
The International Newsletter for Smalltalk Programmers

May 1993 Volume 2 Number 7
TOWARD A

SMALLTALK

STANDARD:

TECHNICAL ASPECTS

OF THE COMMON BASE

By R.J. DeNatale
& Y.P. Shari
Contenti:
Features/Articles
1 The Smalltalk standard: Technical

aepects of the common base
by R.J. DeNatsle & YP. Shari

5 Classic %nalltalk bugs
by Ra@h Johnson

Columns
10 %ti~ it in perspective:

The incremental nature of design

by Rebacce Wirfa-Brook

12 Getting Red: Don’t use Arrays?
by Juanita Ewing

15 SmsIttelk kfbms: Instance specific

behavior Digitalk implementation
and the deeper meaning of it all

by Kant Beok

18 Z6e beatof comp.lsng.smslltslk:

Breeldngoutofaloop
by Alarr Kni@ht

Departments
20 Product Announcements and

Hi@lights
●

.

t
fo
QD
ecognizing Smalltalk’s increasing importance as a mainstream pro-

gramming language and acting as a large user of the language, IBM

recently proposed the formation of a standards effort within ANSI

to define a Smalltalk language standard and offered a “common

base” strawman to start such an effort. At this time the proposal has

been accepted by the ANSI SPARC committee, and the formation of an ANSI

Smalltalk committee has begun.

This article focuses on technical issues regarding the common base. We have

written a companion article that will appear in OBJECT MAGAZINE,which outlines

the history of the development of the common base.

WHAT IS THE COMMON BASE?

As part of the proposal for an ANSI Smalltalk standards effort, we have con-

tributed a “strawman” as the starting point for standardization. That strawman is

contained in the IBM document entitled Smalhalk Portability A Common Base

and comprises chapters 3–5 and appendices A and B from that document. *

This proposal is not our work entirely. It is the result of an 18-month-long col-

laboration among five companies: IBM, Digitalk, KSC, OTI, and ParcPlace.

A purely syntactic description of Smalltalk results in a language specification

that is incomplete when compared to those for languages such as C, COBOL,

and FORTRAN. When studying the specification for a language one expects to

learn things, such as how to do arithmetic, how to code conditional logic, and so

forth. Smalltalk syntax does not address these issues. To bring the description of

Smalltalk up to the expected degree of completeness we must specify a number

of classes, such as numbers, booleans, blocks, and so on. The purpose of the

common base is to provide a semantic description that is common to both

Smalltalk-80 and Smalltalk/V. We wanted to produce a specification of Smalltalk

that covers the variety of existing implementations. This led us to specif@g the

external behavior of classes without prescribing implementation. Detail differ-

ences between the two implementations were left out of the common base, al-

though we have kept careful note of these differences in the review process, and

they will no doubt be important items of discussion as the standardization effort

proceeds.

Currently, the common base covers the following areas. (This scope might be

changed during the standardization process):

. Language syntax

“ Common object behavior

● Common class behavior
cmrinut-d on page 4..,

The document can be ordercdfiom your localIBM branch ofice or by credit card through the IBM publica-
ionsordering number (800.879.2755). The publication number is GG24-39L13.Theprice-is$2.75 pe; copy
rptinting and handling.

ThashMmauc Report

EdHDr’s
JohnPughand PaulWhite
Ckrk40nUnkwei4y&Th9ObjectPOO#a

SIGs wEtLICATlONS

Aclvisoly BOmKl
TomAtwood,ObjeoiTechnologylrmmdimml
GradyBmch, RUbmI
GeorgeEaewofih,O&SSI
Sind Cox, lnforr@cllAgeCuilsuhirq
ChuckDuff,SYnmnk
Ade!sGoldberg,l%mPLscs9@wIIS

TomLove,tisulkam
BwtrendMeyer,1.ss
MeilirPsge-Jonse,Wayl.mdSW- I- ~~, Cem4eAirwScdIwar.3
BjsmeStrousl?up,AT&T SS4 Labs

DaveThomas,ObjedTechnologylrdemsdiomd

THESMMLTALKREPcwrr

Edii Bad
JimAnderecm,0igi4w
ml. Goldberg,PamPhcaSy3telm
fled Phi!lii, KnOwwgeSyewnsCorp.
MikeT&@or,Oi@slk

Oewslhofmse,Ok@ Teclmn@yJmm@nrA

Columnists
KentSeek, firstCks SoJtwmre
JuanitsEwinu,o&@
Greg Hendey, KnwtedgeS@ermCmF..
Ed Klimee,li- &-tgi~dnEInc.
AlenKnightrl%. O&ct %+
EricSmth, ILnoMadgaSy61em8Corp.
RebeacaWti-Bmck, LX@tdk

SIGS PllttkdonS Group, Inc.
RichardP. Friedman
Foun#w&GroupPuWhez

Art/Prductlon
Kristin~Joukhedar,MmsgingEMCi
SUW CultiW, PilgrimRoad,Ltd.,CmabmDrechm
KarenTcmgish,%oductionEdtior
RobertStewart,computerSystemCmrdinatar
cirCulStiOtl
Srephanw.SoisJe,circUISb-1*
b Mercudo,FuSiSmemManw=
Madcating/Advartislng
JaeonkVaieko@,MmdiskqMgr+ CMSUCWda
HollyMein4zw,Adw4!&gMw-Wes4~rops
Helen Newling,IWxuitrmmlSalesManager
SSmhHS3nilt0n,Pr0m91iom Manager-%blidkns

caren Pokiw, PmrdYIB --

AdmhWratton
DavidChatierpaul,AemmiingManw
JamesAmenuvor,Peokkeeper
DylanSmh, %-id AA6+ant to the publi~hw

clSkSJohnsbm,~ Mamg9r
(hdY kid, Ocmlwnf!ceT=bnid Manager

Margherii R. Monck
Q9nemlManager
EDITORS’
CORNER I

John Pugh Paul White

This month’s hot topic is standards. After many years of discussion, an ANSI Smalltalk lan-

guage standard is now much nearer to becoming a reality. There is little doubt that lan-

guages achieve an extra measure of respectability when an ANSI standard is defined for

them. Many in the Smalltalk community have long recognized this, but how do you stan-

dardize SmaUtalk? The language itself is very small, but standardization alone—though

valuable—does not produce a very useful result. We must standardize the class library.

The Smalltalk class library can be thought of as an extension of the language; for example,

even control structures are captured via message passing rather than hard-wired syntactic

constructs. However, now we run into further trouble. There are two major dialects of

Smalltalk Smalltalk-80 and Smalltalk/V. Enfin might be included as yet a third dialect,

and by the time you read this article there maybe a fourth, SmalltalkAgents for the Mac-

intosh. Each has classes and frameworks unique to itself particularly in the domain of user

interface classes. Even when we restrict ourselves to magnitudes and collections we are

not out of the woods. Smalltalk-80 and Smalltalk/V have distinct differences both in the

organization of the class hierarchy and in the classes themselves. How have all these issues

been addressed? Well, read the lead article written by Rick DeNatale and Y.P. Shari and

you will find out. For our part, we applaud the initiative taken by IBM to promote the

standards effort and the participating vendors for putting their competitive instincts to

one side for the benefit of the Smalltalk community as a whole. We’ll keep you informed

as the standardization effort proceeds and hope that as many of you as possible will play a

part in the process.

But there’s even more news on standards. Digitalk has announced that it will make its

Smalltalk products interoperable with SOM, IBM’s System Object Model for0S/22.o and

that it will also develop client-server database and development tools adhering to the data

access portions of Apple’s Virtually Integrated Technical Architecture Lifecycle (VITAL).

In our second feature article this month, Ralph Johnson provides us with a list of clas-

sic Smalltalk bugs. He has compiled his list from the collective experiences of many expe-

rienced Smalltalk programmers. The list will be particularly useful to beginning Smalhalk

programmers. If you are aware of other bugs you think should be accorded “classic” sta-

tus, please forward them to Ralph. His address is given at the end of the article.

In her column, Rebecca Wirfs-Brock passes on some more of her nine years of experi-

ence designing, implementing, and managing software projects. In this issue, she discusses

the incremental nature of design and what distinguishes incremental design from rapid

prototyping. In this issue’s Getting Real column, Juanita Ewing discusses the inappropri-

ate use of arrays and how their misuse affects reusability. Kent Beck continues his discus-

sion on instance-specific behavior, where methods can be attached to individual in-

stances, as opposed to being attached only to the class. This month, Kent explores the

implementation of instance specialization in Digitalk’s Smalltalk/V for 0S/2 and contrasts

it with the ParcPlace implementation of the same concept.

Finally, Alan Knight focuses on the thread of discussion generated on

comp.lang.smalltalk by the following question: “I [have] always found a way to avoid this,

but I would like to know how to break away from inside a loop and return [to] the imme-

diate upper level context?”

7 Lm ?.lL 0 y . :1%We hope you enjoy this issue. ~ a
-—.-k ---
The Smalkalk SepIIrl (lSSN# 1056-79761 is puhlishccl 9 timm A year, every month except for the Mar/Apr, July/Aug, and Ntwlllcc comhincd
issum. Published by SIGS IJ.blicaiio.s Group, 5s8 Ihoadway, New York, NY 10012 (2 1.3)274-0640. o (@yright 1993 by SIGS Publicalinm,
Inc. AH rights reserved. 14rprmluc[io” of this material hy electronic tramrniuion, Wrox or any olher nm(h.d will b treaicd as a willful .iola-
tion of [hc L!S Cupyrigh[hw and is flatly prohibiwd. Malcrid may Jm rcpmduccd with express permission frnm the publishers. Mailed First
(lass, 5ubscrip1io. ralcv I year, (9 issum) dmnes[ic, $45, Foreign and Canada, 590, Sin~lr cnpy prim, $8.00. POSTMASTF.IC Smd m-ldrm
cha”gm a“d subwripii.n orders tn. ‘TIIh SMW1.IAI.KREPON, S.b~riber Scrviccs, Dept. SML, P.(), Box 3000, fkwillc, NJ 07R34. Submil arli-
clm to Ihc Editors at 91 Second Avenue, Ottawa. OIItmio KM 2H6 Canada. For service on current subscriptions call 800.783.4903. Printed
in the United Slates.

.— .— .

2

Fub6shemof JUIFOJMOF OWECTGUENTED P!+OGRAL+
mm, OaIECT MAGAZINE, HOTLINE m OEJECT-OWENTED
Tswt@mav, THE C++ REPORT,THE SMALLTALK~,
THE INTEENA- 00P OIRECTOI?Y,andTHE X JWRNAL.

THE SMALLTALKREPORT

ENVY/Deve@enThe Proven Standard For Smalltalk Development
AnArchitectureYouCanBuildOn
ENVY7Developer is a multi-user environment

designed for serious Smalltalk development,
From team programming to corporate reuse
shategies, ENVY/Deve@er provides a
flexible framework that can grow with you to
meet the needs of tomorrow. Here are some of
the features that have made ENVYLDevefo~r
the industry’s standard Smalltalk development
environment

AllowsConcurrentIlevelopers
Multiple developers access a shared
repository to concurrently &velop
applications. Changes and enhancements are
immediately available to all members of the
development team. This enables constant unit
and system integration and test – removing
the requirement for costly error-prone
load builds.

EnablesCorporateSoftwareReuse
ENVY/’Developer’s object-oriental

architecture actually encourages code reuse.

Using this framework, the developer creates
new applications by assembling existing
components or by creating new components.
This process can seduce development costs
and time, while increasing application
reliability.

OffersACompleteVersionControlAnd
ConfigurationManagementSystem
ENVYLDeveloper allows an individual to
version and release as much or as little of a

project as requird. This automatically creates
a project management chain that simplifies
tracking and maintaining projects, In addition,
these tools also make ENVY~eveloper ideal

for multi-stream development.

Provides‘Real’
Multi-PlatformDevelopment
With ENVY/Developer, platform-specific
code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

SupportsIlifferentSmalltalkVendors
ENVY/Developer supposts both
ObjectworksWmdltilk and SmalltalkW.
And that means you can enjoy the benefits

of ENVYIDeveloper regardless of the
Smalltzdk you choose.

For the last 3 years, Fortune 500 customesx
have been using ENVYLD~elo~r to deliver
Smalhalk applications. For more information,
call either Object Technology International or
our U.S. distributor, Knowledge Systems
Corporation today!

@

ObtedTechnology OttawsOmce PrmmnlllMice

B-

Knowledge 114MacKenanDriveSuitelCKJ
IntemattondInc Phone(613)B20-12D0 Phone(602)222-9519 Cay,NoflhCarolina27511
267I3QllsenwiewDrive Fw (613)B20-1202 Fax(602)222-8503
Ohm, OntarioWE 8K1 E-mail:info@oti.on.ca

WlpOdOn Phor!%(919)481-4003
Fax(919)46C414

aHWIkWoMsamaislmdIradmrh alWI l~~low ln~rnallmall~c.~1 ~~ ~d andwod~ = Jr!mitie~d kti~~ Of~~r -W ~Pani~.

continuedfrompageI

■ TOWARD A SMALLTALK STANDARD
. —.. . .- .—

cmtinuedm PWC 9...
“ Magnitude

. Collections

. Streams

■ Basic geometry

● File in/out format

THE TECHNICAL APPROACH

We wish the common base to describe the behavior of

Smalltalk classes without prescribing implementation. To this

end we have:

1. Documented only the public protocols of the classes

2. Avoided the specification of inheritance hierarchies

We will describe how we approached the specification of the

collection classes without the prescription of a particular in-

heritance hierarchy.

COLLECTIONS
Collections are an important part of the Smalltalk class library,

and present an interesting challenge given the desire to de-

scribe behavior without recourse to describing implementation

inheritance.

A major inspiration for this work was the early publication

on the internet by William Cook, currently with Apple, of his

investigation of the relationship between the implementation

and type hierarchies of the Smalltalk collection classes.’ Fol-

lowing this work, we described each collection class individu-

ally without recourse to inheritance, in terms of combinations

of the following protocols:

- Expandable. Contains the messages for adding elements to

a collection. Set, SortedCollection, and OrderedCollection sup-

port this protocol.

- Ordered. Contains the messages that pertain to collections

which maintain their contents in a specific order. SortedCoL

Ieclion, OrderedCollection, Interval, Array, and String support

this protocol.

- Copy-Replaceable. Contains the #copyReplaceFrom:to: with:

message. Interval, Array, OrderedCollection, and String sup-

port this protocol,

. Array-Like. Contains messages for changing the collection

based on a collection or range of indices. h-ray, OrderedCoL

lecdon, and String support this protocol.

. Indexable. Contains the #at message used to access an ele-

ment of the collection based on an index or key. SortedCol-

Ieclion, OrderedCollection, Interval, h-ray, String, Dictionary,

and IdentityDiclionary support this protocol.

. Updatable. Contains the #at:puk message used to replace

an element of the collection based on an index or key. Or-

deredCollefion, Array, String, Dicbonary, and IdentityDic-

tionary support this protocol.
. .- —

4

.

.

.

Contractible. Contains messages for removing an element

or collection of elements from the collection. Set, SortedCol-

lection, and OrderedCoRection support this protocol.

Insertable-From-Ends. Contains messages for adding ele-

ments at the beginning or end of the collection. OrderedCoL

lection supports this protocol.

Removable-From-Ends. Contains messages for removing

elements from the beginning or end of the collection. Sort-

edCollection and OrderedCollection support this protocol.

By specifying each collection class in terms of a set of these

protocols we can describe the capabilities of each class without

requiring a particular implementation hierarchy.

66
Smalltalk is more than ten years old.

A standard is needed, and the

time is now.
99

FUTURE STANDARDS ACTIVITY

The common base represents an attempt to document what is

common between the two major Smalltalk implem en tat ions.

So, it leaves out what is not common. This points the way for

future standards activities.

As additional implementations appear, they need to be

compared to the common base. Decisions have to be made

concerning what to do about existing incompatibilities. Many

questions will be outside the scope of standardization, but

some will need to be addressed. The impact and importance to

users should be the determining factor.

The primary goal is to produce a language standard. The

problem with doing this with Smalltalk is that it’s not particu-

larly clear where the language ends and class libraries take over.

With the common base we made some conscious decisions:

1. We purposely avoided attempting to standardize user inter-

face classes. The pragmatic reason is that this is where most

of the differences lie between existing implementations. On

the other hand, other language standards do not address

user interface libraries. Smalltalk should not be penalized

because it does not standardize areas not addressed by other

language standards.

2. We purposely tackled higher-level language features, such

as the collection classes, and some aspects of class objects,

because these features make Smalltalk what it is.

Starting a standards effort inevitably triggers the desire to
THE SMALLTALK REPORT

CLASSIC

SMALLTALK

BUGS

Ralph Johnson
❑
very programming system is prone to certain

kinds of bugs. A good programmer learns these

bugs and how to avoid them. Smalltalk is no ex-

ception. Although Smalltalk eliminates many bugs

that are common in other languages, such as bugs

in linear search algorithms (just use do:), it has its own set of

classic bugs, which most new Smalltalk programmers learn the

hard way.

There are several reasons to collect classic bugs. First, it will

help experienced programmers test and debug programs, and

it can help us design better programs. Second, if we teach these

bugs to novice Smalltdk programmers, they should learn to be

good programmers faster. Third, perhaps we can redesign the

system to eliminate some of these bugs, or we can write check-

ing tools to spot them automatically.

I started the following list and posted it to comp.lang,small-

talk. Lots of people responded with more bugs, instructions on

how to fix the bugs, and comments about my bugs. The result

is the following list.

BUG 1: VARIABLE-SIZED CLASSES

Set, Dictionary, and OrderedCollection are variable-sized classes

that grow. They grow by making a copy of themselves and “be-

coming” the copy. If you add new instance variables to a sub-

class, you have to make sure these instance variables get

copied, too, or you will mysteriously lose the values of the in-

stance variables at random points in time.

Smalltalk-80 R4.o (and probably some earlier versions) has

a #copyEmpty method in CoUefion that you are supposed to

override if you make a subclass of CoUecbon that adds instance

variables. The solution to this bug is to write a version of

#copyEmpty for your class.

It would be easy to write a tool that checked that every new

subclass of CoUetion that added instance variables also defined

a method for #copyEmpty.
MAY1993
BUG 2: #ADD RETURNS ITS ARGUMENT

Most collections that grow implement the #add: method,

which returns its argument. Most new Smalltalk programmers

assume that #add: returns its receiver, which leads to prob-

lems. Thus, they write “(c add: x) add: y“ when they should re-

ally write “c add: x; add: y“ or “c add: x. c add y“. This is one of

the good uses for #yourself. For example, you can write:

(Set new
add: x;
add: y;
....
yourseE)

to make sore that you have the new $e~.

#add returns its arguments for serveral good reasons. Making

#add return its argument often keeps you from resorting to

temporary variables, because you can create the argument to

#add: on the fly and use the argument aflerward. If you want

to access the collection, you can do it with #yourself and cas-

caded messages, as described above.

Nevertheless, aller years of explaining how #add works to

students, I wish that it had been defined to return its receiver. It

is too late to change now without confusing every Smalltrdk pro-

grammer on the planet, so it is a problem we have to live with.

BUG 3 CHANGING COLLECTION WHILE ITERATING OVER IT

Never, never, never iterate over a collection the iteration loop

modifies. Elements of the collection will be moved during the

iteration, and elements might be missed or handled twice. In-

stead, make a copy of the collection you are iterating over.

That is, aCoUection copy do: [:each I aCoUection remove: each] is

a good program, but if you leave out the copy it isn’t.

Mario Wolczko suggested a solution that catches this problem

the instant it occurs (at some performance penalty, of course).

The solution is to change the collection classes. Each iteration

method enters that collection into a set of collections being iter-

ated over (IteratedCoUecdons), executes the block, and then re-

moves the collection from the set. Collections are usually

modified using #abpuk or #basicAtpuk, so these are overridden

to check that the collection is not in IteratedCollections. If it is, an

error is signaled. You cm either use this technique all the time or

just install these classes when you are testing and debugging your

program. The changes are packaged in a file called Iterator-

check.st that is available on the Manchester and Illinois servers.

On the Illinois server, it is in pub/14MICHESER/Manchester/4.O/

Iterator-check..st-

BUG 4: MODIFYING COPIES OF COLLECTIONS

It is common for an object to have an accessing method that re-

turns a collection of objects you can modify. However, some-

times an object will return a copy of this collection to keep you

from modifying it. Instead, you are probably supposed to use

messages that will change the collection for you. The problem is

that this is often poorly documented, and anyone who likes to

modify collections directly will run into problems. See “Sched-

uledConboUers scheduledContiollers” for an example.
5

■ CLASSIC SMALLTALK BUGS
The solution is to provide better documentation, to claim

that nobody is allowed to modify copies of collections returned

from other objects, or to have objects that don’t want their col-

lections modified to return immutable versions of the collec-

tions that will give an error if you try to modify them.

BUG 5: MISSING A

It is very easy to leave off a return caret on an expression. If

there is no return at the end of a method, Smalltalk returns the

receiver of the method. It only takes one missing return to

mess up a long chain of method invocations.

BUG 6: CLASS INSTANCE CREATION METHODS

Writing a correct instance creation method is apparently non-

trivial. The correct way to do it is to have something like:
new

“super new init

where each class redefines #init to initialize its instance vari-

ables. In turn, #irdt is defined as an instance method init

super init “to initialize inherited instance variables”
“initializevariables that I defie”

66
It only takes one missing return to mess

up a long chain of method invocations.

99

There are lots of ways to do this wrong. Perhaps the most com-

mon is to forget the return, that is, to write:

super new init

As a result, you have the class where you want the instance of

the class. This is a special case of bug number 5,

Another error is to make an infinite loop by writing

“self new init

If Smalltalk doesn’t respond when you think it should, press

‘C to get the debugger. If the debugger shows a stack of #new

messages, you know you made this mistake.

Finally, you should define #new only once for each class hi-

erarchy and let subclasses inherit the method. If you redefine it

in each class, you will reinitialize the new object many times,

wasting time and perhaps memory,

One way to keep this from happening is to make the #new

method in Object send #irdt, and have the #irdt method in Ob-

ject do nothing. Of course sometimes the version of #irrit that

you define has arguments, and this wouldn’t help those cases.

It is probably better to rely on education to eliminate this kind

of error.
6

.- ..—

BUG 7: ASSIGNING TO CLASSES

OrderedCollec+ion := z is perfectly legal Smalltalk, but does

dreadful things to your image.

This bug could be eliminated if the compiler gave a warning

when you assign to a global variable that contained a class.

BUG 8: BECOME:
#become: is a very powerful operation. It is easy to destroy

your image with it. Its main use is in growing collections (see

bug number 1), since it can make every reference to the old

version of a collection become a reference to the new, larger

version. It has slightly different semantics in Smalltalk/V and

Smalltalk-80, since x becomes: y causes every reference to x and

y to be interchanged in Smalltalk-80, but does not change any

of the references to y in Smalltalk/V.

Suppose you want to eliminate all references to an object x.

Saying x becomes: nil works fine in SmalltalldV, but will cause

every reference to nil to become a reference to x in Smalltalk-

80. This is a sure calamity. You want x to become a new object

with no references, such as in x becomes: String new.

BUG 9: RECOMPILING BUGS IN SMALLTALK/V
It is easy to have references to obsolete objects in Smalltalk/V if

you change code without cleaning things up carefully. For ex-

ample, the associations whose keys are the referenced names in

the Pool Dictionary are stored in the CompiledMethods at compile

time. If you create a new version of the Pool Dictionary and in-

stall it by simple assignment, the compiled methods still refer

to the old associations.

If you substitute a new instance of Difionary or replace,

rather than update an association in a pool dictionary, you have

to recompile all methods using variables scoped to that POOL

This is is also annoying when using ENVY, where the meth-

ods are under strict control. Perhaps Pool Dictionaries should be

be first-class versioned prerequisites of classes, just like the

class definition.

If you prune and graft a subtree of your class structure, you

have to make sure that all referencing methods are recompiled.

Otherwise, you (or your customer, because this is only de-

tected at runtime) will run into a Deleted class error message.

Thomas Muhr posted a “bite” a while ago to handle this prob-

lem for Smalltak/V 286.

BUG 10: OPENING WINDOWS

Older versions of Smalltalk/V and Smalltalk-80 do not return

to the sender when a new window is opened, Thus, any code

afler a message to open a window will never be executed. This

is the cause of much frustration. For example, if you try to

open two windows at once, that is:

TextPanenew open.
TextPanenew open

in Smalltalk/V 286 and

aScheduledWindowlopen.
aScheduledWindow2open
THE SMALLTALKREPORT

Object Transition
by t)esi~

+

‘.i
“?

ADVANCED TRAINING
7

ANALYSIS & DESIGN
,,

\

Y

%$

CUSTOM CONTRACTS

..47
TEAM TOOLS

-w

~:

Object Technology Potential
object Technology can provide a

company with significant benefits:

● Quality Software

. Rapid Development

. Reusable Code

s Model Business Rules

But the transition is a process that

must be designed for success.

Transition Solution
Since 1985, Knowledge Systems

Corporation (KSC) has helped

hundreds of companies such as

AMS, First Union, Hewlett-Packard,

IBM, Northern Telecom, Southern

California Edison and Texas Instru-

ments to successfully transition to

Object Technology.

KSC Transition Services
KSC offers a complete training

curriculum and expert consulting

services. Our multi-step program is

designed to allow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

c Introductory to Advanced

Programming in Smalltalk

● STAP’rk’(Small talk Apprentice

Program) Project Focus at KSC

● 00 Analysis and Design

● Mentoring: Process Support

KSC Development Environment
KSC provides an integrated applica-

tion development environment

consisting of “Best of Breed” third

party tools and KSC value-added

software. Together KSC tools and

services empower development

teams to build object-oriented

applications for a client-server

environment.

Design your Transition
Begin your successful “Object

Transition by Design’! For more

information on KSC’Sproducts and

services, call us at 919-481-4000

today. Ask for a FREEcopy of KSC’S

informative management report:

So/?wm Aswtsby Desi,fm

KnowledgeSystemsCoqxmtion 114 MacKenan Dr.
Cary, NC 27511

OBJECT TRANSITION BY DESIGN (919) 481-4000

@ 1992 Know,lcxlkc Syste m.! (:orpom tion.

■ CLASSIC SMALLTALK BUGS
in Smalltalk-80, then you will get one open window and one

forgotten piece of code. This problem has been fixed in Object-

works\ Smalltalk R 4. I and later releases of Smalltalk/V, so the

above code will create two windows as you would expect.

The fix for earlier versions of Smalltalk-80 is to use the

openNoTermimte method to open the window, which does not

transfer control to it. A useful trick is to store the new window

in a global variable so you can test it.

Aad Nales says that the fix for Smalltalk/V286 is to fork the

creation of the new window

[Textpaneopen] fork.

If this is not what the programmer wants, it is probably neces-

sary to hack the dispatcher code and remove the dropSender-

Chain message, which is the ultimate cause of the problem.

BUG 11: BLOCKS

Blocks are powerful, and it isn’t hard for programmers to get

into trouble trying to be too tricky, To compound problems,

the two versions of Smalltalk have slightly different semantics

for blocks, and one of them often leads to problems.

Originally blocks did not have truly local variables. The

block parameters were really local variables in the enclosing

method. Thus:

Ixyl
x := o.
(1 to: 100) do: [:2 I x:=x+ z]

actually had three temporaries, x, y, and z. This leads to bugs

such as the following

Iabl
a:= #(4 32 1).
b := SortedCollectionsorLBlock[:a :b I a someOperation:b],
b addAU:a.
Transcriptshow a.

When elements are added to b, the sortFllock is used to tell

where to put them. What gets displayed on the transcript will

bean integer, not an array.

Early versions of SmalltaLk-80 (2.4 and before) implemented

blocks like this, and Smalltalk/V still does. However, in current

ParcPlace implementations, blocks are close to being closures.

You can declare variables local to a block, and the names of the

block parameters are local to the block. Most people agree that

this is a much better definition of blocks than the original one.

Nevertheless, people planning to use Smalltalk/V should realize

that it has a different semantics for blocks.

This difference can lead to some amusing problems, For ex-

ample, here is some code written by someone who had obvi-

ously learned Scheme:

I anotherArrayallloclduray I

aBlockAsray:=Arraynew: 4.
anotherlumy:= #(1 24 8).
—

8

1 to: 4 do: [:anIndex I
aBlockArrayat: anIndex puti [(anotherAmayah anhdex) * 2]].

The programmer expected each block to be stored in the array

along with its own value of anIndex. If anIndex were just a local

variable of the method, this will not work. It assumes that each

execution of the block gets its own version of anIndex, and

Smalltalk/V and old Smalltalk-80 actually make each execution

share the same version.

So, if you are using Smalltalk/V, be careful not to reuse the

names of arguments of blocks unless you know that the blocks

are not going to have their lives overlap. Thus:

aCoUectdo: [:i I ...].
bCollectdo: [:i I ...].

is probably OK because #do: does not store its argument, so

the blocks will be garbage by the time the method is finished.

However, if the first block were stored in a variable somewhere

and evaluated during the execution of the second block then

problems would probably occur.

BUG 12: CACHED MENUS

Menus are otlen defined in a class method, where they are cre-

ated and stored in a class variable or a class instance variable.

The method will look something like this:

initilizeMenu
...

Note that accepting the method does not change the menu.

You have to execute the method to change the class variable

or class instance variable. Often the #initializeMenu method is

invoked by the class method #initialize. This can lead to the

strange effect that you can initialize the menu by deleting the

class and filing it in again, but otherwise you don’t seem to be

able to change the menu (because you haven’t figured out

that you should really be executing the #initializeMenu

method).

To make matters worse, it is possible that each instance of

the controller, or model, or whatever has the menu, stores its

own copy of the menu in an instance variable. If that is the

case, it is not enough to execute #initializeMenu, you must

also cause each object to reinitialize its own copy of the

menu. It is often easier to delete the objects and recreate

them.

Often a class will have a #flushMenus method to clear out

all menus. Typically the method that fetches the menu will

check to see if it is nil and invoke #initializeMenu if it is. So,

#flushMenus will just “nil out” the variable holding the menu.

The best way to figure out what is happening is to look at all

uses of the variable. Smalltalk experts rarely have problems

with this bug, but it ofien confuses novices.

Caching is a very common technique in Smalltalk for mak-

ing programs more efficient in both time and space. Caching

of menus is one of the simplest uses of caches, and other uses

can create more subtle bugs.
— .-—

THE SMALLTALKREPORT

■ TECHNICAL ASPECTS OF THE COMMON BASE

.. .continued from page 4

MAY1993
“improve” the language. Although this desire is good, we

think that the overriding goal must be to achieve a common

specification that is supported by available implementations.

While this is likely to require some compromise between the

various Smalltalk implementors and the constituents of the

user community, we believe the ultimate arbiter should be

the Smalltalk user community. The users are the ultimate au-

dience for Smalltalk and the standard.

CONCLUSION

Smalltalk is more than 10 years old. It has come a long way

in overcoming the perception of being a research language

and has entered the realm of commercial application devel-

opment. We believe a standard is needed, and the time is

now. If you agree, please encourage your organization to

join us in ANSI to define the standard. Together, as

Smalltalk users, we can ensure our success and contribute to

the acceptance of Smalltalk by the software development

community at large. ‘M

Acknowledgments

We would like to thank Digitalk, KSC, OTI, and ParcPlace

for their contributions to and support for the project. We

would also like to thank all the IBM internal reviewers, the

legal and contract team, ITSC and its editors, and our man-

agement for supporting this effort.

Reference
1. Cook, W. Interfaces and specifications for the Smalltalk-80 col-

lection classes, PROCEEDINGS OF 00PSLA ’92, pp. 1-15.

Rick DeNatale is a Senior Programmer with the IBM Systems

Laboratory in Cary, NC. In 1993, he headed a team that designed
and implemented a hybrid O-O language called ClassC. He is a

co-author of the Smalltalk Common Base document. He can be

reached by email at denatale@carvm3. vnet.ibm. corn.

Y.P. Shari is a Development Staff Member at the IBM Systems

Laboratory in Cary, NC. He has been active in researching and

developing object-oriented technology since 1986. He can be

reached by phone at 919.469.6571, faxat 919,469.6948, or email

at shan@carvm.3. vnet.ibm. corn.
Subscribeto THESHIIIUTIMMPOIIT
Formoreinformationcall212.2?4.0Fi411[uoicel

nr212,274.0646[fan]
BUG 13: SINGLETON OBJECTS IMPLEMENTED WITH

CLASS METHODS
Sometimes you need to make a globally known object that is

the only member of its class. These singleton objects are some-

times implemented as class methods and class variables. This

works fine in the short term, but does not work in the long

term because the time inevitably comes when you need to make

more instances of the class. If you have implemented an object

with class methods, you will have to rewrite the class or try to

implement a second object by making a subclass of the first.

66
Blocks are powerful, and it isn’t hard

for programmers to get into trouble

trying to be too tricky.
99

The correct way to implement a globally known singleton

object is to make a normal class for it, to define a class instance

variable to hold the singleton object (in Smalltalk-80 this is

done in the definition pane of the browser when the “meta”

button is pressed), and to have a class method (I like the name

#default) return the value of the variable, initializing it if it is

nil. This is like a cache, and nearly eliminates the possibility of

an initiakzation error.

Another alternative is to make a singleton object be the

value of a global variable. There is no other proper use of

global variables. Storing an object in a global variable is proper

when there are instances of the class used for other purposes.

For example, the global variable Undeclared in Smalltalk-80 is

just a regular Dictionary. However, it is probably not a good

way to implement a singleton class, because making sure that a

global variable is initialized is a common source of problems.

CONCLUSION

I would like to thank the many people who contributed bugs

or solutions to bugs to the listi Amir Bakhtiar, Hubert

Baumeister, Naci Dai, Marten Feldtmann, Peter Goodall, Alan

Knight, Simon Lewis, Eliot Miranda, Thomas Muhr, Aad

Niles, Kurt Piersol, Jan Steinman, Mario Wolczko, Mike

Smith, Terry Raymond, Dave Robbins, Randy Stafford,

Michael Sullivan, Brent Sterner, Nicole Tedesco, Rik Fischer

Smoody, and Markus Stumptner.

If you would like to bring bugs to my attention, please post

them to comp.lang.smalltalk, email them to me at johnson@

cs.uiuc.edu, or write me at Department of Computer Science,

1304 W. Springfield Ave, Urbana, IL 16801. 19

Ralph Johnson is ajjiliatedwith the Universityof Illinoisat Urbana-

Champaign.
.

9

The incremental nature
of design

Rebecca Wi@-Brock
.—
It isgood to have an end tojourney towards;
but ztis thejourney that matters in the end.

—Ursula K. LeGuin

D
esign requires effort, review, reflection, and rework, I

don’t know of anyone who has built an application

right the first time. Objects always need rework and

redefinition. Solutions should remain fluid throughout an in-

cremental design and implementation. In this column, I want

to reflect on when a design starts and when it is finished. I also

want to touch on some major differences between incremental

design and implementation cycles and rapid prototyping.

HOW DESIGN REALLY WORKS

Designing object software means creating an executable model

of interacting objects. One fundamental difference between

software design and software analysis is that designs have to be

translated into working programs. Analysis results need to re-

flect an accurate statement of the problem and constrain possi-

ble solutions, but they don’t have to work. We designers still

have to solve the problem. Solving even a well-defined prob-

lem is not always straightforward or easy.

I find software design to be inherently messy and fraught with

mistakes. It involves top-down, bottom-up and sideways build-

ing and rebuilding of a soh.stion. I try to teach this to my design

students while giving them a strong foundation for building ob-

ject designs. Designers and implementers appreciate this honest

exposure to the way things really work and are eager to pick up

some immediately useful skills they can apply to object design.

I’ve had managers sit in on design sessions (or even worse,

in classrooms) and get very concerned that designers aren’t

honing in quickly enough on the “right” solution. Besides hin-

dering progress, this can be demoralizing to teams new to ob-

ject design. I’ve also worked with managers who entrust teams

from the start to solve problems and produce results. Only

when a schedule appeared to be in jeopardy or the team called

for help did they get concerned. The enthusiasm and positive

energy that sparks a team having this style of leadership are

amazing! The key to these managers’ success, in my opinion,

was that they empowered design teams while imposing plenty

of non-threatening process checks along the way.

The AMERICAN HERITAGE DICTIONARY defines design as

“plan [ning] out in a systematic. . . form.” I like this definition. It

characterizes design as systematic planning. We’re still error-

prone, even if we are systematic about software design. Is that
10
the fault of the designers, their tools, or the imprecision of in-

puts to the process? I don’t think we should place blame on any

of these factors. We software designers are inherently building

complex systems. Although some researchers are actively inves-

tigating better ways to precisely state requirements while others

are working at ways to minimize the transformations we make

between software analysis and software design, we designers and

implementers still have to deal with unpredictabili [y. Unless we

are rebuilding a system for the nth time, we will continue to dis-

cover additional constraints throughout implementation.

Object technology improves our chances of building well-

designed systems. We have conceptual tools that help us de-

compose the problem. We can find objects in the problem do-

main that have representations in our executable programs.

We can encapsulate functionality and data into objects to build

high-level abstractions. Well-designed objects enable us to deal

with increasing levels of complexity. Even so, we still haven’t

changed the bumpy, uneven nature of software development.

INJECTING DESIGN INTO IMPLEMENTATION

While software development isn’t a smooth process, we still

need a design process. Building systems more predictably de-

mands that we interleave design throughout implementation.

We need to consciously expend some fraction of our energy

designing and refining our solution. Design needs to naturally

occur throughout development. The alternative is to simply fix

things so they work, or hack more functionality without con-

sidering the impact on future developers or system flexibility.

Incremental design means progressing toward a working

solution in a planned fashion. One way to make orderly

progress is to decompose design and implementation into a

series of many small, inherently more manageable steps. I

don’t view incremental design as a heavily regulated or tightly

monitored activity. I don’t want to restrict forward progress

or put a crimp on individual creativity. Designing involves an

element of understanding how things work now while not ac-

cepting the status quo. Responsible designers take a broad

perspective. It isn’t enough to build the software; you also

need to pay attention to the flexibility and elegance of the

emerging solution.

Design doesn’t come together at the end of a long design

cycle and remain sacrosanct throughout implementation. In

incremental development, systems aren’t designed or inte-

grated according to the Big Bang Theory. There are many small
THE SMALLTALKREPORT

WINDOWBUILDER~‘H’”;
?beInterlaceBuilderjorSmalltalW o g

INC.

“... WblowBuUder is an earwntkl tool for unmvel-
hg the mysteries of the traditional SsrtaUtdk
model-vkw<ontmlkr paradigm. ... WhdOw-
BuUder la eaally woti three times W9 $149.95 Mat
price.”
- Gen Kbyoo~ Windows T& Joun@ March 1993

The key to a good application is its user interface, and the
key to good interfaces is a powerful user interface
development mol. For .%nalltalk,that tool is WindowBuilder.

Instead of tediously hand cuding window definitions and
rummaging through manuals, you’ll simply “drati your
wir-klows,and WindowBuilder will generate the code for you.
WmdowBuilder allows you to revise your windows

incrementally. WindowBuilder generates standard Srnalkalk
code, and fits as s=amlessly into the %nalltalkenvironment as
the class hierarchy browser or the debugger.

To be even more productive, use SubpanedV, the control
library for Srnrdltalk/VWindows, which brings a new world of
user interface components to the Sxrralltalk/VWindows
Programmer.

WindowBuilder/v Windows is available for .$149.95 and
WmdowBuil&r/V 0S/2 is $295. Subpanes/V Windows is
available for $129.95. We are offering a Iimked-tirne price of
$225 for WindowBuilder/V Windows bundled with Subpanes/V
Wkdows.

For a free brochure, cdl us at (408) 727-3742, or send us a fax
at (408) 727-6324. You’ll be glad you did!

Oqscrsrrms Svsmh!s,INC.5 Towu & CourrniYVtLMGS?,Sum 735, Sm Joss, CA 95128-2026
Pr+ous(408) 727-3742 F.u (408) 727-6324 Comu%vs 76436,1063
cycles of discovery, design of a partial solution, analysis of the

results, and rebuilding a better solution.

What distinguishes incremental design from rapid proto-

typing is this analytical step. Analyze means to “separate into

parts or basic principles so as to determine the nature of the

whole, to examine methodically.” This is crucial to incremental

design. Progress needs to be measured, reflected upon, and re-

viewed with others periodically. There is an openness on the

part of the designer to change and improve.

Another characteristic that distinguishes incremental design

from rapid prototyping is the willingness on the part of an in-

cremental designer to throw out a bad design, rethink the

problem, and redesign a solution.

The primary goal during rapid prototyping is to simply get it

working. Many times an implementer during rapid prototyping

knowingly (and quite possibly with some discomfort) builds

something that is definitely not cleanly structured. It takes a lot

of discipline to stop and clean things up with rapid prototyping.

Incremental designers, on the other hand, take many things

into account throughout implementation How can object in-

teractions be improved? Is there a way to reduce messaging

traffic between collaborators? Are interfaces to object services

simple enough or powerful enough? Can a higher information

bandwidth connection be made between collaborators? 1s there

a way to reduce the complexity of control logic? IS polymor-

phism being used to advantage? Is data really being encapsu-

lated correctly? What new classes should be created to reduce

existing complexity? How might behaviors be refactored to

achieve a better balance and cleaner distribution of responsi-

bilities? Have we formed the right abstractions? What classes
MAY1993
should be eliminated? Does the current implementation of an

inheritance hierarchy facilitate or unnecessarily constrict the

addition of new functionality? Are there existing in tractions

that could be refactored to encapsulate details or hide objects

from one another? How well is the object model holding up?

Are there serious flaws that demand major redesign and repair?

Incremental design involves a fundamental shift in goals, val-

ues, and process. It requires that we inject incremental design

throughout implementation. To do so, we must distinguish be-

tween finishing an implementation task and completing a satis-

factory design. Working code doesn’t automatically signal com-

pletion. Getting the design right is a journey. That journey

begins as soon as the ink has dried on system requirements. It

ends when we declare an end to discovery and invention. There

does come a time when we have to stop improving the design

and must focus on completing our work. The tricky part is pick-

ing the right time to make that dash to the finish line. Stopping

design too early means the system “evolves” rather than being

“systematically planned and implemented.” Stopping design too

late can cause problems, too. There is always a tension between

getting the design “right” and meeting the schedule. However,

embracing incremental design means that change and improve-

ments aren’t viewed as threats, instead they are acknowledged

and carefully factored into the development process. E

Rebecca Wirj&Brockis the Director of ObjectTechnologyServs”cesat

Digitalkand co-author OfDESIGNINGOBJECT-ORIENTEDfiOFT-

WARE.She can be reached w“aernailat rebeccat@dig”talk.com or via

US mail at Digitalk 7585 S.W, Mohawk Drive, Tualatirz,OR 97062.

Comments, further insights,or w“ldspeculationsare welcome.
11

Don’t use Arrays?

Juanita Ewing
T
his column discusses inappropriate use of arrays and

how misuse affects reusability. We will analyze several

Smalltalk methods that use arrays and revise them to

use classes instead of arrays. We will also show you how to

search your image for methods that use arrays.

MOTIVATION

A class in Smalltalk is a specification of behavior and support-

ing data. Each instance contains a particular set of related data.

For example, the data for an instance of Rectangle is two

points. The points are related because they are both part of a

rectangle: One is the origin point, and the other is the corner

point.

In Smalltalk, you can also use a data structure such as an ar-

ray to represent related data. Instead of the class Rectangle, you

could use an array with the first element of the array being the

origin point and the second element being the corner point.

Which is more reusable?

First, let’s examine how clients access data. Clients of the

class Rectangle can send the messages origin and comer. Clients

of the rectangle-as-array must access the correct element by

specifying the index, and the index might not have any correla-

tion to the values stored in the array.

Accessing the data is not the only consideration. Rectangle

has specialized behavior, such as height, containsPoink, inter-

sects:, and expandBy:. The rectangle-as-array has no specialized

behavior. For example, each client that needed the height of

the rectangle-as-array would have to duplicate the code that

subtracted the two y coordinates to obtain the height of the

rectangle.

There are three reasons why the class is more reusable than

the array:

. Ease of Use. Clients of the rectangle-as-array need to know

arbitrary indices to obtain the data. Clients of the rectangle-

as-class send messages with meaningful names.

. Encapsulation. The behavior of rectangle is not encapsu-

lated with the data in the rectangle-as-array. Clients of the

rectangle-as-array would need to write much more code

than the clients of the rectangle-as-class in order to dupli-

cate the behavior of rectangle. Most clients would write the

same code over and over.
12
Information hiding. The constituent data for the rectangle

is accessible to all clients in the rectangle-as-array. Indeed, it

must be in order for clients to the duplicate the behavior of

Rectangle. But it also means the rectangle-as-array cannot

change its representation without affecting all its clients.

INAPPROPRIATE USE I

Standard Smalltalk even provides us with a bad example of

array usage (nobody’s perfect), On page 109 Of ShlAI.I,TA[.K-80:

THE LANGUAGEANDITSIMPLEMENTATIONis the specification of a

class method for Date:

Date class protocol

general inquiries

dateAndTimeNow Answer an Array whose first ele-
ment is the current date (an in-
stance of class Date representing
today’s date) and whose second el-
ement is the current time (an in-
stance of class Time representing
the time right now).

Here is one possible implementation of the method:

Date class methods

dateAndTimeNow

%lrrsweran Army of twoelements. Thefirst element is a
Date representing the current date and the second element
is a Time representing the current time.”

“ (Arraynew 2)
ak 1 put: sel-ftoday;
at: 2 put: Timenow;
yourself

Clients of this method must keep track of which elements are

where in the array. The code to compare two date-and-time

arrays looks like this (the variables now and then contain date-

and-time arrays):

I nowthen oldest I
then := self oldDateAndTlme.
now:= DatedateAndTlmeNow.
((now ak 1) >= (then at: 1) and: [(now at: 2) > (then at: 2)])

if Tree: [oldest:= then]
THE sMALLrA1.K REPORT

■ GETHNG REAL

WNTED
●BOOK AUTHORS=

is currently seeking Authors for irs newly created

ADVANCES IN ODImn TECI-iNOLOGYseries.

oudinc proposal or discuss your idcns for a book.

Conract:

Dr. Richard Wienrr, Book SeriexEditor

13s Ruge~ Court

Cohzdo Springs, Cf3 80906

PHONli7FAX: 719.579.9616
This kind of code is not easy to read

and is likely to be duplicated in an ap-

plication that manipulates time

stamps.

In the dateAndTimeNow method, the

array is merely a shortcut way of im-

plementing a return of two values. The

elements in the array have nothing to

do with their indices. Clients have to

remember which element is which.

They also have to remember the algo-

rithm for comparing date/time pairs.

This kind of shortcut is not good cod-

ing practice because it does not facili-

tate reuse.

SIGS

Submit

A better solution is to create a new

class that represents an associated

date and time. We will call this class TimeStamp. It would

have messages for accessing its date and time, and for com-

paring itself with other TimeStamps. Using this new class, the

dateAndTimeNow method can be rewritten:

Date class methods

date#mdTimeNow

%swer an instance of TimeStamp containing the current
date and the current time.”

“TimeStamp date: self today time: Time now

Even better would be to eliminate the Date method and cre-

ate a TimeStamp method that returns the current date and

time, A TimeStamp method is better because the instance is

created in the class that relates date and time, The Date class

is a less desirable location because dates don’t have an ex-

plicit relationship with time. Time is not referenced in other

Date methods.

TimeStamp class methods

now
‘Xnsweran instance of the receiver containing the current
date and time. ”

I current I
current := self new.
current date: Datetoday.
current time: Timenow.
“current

The client of this functionality can now write much simpler

fragments of code.

I nowthen oldest I
then := self oldTimeStamp.
now:= TimeStampnow.
now > then

if True: [oldest:= then].

INAPPROPRIATE USE II

A method from Directory provides us with another inappropri-
—. . .

MAY 1993
ate use of an array. In this method, a collection of arrays pro-

vides detailed information about each file in a directory.

Directory methods
formatted

‘Answer a collectionof arrays offle informationfor the re-
ceiver directory.Each arrayhasfour entries:file name, size,
date\time and attn”butes.”

I answerfileEntries am%ray I
file Entries := self contents.
answer := OrderedCollectionnew: fite Entries size.
file Entries do: [:each I

arrArray:=Arraynew 5.
aoArray

at: 1 puti (Directoryextract FileNameFrom. each);
ah 2 put: (DirectoryerrtractSizeFromeach);
ah 3 pub (Directoryextract DateTlmeFrom each);
ab 4 puti (Directoy extract ResourceSizeFrom each);
ab 5 put (Directo~ extract CreatorljrpeFrorn.each).

answer add: anArtay].
“ answer

Note that the method comment is wrong. It references an ar-

ray with four entries, but the code has an array with five en-

tries, indicating that a small change in the implementation has

a big impact on clients. Users of this method must know

where relevant information is stored in the array. It is impos-

sible to tell from either the comment or the code which array

element is new.

In this fragment of code, the client of Directory needs the

names of files of zero length. This code must reference ele-

ments stored at arbitrary locations, and requires heavy com-

menting to be maintainable,

I zeros I
zeros := myDirectoy formatted

select: [:info I (info ah 2) = O]. “sizeis stored at 2”
‘zeros collect [:info I info at: 1] ‘hame isstored atl”

Related data stored in arrays is more appropriate as an instance

ofa class. In this example, the information stored in an ormy
.

13

■ GETTING REAL
.— .— — . .—
represents detailed status information about a file. An alternate

solution is to create a class, called FileInformation to store this

data. FileInformation has a class method to create new in-

stances, and instance methods to access its components. A par-

tial class specification follow

file Information methods

fromfsleEntty: afileEntry
Create and return an instance of the receiver for a file entry

file Information methods

fileName
Return the name of the file.

size
Return the size of the file, including both the data and re-
source fork.

time.stamp
Return the date and time when the receiver was last
modified.

resourceSize

Return the size of the resource part of the file.

aeato~e
Return the code that indicates the application that created
the file.

With the FileInformation class, we can eliminate the use of Array

and incorporate usage of our new class. The formatted method

now looks like:

Directorymethods
formatted

‘Answer a colleti”onoffile in@rrration, onejim each entry in
the receiver.”

I answer file Entries anArray I
file Entries := self contents.
answer:= OrderedCollectionnew file Entries size.
file Entries do:[:each I

answeradd: (FileInfonnationfsomFileEntgceach)].
“ answer

Clients of this method can then use meaningful selectors in-

stead of indexing into an array. This code is more maintainable

now and doesn’t need any extra commenting.

I zeros I
zeros := myDisectoryformatted select: [:info I info size = O].
‘zeros collect: [:info I info fileName]

There are good examples of Array use in your Smalltalk system.

These are uses in which the index is a relevant part of the data

structure, such as a numeric id allocated by the operating sys-

tem. The array contains the relationship between the id and a

related Smalltalk object. Literal arrays are convenient for col-

lections of values.

IDENTIFYING INAPPROPRIATE USE

You can look for inappropriate use of Array and other data

structures in your image. Use these techniques to find methods
14
that reference Array. You may also want to look for references

to other data structures such as OrderedCollection.

- In Team/V Select Array in the Package Browser. Select the

menu item Class/BrowseRefs.

. In Smalltalk/V for 0S/2 and Smalltalk/V Windows: Execute

SmaUtalA senders Of: (SmaWdk associatioruW#Array)

“ In Smalltalk/V Mac: Execute Smalltalk referencesTo:#Array.

“ In Objectworks\Smalltalk Select Array in the System

Browser. Select the menu item Cl-assRefs from the class pane

menu.

66
Don’t use arrays as a shortcut to pass

around related items. Instead, create a

class to represent the abstraction

relating the items.
99

_

When examining a method, inappropriate use will have one or

more of the following characteristics:

. Indices that are irrelevant to data and functionality.

“ Array elements that are related by some abstraction not cap-

tured by a class.

■ Awkward client use due to violation of information hiding

and encapsulation.

If you find a method that uses arrays inappropriately, you

should improve the quality of your code by

1. Creating classes to represent related array elements.

2. Rewriting offending methods to reference new classes and

to eliminate arrays.

CONCLUSION
Don’t use arrays as a shortcut to pass around related items. In-

stead, create a class to represent the abstraction relating the

items. Your code will immediately be more understandable,

extensible, maintainable, and reusable. Classes are the basic

building blocks of Smalltalk programs. Use them. IIZi

Juanita Ewing is a senior staflmember of Di~”talk Processional Ser-

m“ces She has been a project leader for seveml commercial O-O soft-

wareprojectsand is an expert in the design and implementation of

O-O applications,frameworks, and systems. In a previous position at

Tektronix Inc., she was responsiblefor the development of class

librariesfor thejh-stcommercial-qualityStnalltalk-80system.
.- — .

THE SMALLTALK REPORT

MALLTALK IDIOMS

Instance specific behavior:
Digitalk implementation and the
deeper meaning of it all

Kent Beck
I
n the last issue, 1 wrote about what instance-specific behav-

ior is, why you would choose to use it, and how you imple-

ment it in Smalltalk-80. . . er. . . Objectworks\Smalltalk

(which way does the slash go, anyhow?). . . er. . .VisualWorks

(is that a capital Wor not?). This month’s column offers the

promised Digitalk Smalltalk/V 0S/2 2.o implementation

(thanks to Mike Anderson for the behind-the-scenes info) and

a brief discussion of what the implementations reveal about

the two engineering organizations.

I say “brief discussion” because as I got to digging around I

found many columns’ worth of material there for the plucking.

I’ll cover only issues raised by the implementation of classes

and method look-up. Future columns will contrast the styles as

they apply to operating system access, user interface frame-

works, and other topics.

DIGITALK IMPLEMENTATION
Runtime Structures

The Digitalk implementation of method look-up is slightly

different from the ParcPlace model. Actually, until Smalltalk/V

0S/22.o (hereafter VOS2) the models were quite similar. The

I)igitalk implementation did not allow you to create Behaviors

and instantiate them easily, so the instance specialization im -

plementation presented in the last issue wouldn’t work, but the

pictures of the objects would have been identical.

The VOS2 model departs from the “classic” by giving each
—————. —.— —. —.

MAY1993
instance a reference, not to its class, but to an Array of Method-

Di~onaries (see Figure 1), In the normal case, the class con-

structs this array and all instances share it.

The ParcPlace implementation requires an additional indirec-

tion to reach the method dictionary, as the virtual machine has to

go from the object to the class, and from the class to the method

dictionary. Whh the VOS2 model, the virtual machine just has to

go from the object to the array. Going up the superclass hierar-

chy is also faster, as the virtual machine can just march along the

array rather than trace references from class to superclass.

Performance is not the primary motivation behind this de-

sign, however. More important, given the lack of flexibility in

the implementation of Behavior and Class, this design makes it

possible to specify the behavior of objects in many ways. For

example, implementing multiple inheritance (ignoring differ-

ent instance layouts in different classes) is simple. The class is

welcome to create the array of method dictionaries any way it

wants.

You may be wondering how the message “class” is imple-

mented given the objects above. Each MethodDictionary has an

additional instance variable called class, which is set to the class

where it belongs (each class “owns” one and only one dictio-

nary). The primitive for class marches along the array of dic-

tionaries until it finds one whose class instance variable is non-

nil, and returns that. That way, you can have dictionaries that

don’t belong to any class, and the scheme still works.

—.——— —.—.——— .— .— —..——

Point
— ——

class

x

Y

name

nethods

F‘-+--55

:/

..—

77]

r ——

I ‘Point’

t —1

MethodDiciiortary

—. — —. —. —
—1

\ L—.—

‘x
#+y

1 t--#disk

p

.— L.—

values

keys
L —. .-

——— .— ——. .—

‘r --I

1—.4

I

—..———- —. — .1
Figure1. VOS2 objectssupportingmethodlookup.
15

■ SMALLTALK IDIOMS

—

Point

‘“ss -E
x

Y

name

methods
Conceptual Model
What’s so special about the class constructing the array? It’s

just an Arraywhose elements are MethodDictionaries.Any object

can build one of those. That’s how we’ll implement instance

specialization. We’ll fetch the array that’s there and copy it,

adding a slot at the beginning containing a fresh MethodDic-
tionary. Then we can make all the changes we want to the pri-

vate MethodDictionarywithout affecting any other instances.

Example

Before we can implement the conceptual model we need access

to a couple of hidden primitives to get and set the method dic-

tionaries field of the object.

Object>>methodDifionaryField
“Returnthe Arrayof MethodDictionariesfor the receiver”
<primitive:96>
self primitfveFailed

Objecb>methodDitilonaryField:anArray
“Setthe Arrayof MethodDictionariesfor the receiver
to anArray.anArraymust contain MethodDictionaries
or your systemwill crash!n
<primitive:97>
self priroitiveFailed

Now we need to get something on the screen to see the effects

of our experiments. Fortunately, that’s easy in Smalltalk/V.

TopPanenew open inspect

When we execute the above expression we get a window and

an inspector on that window. In the inspector we can execute

the following to get a fresh MethodDictionary to put our special-

ized methods in:

I old new I
old := setf methodDictionaryFleld.
new:= (Arraywith: (MethodDictionarynew%e: 2)) , old
seti methodDictionaryField:new
—- —

16
Now we can specialize our window by executing the following

in the inspector:

I association I
association := Compiler

compile:‘displayTranscriptshow: “Howdy. super disptay’
in: self class

seti methodDictionqField first add: association

Now if you execute self display you will see that, indeed, the

specialized method is being invoked. (You will have to send

the window backColor: for the superclass’ display method to

work).

Methods
I was surprised at how easy itwas to implement instance spe-

cialization methods that were compatible with the ParcPlace

version. I had expected the differences in implementation to

leak through into the interface. Hmmm. . . different imple-

mentations, same interface—maybe this object stuff works,

after all!

The first method I defined last time was one you would du-

plicate in any class in which you wanted all instances to be spe-

cializable. I don’t think this is necessary, since the lazy special-

ization implemented below works fine. For completeness,

though, here it is

new
‘super new specialize

The method 1 defined in the last issue should have been de-

fined this way, rather than duplicating the specialization code

in the class and the instance. I think I did it the way I did be-

cause that was how I saw it first implemented by Ward Cun-

ningham when he put scripts into Hot13raw,

Next is a method to test whether an instance is ready to be

specialized. Since all unspecialized ins tances of a class share the

same array of dictionaries, if the receiver has a different array

we will assume it has a private array.
THE SMALLTALK REPORT

—

mflfimml 011)I,Ig,>2.1,

——.. — —. —. —. .
Object>>isSpecialized

‘seLfcnethodDictionariesField== self ctass methodDitilonaries

Next come the methods for actually specializing the receiver.

The first sets up an array with a fresh MethodDictionary.

Object>>specialize
I old new I
self isSpecializediffcue: [AselfJ.
Obd := seti methodDictionariesField.
new:= (hay with: (MethodDictionq new%e: 2)) , old.
self methodDictionariesFleld:new

The next one takes a string, compiles it, and installs the result

in the private dictionary

Object>>specialize: aString
I association I
self specialize.
association := Compilercompile:aString in: self class.
self methodDitionariesField fit add association

CONTRASTS

What do these two implementations of instance specialization
say about their respective systems? For one thing, both of them

are simple, clean, and easy to understand. The external proto-

col is exactly the same. There isn’ t much to choose from be-

tween them. From that standpoint, I would have to say that

both systems support a fairly esoteric change to the language

semantics with a minimum of fuss.

The ParcPlace implementation is conceptually cleaner to

me. The user’s model that the behavior of an object is always

defined by its class is retained. It’s just a little easier to create

classes than you thought. The Digitalk implementation re-

quires that you understand the particular mechanism they

have lying behind that conceptual model so that you can im-

plement the necessary changes.

When I understood the ParcPlace implementation I said,

“Ah, that makes sense.” When 1 understood the Digitalk im-

plementation I said, “Cool! That really works?” The ParcPlace

model is an extension of the semantics. The Digitalk model is

an extension of the implementation.

I am fishing for just the right way to characterize the differ-

ence. I don’t think I can make it clear yet, but I also don’t think

it will be the work of a single week, or even a single year, to

make it clear. Let’s barrel on.

As you get to know both product lines, you will find this

same distinction repeated many times. I think that the differ-

ence stems from the diverging goals of the technical luminaries

at the two companies. The ParcPlace image was driven first by

Dan Ingalls and then by Peter Deutsch. Both have strongly de-

veloped aesthetic sensibilities to go along with their amazing

technical skills. A solution wasn’t a solution to them until it

was beautiful. Actually, now that both of them have gone on to

other things, the ParcPlace models are beginning to show signs

of creeping cruft.

Jim Anderson and George Bosworth, on the other hand, are

primarily motivated by the belief that software just shouldn’t

____ _.. —. -——
—.. —

MAY 1993
be that hard to write. They produced Smalltalk/V so others

could write software more easily. Their success criteria seems

to be “if it’s better than C, it’s good enough.” They weren’t

about to let a little thing like a less-than-perfect conceptual

model get in the way of shipping product. Of course, they had

a company to run as they were developing their image, unlike

ParcPlace in the early (Xerox PARC) years, so they didn’t have

much choice about the importance of aesthetics.

66
Hmmm...

different implementations, same

interface-maybe this object stuff

works, after all!
99

Don’t take this to mean that the ParcPlace image is truth

and beauty personified and the Digitalk image is a baling-wire-

and-chewing-gum collection of dke hacks. There are areas

where each beats the other in both conceptual model and im-

plementation. However, I think it is safe to say that the pri-

mary motivations behind the two systems are a contrast be-

tween aesthetics and pragmatism.

What this means for the workaday programmer isn’t en-

tirely clear. Most of the time, the ParcPlace image provides

smooth development. Every once in a while, though, you will

encounter a good idea that hasn’t been taken quite far enough,

and you will have to bend yourself into a pretzel or bypass it

entirely to get around it. Put another way, if you are going the

ParcPlace way you will have lots of support. If, however, you

have the misfortune to want to do something a different way

than the original implementor imagined, you may be in trou-

ble. In these cases you will often have to browse around and

understand lots of mechanism before you can figure out how

to wedge your code in.

The Digitalk world is less coercive, but it’s also less support-

ive. For code that relies heavily on their implementations (i.e.,

not just instantiating collections) I average more lines of code

to get the same functionality. I know there have been cases

where the Digitalk implementation has been easier. I don’ t

think a Digitalk project has ever been conceptually simpler,

though.

In future columns, I will explore more specifics of the con-

trast between the systems, and try to quantify why one or the

other is better for specific tasks. In the meantime, if you run

into situations that are surprisingly hard or easy in either sys-
17

HE BEST OF comp.lang.smalltalk

Breaking out of a loop

Alan Knight
T
his month’s discussion started with a question from

Deeptendu Majumder (gt0963d@prism, gatech,edu),

who writes

I [have] always found a way to avoid this, but I would like

to know how to break away from inside a loop and return

[to] the immediate-upper-level context.

Although this question may seem elementary to an experi-

enced Smalltalker, and the straightforward answer is probably

the best, I found the wide variety of answers worthwhile and a

reminder of how many different ways things can be accom-

plished in Smalltalk.

Unfortunately, the first answer that comes to mind is to dis-

miss the question.

FORGET IT

The language doesn’t provide it, but it’s easy to work around.

Anyone who didn’t just fall off the cabbage truck knows that.

Next message.

This is an effective attitude for getting through news

quickly, but it’s not very helpful. The least we can do is de-

scribe the standard workaround.

HERES WHAT YOU DO INSTEAD

The obvious answer is that, although you can’t break out of a

block prematurely, you can break out of a method, By pushing

the loop into a separate method, you can use the normal re-

turn mechanism,

For example, suppose we have a method like:

SomeClass>>someMethod
self stactUp.
collection do: [:each I

each doSomething.
self specialExitCondition

iffrue: ~Break, but still do the finish up code”].
each doSomeMore].

self finishUp.

We can’t break out of the loop and still do the iinishUp code.

To make it work, we need to break it into two methods.

SomeClass>>doSomething
self startUp.
self loop.
self FmishUp.
—

18
SomeClass>>loop
collection do: [:each I

each doSomethirg.
self specialExitConditionifllue: [Aselq.
each doSomeMore].

When specialExitCondition is true, we ret urn from the loop

method, but still execute the finishUp code. It’s a simple trans-

formation on code, and breaking the code into smaller pieces

this way often improves it. Who could ask for more?

Well, perhaps it improves the code, but I doubt that it al-

ways does. While decomposing code into smaller pieces is usu-

ally good, I’d much rather do it along logical lines than along

lines imposed by the language,

YOU CAN DO IT IF YOU’RE CLEVER

Saying that Smalltalk can’t do something is often a mistake,

particularly when you are in a virtual room with a lot of clever

programmers.

Jan Steinman (steinman@hasler. ascom.ch), who is well-

acquainted with the inner workings of Smalltalk, writes:

It is possible, but it is ugly. I had implemented it in Tek

Smalltalk for “real” blocks, via a Contesrt stack hack, but I

haven’t tried to make it work with 4.1 BlockClosures.It would

necessarily change the semantics of blocks somewhat—what
does the block answer when “broken,” for instance?

Then there’s the case of in-line “pseudo-blocks.” My con-

text stack hack never did work with compiled in-line

blocks, like #to:do:. This is a real problem, since the system

goes out of its way to hide the difference from you!

To make it work with pseudo-blocks might actually be eas-

ier. It would take a compiler hack that would simply jump

out of the loop. But then the semantics would be different

than for breaking out of a real block via a stack unwind

mechanism. Y&

So it can probably be done if we’re sufficiently clever. This is

fascinating for dedicated Smalltalk hackers and for language

designers, but I don’t think it’s a good answer for a novice or

for somebody who just wants to get things done. It would be

easier to just rework the code as in the previous section. 1s

there a better way?
— .

THE SMALLTALKREPORT

———.

m,,r;,lwd 071 jW& 23,.,
YOU CAN DO IT WITH EXCEPTIONS

An exception handling mechanism is built to handle just these

sort of cases, breaking out of normal processing to handle

some special condition, ParcPlace Smalltalk has one integrated

with the language, and there are several implementations avail-

able for Digitalk versions.

Hubert Baumeister (hubert@mpi-sb. mpg.de) provides a

detailed example of how to do this, We can define a signal han-

dler as:

LaopBreakSignal:=Sigml genericSignal
notierString: ‘Usingbreak without being in a loop’;
namellass: se~ message #loopBreakSginaL

repeat a block using

Context>>loop
“Evaluatethe receiver repeatedly, not ending unless ‘Object
loopBrealrSignal’is raised or the block forces some stopping
condition, like method returns, Signalsraised but not handled

etc.. ”
ObjectloopBreakSignalhandle: [:exp I]

do: [self repeat]

and then invoke it with the Object method

break
LoopBreakSignalraise.

This is very similar to the use of exceptions for handling asser-

tions, which was discussed in this column in the October 1992

issue. This is nicer, since we don’t have to change any system

classes, but it still has a couple of disadvantages.

First, it makes the code for looping a bit more complicated,

and if we want it to be available everywhere we have to modify

system methods like do:. If we want the block to return a value,

we have to do even more complicated things. It probably has a

fairly substantial overhead. Finally, and most important, it

could lead to very confusing results.

Exception handling is a very general facility for handling

non-local control transfers. It can be used to implement a facil-

ity for breaking out of a loop, but in complicated cases, the

programmer needs to have the discipline to ensure that control

is being transferred to the intended place.

YOU CAN DO IT WITH BLOCKS

A cleaner solution also uses the method returning mechanism,

but to pass a method return as part of another block.

Ralph Johnson (johnson@cs.uiuc. edu) describes this as

follows:

There are lots of ways to break out of a loop. The impor-

tant thing to realize is that the only ways to change control

flow in Smalltalk are to send a message and to return from

a message, but blocks let you treat code as data and so con-

trol where you are going to send a message.

The result of the above is that to simulate a go-to, you have

to introduce extra blocks. For example, here is a simple

way to break out of a loop:
MAY 1993
[obj Foo]
whileTmeWkhBrealc
[:ernt I

‘loopbody is here”
tirneToLeaveifthre: [erritvalue].
“finishUp 100P”]

whileTrueWithBreak: is defined in BlockClosure (in 2.5-4.1,

BlockContext in 2,3, and I don’t know wherein Smalltalk/V)

to be

whileTmeWlthBreakaBlock
“aBlockvalue: [Anil]

66
Smalltalk blocks are most often

used as simple control structures,

and we usually don ‘t have to think

about their full capabilities.
99

Mario Wolczko also advises that the Manchester goodies li-

brary has similar code in the BlockWithExit goodie. The li-

brary is accessible by ftp@st.cs.uiuc.edu or at

mushroom. cs.man.ac.uk.

This kind of code can be very confusing. Smalltalk blocks are

most ofien used as simple control structures, and we usually

don’t have to think about their full capabilities. In this case, we

pass as an argument a block that returns from the method context

in which it was defined. Although there maybe a great deal in the

stack below that point, it is immediately discarded, and we re-

sume execution at the next level up from that defining method.

This is quite a neat trick. It breaks out of a loop without us-

ing any additional language mechanisms, and it makes the

code only a little uglier.

Unfortunately, to handle return values nicely, we have to

add a bit more ugliness, adding a parameter to the exit block.

whileTrueWithBreakRetumingAValue:aBlock
‘aBlock value: [:returnValue I ‘returnValue].

Writing a more complicated loop, like injectWithBreak: into: can

start to get complicated. For one thing, the block will require

three arguments, which is a problem in Digitalk dialects. Also,

like exceptions, blocks can provide much more general trans-

fers of control, and the programmer must ensure that the re-

sults are correct.

WHAT’S THE BEST WAY?

Considering that you can’t return from a block in Smalltalk,

there are a lot of different ways of doing it. Unfortunately, they

all have their drawbacks. Ralph Johnson comments:
—— .

19

ProductAnnouncements me not reviews,They are abstracted bm press releasesprovided by vendora, and no endorsement is imptied.
Vendors interested in being included in this feature should send press releasesto our editorial offices,

Product Announcements Dept., 91 Second Ave.,Ottavq Ontario KIS 2H4, Canada.
GRAPHICALCLASS LIBRARY
ObjectBits 2.o is a sophisticated class library that permits ad-

vanced programmers to create graphical applications effec-

tively in the ObjectWorks\Smalltalk Release 4.1 environment.

Programmers can understand it quickly and use it easily be-

cause it is implemented using purely Smalltalk technologies

and methodologies. ObjectBits is implemented in a modular

fashion and features components such as 2-D and 3-D charts,

gauges, geometric figures, and bit and image editors. Object-

Bits 2.0 is available on the Sun SPARCstation, HP 9000 series

70, IBM RS/6000, and Macintosh platforms.

Fuji Xerox Information Systems, Tokyo, Japan

81 ,3.3378,WP4 (V), .91.3 .3378,7259 (fJ

GUI BUILDERFOR SMALLTALKAPPS
Object Technology International (OTI) and Objectshare Sys-

tems have announced a new version of WindowBuilder that is

integrated with ENVY/Developer, The two companies will also

cooperate to ensure that future releases of their respective

products are compatible.

The new version of WindowBuilder will be available in the

format of an ENVY/Developer library. Previous versions of the

two products required an integration effort by the customer be-

fore they could coexist in the same Smalltalk image. Customers

will now be able to load and unload WindowBuilder into their

ElNVY/Developer environment with no additional effort.

ENVY/Developer is an integrated multiuser environment

for large-scale Smalltalk development. It provides a highly pro-

ductive team programming environment that supports the

prototyping, development, release, and deployment of

Smalltalk applications. The product’s features include configu-

ration management, version control, support for multiplat-

form development, performance profiling tools, a high-speed

object storage and retrieval utility, and packaging tools for pro-

ducing standalone executable.

WindowBuilder is the leading Smalltalk product for build-

ing graphical user interfaces. Developers can quickly construct

sophisticated user interfaces for their end- user applications,

The result is less manual programming and tedious layout

when developing applications with windowing front-ends.

WindowBuilder is available for Digitallc’s Smalltalk/V for Win-

dows and Smalltalk/V for 0S/2.

Objectshare Systems, San Jose, CA

408.727,3742 (V), 408,727,6324 (fI
20
BUSINESS RE-ENGINEERINGMETHODOLOGY
CONSTRUCT is a leading-edge business re-engineering

methodology that integrates all three facets of a business—

strategy, operations, and information systems, to help compa-

nies manage change. CONSTRUCT is the first methodology to

enable companies to define their fundamental purpose and en-

sure that all work performed in the organization has a demon-

strable link to that purpose. In addition, CONSTRUCT is the”

only methodology that incorporates Business Works, an ob-

ject-oriented software tousled developed by ParcPlace Systems

that enables companies to refine strategy and rapidly translate

it to every element of the business.

BusinessWorks is based on ParcPlace’s VisualWorks, an

ADE for creating graphical, client/server applications that are

completely portable across PC, Macintosh, and UNIX sys-

tems. VisualWorks’ database access capabilities allow develop-

ers to combine the power of hierarchical, relational, and ob-

ject-oriented database systems with object-oriented

programming technology for client/setwer applications. Visu-

alWorks is based on ObjectWorks\Smalltalk.

Gemini Consulting, Morristown, NJ 07960

201,285,9000 (V), 201,285,9586 (f)

AUTOMATICDOCUMENTATIONTOOL
Synopsis for Smalltalk/V provides an automatic class docu-

mentation tool for development teams using Digitalk

Smalltallc/V. The automatic documentation of Smalltalk classes

allows development teams to eliminate the lag between the

production of code and the availability of documentation.

Using information already present in the Smalltalk/V environ-

ment, Synopsis automatically generates class documentation

for any class in the system. Class documentation takes the

form of a summary, made up of class comments, comments

about variables, and documentation strings from class and in-

stance methods. These summaries are similar to what you find

in the Encyclopedia of Classes section of any Digitalk’s

Smalltalk/V manual.

With Synopsis, any effort by developers to improve class or

method comments in the code is immediately reflected in the

net class summary generated. Therefore, documentation lag

time is minimized. In addition, documentation time is reduced

because a large part of the work is done once during coding.

Synopsis .%fb.vare, Raleigh, NC

919,647.2221 (V), 919,847.0650 (f)
THESMALLTALKREPORT

—.. -

—. —— . . —- . .
OBJECTTHINK
Peter Coad and Jill Nicola have just completed a new book

titled Object-Oriented Programming. The book teaches “ob-

ject think,” the thinking stategies necessary for effective use

of object technology. It also teaches how to program effec-

tively using the two leading object-oriented programming

languages: C++ and Smalltalk. The OOP book consists of

four large examples: a counter, a vending machine, a sales

transaction system, and a traffic flow management system. It

introduces strategies and language details just at the moment

each can be applied with success. According to Fotios Sk-

OUZOS,IS Director at Falcon, “The 00P book has quickly be-

come the most consulted desk reference within my develop-

ment group.”

The book is available from Prentice Hall technical bookstores

or directly from the authors at Object International.

Object International, Austin, TX

800.362,2557 or 512,795.0202 (.),51 2795,0332(0
MAY 1993
00P WORKBENCHFOR MACS
SmalltalWgents for Macintosh is an object-oriented software

development workbench and application delivery tool with ad-

vanced computing capability.

Based on a superset of the Smalltalk language, Smalltalk-

Agents has extensions patterned after C and LISP, and fully

supports the Macintosh toolbox including traps and callbacks.

It provides a powerful new set of tools which greatly increases a

programmer’s productivity. SmalltalkAgents possesses ad-

vanced computing capabilities such as dynamic linking, true

preemptive interrupt-driven threads and events, transparent

memory management, a 24-bit international character set sup-

porting Unicode and Worldscript, and a rich class library.

SmalltakAgents requires a Macintosh with at least a 68020

CPU, 5 MB of RAM, and a hard disk. All features are fully

functional with System 7 and 7.1, with limited support for

System 6.0.7.

Quasar Knowledge Systems, Bethesda, MD

301,530,4858 (v), 301.530.5712 (t-J
—

Excerpts from industry publications
SPECIFICALLY SMALLTALK

One of the more significant happenings this year has been the

emergence of Smalltalk as an application development envi-

ronment for commercial application developers. American

Airlines, for example, has deployed a commercial system to

manage the resources required for all flights worldwide. This

high-reliability, high availability distributed system was pro-

grammed in Smalltalk and is considered a major success.

1992 was also the year that Smalltalk companies got pro-

fessional management. . . . The other challenge facing new

professional managers of Smalltalk companies is that MIS

directors can be very demanding to do business with. They

demand services and insist upon delivering new products on

or about the published schedules. As they evaluate

Smalltalk, they see a lot missing. The challenge for the next

couple of years will be to rapidly add capability without los-

ing focus. Development environment companies should

build strong development environments and kernel classes

for their language. ., .

Just as Smalltalk has begun to creep into mainstream

businesses, the harsh, cruel realities of using C++ as an ap-
plication development language have been felt in company

after company. while C++ can be used as an object-oriented

language, it typically is not. Rather, it is used as a more

complex C with esoteric new features that someday must be

understood. . . .

A rather startling change has been in the paychecks of

highly competent O-O designers and developers. Some have

doubled; a few have tripled in the last year. Companies are be-

ginning to recognize that someone who really knows existing

object- oriented libraries and tools can be worth more than five

greenhorns. For this time-to-market advantage, they are will-

ing to pay handsomely. I have seen individual Smalltalk pro-

grammers working for $2,OOOper day on long-term contracts

and Objective-C programmers making a salary of $200,000 per

year, and this trend will accelerate.”

MIS radar detects o~ects for the first time, Tom Love, HOTLINEON

OWECT-ORIENTEDTECHNOLOGY,February 1993

Current technologies for packaging class libraries have sev-

eral problems; the most important is that they are highly lan-
.— ——

21

SMALLTALK

DESIGNERSAND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smalltalk
Professionals in Various Regions of me Country,

mA

Salient Corporation...
.%nalltalk Professionals Specializing in the

Placement of %nalltalk professionals

For more information, please send or FAX your resumes to:

Solktt Carporattan
316 S, Omar Ave,, Suite B.

Los Angeles, California ml 3,

Voke @13) 6Mk4001 FAX (213) 6S0-4030

The companyisCAP GEMINI AMERICA, And—forIS pr-

ofessionals who seek a higher Icvcl of challcngc and reward—

there’s simply no better cbnicc.

Object-Oriented Developers C/C+ +
Expcricncc the challcngc of workink as a consultant involved

in utilizing Smdltalk in object-oriented systems analysis, design,

programming as well as participating on teams preparing client

proposals and presentations. Wc seek individuals who possess

at Icasr 1-5 years ❑f cxpmicncc in Smalltalk and/or C + +.

A vital, growing rrtcmbcr ofrkc CAP GEMINI 50GEll Gmup-

thc fourth largcsr information scrviccs company in the world—

CAP GEMINI AMERICA offers strong carccr dcvclopmcn[

backed by the rcsourccs of an international Icadcr. Please send

resume to Scott Mylchreest,Human Resources,CAP
GEMINIAMERSCA,25 CommerceDrivq Cmtiord, NJ

07016. Wcarc an Equal Opportunity Employer.

———...—_...
■ HIGHLIGHTS (CONT’D)
guage biased. Class libraries developed in one language can-

not be used with other languages. For example, a class li-
brary developed in C++ cannot be used by a Smalhalk pro-

grammer, and a Smalltalk library is of no use to a COBOL

programmer. The System Object Model (SOM) is a new

packaging technology designed to address this and other

packaging issues. . . .

In the current version of SOM as released on 0S/2 2.0, we

provide full tool support for only C language bindings. . . . We

also have experimental C++ bindings, designs for Smalltalk

bindings, and binding to an experimental object-oriented ver-

sion of REXX.

Developing with IBM’s System O&ct Model (SOM), Roger Sessions,

First class, OMG NEWSLEWER,Feb/Mar 1993

[Mel Beckman, Duke Communications Int’1.]:One brass-

tack thing you can do to improve your professional perspec-

tive is to buy Smalltalk/V for the Mac or PC and go through
22
the tutorial. In about a week of evenings, you will pickup

more insight into object-oriented programming and where

new design programming is headed than you will in two or

three seminars. . .

[Nick Knowles, Steam Intellect, Ltd.]: We maybe hearing

about C++ from IBM Toronto, but we are also hearing about

Smalltalk from Rochester. Smalltalk is probably a better fit for

high-level business problems. C++ may give better perfor-

mance for low-level tools. . .

[Paul Conte, Picante Soflware]:. . . What’s important is to

pick a language that lets you go through the exercise of build-

ing something with objet-oriented techniques. Then you’ll see

that while object-oriented languages may help solve some syn-

tactic-level problems and code-organization problems, these

languages lead to another generation of problems—the cre-

ation and management of class libraries. . .

Roundtable 1992: Change and challenge, Dale AggeL

NEWS 3X/400, 12/92
.- -..——— --- .—- —

THE SMALLTALK REPORT

■ SMALLTALK IDIOMS

., .continucdfiom pngeJ7

■ THE BEST OF COMP.LANG.SMALLTALK

continued from pageJg
tern, please pass them along. You’ll find my address at the end

of the article.

CONCLUSION
Instance specialization has a place in the toolbox of every expe-

rienced Smalltalker. You won’t use it every day—maybe not

even every year—but when you want it, nothing else will do.

The implementations for VisualWorks and Smalltalk/V 0S/2

2,0 are quite different, but they present the same external inter-

face to the programmer.

The contrasts between the implementations hint at funda-

mental differences in approach between Digitalk engineering

and ParcPlace engineering. I will explore the practical conse-

quences of this difference in future columns. ❑

Kent Beckhas been discoveringSmalltalkidiomsfor eightyearsat Tek-

tronix,Apple Computer, and MasPar Computer. He isalsothe

founder of FirstCkn-sSoftware,whichdevelopsand distrs”butesreengi-

neeringproductsfor Smalltalk.He can be reachedat First Class Soft-

ware,P.O. Box 226, Boulder Creek, CA 95006-0226, or at
408.338.4649 (phone), 408.338.3666 (@x), 70761,1216 (CompuServe).
MAY 1993
In general, however, I think this technique is inferior to

simply restructuring your code to have an inner method

that can perform the loop and that can return from the

loop when needed.

In the end, I have to agree that restructuring the code is usually

the best solution. The number of different possibilities avail-

able does serve, however, as a reminder of the powerful facili-

ties available in Smalltalk. ❑

ERRATA

Jon Hylands, an alert colleague who obviously reads my

columns very carefully, has pointed out an error in a recent

column on copying (February 1993). I had said that adding

named instance variables to indexed collections in ParcPlace

Smalltalk required overriding the grow method to copy these

variables. In fact, the method that should be overridden is

copyEmpty, which will be called by grow.

Alan Knight worksfor The ObjectPeople,509-885 Meadowlands
Dr., Ottawa,Ontario, K2C 3N2. He can be reached at 613.225.8812,
or at knight@mrco.carleton.ca.
23

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smallta/k/U

Whether you’re launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either wa~ you ’11learn from a

staff that /itera//y wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
SmalltalWinside out, because
we ‘ve been developing real-
world applications for years.

The result? You’ll absorb
the tips, techniques and
strategies that immediately

reduce your learning curve,
and you’ll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

Digitalk5 training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance,
Puget Power& Light, U.S.

Sprint, plus many ;thers.
And Digitalk is one of only
eight companies in IBM5
International Alliance for
AD/Cycle—lBM’s software
development strategy for the
19905. For a full description
and schedule of classes, call
[800) 888-6892 x411.

Let the people who put
the power in SmalltalkA/ help
you get the most power out of it.

boost your productivity You’ll

1A~Dl[ammq A

	By Article Title
	Breaking out of a loop
	Classic Smalltalk bug
	Don't use Arrays?
	Instance specific behavior: Digitalk implementation and the deeper meaning of it all
	The Smalltalk standard: Technical aspects of the common base
	The incremental nature of design

	By Author Name
	Beck, Kent
	DeNatale, R. J.
	Ewing, Juanita
	Johnson, Ralph
	Knight, Alan
	Shan, Y. P.
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	Getting Real
	Putting it in perspective
	Smalltalk idioms

