
The International Newsletter for Smalltalk Programmers

June 1993 Volume 2 Number B
SMALLTALK
BENCHMARKING

REVISITED

By Bruce Samuelson
Contents:

Features/Articles
1 Smalltalk benchmarking revisited

by Bruce Sarnueimn

4 Using Windowa resource DLLs
from SmalltafldV
by Wayne Beeton

Columns

0 Smalltalk dioms:
To accesaor or not to aocesaor?
by Kmt Beok

9 GU/s: Using MS Hetp from
within ViaualWOrks
by Greg Hedy & Eric Smith

10 T!ra beat ofconrp.hng.smalltalk:
Setaandd~tionaries
by Alan Knight

13 Sneak prevkw: WindowBuilder
Pro: new horizons
by Eric C\ayberg & S. Sni5har

Departments
23 Roduct Announcements
❑
hen Smalltalk emerged from the Xerox PARC labs in the early

1980s, performance was a major issue. CPU speeds and memosy

densities were both nearly two orders of magnitude lower than in

today’s machines. The 1983 “green book,” SMALLTALK-80,BITS OF

HISTORY, WORDS OFADVICE, included many articles with detailed

performance analysis.1 One chapter even studied the feasibility of implementing

Smalltalk in hardware, namely in the Intel 432 chip. The Xerox Dorado worksta-

tion was the fastest Smalltalk machine, and implementations on chips such as the

DEC VAX and Motorola 68000 did well to run at a small fraction of a Dorado.

As the decade progressed, hardware got faster at a factor of nearly 10 every five

years. Efficient techniques were employed for method look- up caches and for gen-

eration-scavenging garbage collectors. By mid 1992, a midrange machine running

ParcPlace Smslltalk performed several times faster than a Dorado, and a fast ma-

chine a dozen times faster. One could buy a cheap PC running either ParcPlace or

Digitalk Smalltalk faster than a Dorado.

These developments raise the question of whether Smalltalk is now fast

enough. Shouldn’t vendors concentrate on features rather than performance?

Won’t hardware advances take care of any lingering problems with speed? This

was, in fact, the position taken by a senior representative of one of the major

Smalltalk vendors in a conversation with me last year. If Smalltalk were the only

language, and if there were only one vendor, the answer might be yes. But

Smalltalk implementations are not only vying with one another for prominence,

they are also competing with other languages.

PERFORMANCE OPTIMIZATION IN OTHER LANGUAGES

One reason C++ has become so popular is that it adds object extensions to C with-

out sacrificing much of C’s efficiency. This is a frequent theme in USENET news

groups such as comp.lang.c++ and is commonly cited as a reason for using C++

instead of Small talk. Smalltalk users cite Smalltalk’s consistent use of the object

paradigm, productive development environment, rich class library, flexibility, and

portability (for ParcPlace’s products) as reasons to choose it over C++. A language

with Smalltalk’s features that approaches C++’s speed would attract a larger com-

munity of users. It this possible or only a dream?

Perhaps the researchers who are most aggressively trying to demonstrate its pos-

sibility is the Self group at Stanford University. Like Smalkalk, Self is a fully dynami-

cally typed language. It uses prototypes and delegation in place of classes and inheri-

tance. Whereas other researchers have tried to achieve performance gains (and

perhaps other benefits) by adding strong typing to Smalltalk, the Self group is seeing

how far they can push the performance envelope by using various compiler opti-

mization techniques without sacrificing type flexibility.

They have pushed the envelope quite far. An example of their results is de-

scribed in an article by Craig Chambers and David Ungar in the 00PSLA 91 con-
mminud on page 16...

TheSmalltalkReport I
Editors
John Pugh and Paul White

Carleton University & The Object Peopte

SIGS PUBUCAnONS

Advisory Board
TomAtwod, O~ecl Design

GAy hch, Rational

Gaorge Bosworth, Digilalk

Brad Cox, Information Age Consulting

Chuck Duff, Symantec

Adele Goldberg, Parc~am Systems

Tom Love, Consultant

Bertrand Meyer, ISE

Meilir Page-Jones, Waylmd Systems

%sha Pratap, CenteLine Software

Bjama Strouetrup, AT&T SS11t-ah

Dave Thomaa, Objsct Technology Intwmatimal

rHE SMALLTALK RSPORT
Edtirial Ward
Iim Anderson, Digitalk

Adele Goldberg, ParcPtace Sys(ems

?eed %Ilfips, Knowledge Syslems Corp,

Mike Taylor, Digitalk

live Thomas, Object Technology Internadnnd

Columnists
<enf Sack, %st f3aM %ttware

Iuanits Ewing, Diiialk

3eg Hendley, Know16dge Systems Corp.

=d Klimaa, h- Engineering In..

41an Knight, The Otjeci People

Eric Smith, Knmdedga Systems Corp.

Rebecca Wrfs-Brock, Digikdk

SIGS Publidons Group, Inc.
Richard P. Friedman

Founder & Group Publisher

Art/Production
Kristina Joukhader, Managing Editor

Susan Culliin, Pilgrim Rasd, Ltd., Creatiw oimc6m

Ksren Tongieh, Production Editor

Gwen .%nchirico, Production Coordinator

Robert Stewart, Computer System Cmmdinator

Circulation
Stephen W. .Smde, Cititian Mmager

Ken Mard, FuhillmentManager

Marketing/Advertising
James O. Spencer, Dirdor of Business Devetcpmmt

Jason Weiskopf, AdverSsii Mgr-+ast CaastKanada

Holly Meintzer, Admrdsing Mgr—West CeasUEumpe

Helen Newling, Recruitment Sates Manager

Sarah Hamitton, Promotions Manager-Publidions

@en Polner, promotionsGaqhc ,4&t

Administration
David Chatterpaul, Accounting Manager

Jsmes Amenuvor, Bookke+er

Dylan Smith, Special Assistant to the Publisher

Claire Johnstcm, Cmkreme Manager

Cindy Baird, Conference Technical Manager

Margherita R. Monck
General Managw
EDITORS’
CORNER

John Pugh Paul White

Over the past 24 months, we have often discussed Smalltalk’s move into the business world.

Both Digitalk and ParcPlace have spent a significant effort to not simply improve their ex-

isting products, but instead to change their products to position Smalltalk as the best de-

velopment tool for large organizations across all industries, To this end, both PARTS and

VisualWorks represent the next generation of products for their respective vendors, which

attempt to make Smalltalk more accessible to the mass development market—and newer

Smalltalk vendors are sure to arrive, Easel’s Enfin product is already having an impact on

the object-oriented market that is likely to grow as time goes on

Recently, we have noted that Smalltalk is being talked about in arenas that would not

have been dreamed of before, One such place was a recent column in the April 19th issue

of Business Week in which Smalltalk is described as being an extremely successful devel-

opment tool for many corporations including American Airlines, JP Morgan, and Citi-

corp, and the list of these companies keeps growing. Reports such as these can be used as

fodder for those of you who are still fighting to justify Smalltalk to your management.

In our feature article this month, Bruce Samuelson offers some benchmarks he has per-

formed for the various dialects of Smalltalk, This is a new arena for THE SMALLTALKRE-

PORT,and we believe efficiency is an issue that many of you face “in the trenches.” Bruce

has been very active in recent months on Internet discussing this topic, and has invested a

great deal of time in preparing this study, More important than the raw numbers he pre-

sents, he has many insightful comments concerning the implementation strategies of both

ParcPlace and Digitalk. While not endorsing the numbers presented by Bruce, we strongly

believe these types of studies are crucial to the further mainstreaming of Smalltalk.

The debate over whether to use accessor methods has raged in the Smalltalk commu-

nity since “the beginning of time. ” As Kent Beck points out in his column this month, this

one question has probably been debated more vehemently in Smablk labs than any

other style issue. In our own shop, the question of the appropriate use of accessors has

been argued so much that it is now considered a taboo subject. We believe Kent has put

this debate in the right context, especially the comment that programmers will “do any-

thing, given enough stress,” and suggest anyone responsible for the integrity of their cor-

porate libraries give these arguments attention.

This month we have two columns that address the issue of GUI development using

Smalltalk. First, Greg Hendley and Eric Smith return this month with their GUI column,

getting you started with integrating VisualWorks with Microsofi’s Help facility. Second,

Eric Clayberg and S. Sridhar take a first look at WindowBuilder Pro, the next generation

of the well-known WindowBuilder product originally released by Cooper and Peters.

Alan Knight’s look at comp.lang.smalltalk takes him into a review of the implementa-

tion of sets and dictionaries. In doing so, he studies how well (or not well) abstracted the

implementation of these reusable data types is and some suggestions for improving them,

Also this month, Wayne Beaten describes an implementation of a mechanism for storing

and managing DLLs for Smalltalk/V for windows.

Enjoy the issue!
The SmaUkdkRc o.-1(lSSN# 1056-7976] is published 9 Iimcs a year. every momh exccpl fur the MarlApr, July/Aug. and NOVIDCCcomhimd
\-issues.Publisbed y SItJS Publications C;roup, 588 ffroadw-ay,,New York, NY 10012 (2 12)274-LIMO, 0 Copyright 1993 hy SIGS Publicaliom,

Inc. All ri~ht, rcwrved. Reproduction of this nmtmial by electronic tmnsmisicm, Xernx m my mber rnctbod will bc Ircatcd asa willful vi.la-
tinn .f [bc US Copyright faw and is flady prohibited. Makrial maybe reproduced with express~rmission from ~h.spubli~bcrs.Mailed First
Class.Subscription rats I year, (9 is.mcs)dmnmtic, $65, Foreign and Canada, W), Single copy rice, 58.00. POSTMASTER Send .ddrtw

Lchangesand suhs,criplion orders N,: I’111S,UALI.IAIK NFPONr, S“bscribcr Swviccs, OcpI. S,ML, P.Cl. ,x 3000, Oenvil]c, NJ 07834. Submil m-ti-
clc~ to the.f3d,t.rs at ?I Second Avenw OItawa, Ontario K] S 2H4, Cmada, For service on currem subscriptions call 800.783.4903.

Printed m the Umted States.

■SIGS
1,(, Hll[:,\llll?d#

— — ————.——

%btishers 0[JOURNALOF OBJECT-ORIENTEDPROGRAM.

uING, OSIECT MAGAZINE, HOTLINE ON OBJECT.ORIENTED
rECHNOLOGY,THE C++ REPOuI, THE SMALL1fiK RE!=URT,
rHE lNTEnNATIONAL00P DIUECTORY,and THE X JOURNAL.

–-1

2 THE SMALLTALKREPORT

,.

An Architecture You Can Build On
ENVY2Developer is a multi-user environment
designed for serious Smalltalk development.
From team programming to corporate reuse
strategies, ENVY/Developer provides a
flexible framework that can grow with you to
meet the needs of tomorrow. Here are some of
the features that have made ENVYIDeveloper
the indush-y’s standard Smalltalk development
environment:

Allow Concurrent Devalopere
Multiple developers access a shared
repository to concurrently develop
applications. Changes and enhancements are
immediately available to all membas of the
development team. This enables constant unit
and system integration and test – removing
the requirement for costly error-prone
load builds.

Enablee Corporate Software Reuee
ENVYL.Deve/oper’s object-oriented
architecture actually encourages code reuse.
Using ths framework, the developer creates
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, whale increasing application
reliability.

Offere A Complete Vereion Control And
Configuration Management system
ENVY..eveloper allows an individual to
version and release as much or as little of a
project as required. This automatically creates
a project management chain that simplifies
tracking and maintaining projects. In addition,
these tools also make ENVY/Devek)per ideal
for multi-stream development.

Provides ‘Real’
Multi-Platform Development
With ENVY/Developer, platform-specific
code can be isolated fmm the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

Supports Different Smalltalk Vendors
ENVY/Developer supports botb
Objectworks”\Smalltalk and Smalltalk/V”.
And that means you can enjoy the benefits
of ENVYIDeveloper regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using ENVYIDevefoper to deliver
Smalkdk applications. For more information.
call either Object Technology International or
our U.S. distributor, Knowledge Systems
Corporation today !

43
OhlectTechnology OttawaOmoa Phoenix~C@

B

Knawtedge 114MacKenan Drive, Suite 100
Intamattonalk Phone: (613) tf20-1200 Phone (602)222-9519
2670 Quemsview Drive FM (613) 820-1202

S@enss Cary North Carolina 27511
Fax (602) 222-B503 Cospmtlon Phone (919)481-401X

OMwa, Ontario KZB8K1 E-mail: infofdoti.on.ca Fax (919) 460-9044

MVV/lWalopwS aWisleredtrademarkofOb@ Tecmdc~ Intarnahmdl.c.AllMax brandmdp:oduclmm m ,egixerdIradmwksd Hwrresmlw camparie!

..—.-
USINGWINDOWS
—————.—————..————..-———.———. -. ...—-

RESOURCE DLLs FROM
——

SMALLTALK/V
__ —.———. ——..——--- —

Wayne Beaten
❑
icrosofl provides a handy mechanism for Win-

dows-compliant applications to store resources in

Dynamic Link Libraries (DLL). While an extensive

tool set exists to access resources stored in DLLs,

seasoned Smalltalk programmers area little

spoiled and generally hope to avoid contact with operating sys-

tem details. I have implemented a Windows resource DLL man-

ager in Smalltalk to protect hardworking problem solvers from

the semantics of dealing with Windows directly. The resources

of primary interest are bitmaps, icons, and cursors; I have left

room, however, for expansion to include resources such as

string tables and perhaps programmer-defined resources.

A resource dynasnic link library can be constructed reason-

ably easily—provided you have a resource compiler and a lot

of time to figure out how to use it. Fortunately, Digitalk pro-

vides a resource DLL for free: the file vwsignon.dll contains the

dialog that Smalitalk displays as it loads itself during runtime.

A copy of this file, placed in the working directory of the im-

age, can be easily modified by a resource editor.

All the Windows functions required to access DLLs, which

are detailed in The Microsoft Windows So&are Development

Kit (SDK) manuals, have hooks in the base Smalltalk/V image,

Also in the base image is the class DyrramicLinkI.ibra~, which

provides an abstract representation of a DLL. Equipped with

this class and the battery of existing methods, all that is really

required is management of the resources.

The class WindowsResourceManager has been developed to

manage resource DLLs. As arc instzmce is created, it is provided

with the name of the DLL file whose resources it represents.

The instance will automatically open the DLL when required

and will automatically close it when the image is either saved

or exited. The programmer need only ask the instance for a

particular resource by type and name. The methods

bitmapAt:ifAbsent:, cumorAWAbsent: and iconAt:ifAbsent answer

the named bitmap, cursor, or icon, respectively. The first pa-

rameter is a case-independent string containing the name of

the resource; the second is a block to evaluate if the resource

cannot be successfully accessed.
4

As each resource is loaded, it is cached to prevent the same

resource from monopolizing system resources. The Windows

Graphics Device Interface (GDI), for example, allocates a spe-

cial handle for bitmaps. As only a relatively small number of

these handles are available, frugal use will allow many bitmaps

to be used frequently. Caching also relieves the programmer

of the responsibility of releasing the DLL resources; all cached

resources are released when a WindowsResourceManager

closes itself.

The provided example methods show how an instance of

WindowsResourceManager might be used. In Listing 1, an in-

stance is created using the message

WindowsResourceManagerclass>>onDLtNamed:

and stored in a global variable. The instance is then asked for a

bitmap with the message

WindowsResourceManager>>bitmapAt:fibsent:

Inspection of the method

WindowsResourceManager>~bitmapAt:ifAbsent:

reveals that the receiver is first opened. Then the cache is in-

spected to see if a bitmap already exists with the provided

name. That failing, Windows is asked to find the bitmap. If no

bitmap exists, the ifAbsent block is evaluated.

When an instance of WindowsResourceManager is asked to

open, it first checks to see if it is already open. If it is not, it at-

tempts to open the DLL it is to access and remembers it, After

the DLL has opened, it tells Smalltalk to notify it on exit. The

method SystemDictionarpmo@AtErcit: ensures that the in-

stance will be notified with the message WindowsResourceMan-

age~>exit when Smalhalk attempts to exit gracefully.

The method WindowsResourceManage~> exit simply closes

the instance, releasing the resources which have been loaded,

closing the DLL and removing itself from notification with the

method SystemDiction@>removeExitObject:.

When the image is saved, all classes are sent the message

aboutToSaveImage. The class WindowsResourceManager reroutes

this message to all of its instances. Each instance directs itself

to close when the image is about to be saved. Long-term refer-

ences to resources should be avoided: Accessing resources ex-

clusively through the WindowsResourceManager will avoid em-

barrassment when they are automatically released as the image

is saved.

The code that I have included provides all the necessary

equipment to effortlessly access bitmaps, cursors and icons

from a DLL. As always, I am open to any suggestions as to how

this may be extended, or modified for efficiency. Ed

.—

Wayne Beaton is a senior member of the Technical Staff at the

Object People. He likes to think of objects as haw”ngpersonality as

well as behavior. He can be contacted at the Object People at

613,225,8812 (v) or 613.225.5943 (fl.
THE SMALLTALKRSPOIiT

continuedon page 6
Listing 1.

Objectsubclass: #WircdowsResourceManager
instanceVariableNames:

‘fileNamedll cachedResources’
classVariableNames:“
poollliciionaries:”
category ‘DLL’!

!WindowsResourceManagerclass methods

aboutToSaveImage
‘Whenthe image is about to be saved,
inform any of my instances.”
“(WindowsResourceManageraborrtToSaveIrnage)”
self aUIMarccesRicodo: [:each I each aboutToSaveImage]! !

!WindowaResourceMamgerclass methods

examplel
“Answerthe icon named ‘Balloon’in the dll named
‘vwsignon.dll’.”
‘(WindowsResourceManagerexamplel~ I resources]
resources :=WindowsResourceManageron: ‘hwsignon.dll’.
‘resources iconAt ‘Balloon’!!

!WindowsResourceManagerclass methods

onDLLNamed:aString
“Answeran instance of myseUfor use
with the DLLnamed aString.”
‘self new fileName:astring! !

!WindowsResourceManagermethods

aboutToSaveImage
“Whenthe image is about to be saved, close myselfso that next
time the image is opened, I open in a clean state.”
self close! !

!WindowsResourceManagermethods

bitmapAt: aString
“Answerthe bitmap named aString.”
‘seLfbitmapAti aString ifAbsent: [self erro~ ‘Nosuch bihnap.’]!

bihnapAt ashing ifAbsent:block
“Answerthe bitmap named aString. If no such bitmap esists,
then evaluate block (with no parameters).”
Ikeyl
self open.
key:= Arraywitfr Bitmapwith: titrirrg asUpperCase.
‘self cachedResources

ati key
ir%bsenk [

self cachedResources
at: key
put (selfbuildBitmapNamed:

aString ifAbsent: [Ablockvalue])]!
— ——.

JUNE1993
buildBitmapNamed:astrircgifAbsent: block
“Private- hswer the bitmap named ashing.”
I handle I
handle:= UserLibray

loacfBitmap:self dll asParameter
name: aString asParameter.

handle = Oifl’rue: [“blockvalue].

“Bihnap fromHandle (WinHandlefronrhteger handle)! !

!WindowsResourceManagermethods

buildCursorNamed:astring ifAbsentiblock
“Private- Auwer the cursor named aString.”
I handle I
handle := UserLibrary

loadCurso~self dll asParameter
name: aSbing asParameter.

handle = Oifhue: [Ablockvalue].

‘CuraorManagerfromHandle:(WinHandlefromInteger: handle)!

cursorALaString
“Answerthe cursor named astriccg.”
‘seLfcursorAt:astring ifrlbsercti[self error ‘Nosuch cursor.’]!

cursorAt:aStig ifAbsenhblock
“Answerthe bitmap named aString. If no such bihcrapexists,
then evaluate block (with no parameters).”
Ikeyl
se~ open,
key:= Arraywith: CumorMamgerwit.k ashing asUpperCase.
‘self cachedResources

ak key
ifAbsent: [

self cachedResources
ak key
pub (self buildCursorNamed:

ashing ifsl.bsenti[*blockvalue])]! !

!WlndowsResourceManagermethods

buildIconNamed:asting ifAbsenh block
“Private- Answerthe icon named aString.”
I handle I
handle:= UserLibrary

loadIcon: self dll asParameter
name: aString asParameter.

handle = OifTrue: [“blockvalue].

“Icon fromHandle:(WinHandlefromhcteger handle)!

icorulti aString
“Answerthe icon named aString.”
‘self icotit aString ifAbsent: [self error: ‘Nosuch icon.’]!
..—.—

5

I USING WINDOWS RESOURCE DLLs FROM SMALLTALK/V
iconAk a,$tringifAbsent:block
“Answerthe bitmap named astring.
If no such bitmap eniats,
hen evaluate block (with no parameters).”
Ikeyl
self open.
key:= Arraywittr Icon with: aString asUpperCase.
“self cachedResousces

at: key
ifAbsent: [

self cachedResources
a&key
put: (selfbuildcordhrned: aString ifAbsent:

[nblockvalue])]! !

!Windowsllesoucekfanagermethods

cachedResources
“Private- Answermycollection of cached resources.”
‘cachedResources!

cachedllesources:aDichorrasy
“Private- Set my coUectionof cached resources.“
cachedResources:= aDictionary!

initialiseCachedResources
“Private- Initialise my resources cache.”
self cachedResources:Dictionarynew!

releaseCachedResousces
“Private- Explicityrelease the cached
resources to free up system resources.”
sell cachedResourcesdo: [:each j

each release]! !

!WindowaResourceManagermethods

close
“ClosemyseLf.If I am not open then do nothing.
Otherwise,release my cache and free myDLL.
Set my DLLto N1w that I how I’mclosed.
Removemyselffrom notication at exit.”
self isOpen

ifrtuw [
self

releaseCachedResources;
iniWiseCachedResources.

self dll free.
self dlt niL
Now AVAILABLE-FR
Cumulative Article Index ?h

Receivea FREEcomprehensive subject index
in–depth, practical information in seconds.

particular topic or simply looking [or that lan
index willput you on the right track, It’

To receive your FRE
Call: 718/834q170 Or Fax■ SIGS

l,i’Mlh WI,,.,

6

I

SmalltaUrremoveExitObject:selfJ!

exit
“Forcemyself to close before esiting
if I have not already done so.”
self close!

fileName
“Answermy file nrone.”
“fileName!

fileliame: aString
“Setmy file name.”
fileName:= aString!

isOpen
“Answerwhether or not I am open.”
‘self dll notNil!

open
“Openmyselfwith the resources in myfile.
TeUsmaUMk to notify me before
exiting (or savingthe image), so that I
carIclean up. If I am already open, then
do nothiig.”
self isOpenifFalse [

self
initial&eCachedResources;
dU:self openDLL.
SmaUtaUrno@rAtExit selfJ! !

!WindowsResourceMarragermethods

dll
“Private- Answerthe DLL.which actuaUycontains my resources.”
“dll!

dll: aDynamicLinkLibrary
“Private- Set the DLL.which
actually contis myresources.”
dll:= aDynandcLinkL.ibrary!

openDLL
“Private- hswer an instance of DynamicLinkLibrary
opened on my file name.”
‘DynamicLinkLibraryopen self fileName!!

WindowsResourceManagercotmnent: “!

I

EEOFCHARGE ns.h__ .
still- Rapott

to THE 5MALLTALKREPORT. Find

Whether you’re researching a
dmark article you missed, this
sonly a phone call away.

E iaadex–
: 212/274-0646

THE SMALLTALKREPORT

OQjectTransition
by Des@n

ANALYSIS& DESIGIV

CUSTOMCONTRACTS

Object Technology Potential
Object Technology can provide a

company with significant benefits:

● Quality Software

● Rapid Development

● Reusable Code

● Model Business Rules
But the transition is a process that

must be designed for success.

Transiticm solution
Since 1985, Knowledge Systems

Corporation (KSC) has helped

hundreds of companies such as

AMS,First Union, Hewlett-Packard,
IBM,Northern Telecom, Southern

California Edison and Texas Instru-

ments to successfullytransition to
Object Technology.

Is

TEAMTOOLS ,(.......

KSC Transition Services
KSCoffers a complete training
curriculum and expert consulting
services.Our multi-step program is
designed to allow a client to ulti-
mately attain self-sufficiencyand
produce deliverable solutions. KSC
accelerates group learning and
development. The learning curve is
measured in weeks rather than
months. The process includes:
●

9

9

●

Introductory to Advanced

Programming in Smalltalk
STAFM(Smalltalk Apprentice
Program) Project Focusat KSC
00 Analysisand Design
Mentoring: Process Support

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of “Bestof Breed”third
party tools and KSCvalue-added
software. Together KSCtools and
servicesempower development
teams to build object-oriented
applications for a client-server
environment.

Design your Transition
BeginyoIIrsuccessful “Object
Transition by Design’f For more
information on KSC’Sproducts and
services,call us at 919-481-4000
today. Askfor a FREEcopy of KSC’S
informative management report:
Software Assets by Desigu.

KnowledgeSystemsCorporWon 114 MacKcnan Dr.

Cary, NC 27511
OBJECT TRANSITIO NBYDES[GN (919) 481-4000

t. 1992 KIIOW,IWIW’ SyWnl\ (:orpnration

—

MALLTALK IDIOMS

To accessoror not to accessor?

Kent Beck
continued on page22...

———————...—————————.————
debate has been raging on both CompuServe and the In-

A ternet lately about the use and abuse of accessing meth-

ods for getting and setting the values of instance vari-

ables. Since this is the closest thing I’ve seen to a religious war

in a while, I thought I’d weigh in, not with the definitive an-

swer, but with at least a summary of the issues and arguments

on both sides. As with most, uh, discuJsiom generating lots of

heat, the position anyone takes has more to do with attitude

and experience than with objective truth.

First, a little background. The classic accessor method comes

in two flavors, one forgetting the value of an instance variable:

Point>X
‘x

and one for setting an instance variable:

PoinP>x: allumber
x:= athmber

Accessing methods are also used to do lazy initialization, or as

caches for frequently computed values:

VieW~controller
*controUerifNik [controller:= self getController]

ACCESSORS

When I was at Tektronix, Allen Wirfs-Brock (now a Digitalk

dude) wrote (or at least discussed writing—it was a while ago] a

think piece called “Instance variables considered harmful.” His

position was that direct reference to instance variables limits in-

heritance by fixing storage decisions in the superclass that can’t

be changed in a subclass. His solution was to force all accesses

to instance variables to go through a method. If you did an “inst

var refs” on a variable of such a class, you’d find two users, one

to return the value of the variable and one to set the value.

Points make a good example of why inheritance demands

consistent use of accessing methods. Suppose you want to make

a subclass of Point that obeyed the same protocols, but stored its

location in polar coordinates, as r and theta. You can make such

a subclass, but you will swifily discover that you have to over-

ride most of the messages in the superclass because they make

direct use of the variables x and y. This defeats the purpose of

inheritance. In addition, you would have to be prepared to ei-

ther declare new variables, r and theta, and waste the space for x
8

and yin your subclass, or storer in x and theta in y and keep

track of which is which. Neither is an attractive prospect.

If Point had been written with accessing methods, at least

the problem with inheritance would not arise. In your subclass,

you could override the messages accessing and setting x and y,

replacing them with computations converting polar to Carte-

sian coordinates and vice versa. At the cost of four methods

you would have a fully functioning PolarPoint. A more fully

factored solution, one that solves the problem of wasted or

misnamed storage, would be to have an abstract Point class

with no variables, and subclasses CartesianPoint and PolarPoint.

ACCESSORS-NO~

Many in the Smalltalk community were compelled by this ar-

gument (or arrived at the same conclusion independently).

Vocal and influential organizations such as Knowledge Systems

Corporation made consistent use of accessors a fundamental

part of their Smalltalk teaching. Why are there still heathens

who refuse to bow to this superior wisdom?

Most easily dismissed is the issue of productivity, All those

accessors take too long to write. Most extended Smalltalk envi-

ronments include support for automatically generating access-

ing and setting methods. Some are activated when the class is

recompiled, asking whether you want accessors for the new

methods, others appear when a “message not understood” error

occurs, by noticing that the receiver has an instance variable of

the same name as the offending message. In any case, writing

accessors need not be time consuming.

A slightly more serious argument is performance. All those

accessors take time to execute. While it is true that accessing a

variable directly is faster than sending a message, the difference

is not as great as you might think. Digitalk and ParcP1ace are

careful to make sure that looking up a method is fast, particu-

larly in common cases like sending a message to the same class

or receiver as you did the last time you were in this method. In

addition, the CompiledMethod representing the accessor has spe-

cial flags set to allow it to be executed quickly, without even the

overhead of pushing a frame on the stack. In tight loops where

the performance of accessors might still be a problem, you can

probably cache the value in a temporary variable, anyway.

The crux of the objection is that accessors violate encapsu-

lation. Accessors make details of your storage strategy visible to
THE SMALLTALKREPOItT

w“--”-UIS Greg Hendley e+Eric Smith

Using MS Help from within VisualWorks
T
he host “looks” that can be achieved with ParcPlace’s Vi-

sualWorks can be impressive, However, once impressed,

a client may ask for even more host–user interface inte-

gration. These requests can extend past the look that ParcPlace

provides. The client may ask for the feel of the host system. In

the case of the Microsoft Windows platforms this may include

the ability to run any application without a mouse. This is an

anathema for most Smakdk programmers, Another request

under windows might be integration with the help system.

Think about it. While it is not a “widget,” the help system is

very much part of the user interface, It is the users’ way of ob-

taining more information on how to use an application. The

rest of this column will show you how to get started integrating

VisualWorks with the help system under Microsofi Windows.

Accessing Microsofi Help from VisualWorks requires

knowledge of ParcPlace’s Objectkit\Smalltalk C Programming

(otherwise known as C Programming Object Kit or CPOK)

and Microsoft Help (MS Help), each of which deserves its own

column (at least). In this column, we’ll explain only enough of

each to get you going. The goal is for you to be able to activate

MS Help from within VisualWorks and have the help docu-

ment open on the topic you specify,

MS HELP

The MS Help application (MSHELP.EXE)lets you read hyper-

text-like help files. Help files may contain multiple topics. A

topic is the unit of information that maybe presented at one

time by the MS Help application. In your application a topic

may provide information on a visual part, a menu, or a win-

dow. The Microsofi Help Compiler generates help files from

word processing documents saved in Rich Text Format (RTF),

Refer to the Microsoft Windows Software Development Kit for

more information on generating help files and defining topics.

In your Smalltalk application, you will invoke the MS Help

application. YOUr application can simply activate MS Help, or
it can specify the help file and topic that MS Help should open

on. MS Help is invoked through the MS Windows API (Appli-

cation Programming Interface) WinHelpo.

CPOK
ParcPlace’s Objectkit\Smalltalk C Programming lets Smalltalk

access programs written in C. This includes the Microsoft Win-

dows API functions. We will use it to invoke WinHelpo. CPOK

is a definite improvement t over writing your own primitives.
JUNE1993
Access to C API functions is through subclasses of External-

Interface. In generaJ you will create a class for each API and a

method for each function. The subclass creation method for

ExternalInterface is different from that of most classes.

subclass: t
inchrdeFiles:if
inchcdeDirectocies:id
libraryFiles:If
librayDirectories: ld
generateMethods: gm
beVirtcrakbv
instanceVtibleNames: f
classVariableNames:d
pooLDichonaries:pd
category: cat

This method, in addition to creating a subclass, parses header

files and creates methods corresponding to the functions

defined in the header file. The method also creates methods

corresponding to other externals of the header file.

Once ExtemaLInterface creates the subclass and methods, all

you have to do is use them.

USING CPOK TO ACCESS MS HELP

First, we will define the class. Then we will go over how to use it.

Class definition

Create the class WindowsLibraryInterface as a subclass of Exter-

naU.ibragrSupport. If all your files are on your C: drive and your

directory structure is similar to ours, your class definition will

look something like this:

subclass: #WindowsI.ibraryInterface
includeFiles: ‘\windows.h’
includeDirectories:‘c:\windev\inchrde’
libraryFiles:‘gdi.exekrn/386.exe user.exe’
libraryDirectories:‘c:\windev\debug’
generateMetbods: ‘*’
beVirtual:false
instanceVariableNames:“
classVariableNames:“
poolDiclionaries:“
category: ‘TrrternalLibracySupport’

An explanation of each of the parameters can be found in the

Objectkit\Smalltalk C Programming User’s Guide. One parame-

ter is worth explaining here, though. The argument gm (’*’in the

above code) indicates that methods should be generated for all

externals, functions, and otherwise. You could instead list just
—. conlinued onpage15.,...

9

— — —

HE BEST OF comp.lang.smalltalk

Setsand dictionaries

— -. .—

Alan Knight
Sets and dictionaries are widely used classes implementing

well-known data types. In many ways they are exemplaq,

as the basic public interface is simple to use, efficient, and

corresponds well to the standard abstract data types of the

same name, Unfortunately, both classes can present a number

of subtle difficulties. Many of these difficulties relate to the fact

that both are implemented by hash tables, and that this imple-

mentation shows through more than it should.

A good abstract data type is specified without reference to

its implementation, and ideally should have several possible

implementations, differing only in performance characteristics.

The specification should not be written to favour or depend on

a particular implementation.

These goals are not always easy to live up to, and Sets and

dictionaries fall short in a number of areas.

HASHING

The hashing mechanism provides an efficient search mecha-

nism with little space overhead, It does, however, require the

user to provide certain operations. These discussions refer to

both dictionary keys and set elements. To save repetition, I’ll

refer to both as keys, and to both sets and dictionaries as

hash tables.

Any hash table key must provide two methods: = and hash.

A simple description of the hashing process follows, For a par-

ticular key, the hash method is used to compute an offset into

the table. If that slot at that offset contains nil, the key is not

present. If the slot is occupied, we test for equality with the key.

If the two are equal the search has succeeded. If the two are not

equal, the offset will be repeatedly incremented until an object

equal to the key or a nil slot is found.

This implementation has a few implications. First, since nil

is used to mark empty slots, it cannot be used as a dictionary

key or inserted into a set.

Second, objects must provide = and hash methods. More

importantly, they must provide these methods such that

equal objects have the same hash value, Note that the con-

verse need not hold: Objects with the same hash value do not

have to be equal.

The default implementation of= is the object identity test

==, and the default hash method is compatible with this. A

common mistake for Smalltalk novices is to define a different

equality relation without defining a corresponding hash
10
method. Although this is a well-known mistake, there are simi-

lar, more subtle problems.

CHANGING HASH VALUES
A hash function that is not based on object identity will proba-

bly be based on instance variables of the object. A common

strategy is to add or XORtogether the hash values of the

significant instance variables, possibly with some additional

scrambling. For example, in V/Windows:

Point hash
“x hash + y hash.

ParcPlace Smalltalk has

Point hash
“(x hash bitShift: 2) bitXor:y hash

The problem arises if any of those instance variables are

changed. The hash value is then changed, and the object will

hash to a different place in a set or dictionary. Any hash tables

with that object as a key need to be rehashed, and there is no

standard way of finding which tables those are.

This can be a very serious problem and difficult to track

down. In practice, however, it doesn’t seem to arise all that

often. I suspect the explanation lies in the normal usage pat-

terns. The most common dictionary keys are strings and sym-

bols, which are not normally modified. Sets ofien use a greater

variety of objects, but mostly use the default identity-based

hash function.

IDENTITY HASHING WITH become:

Even identity-based hashes aren’t completely safe, since the be-

come: operation can change them. I’ve encountered an exam-

ple of this with a simple version control system in V/Windows,

In order to keep track of which added classes belonged to an

application, the system maintained a set of classes. Classes do
not override = or hash, so they inherit the identity-based ver-

sion.

In Smalhalk/V Windows, there is a special class DeletedClass.

When a class is deleted, the last thing the system does is:

classToBeDeletedbecome: DeletedClass.

This achieves two goals. It ensures that classToBeDeleted can be

garbage collected, since any references to it have been re-
THE SMALLTALKREPORT

——. — .—— — —— ———

moved. It also ensures that any code

which referenced classToBeDeleted will

report an error when executed.

Unfortunately, if a class is removed

outside the fmrnework of this version

control system, any applications that

contained it now contain references to

DeletedClass. Further, those references

are stored according to the hash value of

classToBeDeleted, so they can’t be re-

moved using the public set interface.

In order to remove DeletedClass, the

set must be rehashed.

As a final difficulty, V/Windows does

not provide a rehash operation. Fortu-

nately, for this application, the slow-

and-dirty implementation

aSet become: aSet copy

is sufficient.

HASHING PERFORMANCE

Even if your hash function doesn’t play

tricks on you, defining one with a good

distribution can be difficult. Jeff McAffer

(jetT@is.s.u-tokyo.jp) writes:

I was recently looking at a system

that made extensive use of sets. . . .

One of the benches was putting a whole bunch of two-ele-

ment arrays into the sets. It turns out that 60% of the pro-

cessing time was in the set hashing. The cause? In V/Win

(likely all Vs) the hash function for arrays returns the re-

ceiver’s size. I changed the hash function and doubled the

speed of the benchmark_

The identity-based hash function usually has a good distribu-

tion, but has a relatively small number of significant bits.

fi Performance will suffer greatly

any time a hash table contains more

elements than the hash function can

handle well. ~
—.— . —— —.——— ——— ..—.— ——

Bruce Samuelson (bruce@ling.uta. edu) writes:

I think the IdentityDictionary hash function runs out of

steam at about 14 bits (16K objects).

Performance will suffer greatly any time a hash table contains

more elements than the hash function can handle well. To

help determine if this is the case, Bruce Samuelson has also

written a method to measure dictionary hash performance. It
JUNE1993
is written for ParcPlace Smalltalk, but should be easily adapt-

able to Digitalk dialects, and is available from either the

Manchester or Illinois Smalltalk archives, under the title dic-

tionary-performance:

!DitilonarymethodsFon ‘statistics’!
hashStatistics
“Thismethod tests how well the receiveris hashed.
It is adapted from
<DictionaryfindKeyOrNil:>.”
“Srndltalfrhashstatistics”

“Returnan array:
ah 1 basicSise of dictionary
at 2 size of dictionary, i.e., number of elements (associations)
at: 3 average miss of hash function

Omeans hash is ideal
N means avg element is ptaced Nsteps beyond ih hash vahre
large number means hash is bad

at: 4 histogram (using a sorted collection) of misses”

I basicStie sise total histogram I
basicSize := self basicSise.
size := self size.
total := O.
histogram:= Bag new.
setfkeysDo: [:key I

I miss location probe I
miss := O.
location := key hash\\ basicSise + 1.
[(probe := self basicAt: location) istW oc [probe key’= key]]

whileTrue:[
11

■ THE BEST OF COMP.LANG.SMALLTALK
miss :=miss+ 1.
(location:= location + I) > basicSise

iflkue: [location:= 1]].
histogram add: miss.
total:= total + miss].

%rray
with basicSise
with: sise
witi (total/ (sise roax 1)) asFloat
with histogram sortedElements! !

LARGE INSTANCES

There are other factors that might affect the performance of

hash tables. For example, very large arrays of pointers (most

collections, but not ByteArrays or WordArrays) can cause prob-

lems for the garbage collector, Earlier versions of ParcPlace

Smalltalk included an arbitrary limit of 100,000 on the size of

such collections. They’ve removed the limit, but the problem

remains. The source of the problem is the copying garbage col-

lectors used in Smalltalk, which can be forced to spend a lot of

time copying these large objects back and forth.

fi For very small dictionaries,

it may not be necessary to use a

dictionary at all. 9
— .— — .

Is poor performance on very large hash tables a problem?

It’s certainly not the common case. Rik Fisher Smoody

(riks@ogicse.cse. ogi.edu) writes:

Consider Dictionaries. The overhead of creating a small

one is small. Thk is good. I checked one handy image:

there were 54o instances of dictionary or subclasses with a

totaJ of 4,137 elements . . . an average of less than 10 ob-

jectsidictionary.

But occasionally a giant arises. . . . What if there were a

class called BigDifiom~ that obeys all of the external pro-

tocol of Dictionary, but is tuned for performance when it is

large? Perhaps when a small (ordinary) dictionary grows, it

could automatically turn into a BigDict.

Very large hash table performance is one of those things you

don’t usually worry about, but when you do need it, it’s very

important, A BigDict would be a very handy thing to have, and

I’m sure there’s already more than one implementation out

there. Jan Steinrnan (steinmant@ascom .hasler.ch) writes:

To get a start on this, look at the Symbol class variable

USTable, which is sort of an ordered BigSet, although it isn’t

implemented as a class. The generaJ strategy is divide and

conquer, as in KSAM.
12
USTable (I looked at ParcPlace R4. 1) seems to be a bucketed

hash table with some code for choosing good dictionary and

bucket sizes. The buckets are weak arrays, which stops USTable

from holding onto otherwise unreferenced symbols. It may

also improve speed, since weak arrays have some additional

searching primitives.

Divide and conquer normally means splitting a problem up

into sub-problems, each of which can be solved more easily

than the whole and reassembled to form a solution to the com-

plete problem. For a large set, the obvious decomposition is

into smaller sets. By converting USTable’s buckets into sets (or

IdentitySets), it would be easy to convert this into a divide and

conquer solution that would help avoid the performance prob-

lems of very large hash tables.

SPACE OVERHEAD

Most dictionaries are small, so the performance problems of

large hash tables don’t affect them. Applications that use many

small dictionaries can, however, suffer from serious space

problems. In particular, regular dictionaries are implemented

using associations, which requires another object with two in-

stance variables for each element in the dictionary.

Identi&Dictionaries are implemented without associations

in both ParcPlace and Digitalk versions, ParcPlace uses two

parallel arrays of keys and values. Digitalk uses one array,

storing keys at odd indices, values in even indices. Both are

much more space efficient than normal dictionaries, but

make operations that access associations (e.g.,

associationsDo:) much slower.

I’m not sure why this particular choice was made. It’s nice

to have more space-efficient dictionaries, but I don’t see why

that should be coupled to the use of identi ty versus equality.

For very small dictionaries, it may not be necessary to use a

dictionary at all. If the number of keys is a small constant, a

class using linear search may be just as efficient in time, and

save even more space (this would have much less impact than

regular vs. identity dictionaries). Lazy initialization can help

enormously if not all objects have properties.

CONCLUSION
I’ve shown a few examples of problems that can arise using the

hash table classes in Smalltalk. There are other tricks, such as

assuming the identity of associations in a dictionary remains

constant and retaining or modifying them. I think this is a bad

thing, but the base Smalltalk system does it, so it’s not likely to

disappear socsn. A broader issue is that some people believe the

association-based nature of dictionaries is too public and that

this imposes excessive costs on other implementations (such as

IdentityDictionaries). A future column may explore these and

other issues. ❑

Alan Knight works for The Object People. He can be reached at

613.225.8812, or by e-mail as knight@nrco.carleton. ca.
——

THE SMALLTALKREPORT

--
~-- ‘“-----------”-
— — —— ——.——.—. —

Eric Clayberg & S, Sridhar

WindowBuilder Pro:new horizons
G
UI builders have become de riguer in the PC desktop

computing marketplace. For the past few years, Win-

dowBuilder from Cooper and Peters has been the pri-

mary tool for building Smalltalk/V-based GUI applications. At

the beginning of 1993, C&P decided to get out of the Smalltalk

market. A new company, Objectshare Systems Inc. (0S1), took

over the responsibility of marketing C&P’s WindowBuilder

line of products. WindowBuilder is the premier tool for

Smalltalk/V GUI development. WindowBuilder is designed to

coexist with the standard SmalItalk/V environment and, as

such, generates human-readable class definitions and message

interfaces. To meet the ever-increasing demands of sophisti-

cated GUI applications, 0S1 is evolving the WindowBuilder

product line into a professional version of the GUI builder

called the WindowBuilder Pro.

As early beta testers, we’ll report in this article on a number

of the new features and enhancements that are an integral part

of WindowBuilder Pro. Because WindowBuilder was reviewed

in one of the very first issues of THE SMALLTALKREPORT,we’]1

skip over all its basic features.

NEW LOOK AND FEEL

WindowBuilder Pro has a nicer look and feel than Window-

Builder. Colorfid toolbars abound, Across the top of the screen

are buttons for creating new windows; theses include Cut, Copy,

Paste, Alignment, Distribution, and Z-Order Control among

others. A duplicate command that works like the corresponding

command in MacDraw is a new feature. Selecting a widget or

collection of widgets and hitting Duplicate creates a copy offset

from the original. Moving the copy relative to the original and

hitting Duplicate again results in more copies at the new offset.

WindowBuilder Pro provides increased access to the Font,

Color, Framing, Menu, and other commands. Although the

commands work the same way the did before, they are now ac-

cessible through a toolbar and via pop-up menus. The toolbar is

right below the main editing area, and you can access the pop-

up menu by clicking the right mouse button over any widget.

The Framing editor has been slightly enhanced to allow users to

lock objects to the horizontal and vertical centerlines of a win-

dow (as opposed to just the right, left, top, or bottom sides).

Next to the attribute toolbar are two new items that Visual-

Basic fans will appreciate: size and position indicators. As you

move or resize widgets, these indicators constantly update to

reflect the new information. This feature is very useful for pre-
JUNE1993
cise work. A new status line at the bottom of the screen gives

context-sensitive help. As you drag through menu commands

or over toolbar choices, the status line describes each option.

As you drag through the widget tool palettes, it describes each

widget type. This is especially helpful for those whom the “in-

tuitive” meaning of the many icons is not so intuitive. Also, as

you click on any object in the editing window, the status line

iden tifres its name and type.

In addition to the new look, WindowBuilder Pro has sev-

eral nice ergonomic enhancements. You can now leave auto-

sizing on all the time. StaticText, Buttons, CheckBoxes, and h-

dioButtons will automatically autosize as you type in labels.

StaticText autosizes in the proper direction depending on its

style. (The right-justified labels now autosize to the Iefi! This

should eliminate many of those type-autosize-move se-

quences). Autosizing now also conforms to the grid, rectifying

an annoying oversight in the original WindowBuilder.

All widgets now include an attribute editor, and all widgets

draw correctly in the edit pane (no more generic rectangles).

ListBoxes and ComboBoxes feature a list editor that allows users

to enter an initial list of items. Although this is not useful in

cases where dynamic list data is needed, it is handy during

rapid prototyping or when the items are static. DrawnButtons

and StaticGraphics can now display a bitmap in the editing win-

dow. In the field for entering text for a widget, you enter the

name of the bitmap file (.BMP) that you would like to use. If

WindowBuilder Pro finds the file, it will display it for you.

Your other option is to double-click to bring up a file dialog

from which to select a bitmap. The application window’s at-

tribute editor also has been enhanced to allow the addition of

minimization icons to window definitions.

RAPID PROTOTYPING
WindowBuilder Pro has four new components to facilitate rapid

prototyping. These are the LinkButton, ActionButton, LinkMenu,

and ActionMenu. These components provide easy ways to link

windows together and perform simple actions without writing

any code. Muttons provide a way to hook windows together

without writing any code. Place a LinkButton on the screen and

double-click on it to see a list of all of your ViewManager sub-

classes. Pick the subclass you want, then select the type of link

you want. There are three types of links, independent, child, or

sibling. Independent links have no logical dependency on the

window that created them. Child links create windows that float
13

■ PRODUa REVIEW

—.

on top of their parents (great for floating toolbars), minimize

with them, and close when their parents close (very much like

MDI without the clipping). Sibling links create a child window

of the current window’s parent (e.g., your desktop window).

AciionButtons allow you to attach predefine code snippets

to a button. Some of these, like “Cancel” come standard with

the product. (“Cancel” performs “window close” on any win-

dow it sits on). The ActionButton attribute editor lets you select

these predestined actions or create your own in standard

Smalhalk. Almost any action that is not window specific could
be coded once and then reused. WindowBuilder Pro needs to
provide a rich variety of these predefine code snippets. The

user can modify them appropriately, thus adding to the catalog

of these reusable code snippets.

The IinkMenus and AfionMenus function the same way as

the I.inlchttons and AcbonButtons. Any menu option defined

with the menu editor may have a link or action associated with

it. For example, you can assign the action “Cancel” to the

“Exit” menu item.

WIDGET MORPHING

This is a nifty feature that will alleviate the frustration of many

a WindowBuilder user. What is widget morphing? It is a fea-

ture that allows you to transform a widget from one type into

any other while mapping over any common attributes.

To demonstrate how useful this is, suppose you create a List-

Box, give it a name, attach a list, set its color and fonts, and give

it a few event handlers. Later, let’s suppose you discover that

your window doesn’t have room for a LLstBoxand you opt to

use a ComboBox instead. Before the advent of this feature, you

would have had to add a new control and copy all of the origi -

nai control’s attributes to the new control by hand (or you

could change the WindowBuilder generated code by hand,

which is verboten). Now, you can accomplish the same thing by

clicking on the widget with the right mouse button and select-

ing the “Morph” option. This presents a cascaded list of all

“similar” widget types (e.g., ComboBoxes, ListPanes and MultiSe-

lectListBoxes in the case of ListBoxes) as well as an “Other. ..”

choice (for those rare occasions when you want to transform a

titBotr into a totally different widget, such as a button). Choose

the one you want and your widget transforms instantly. Ordy

events that both the old and new widget understand will be

mapped ove~ the new widget will acquire as many of the origi-

nal widget’s attributes as it understands and default the rest. Be

carefd when morphing widgets, because whi Ie all widgets re-

spond to #getContents, they expect very different things. It

would be nice if WindowBuilder Pro added a warning message

when potentially troublesome morphing is attempted.

SCRAPBOOK

One of our favorite new features is the Scrapbook. Anyone who

has used the Macintosh will appreciate this one right away. (Ac-

tually anyone who has ever had to reuse visual components will

appreciate this right away). The Scrapbook provides a p]ace to
store fully defined widgets or sets of widgets. It allows you to
..— —. —. —.

14
___ _—--

organize your creations in multiple chapters containing multi-

ple pages. Each page contains a user-defined object.

Start by creating and defining a group of widgets. Select them

all and select the Store option from the Scrapbook menu. Name

your creation and select one or more chapters in which to place

it. You an organize your objects under as many categories as

you like. New chapters can be created with the touch of a but-

ton. There is a single special chapter entitled “Quick Reference.”

Anything added here is automatically appended to the “Scrap-

book. . . Quick Reference” cascading menu for instant access.

In order to retrieve something from the Scrapbook, select

“Retrieve.” You are then presented with a listing of all of your

chapters and pages. Clicking on any page will display its con-

tents in a graphic view to the right. This allows you to preview

any object before placing it on the screen. Selecting a page and

hitting OK loads the cursor with the selected object which you

can then drop anywhere you like.

You can easily save Scrapbooks to disk and retrieve them.

Each developer can have a Scrapbook, and these can then be

merged together to provide a common set of components

across a development team.

CompositePanes

While the Scrapbook provides a repository for storing reusable

visual components, WindowBuilder Pro’s new CompositePane

technology provides the mechanisms to actually create these

reusable visual components. In Smalltalk, we routinely build

complex classes by synthesizing structure and behavior from

simpler classes, In a like manner, CompositePanes allow you to

create compound or composite widgets out of other atomic wid-

gets. WindowBuilder Pm includes an example of this in a sample

CompositePane subclass called SexPane. A SexPane is composed of

three widgets: two RadioButtons (Male and Female) and a Group-

Box (labeled Sex). WindowBuilder Pro treats it like any other

standalone widget. If you resize it, its components resize relative

to itself. It even has its own instance variables and events. For ex-

ample, in response to a #sexChanged event (issued whenever the

user clicks one of the RadioButtons), you could bring up a Mes-

sageBox announcing the new state. Setting its contents is as sim-

ple as sending the message: aSexPane contents: #male.

0S1 has seamlessly integrated this functionality with the rest

of the product.

To create a CompositePane, select the appropriate option

from the File menu or select several existing widgets that exist

in your editing window and select the Create Composite com-

mand. This opens a new copy of WindowBuilder Pro with the

selected components in it. (Here the WindowBuilder Pro itself

acts as an attribute editor for the CompositePanes. Neat!). Give

them names or further define them anyway you like. When

you save them you are prompted for a class name and a super-

class (generally CompositePane). Window Builder Pro creates

the class and then enquires whether you would like to replace

the original widgets with the new composite. Once you have a

CompositePane subclass defined you may add code to it ex-

actly the same way you would add code to a WindowBuilder
—. _—

THE SMALLTALKREPORT

bind themselves to WindowBuilder Pro and add their own
■ GUIS ...contirsuedfiompage 9

those externals essential for bringing up help. Unfortunately,

there are dependencies in the externals defined in the windows

header file. For a first pass it is easier to use ‘*’and create all pos-

sible methods. Warning thk may take 15 to 20 minutes.

Initiate help on a specific topic

MS Help maybe opened on a help file in a number of different

ways. To get you started, we will show you how to open on a

particular topic. In a workspace, do:

WindowsInterfacenew
WinHelp:self GetAtiveWlndow
with: ‘c:\my-help.hlp’
with: 20

where my-help.hlp is your help file and 20 is the context

number for a topic in your help file. MS Help will then open

on your help file and show the information for topic 20.

Keeping track of which topic is which is an interesting issue

that you will have to work out for yourself.

The above test code uses the method GetActiveWindow. This

method answers the handle of the active window. The method

was generated when you created your subclass of ExtemaLInter-
JUNE1993
face. This is one of the side benefits of using ‘*’and having all

methods created instead of specifying only those that look like

they are necessary for help.

CLOSING
We have shown you the essential low-level Smalltalk necessary

to get MS Help working with VisualWorks applications. Now

you are ready to tackle the higher-level tasks of associating help

topics with your windows, menus, and other visual components.

Acknowledgments
We would like to thank our coworkers Kyle Brown, who made

using Objectld\Smalltalk C Programming much easier, and John

Cribbs, who applied it to accessing MS Help from Smalltalk, IEl

Greg Hendley is a member oJthe technical stafat Knowledge Sys-

tems Corporation. His 00P experience is in various dialects of

Smalltalk. Oiher experience includes flight simulator out-the-window

visual systems. Eric Smith is a member of the technical staJf at

Knowledge Systems Corporation. His specialty is custom graphical

user inte~aces u~ing SmaUtalk (various dialects) and C. They can be

contacted at Knowledge Systems Corporation, 114 MacKenan L)n’ve,

Cary, North Carolina 27511, or by phone at 919.481.4000.
generated ViewManager subclass. You can add your own events

and include them in the list of supported events.

compositePanes can be nested within one another to any

level, If you define tabbing order within your CompositePane,

this nests properly as well. However, you must be careful to

avoid potentially recursive definitions. WindowBuilder Pro was

only able to detect single level recursion (e. g., you can’t place a

copy of a compositeParte within itself) but it cannot check for

later recursion. If you defined A to contain B and vice versa you

would be in big trouble. CompositePanes may have one of three

styles: default, borders, and scroll bars. The last style is the most

interesting. Placing scroll bars on a compositePane allows you to

place widgets within scrolling panes for the first time. While we

wouldn’t necessarily recommend doing this from a GUI point

of view, its nice to know that we can do it.

WindowBuilder Pro provides several additional features

that simplify working with CompositePanes. If you double-click

on a CompositePane, it will open another copy of Window-

Builder Pro on the CompositePane definition itself. If you

change the definition, it will change the compositePane every-

where you have used it. If you decide that you don’t want the

CompositePane and would rather use its components directly,

use the Ungroup command to split them apart losing any

“composite” behavior.

OPEN ARCHITECTURE

In addition to adding lots of features for the end-user devel-

oper, 0S1 has also opened the WindowBuilder architecture to

make it easier for third parties to build tools that integrate with

the product. A new Add-in Manager allows other products to
functionality and menus. Adding new widgets to the tool

palettes is also easy. You must still define support for your wid-

get the same way you would under WindowBuilder. Once

you’ve done that, you create a tool palette bitmap for it and a

simple add-in that adds your widget to the Add menu.

PLATFORMS

0S1 plans to include a number of follow-on products that inte-

grate with WindowBuilder Pro. They have already announced

ENVY/Developer and TEAMIV versions of the product and

they plan on having a Macintosh version that is compatible

with the current Windows and oS/2 versions.

CONCLUSION
WindowBuilder has been the tool of choice for many

Smalltalk/V developers for years. WindowBuilder Pro repre-

sents a logical and necessary evolution of the product that

should serve the Smalltalk community well into the future. It

provides significant new capabilities with its CompositePane

technology and adds novel GUI building features such as the

Scrapbook and Morphing utilities that should make for a

pleasant GUI development environment. ilE

Eric Clayberg is Director of the Computer-Humm~ Interaction Lab at

American h4anagement Systems. He is an expert in applying 0-0

and Smalltalk technology to the design and construction of advcusced

graphical user interj$aces. He can be reached on CompuServe at

72254,2515. S. Sridhar is an independent Smalhalk developer whose

interests include building professional quality class libran.es. He is af-

fdiated with classArt Technology in Gny, NC. He can be reached on

Compusewe at 71031,3240.
15

corrtirruedfionrpage 1 ■ SMALLTALK BENCHMARKING REVISITED

—

Table 1. Language execution apesd aa pwcentage of optimized G.

~

ference proceedings.z They compared the execution speeds on

a Sun SPARC workstation of C, Smalltalk-80 2.4, and Self91

(and some other languages) on the Stanford Suite of integer

benchmarks, the Puzzle benchmark, and the Richards operat-

ing system simulation benchmark.

The results, given in Table 1, are impressive, especially since

Self is at least as hard to optimize as Smalltalk, and the same

techniques used to tune it can be applied to Smalltalk. Self actu-

ally did better than the numbers indiate. Relative to Smalltalk-

80, its optimization doesn’t freeze the definition of low-level

looping constructs. And it supports several features not found

in optimized C: “generic arithmetic, robust error-checking

primitives, and support for source-level debugging.” [n demon-

strating an object-oriented environment that is both efficient

and full-featured, the authors claim that “programmers no

longer need to choose between semantics and performance.”

Smalltalk did better on the Richards benchmark in an inde-

pendent test posted to comp.lang.smalltalk in mid- 1991. While

the Self group measured Smalltalk-80 2,4 to run at g.A~o of opti-

mized C++ on a Sun 4/260 running UNIX, the poster measured

SmaIltalk-80 4.0 to run at 27’?40relative to Borland C++ 2,0 on a

3865X running DOS/Windows. He suggested that the difference

could be due to using ST80 version 4.0 rather than 2.4.

Just how practical would it be for the commercial Smalltalk

vendors to get its speed up to that of Self? Self’s optimizations

*

t

L

Tester

Nouwcn

Feldtmann

Nouwen

Feldtmann

I

Digitalk

Digitalk

Digitalk

Digitalk

Nouwen Digitalk

1
Samuelson ParcPlace

.—

Table 2. Looping bsnchmark results.

Version

STIV-Win 2.0

STIV-PM 1.4

ST/V-PM 1.4

STIV-PM 2.0

STIV-PM 2.0

VW-Win l.Ot

Word
length,
bits*

16

16

16

32

32

32

white loop,
milliseconds
(avg result)

original
—
3,570

2,530

2,530

modi

rsla

nla

nla

125 I nla

120 nla

353 92*

—..-. I

Theseare my assumptionsabout the underlying word length in the virtual ma
Win runs on a 16-bit operatingsystem(Win 3.1), it is a 32-bit implemetltution

with a 32-bit DOS extender.

Thi~is ParcPlace’snew VisualWorksproduct, which is ST80with an inte~ace
extras bundled.

Notice the dramatic speed-up for ParcPlacewhen the declaration of the tempo

moved inside the outer block. ParcPlacedistinguishesbetween clean blocks, co
bloclcr. These vary, re~pectively, from fastest to slowest and from lea~t context o

head. In rnovingthe variable declaration, the outer block goesfrom a full block
loop runs four times faster. This conjirtm Pat-cPlace’sadmonition to use clean

1 don ‘t think Digits/k makes these distinctions, at least for it3 DOS version.
fibonami,
I milliseconds

fied (avg result)

32,960

9,503

9,470

4>673

4,650

6909

chines. Although VW-
becass~eif is compiled

builder and other

rary index variable is

pying blocks, and full

vrrhead to most over-

to a clean block and rhe

.1

blocks wheneverpcmible.
16
exact several penalties. First, whereas Smalltalk compiles indi-

vidual methods incrementally at an almost instantaneous

speed, the optimizations performed by Self’s compiler slow it

down to a compilation speed comparable to C. Second, com-

pilation of “uncommon cases” is deferred, but when it does

happen during runtime, it may be somewhat intrusive. Third,

Self’s code takes between one-third to four times more space

than the C code generated for the benchmarks. I haven’t seen

data on Smalltalk code density, but I would expect it to take

less space than C. I’m referring to incremental code density,

not to the initial size of the class library. In Self’s favor, it

might look better when compared to heavily object-oriented

programs written in C++ than to procedural programs written

in C because of the space C++ uses for virtual function dis-

patch tables. Fourth, the Self environment requires more

space than Smalltalk. The people I’ve talked with at ParcPlace

have the impression that on a 32MB machine, Self pages un-

acceptably, and that you need at least 64MB to run it comfort-

ably. When I raised this point with a Self researcher, he made

two rebuttals, First, Self has not been optimized for space. He

cited examples of major savings that could be made. Second,

he said that Self runs fine on a 32MB machine and does not

require 64MB. He did concede that it still takes more space

than Smalltalk, but this is at least partly because it is a research

language and the focus of the research has not been to mini-

mize memory requirements.

I have talked with several representatives of both ParcPlace

and the Self team in the last couple of years about these issues.

My impression is that the~re not communicating enough. I

think that some of ParcPlace’s misgivings about Self could be

confirmed or denied by talking more with the Self people. I

don’t know to what extent Digitalk is in

touch with Self. If the commercial ven-

dors decide to focus on performance

tuning as hard as the researchers, the

communication channels will no doubt

open wider!

We’ll return later to the question of

whether Self’s optimization can be ap-

plied to Smalltalk.

HOW IMPORTANT WOULD A FAST

SMALLTALK BE TO USERS?

The jury is out on whether Self’s opti-

mization will find their way into

Smalltalk and other commercial lan-

guages. In the meantime, it would help

your vendor to know how much priority

you give to performance. I took a survey

of ParcPlace customers in the

comp.lang.smalltalk newsgroup in Octo-

ber 1991 and asked them to rank the im-

portance of 19 features. Faster execution

speed came in third place, with first

place going to maintaining cross-plat-
THE SMALLTALKREPORT

form portability and second to supporting true native look and

feel. Here are the comments I received on performance:

■ It would certainly be nice if it ran faster, but I think re-

sources might be better devoted elsewhere. [Speed] might

help attract potential new customers, though.

- Speed is very important (that simple),

“ Speed is the standard problem with Smalltalk.

“ My first major program in Smalltalk (a simulation) still

doesn’t run fast enough to be useful. Definitely give me

more speed.

“ Faster execution speed will have a large effect on the use of

Smalltalk in industry, Although Smalltalk would be fast

enough for their applications, C is often used instead “just

in case.”

“ Execution speed will always be important and [it will] never

be [fast] enough, so it needs constant attention.

. The biggest negative perception SmaUtalk has from the gen-

eral computing community is that it is too slow. Unless this

perception is corrected, Smalltalk will remain a “cult lan-

guage.” My particular project is a large-scale Smalkalk effort,

and I am anticipating execution speed to be a major problem.

■ We do some heavy computation using it.

I heard a contrary opinion recently. At the February meeting of

the North Texas Society for Object Technology, a speaker from

Texas Instruments described a chip fabrication software system

they developed using ParcPlace Smalltalk, Gemstone, The Ana-

lyst, Envy, and other third-party products. This is a big system

with over 3,000 classes. The speaker said that in no case did

they encounter a performance bottleneck that was Smalltalk’s

fault. The problems they did have were due to misapplying the

technology. So there are some major users who do not con-

sider performance to be a problem.

COMPARING PARCPLACE SMALLTALK TO
DIGITALK SMALLTALK FIRST TRY

There is considerable data in the literature measuring

Smalltalk-80’s performance. The green book mentioned previ-

ously covers early, experimental implementations. ParcPlace’s

newsletter publishes Dorado benchmarks for current commer-

cial versions. And the Self group has compared ST80 2.4 to Self

91 and to C.

I haven’t seen literature comparing the performance of

ParcPlace’s Smalltalk-80 with Digitalk’s SmalltaIJc/V. The cur-

rent article is a modest, if flawed, step in this direction.

People often claim that ST80 is faster than ST/V. Is this

true? Recent articles in comp.lang.smalltalk bring this into

question. Someone published two very simple benchmarks for

the 0s/2 versions of ST/V, and others published results for

ST/V-Windows and ST80-Windows. The results were surpris-

ing, because the 32-bit version of ST/V for 0S/2 was, at first

glance, between 1.5 and 3 times faster than the 32-bit version

of ST80 for Windows. The 16-bit versions of ST/V fared much
————— —— ———————— ————

JUNE1993
worse, probably because both benchmarks generated numbers

that would be LargePositiveIntegers for 16-bit Smalhalk. Later, I

discovered that by slightly modifying one of the benchmarks,

ParcPlace moves from being 3 times slower to one third faster

than the fastest Digitalk version. It remains 1.5 times slower in

the other benchmark. The code as posted follows, and the re-

sults are given in Table 2:

1. while loop (original posting)

I anIndex I
TimemiUisecondsToRun:[

anIndex:= 100000.
[snlndex O]while’hue:[anIndex := anIndex - 1]]

2. while loop (modified for ST80 by declaring anIndex as a

temporary block variable)

TimemiUisecondsToRun:[
I anIndex I
anIndex:= 100000.

[anIndex 0] while’kue:[anIndex:= anIndex - 1]]

3. Fibonacci number generator (tested with “3o fib”)

fib (in class integer)

self 1
iffrue:[‘((self- 1) fib+ (self- 2) fib)]
ifFalse:[‘1]

Hardware 486/33 (Feldtmann, Samuelson 16MB; Nouwen

8MB).

COMPARING PARCPIACE SMALLTALK TO
DIGITALK SMALLTALK: SECOND TRY

As a ParcPlace customer, I was intrigued and startled enough

by these results that I decided to measure how the Digitalk and

ParcPlace products perform on a wider range of tests, The

goals of the benchmarks I developed arc

. Portability between versions of ST80 and ST/V, including

.

.

.

.

.

.

.

ST/V-DOS.

Writing in as idiomatic a style as portability would allow.

Being able to compile and run within ST/V-DOS’s 640K limit.

Keeping integers small enough to not skew the results

against 16-bit versions.

Running for a long enough time to get fairly accurate results.

Being cpu intensive while avoiding accesses to disk or video

subsystems.

Avoiding disk paging.

Measuring both low-level and medium-level operations.

These goals were to some extent mutually exclusive. For example,

it is hard to keep integers and loop counts within the bounds of

16-bit integers while still consuming measurable amounts of

time. And it is hard to consume enough time without exceeding

run time resource limits of ST/V-DOS. It took experimentation

and dozens of reboots of my machine during ST/V-DOS runs

before I arrived at something that met all the goals. The resulting

benchmarks are called dopstones (Smalltalk Low-level OPeration
——— ———————————————————_——____________

17

■ SMALLTALK BENCHMARKING REVISiTED
Stones) and smopstones(Smalltalk Medium-1evel OPeration

Stones), and the results are summarized in Table 3.

I wanted to avoid any tests that stressed the disk or video sys-

tems. Although these are important in real applications, modern

caching disk controllers and video coprocessor make it hard to
.-

18
make objective cross-platform comparisons. AISO,portability is

difficult to achieve between ST80 and ST/V in video tests.

SLOPSTONES

The seven low-level tests are:
. . .

Table 3. Slopstone and amopetone reeulta.
.

Vendor Version
‘7 “q’r’”’ ‘-! ‘Hz ~j, ~ ““””:;::;”’ $5

CPU tlPt

K’ 7

PPS Vw 1.0 opw3.o SunOS 4.1.3 Sun SS/10-30 SPARC int 36 o+ 32 .905 1.932+-. .-

PPS w 1.0 — HPIUX 2.7 HP 720 PA intrn 50? — 32 1.498 1.673-- . .-.—

PPS w 1.0 Win3.1 , DOS 5.o Amax none 486DX intrn 33 256 16 1.0 1.0

PPS 804.0- — Sun SS12 SPARC — 40 64 64 1.137 0.995

Dig v 2.0 PM 0S122.olb clone 486DX intrn I 33 256 16 0.411 0.982*$

PPS 804.0 I Win3.1 DOS 5.0 Amsx none 486DX intrn 33 256 16 0.995 0.973
—- —. .

Dig v 2.0 PM 0s/222.Olb clone 486DX intrn 33 256 16 0.411 0.71
— .. . —.

PPS w 1.0 Mac MacOS 7.01 MacQuadra700 68040 intrn 25 ()? 20 0.525 0.572

Dig v 1.4 PM 0s12 1.4 done 486DX intrn 33 256 16) 0.236 0.470

Dig v 1.2 Mac MacOS I Mac accel”’” 68040 intrn 25 — — 0.137 o.344*~

Dig v 2.OC — DOS 5.0 Amax none 486DX intrn 33 256 16 0.070 0.261——T
Dig v 2.0 WinOS2 0s/22.olb clone 486DX intrn 33 256 160 167 0.25

Dig v 1.2 Mac MacOS 7.0.1 Mac H ci 68030 68882 25 32? 16 0.078 o.191~*

Dig v Mac , MacOS 7.01 Mac 11ci 6B030 68882 33? 0? 516 0.072 0,184T$
.- .-—

PPS w 1.0 Mac MacOS 7.01 Mac Hci 68030 68882 25 ()? 16 0.174 0.180.—

Dig v 1.2 Mac MacOS Mac accel””” 68040 intrn 25 — — 0.137 0.131

PPS 804.0 opw2.o SunOS4.1 Sun 3/50 68020 68881 16 0 12 0.114 0.107

PPS 802.5 SunVw SunOS 4.1 Sun 3/50 68020 68881 16 0 12 0.067 O.1O2**

Dig V2f161.2 none DOS 5.0 OPTI 386DX none 25 0 4 none 0.096.-.

Dig v 1.2 Mac MacOS 7.0.1 Mac Hci 68030 68882 25 32? 16 0.078 0.072

Dig v Mac MacOS 7.01 Mac IIci 68030 68882 33? 0? 516tt 0.072 0.069

Dig v Mac MacOS 7.01 Mac PB1OO 68000 none 16 0 314tf 0.020 0,051T*

Dig v Mac MacOS 7.01 Mac PB1OO 6gOO0 none 16 0 314’* 0.020 0.019-

Dig v 2.0 none DOS 3.3 clone XT 8088 none* 5 0 640K 0.002+ 0.00B*

Dig v ! Mac MacOS 7.01 Mac Hsi 68030 none 25 0? y,#tt 0.044 none
. -. .—

* Resultsare normalized toone for VisualWorks 1.0on my 486/33.

t SS/10-30has 36K internal cache. 80486 and 68040 (and J think SS/2) have 8K.

* Floating point performance was extrapolated assuming an 8087.

“* Smopstorres didn’t include setformation benchmark—string hash inadequate.

tt ~y means MaC~[located x MB to ,$malltalkOutofYMB total.

** Smopstonexcccludingthe two worst cmes (xtream,set) and the bestcase(sorting), The stream and set results were bad for 5T/V Intel and atrocious for
ST/V Mac, probably became of weak implementations of mixedintegerand)loat arithmetic (used in streams) and string hash (used in forming sets).

“”* This machine was a Mac Hci with a 25 MHz 68040Radiuf Rocket accelerator.

Note: The entries are sorted by SmOpstones(last column). Higher numbers in the last two columns mean greater speed. Eight people contributed thest
results. For the 486, I did the PPS runs and ST/1-DOS run. Marten Feldtmann did the remaining ST/V 486 runs.
. .-

THE SMALLTALKREPOSIT

——— —————_—__———_————————————- ——.
● Adding integers

* Adding floats

■ Accessing a character in a string

■ Creating an object

. Copying an object

. Performing a unary selector

● Evaluating a block without arguments

Each test is repeated many times inside a block. For

example, integer addition looks like [1+1+1+1 ,..

many ties]. The block, in turn, is evaluated many

times.

SMOPSTONES

The seven medium-level tests are

slopstones
(low-level)

1.09

0.53

0.56

0.62

0.45

0.11

0.12

0.41

. Generating fractonaccis (like fibonacci, but using fractions)

- Generating prime numbers

. Generating and parsing streams

“ Generating and manipulating strings

. Forming a set of strings

“ Sorting this set

“ Recursively creating sets of overlapping rectangles

Each test is repeated once using fixed values for its parameters.

It can be repeated more times if necessary for fast machines. I

used fractonacci rather than fibonacci because fibonacci runs

were either too fast or generated 32-bit integers. Fractonacci fit

within the constraints imposed by my goals.

ANALYSIS OF THE RESULTS

Digitalk didn’t beat ParcPlace afier all, at least in these bench-

marks. The fastest version of ST/V for Intel machines ran at

Alyo of ST80 for the low-level tests and 7 lVOfor the medium-

level tests. However, the numbers in the chart are the geomet-

ric mean of seven individual tests (xl*x2*... *x7)* *(7)7). Dig-

italk did beat ParcPlace on some of the tests.

The results of comparing ST/V-OS/2 (32-bit) relative to

ST80-Windows (32-bit) are presented in Table 4. Numbers

greater than one mean ST/V is faster. Marten Feldtrnann did

these STfV runs and I did the STgO runs.

Table 4 suggests the two vendors have optimized different

parts of their systems. For example, on the low-level tests, the

two versions add integers at about the same speed, but Digitalk

is quite inefficient at performing selectors and evaluating

blocks without arguments. ParcP1ace is consistently better on

the remaining tests by a factor of two.

For the medium-level tests, Dlgitalk whips ParcPlace on sort-

ing. Perhaps this is because Digitalk’s string compare is better or

perhaps they are using a better sorting algorithm. I haven’t

checked. Digitalk also beats ParcPlace on fractonaccis with the

same margin they won on Marten Feldtmann’s fibonacci test. I

think this is berzmse Digitalk is faster on tight, recursive block or

method calls and-or-because of the performance penalties
JUNE1993
——— ——

benchmark

(reed level)

add integers

add floats

accessstrings

create objects

copy objects

perform selectors

evaluateblocks

geometric mean

smr)pstones

1.46

1.09

0.14

0.68

0.30

2.19

0.86

0.71
— —

benchmark

generate fractonaccis

generate primes

generate and parse streams

generate strings

form sets

sort strings

intersect rectangles

geometric mean
ParcPlace pays for full blocks and copying blocks versus clean

blocks,a distinction I doubt Digitalk makes. However, Digitalk

got clobbered on the stream tests, possibly because it is slow at

mixed mode arithmetic between integers and floats, And it fared

badly on set formation, probably because its hashing algorithm

for strings is less effective than the sophisticated one used by Par-

cPlace, especially for ST/V Mac 1.2.

If we omit these stream, set, and sort tests from Smopstones,

the 32-bit version of ST/V for 0S/2 comes in at 98% of the geo-

metric mean of ParcPlace’s 32-bit version for Windows—a

dead heat.

There is a wide divergence between the low- and medium-

level results. ST/V-OS/2 rose from 0.41 on Slopstones to 0.71

on Smopstones. The most dramatic rise was for ST/V-DOS. It

rose from 0.070 to 0.261 on a 486/33 and from 0.002 to 0.008

on an 8088/4.77. Perhaps ST/V-DOS bogs down more on Slop-

stone garbage collection than on Smopstones. This is pure spec-

ulation. The general advantage that ST80 has over ST/V in low-

Ievel tests relative to medium-level ones maybe caused by the

performance penalties that ST80 pays for distinguishing be-

tween clean, copying, and full blocks. I may have written the

medium-level tests to be more susceptible to this distinction.

More tests would be needed to verify this hypothesis. Recall

above how I sped up the while loop for ST80 in Marten Feldt-

mann’s test by converting a full block to a clean one.

ParcPlace would have come off slightly better if the tests were

not constrained by portability. Some of the code could have been

shortened by using ParcPlace’s larger class library. More

significantly, some of the variables that are declared as method

temporaries could have been declared as block temporaries, thus

converting some dirty blocks to clean ones. This would have Iefi

Slopstones unaffected, but would have improved ParcPlace’s rel-

ative Smopstone performance by 2.5°A on average, with the

biggest gain coming in the intersecting rectan~cs (1g~o).

ParcPlace’s syntax for declaring block temporary variables

is shown below. ST/V-DOS does not support it. I don ‘t know

whether newer Digitalk versions do.

[:argl :arg2 I
I teropl temp2 temp3 I
statements]
19

■ SMALLTALK BENCHMARKING REVISITED

—.

ST/V-Windows comes off rather poorly. I don’t know whether

this is because Digitalk hasn’t optimized it as much as their

0S/2 versions or because the only test ran it under Windows

which itself ran under 0S/2. Perhaps it would run faster under

native Windows. A recent COMPUTERWORLD article says that

Digitalk is beta testing a new Windows version based on The

Win32s 32-bit interface. It yields “a big performance boost”

and is expected to be ready in July.

You definitely want to run ST/V-DOS under native DOS

rather than in a DOS shell under Windows. In the latter it runs

at only 62V0 of native capacity.

Although ST/V-Windows beat ST/V-DOS by 0.167 to

0.070 on Slopstones for a 486/33, they came in nearly tied on

Smopstones. Moreover, the individual Smopstone tests,

which are not given in this article, were quite close for the

two versions. Since the DOS version I tested was 1987 vintage

or earlier (its file dates were 1987), this suggests that Dig-

italk’s Windows version is in need of a performance tune-up.

I don’t understand the divergence between low- and

medium-level results.

The Macintosh results for ST/V aren’t too bad if you omit

streams and sets from Smopstones. I haven’t included the indi-

vidual runs, and I don’t have a Mac version. I think the same

theory as outlined earlier applies; namely, ST/V-Mac must be

really bad on mixed mode integer-float arithmetic, which

streams use, and absolutely terrible on string hashing, which

set formation uses. I’ve heard that a new Mac version maybe

shipping by the time this article is published.

Ideally, the tests comparing ParcPlace to Digitalk should be

made on the same machine. I am assuming that the 486/33 on

which I tested ParcPlace is about equal to the 486/33 on which

Marten Feldtmann tested Digitalk. Similar comments can be

made about the Mats. Although my machine benchmarks

faster than Marten’s on ParcPlace’s Dorado benchmarks, I

think this is due to differences in our video cards.

There are several means one could report. Three popular

ones are:

- Arithmetic mean = (xl+x2...+xnn/n

“ Harmonic mean = n/((1/xl)+(l/x2) . ..+(l\xn))

9 Geometric mean = (xl*x2... *xn)**(n)n)

I chose geometric mean because it has the best scaling proper-

ties and it is the least sensitive to one number being particu-

larly low or high. The ParcPlace Dorado benchmarks use har-

monic mean. When 1 first posted the benchmarks to

comp.lang.smalltalk, I used geometric mean, but erroneously

called it Irarrrmrric. Urs Holzle corrected me.

The benchmarks have several shortcomings, some of which

were pointed out by people posting to comp.lang.smalltalk.

There should be a lot more than seven tests in each suite. They

concentrate on too few areas of Smalltalk and omit many of

the diverse capabilities of its class library. With so few tests,

they could be sensitive to one particularly weak link in an im-

plementation. Examples of such links we probably encoun-
20
.— .-

tered were a bad string hash function for ST/V (especially for

Mac), weak floating point performance for ST/V, poor string

compare or sort algorithm for ST80, and possibly poor recur-

sion or poor performance of nonclean blocks in ST80 (e.g.,

fibonacci and fractonacci, and especially Marten Feldtmann’s

while loop.).

Two low-level tests I wish I had included in Slopstones

would have been to test direct method dispatch efficiency with

Objectnew yourself;yourse~ yourself...

and then to test inherited dispatch with something like

Dictionarynewyourself;yourself; yoursetl..

This would have determined the absolute maximum number

of method dispatches that can be performed per second. In an

informal test, direct dispatch with ST80 ran at the same speed

as integer addition. On a 486/33, this means you get a maxi-

mum of 6.6 million dispatches per second. Most machine lan-

guage instructions probably run in one clock cycle, yielding 33

million machine language operations per second (MIPS). The

actual mips rating of a 486/33 is perhaps half or two third this,

but is still much higher than its MDPS (million dispatches per

second) rating.

Other additions to Slopstones could be using arguments

when evaluating blocks and performing selectors. One could

imagine many more, too.

I received some suggested additions to Smopstones by

email afler I had already frozen them. I also should have in-

cluded some of the benchmarks already developed by the Self

group. Richards was donated to them by Peter Deutsch, for-

merly of Pare Place.

The benchmarks are not at a level high enough to test actual

apphcations. Slopstones, in particular, is hardly a predictor of
real-life performance. However, by comparing ST80 and ST/V

on low-level and medium-level operations, the style of bench-

mark we have written does shine the spotlight on operations

that need to be optimized. If Slopstones and Smopstones were

made more comprehensive, this could help the vendors find

areas in which their performance is not competitive.

The benchmarks do not test the speed of user interactions

such as opening windows or scrolling lists. These consume a

lot of a user’s time in practice. Nor do they test how quickly

Smalltalk accesses disk files, which can be important in some

applications. For example, I can read an ASCII file on mY
486/33 machine running ParcPlace at only 40K bytes per sec-

ond when doing high-level access with contentsOfEntireFile. Al-

though much higher rates are achievable with IOAccessors (in

the lMB range), this is low-level and inconvenient,

Although the benchmarks are portable between sT80 and

ST/V, they are less portable to other languages. Urs Holzle

ported Slopstones to Self easily enough, but couldn’t easily

port Smopstones because Self lacks streams and fractions, A

user of GNU Smalltalk couldn’ t port Smopstones because

GNU lacks rectangles and fractions. Although I hadn’t antici-

pated the benchmarks being run for any languages except ST80
THE SMALLTALKREPORT

and ST/V, if I had used more plain vanilla classes, they could

have had a wider reach.

Slopstones is so low-level that many of its individual tests

may get completely optimized away by the compiler. I knew

this wouldn’t happen with current Smalltalk compilers, but it

did happen when Urs Hokzle compiled it under Self.

The Smopstone test for sorting a set of strings was subtly

flawed. The raw material for the sort was different for ST80

and ST/V beause the ST80 Set enumerates an instance from

low index to high, while ST/V-DOS enumerates from high to

low. Moreover, the sets being sorted are hashed differently re-

sulting in a different ordering of their elements. If I had sorted

the original array of strings rather than the derived set of

strings, this flaw would be removed. The result of doing this is

to slow down the ST80 sort speed by 5-lo% while leaving the

ST/V sort speed virtually unchanged. In other words, ST/V

wins the sort test by 5-10% more than in the Smopstone chart.

CAN SMALLTALK PERFORMANCE BE

FURTHER OPTIMIZED?

The benchmarks in this article show that there are areas in

which ST80 excels over STIV and others in which STIV ex-

cels. This suggests that both ParcPlace and Digitalk could

wring out better performance by conventional means. As for

more exotic optimization, the Self researchers claim the an-

swer to the question is most definitely yes, both in their pub-

lications and in private conversations. Vendor representatives

are less convinced. I have only talked with ParcPlace, but my

impression is that they either feel it is not technically feasible

to achieve Self performance in a commercially viable way

(e.g., without requiring 64MB machines), or it would be too

expensive for them to do it, or their customers do not regard

it as a priority.

Last May there was a flurry of discussion in comp.lang.small-

talk on Smalltalk efficiency. One thread focused on the Parc-

Place virtual machine, and in particular, on whether using reg-

ister windows in native machine code on Sun Spare platforms

would speed it up much. A second thread focused on whether

Self optimization techniques could be applied profitably to

Smalltalk. Afier considerable discussion, Peter Deutsch made a

summary statement for both threads. He used to be with Parc-

Place and has considerable experience in implementing and

optimizing Smalltalk Regarding the second thread, he ex-

pressed the following private opinion (his views do not neces-

sarily reflect those of his employer):

As for the comparison [of Smalltalk] against Selfi the Self au-

thors acknowledge that the factor of 5 [improvement of Self

over Smalltalk] is only achievable under some circumstances.

I do think it would be exciting to apply the Self compilation

ideas to Smalltalk, and doing this could well produce dra-

matic performance improvements (on all platforms), but this

would require wholesale redesign of most of the platform-

independent code (other than the memory manager) in the

[ST80] runtime support system. The optimizing compilation
JUNE1993
experiments I did at ParcPlace were based on an alternative

approach that would not have required such substantial

changes to the [ST80] virtual machine, but might have re-

quired type declarations (or at least type hints) provided by

the user (or a type inference system).

I don’t know whether ParcPlace has continued their experiments

or whether Digitalk has any active projects to push toward Self’s

performance. It is interesting that two of the prime movers, Peter

Deutsch (Smalltalk) and David Ungar (Self) have moved respec-

tively from ParcPlace Systems and Stanford University to Sun

Microsystems. I wonder what Sun has up its sleeve?

In conclusion I would urge you to let your vendor know if

performance optimization is important to you. Report serious

bottlenecks to them. I have found ParcPlace to be quite re-

sponsive in correcting them.

COMPILING AND RUNNING THE BENCHMARKS

The benchmarks require floating point hardware or emulation

sofi-ware. They compile and run without difficulty on all the

versions of ST80 and ST/V for which they have been tested. At

least two Smopstone benchmarks, fractonacci and rectangle in-

tersection, won’t run under GNU Smalltalk because it lacks

Fraction and Rectangle classes.

It is a good idea to file the code into a clean image and do a

garbage collect before running it if possible. The individual

times will fluctuate somewhat, but the geometric mean is

pretty stable. You can reduce fluctuations by running more it-

erations (the n variable in the execute method). Doing so for

ST/V-DOS may crash it though.

Be sure to run ST/V-DOS benchmarks under native DOS.

For example, Smopstones in a full screen DOS shell under

Windows only runs at 62% of its speed under native DOS.

Mail the results tome or post them to comp.lang.smalltalk.

If you want to try the Self performance suites, contact self-re-

questt%elf.stanford. edu. Or flp from the directory bench-

marks/st80-2.4.

SOURCE CODE

You may fip the source code from the public domain Smalltalk

archives at the University of Illinois (st.cs. uiuc.edu

128.174.241. 10) or University of Manchester

(mushroom. cs.mamac.uk 130.88.13.70). H

REFERENCES

1. G. Krasner. SMALLTALK-80,BITSOFHISTORY,WORDS OFAOVICS.,

Addison-Wesley, Reading, MA, 1983.

2. Chambers, C., and D. Ungar Making pure object-nriented lan-
guages practical, 00PSLA gl CONFERENCEpnocwmmws; ako pub-
lished as SIGPLAN Notices 26.11, November 1991.

Bruce .$amuekon usesParcPlace Smalltalk for linguistic applications
at the Universityof Texas at Arlingtonand with the Summer Jnsti-

tute of Linguistics. Bruce can be reached via internet at

brucet?utafll.uta.edu (uta-efiell en).
21

continued from page 8 ■ SMALLTALK IDIOMS
——-—-
the outside world. Messages should present the services an ob-

ject is willing to provide. Using them to give an abstract view of

storage turns those implementation decisions into yet more

services. Revealing implementation is exactly what encapsula-

tion is supposed to avoid,

“Just make the accessors private.” That’s the common solu-
tion, but there are two reasons why this isn’t a sufficient solu-

tion. First, anyone can invoke any method (and will, given

enougb stress). There iscurrentlyno way to make truly private

methods that cannot be used outside the class. Digitalk and

ParcPlace are both working on this problem. More seriously,

programmers are notoriously bad at deciding what should be

private and what should be public. How many times have you

found “just the right method,” only to find it marked private? If

you use it, you are faced with the possibility that it may go

away in the next release. If you don’t, you have to violate the

encapsulation of the object to do the computation yourself,

and you have to be prepared for that computation to break in

the next release.

The argument against automatically using accessors rests on

the assumption that inheritance is less important than encap-

sulation. Rick DeNatale of IBM argues that inheritance should

be kept “in the family.” Anytime you inherit from a class you

don’t own, your code is subject to unanticipated breakage

much more than if you merely refer to an object. If you want

to use inheritance, do it only between classes whose change

you control. While this may not result in the most elegant so-

lution, it will save you headaches in the long run,

Using this model, you can access variables directly. lf you

want to make a subclass that needs to access a variable through

a message, you use the programming environment to quickly

change “x:= ,., ” into “self x ...” and “x ...” into “self x ...”. En-

capsulation is retained, and the cost of changing your decision

is minimal. If you don’t own the superclass or the subclass, you

can’t do this, as it would involve making changes in code you

can’t control,

CONCLUSION

Aesthetics does not provide a compelling argument one way or

the other. There’s a giddy feeling when you make a subclass the

original programmer never anticipated, but only need to make

a few changes to make it work. On the other hand, there is sat-

isfaction in thinking you finally have to reveal a variable, only

to discover that by recasting the problem you can improve

both sender and receiver.

Regardless of how you choose to program, you are faced

with the hard choice of deciding which variables should be

reflected as messages. Pushing behavior out into objects rather

than just getting information from them and making decisions

yourself is one of the most difficult, but most rewarding, jobs

when programming objects. Making an accessing method pub-

lic should be done only when you can prove to yourself that

there is no way for the object to do the job itself. Making a set-

ting method public requires even more soul-searching, since it

gives up even more of an object’s sovereignty.

————— .-— —
22
Either way, you accept a discipline not supported by the

language. If you choose to use accessors, you and everyone

who uses your code must swear an oath never to send messages

that invoke methods marked private in the receiver. You also

must be wary of using the accessor from outside the object

when you really need to add more services to the receiver. If

you do not use accessors, you accept the burden of refactoring

classes, either making an abstract class or at least adding acces-

sors, should a later inheritance decision make it necessary.

fi Programmers are notoriously

bad at deciding what should be

private and what should be public, ~

Whichever style you choose, make sure it pervades your

team’s development. Einstein is reputed to have said, “You

can be consistent or inconsistent, but don’t be both. ” The

same simplifying assumptions should hold throughout all of

your code.

If you use accessors, make them all private at first. Only

make them public if you must, and struggle to discover a less

centralized solution first. Don’t assume that because you ac-

cess variables through messages you have made all of the ab-

straction decisions you’ll have to make. Using an accessor, in-

ternally or externally, should alert you that there maybe

missing behavior.

If you use variables directly, be prepared to recant your de-

cision when the time comes. If what you thought was state is

really a service, make the change everywhere. Don’t have exter-

nal users getting a variable’s value through a method and inter-

nal users accessing it directly.

So, what’s The Answer? In my own code, I change state into

service (define an accessing or setting method) only when 1 am

convinced it is necessary. Otherwise, my classes access their

variables directly. I think inheritance is overrated. Providing

the right set of services has more bearing on the success of a

design. There are plenty of successful, experienced folks who

would call me a reactionary hick for this (and worse things, for

other reasons). Try some code each way and decide for your-

self which style you find more comfortable. That’s the only

right answer. H

Kent Beck has been discovering Smalltalk idioms for eight years at

Tektronix, Apple Computer, and A4asPar Computer. Hi~ isfowlder

o\First CYas~Software, which develops and distn”butc~ reengineering

products for Smalltalk. He can bc reached at First Cla~~Software,

P.O. Box 226, Boulder Creek, CA 95006, by phone at 408.338.3666,

or on CompuServe at 70761,1216.
THE SMALLTALKREPORT

I Product Announcements are not reviews. They are abstracted km press releases provided by vendors, and no endorsement is implied. I

I Vendors interested in being incfuded in this feature should send press releases tn our editorial or%kes,
Product Announcements Dept., 91 Second Ave., Ottawa, Ontario KIS 2H4, Canada.

I

ICONIX Software Engineering’s ObjectModeler now supports

Smalltalk. ObjectModeler is an 00A/OOD/OOP module. This

recent addition was made in response to the developing trend

in the object-oriented market that more and more COBOL

and IS shops are moving into Smalltalk while technical shops

continue to move into C++.

ICONIX ObjectModeler already supports C++ and SQL de-

velopment and the company believes that the addition of

Smalltalk will be of particular interest within the IS market,

ObjectModeler users already have the ability to attach text files

to any symbol on a Rumbaugh, Coad/Yourdon, or Booth dia-

gram within ObjectModeler. In the same way that C++ and

SQL templates are used to link source code to diagrams, they

can now pick from 9 menus containing over 270 Smalltalk lan-

guage constructs.

ICONIX Software Engineenng, 2800 28th St., Suite 320,

Santa Monica, C/4, 31 O.456.OG92 (v), 31 O.3W3454

WindowBooster is a simple and powerful utility that optimizes

the opening of windows and dialog boxes programmed using

Digitalk’s Smalltalk/V. WindowBooster significantly improves

the overall speed of any application. The product is easy to in-

stall, transparent to the user, and compatible with products

such as WindowBuilder, The product is available for Windows

and 0S/2 and includes complete source code.

Tau Ceti 1S01 Avenue of the Stars, Suite 404, Los Angeles,

CA 9W67-59C+3, 310.556.9723 (V), 310,556,9725

Tensegrity is an object-oriented database system for Smalltalk.

Using Tensegrity, Small talk developers can create single-user

or muhi-user network applications without changing code.

The product provides transparent object persistence, advanced

transactional capabilities, two-phase commit, distributed

garbage collection, and exceptional speed. Because the product

is network-independent and requires no dedicated database

server, the company anticipates that it will have great appeal to

developers of workgroup applications.

Polymorphic Software, 1091 Industrial Rd., Suite 220, San Carlos,

CA 94070,415.592.6331 (V), 415.592,6302 (f)

Premier Fortune ~ueloper

SMALLTALK

DESIGNERSAND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Availablefor Smalltalk
Professionals in VariousRegions of the Country.

An open system distributed business application development
Infrastructure seeks C+t Engineers to develop ORB end Ob-
ject Services Claes Ubraries.

Engineers with developmentexperienceneededto develop
multi-process multi-thread sotiare Infrastructure components
and resolve Srnalltalk/C+ Integration Issues.

For more Information regarding these exmptional technical
oppammhies please Inquire, In strfctest confidence, to:

E?!z!i!’3

mA

.

Salient Corporation...
Smalltalk professionals Specializing in the

Placement of Smalltalk Professionals

For more information, please send or FAX your resumes to:

-i ~
316 S. Omor Ave., Suite B.

Los Angeles, California %3313.

Vokti (213) 680-~1 FAX (213) 680-4030

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk7V

Whether you?e launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

Only Digitalk offers you a
complete solution. Including
award-winning prducts, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either wax you71 learn from a

staff that literally wrote the
book on object-oriented
design (the international~
respected “Designing Object
Oriented Software”).

We know objects and
SmallkWV inside out, because
we ‘ve been developing real-
world applications for years.

The result? You’ll absorb
the tips, techniques and
strategies that immediately

reduce your learning curve,
and you’ll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

Digitalkk training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance,
Puget Power& Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in lBMk
International Alliance for
AD/Cycle-lBM5 software
development strategy for the
19905. For a full description
and schedule of classes, call
{800) 888-6892 x411 .

Let the people who put
the power in Smalltalk71(help
you get the most ~wer out of it.

boost your productivity You’ll

01’,’ ‘ 0: B,~
A

	By Article Title
	Sets and dictionaries
	Smalltalk Benchmarking revisited
	To accessor or not to accessor?
	Using MS Help from within VisualWorks
	Using Windows resource DLLs from Smalltalk/V
	WindowBuilder Pro: new horizons

	By Author Name
	Beaton, Wayne
	Beck, Kent
	Clayberg, Eric
	Hendley, Greg
	Knight, Alan
	Samuelson, Bruce
	Smith, Eric
	Sridhar, S.

	By Topic
	comp.lang.smalltalk
	GUIs
	Product Review
	Smalltalk idioms

