provided by LightweightClassand

BreakpoirttMethod,we adapted the interface to make object de-

bugging as simple as possible, This required changing the exist-

ing Browsers,adding a menu option to Inspectors, and creating

a new Browserspecifically for lightweight classes.

The existing Browserswere changed by adding a breakpoint

option to the menu in the selector view. Choosing this option
will either set a breakpoint on the selected method or, if the

method is already breakpoin ted, remove the breakpoint, so

that the option acts like a toggle switch. Furthermore, the se-

lector view allows method selectors to be formatted, and we

use a preceding asterisk to quickly distinguish methods with

breakpoints.

In addition, all Inspectors now have a new menu option

called browseLightweight. Choosing this option will create a

new lightweight class for the selected object and open a

LightweightClassBrowser to examine and modify methods for

that particular object.

LightweightClassBrowser is a subclass of Browser for looking

at lightweight classes. As shown in Figure 3, the Lightweight-

ClassBrowser has six subviews, The first two views allow you to
decide what methods you’ll see: You can either see only meth-
ods defined in the lightweight class, or all methods up to some

specified superclass. The upper right view shows which class
you’re listing methods up to, while the upper leil view shows
which class the selected method is actually defined in. This

option makes it easy to view a superclass method and then

make changes to save in the lightweight class. The third view
lists all selectors from the lightweight class up to the class cho-
sen in the upper right view. These selectors are formatted so
that all breakpointed methods are marked with an asterisk,
and so that all methods actually defined in the lightweight

class (as opposed to one of its superclasses) are printed in
bold. The fourth view is a TextViewon the code of the cur-
rently selected method, Finally, the last two views belong to an
Inspector on the object whose lightweight class is being
browsed.

This interface makes it easy to imagine how the debugging
session mentioned in the introduction would proceed. Once

you’ve decided there is a problem with one of your OrderedCoL
Iections, you can use a Browser to put a breakpoint on the
method where the OrderedCollection is created. When that
method is executed, a Debugger will pop up. The Debugger lets
you inspect the OrderedCollectionand choose the browse-
Iightweight option to create a lightweight class for it. The
JULY-AUGUST1993
LightweightClassBrowserlets you put breakpoints on the add
and remove: methods. Afier you “proceed” tlom the Debugger,
you’ll be able to watch as that one OrderedCollection is
modified, and you can find out when objects are added to it
and when they’re removed. With that information, you’ll be
well on your way to solving the problem.

These changes significantly improve debugging in the

Smalltalk environment. Though breakpoints are convenient,
it’s the functionality of lightweight classes that makes the key
difference, as they allow you to monitor or alter the behavior
of particular objects without affecting the rest of your system.
The changes described here, while not complex, are remark-

able in one sense, because they rely on our ability to modify
parts of the Smalhalk system that in some languages would be
internal and unavailable to programmers. The fact that
classes are first-class objects—which is to say, classes are ac-
cessible to and modifiable by the programmer—allowed us to

introduce a new kind of class and to replace an object’s class
on the fly during execution. Similarly, we were able to create
two subclasses of CompiledMethod, and make an important
change to that class itself, only because compiled methods are
first class. Finally, Smalltalk’s representation of the Compiler
itself, and its good design for pluggability, allowed us to cre-
ate two simple subclasses by defining only one method each.
The combination of the ease of making these changes with
the significant benefits they provide is a good argument for
the desirability of this level of reflection in a programming

system. In our next article, we plan to explore one level
deeper into Smalltalk’s reflectiveness by changing the com-
piler and the interpreter to introduce active variables and
watchpoints. ❑

References
1. Beck, K. Instance-specific behavior, part I, THE SMALLTALKRE-

PORT2(6), 1992.
2. Beck, K. Instance-specific behavior, part II, THE SMALLTALKRF-

PORT2(7), 1992,
3. Hinkle, B. and R. E. Johnson. Taking exception to Small talk,

part 1, THE SMALLTALKREPORT2(3), 1992,
4. Hirdde, B., and R. E. Johnson. Taking exception to Smalltalk,

part 2, THE SMALLTALKREPORT,(2)4, 1993.
5. Goldberg, A., and D. Robson. SMALLTALK-t_IO:THE LANGUAGE

AND ITS IMPLEMENTATION,Addison-Wesley, Reading, MA,
1983.

6. A. H. Borning. Classes versus prototypes in object-oriented lan-
guages, PROCEEDINGSOF THE ACM/IEEE FALL JOINTCOM-

PUTERCONFERENCE,Dallas, TX, November 1986, pp. 36–40.

Bob Hinkle, VickiJones, and Ralph E. Johnson are affiliatedwith the

Department of Computer Science at Universityoflllinoi3 at Lh-bann-

Champaign. Bob Hinkk is supported by afellowshipfrom the Fannie

and John Hertz Foundation, He can be reached via email at

r-hinkle@uiuc.edu. VickiJones and Ralph Johnson can be reached
viaemail at {vjones,johnson} @es.uiuc.edu.
25

26
Excerpts from industry publications
COBOL TO OOP

What would you say if your boss ordered you to transform 60
mainframe programmers into object-oriented programmers in
one year? Most likely, “You’re joking right?” Believe it or not,
in the past year American Management Systems (AMS) of Ar-
lington, Vs., has transformed over 60 COBOL programmers
into Smalltalk GUI programmers. They didn’t raid the staff of
an 00P tools firm, and they didn’t rely heavily on external
consultants. But they did perform a major paradigm shitl on
the minority of their staff. . . The secrets of their success in-
cluded: Boot camp All programmers went through develop-
ment tool training and object-oriented design training. The
majority participated in a one- to eight-week apprenticeship
program, where they worked side by side with object-oriented
pros. The process was supportive and orderly—at no point did
programmers feel they were floundering. Teamwork AMS

brought in OOP design dn programming experts to “mind-

meld” with their COBOL programmers. The experts designed
the application architectures and classes; the novices handled
the specialized processing and application logic. The 00P
novices with GUI design expertise did the screen layout. The

managers performed tinction-point analysis to glean new pro-
ject-estimation metrics. AMS effectively used consultants to

jump-start their efforts, without paying a fortune. Today they
have a core team of strong 00P technicians in-house. . .

Bringing olject-oriented technology to the masses,
Christine Comafod, E WEEK, 2/27/93

THEY SAY WE HAVE A REVOLUTION

we are currently in the middle of a revolution in the Smalltalk

world Back in the old days the only objects that came with any
language were simple data structures, enough metaobjects to
write the system itselfi and support for rudimentary graphics and

user interfaces. Everyone who used an object language was in the
business, by necessity, of creating fundamentally new kinds of
objects all the time. This limited users to those who were capable
of such invention,a nd limited the productivity of those users be-
cause writing new kinds of things is so much harder than reusing

existing frameworks. A ammsus has grown recently that the
time has come to stop focusing exclusively on creating objects
and start supporting people who only want to use or elaborate on
things that already efit. Several factors contributed to this shill
The market of wizards creating new fi-ameworks from scratch
was getting saturated. The economics of growth dictates a search
for new kinds of customers. The pace of innovation in user inter-
faces slowed, with the major windowing systems settling on

roughly the same set of components. This allowed the Smalltalk
vendors to stop spending so much energy doing the entire user
interface without help from the operating system. Enough ob-
jects had been created that is was possible to imagine someone

writing an application and not having to create new kinds of ob-
jects. The factors that used to single out Smalltalk-a bundled

class library and an interactive programming environment—
were no longer unique, Smalhalk had to move on or get tram-
pled by the Borland C++’s of the world. . .

WholeIotta Smalltalk, Kent Beck,

OWECTMALMZINE,3-4/93

CORBA

About 60 companies are creating CORBA implementations, ac-
cording to the Object Management Group, But only DEC and

HyperDesk, Westborough, Maw., with its Distributed Object
Management System, are shipping CORBA 1.1 products. . . HP’s

implementation, to be called HP Distributed Smalh& is a set of

Smalltalk classes for use with VisualWorks, a Smalltalk develop-

ment environment from ParcPlace Systems. , .

HP Tml ShowcasesKey Object Spec, Dan Richman,

OFENSYSTEMSTODAY,2/15/93

OBJECT SOL

DBMS: Are you planning an object-oriented language? Or do
you recommend one?

[R&D section manager for HP’s Database Lab, and second
chairman of the SQL Access Group: John R. Robertson] :The
real issue is moving into that paradigm. Yes, we should have

standards, we should have a common language. I don’t think

C++ is necessarily the right language. By the time you get into
object systems you probably want to be having 4 GLs that are

going to take care of it for your. We should’ve learned that les-

son by now. We are not making an object-oriented language.
We have an object-interactive language, which really operates

at the command level. We’re working with third parties who

are in the 4GL business. The Object Management Group work-
ing group seems to be migrating toward having a common
command set, which is OSQL [Object SQL]. I don’t think it
matters much whether you express that through C++ or
Smalltalk. The real issue is that you want your object model to
let you move your methods out of your application and put
them into the database where you can reuse them, This is how
database technology will mature,

Hewleti-Packard3 Relational/O&ct Paradigm,

Peggy Watt and Joe Celko, DBMS, 2/93
THE SMALLTALKREPORT

ProductAnnouncements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested iu being included in thii feature should send press rel~ to our edhorisl oHfIces,

productAnnoumzments Dept., 91 Second Ave., Ottaw Ontario KIS 2H4, Canada.

SERVIO TO SUPPORT GEMSTONE ODBMS, GEODE be accessed from most client environments including UNIX,

DEVELOPMENT ENVIRONMENT ON WINDOWS NT. Windows, 0S/2, and Macintosh.

Servio Corporation has announced that it will provide support Servio Corporation develops and markets the GemStone

for its full range of products on Microsoft Corporation’s Win- object database management system, which incorporates the

dews NT operating system.
GemStone and GeODE for Windows NT are scheduled for

production shipment beginning in early 1994. They are cur-
rently available for most leading UNIX-based platforms in-
cluding Sequent Symmetry 2000, SUN SPARC, RS6000, and

HP9000, GemStone release 3.2 and GeODE release 2.0. Gem-
Stone is also available for DEC VAX/VMS. GemStone data can

GeODE code-free visual development environment for rapidly
building and deploying end-user database applications. Servio
supports its products with consulting on-site technical support
and educational services that enable customers to implement
mission-critical object-based solutions.

Servio Cop., 2085 Hamilton Ave., Ste. 200, San Jose, CA 95125,

408.879.6.%W (V), 408.869.0422 (L7

=WANTED=
BOOK AUTHORS

SIGS
BOOKS

IscurrentlyseekingAuthorsfor its

“Advances in Object Technology”
series.

Opportunity to join rapidly growing list of
prestigious authors and experts and

earn international recognition,

To discuss your ideas for a book contact:
Dr. Richard Wiener, Book Series Editor

135 Rugely Cowt
Colorado Springs, CO. 80906

@ Phone& Fax: 719.579.9616

The first multi-dialect .z~

Smalltalk If
!developers ‘,

conference

km
August 20-21, Glendale, California.

Presentations” Panek” Tutorials I Technial

sessions” Exhibits cBooks & Magazines.

Digitalk (5rna/ha/k/V) - Servio (GemStone) -

Easel (ENFIN) I Quasar (5rna//ta/blgertts) c

ObjectShare (WirtclowBui/cfer) “ ParcPlace

(ObjectWorks) “ many others.

Only $250 if you register before July 30! $300 after.
For more information and a registration form, contact
Monica at (tel) 213-257-5670, (fax) 213-259-0430, or
(CompuServe) 72330,1236.

Where can you find the
best in obj~t-oriented training?

Thesameplaceyou found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk7V

Whetheryou?e launching
a pilot project, modernizing
legacy code, or developing a
largescale application, nobody
elsecan contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

Only Digitalk offers you a
complete solution. Including
avvard-winningprtiucts, pruven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either wax you’ll learn from a

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Sotlware”).

Weknow objects and
SmallialWVinsideout because
we’ve been developing real-
world applications for years.

The result? You71absorb
the tips, techniques and
strategies that immediately

reduce your learning curve,
and you’ll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

Digitalk5 training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance, “
Puget Power& Light. U.S.

Spri~t, plus many o~hers.
And Digitalk is one of only
eight companies in lBMs
International Alliance for
AD/Cycle—lBMk software
development strategy for the
19903 For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltal~ help
Youget the most mwverout of it.

boost your productivity You’ll - -

	By Article Title
	Applications of Smalltalk in scientific and engineering computation
	Debugging objects
	Good code, bad hacks
	Inheritance: the rest of the story
	Smalltalk debugging techniques

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Hinkle, Bob
	Johnson, Ralph E.
	Jones, Vicki
	Knight, Alan
	Peskin, Richard L.
	Rochat, Roxie

	By Topic
	comp.lang.smalltalk
	Smalltalk Idioms

