
The International Newsletter for Smalltalk Programmers

January 1993 Volume 2 Number 4

TAKING

E

ByBob

Features

1 Taking
Part 2

by Bo

6 Minima

by Ma

Columns

10 Smallt

Smallta
by Ken

12Getting

Smallta

by Jua

14 The B

by Ala

Departme

16 Produc

18 Highlig

n thu last issue (NtIv./l)ec. 1992 SMAI. I:rALK l{ EPORT), we described

the systc]n-indc]>elld ellt parts ot”c>ur implementation of an excep-

tit)n-honclling systtml. This month’s article descril>es those parts of

our i[ll~llclllcllti~ti(~ll that rely CJI1Smalltalk V/286 specifics, with

c

h

n

in

t

l

o

ti

d

c

i

;~

;

XCEPTIONTO

SMALLTALK,

PART 2

Hi/zkle & Ralph E. Johlzs(]rl

Contents: ““--”

/Articles

❑
process sta

ill colltcxts.

useful and

‘~he first ~

ties, includ

fit fiIIy poin

dcvclt)}>cd

dler, LISCSc

The last

class Excep

Context, an

these clfiss

c(]lltexts cf

illl}]lc]llcllt

the fullc[ion

THE MACH
errception to Smalltalk,

b Hinkle & Ralph E. Johnsor

list instruction for Smalltalk

ry Beth Rosson

alk Idioms: An Objectworks\

lk 4.1 wrapper idiom
t Beck

Real: How to create

lk scripts

nita Ewing

est of comp.lang.smalltalk

n Knight

nts

t Announcements

hts

Wrestill Ilccd

turn. Each o

We bcgil

to tiIld the c

plemented ;

fetchHandL

startCo

(ct

‘nil

III gclltral,

stollcc varial

is LIscd to itc

cacb ct)lltcxt

cxccptioll; t

dle:do: wfis

accepts: met

thr handlerC
sL]ccial emt~hasis 011contexts, We will describe the architecture [If

ks, how contexts fit olltt) thot st~ck, and hnw tempc~raries are laid out

‘l”he al)ility [() cxamillc ancl monipukrte contexts is bc]th powerful and

as bccIl cxpl~)itcd in IW(J()[her programming eff(]rts that we know of.

d fnreml)st is the system del]ugger, which uscs all of contexts” capabili-

g the moditicatioll” {)floca] variallles oIld the resumption of execution

in the st~ck. The (Jthcr example is o l]acktl-acking system for Smalltalk

>y}Yilf LaLolldc Jlld Mark Van C;ulik,l which, like [>ur exception han-

ntexts [O implement Iloll-stallclard c(~ntrol flow.

fcw picccs to our illl}~lenlclltztioll arc systern-specilic methods in the

on, rxtensic)ns tt>the fi.llldan]tllti~] classds Process, Context, and Home-

the addition of three ncw cuntcxt-rekstecl cl:~sses. The changes in

s arc cxtcllsions to l)igitillk’s base that make processes and particularly

sicr tt) work with. “l”hesame ch~lnges might not l>e necessary in another

tit)n ofSmalltalk; ill p~rticulfir, ParcPloce’s Smalltalk-8(1 provides all

llity wc Ilccd aIld more.

INE-DEPENDENT IMPLEMENTATION

three Exception nle[hods tu dcscril)c: fetchHandlerBlock:, restart, and re-

f these methods depends (>11st)me s~>cciticaspects (}fV/2N6.

l with fetchHandlerBlock:l [he method used by propagatePrivateFrom:,

orrect halld]cr for the receiving exceptioI1. FetchHandlerBlock: is im-

1s:

erBlock: startContext

ntext sendersDo: [:ctxt I

xt selector== #handle: do:

and: [ctxt receiver accepts: signal])

iffrue: [handlerContext := ctxt,

‘ctxt at: 4]].

startContext will lIC the ~rillll~ (]fthc exceptil>ll’s signalConteti in-

lle, which is the cOI1[CX[[)([hc raise message. ‘l”he messfige sendersDo:

ra[c LI(JWI1[he colltcxt stack t’rom startContext, applying the block to

in tLlrll. The I>lock checks each colltcxt I()()killg f(>r a h~lldler for the

he’ col-rt’cl Ilalldlcr ~.(]]lt~,xtwill l>c the first OIle l-cached where han-

scllt to the cxccp[ioll’s sig]lal t)r OIICt)f its parcllts (which is what the

hod checks for). Llrhen sllch ;I colltcxt is found, it’s rcmemhered as

ontext, and the ol~jc~[ill i[s [OLlrth slot is rctLlrllcd. ‘~his ol]jec[will be
,.,,,,li,,,,,.,1(,,,/,,lC(I,4,,.

The smamau RepoIt
Edton
ahn Pugh and Paul White

:arlamn Llnlvemizy& The Ob+xs People

SIGS PUBLICATSOW
EDITORS’
CORNER

John Pugh Paul White
 Advisory Board
Tom Atwood, O@CS DIZS@n

Grady Booth, Radonal

%orga Boswotth, Dl@alk

hd COZ Informadan ~ Consulting

Chuck Duff, The Whltewmar Group

kdele Goldberg, ParcFiaceSymems

rom Love, o@va-
3at-ztand Meyer, fss

~elhr k@-jOfWS, W.y!and SymEII’M

b2sha I%U2sp, GnterLine SOftwm

‘. Michael Seashols, Vemm

~me S-mfp, AT&T S4 b

>ave Thomas, ObIEm Technology Imet-nmiond

THE SMALLTALK REPORT

Edtirial Board
im Anderson, Of#k

4dele Goldbe% F%rcMacesymwns

bed Phillips, Knowiedga SystemsCarp.

Wm Taylor, Dlglralk

>w2 ti~ Obj.T.h~ lmermdwd

ColumnMa
(antBeckFirstclass wtwwe

uanka Ewing, Dlglulk

Sw Hendley, Knowledge Systemscm.
idKlimsis, Llnea EngineeringInc.

41an Knlghs, Grtesan Univedzy

iic Smith, Knowledge SyssemsCorp.

{ebecca Wlrfs-Bmck, D@jmlk

51GS Publications Group, Inc.
Uchard P. Friedman

uundar h Group Publkher

ht/Production
(dstlna joukhadar, Manqhg Edkar

b3ncuH@n, Rt@n RU21d,LdCreatrmoireak

(area Tonglsh, pmducdan Edkm

ennlfer Englander, ArtiProd. Cmordlnamr

Circulation
h MerEadqFUMSmelnf’taM&
ohn !khreiber, Circubden ,%ismm

/lcld Monck C!rculas@nAssismnt

%rketlng/Advertlslng
)kaneMe471mk~ngF@—k Gfmrca+
iotyMeinrmr,M1lrg Plgr-w.cD2srlEur0pe
+3kalFhVll1’g6dlHdkam12%kIr.laqW
iarahHmamr$RUnWdUMr%-q’a~ru
- Lyiq Pmmdam Ma-uge&ldemn.

ti Pcdner, Pmmodon$Gmpbk Amkr

Ndmlnistrtation
>smma Tornoum, BusinessManager

lavid Chmserpaul, Accwndw

MeJOhr’asor4 Ca&rmca Manager

hly Baird, Technical Prosm-n Manager

irny Friedman, PMIeCm Manwr

%rgherlra R. F10nc14
Awnl Manager
m malltalk has many advantages, but what about all these stories ofpeglormance problems?

b= This is a common refrain among companies considering Smalltalk as a mainstream devel-

opment vehicle and certainly a common battle song for those who feel compelled to enter

the language wars debate on the side of C++, We’ll stick to the high ground and steer clear

of language comparisons. Experienced Smalltalk programmers know that the time taken

to produce a working application is of paramount importance and can often be cut by an

order of magnitude by using a productive progrrursming environment. We know that the

performance of most systems can be improved enormously by examining the small frac-

tion of the code where the application spends most of its time. Performance problems are

most often due to the implementors selecting a bad design or choosing an inefficient algo-

rithm rather than any deficiency of the programming lsmguage.

What’s the reason for this diatribe? Well, most companies considering Smalltalk don’t

have the benefit of our experience. Indeed, many of our readers would also welcome be-

ing able to share in the experiences of others. We would like to solicit “experience re-

ports” for publication in THE SMALLTALKREPORT that focus on practical issues. Perfor-

mance is but one topic of interest. Here’s a list of others to get you started:

. The use of Smalltalk in domains as diverse as banking and computer integrated manu-

facturing.

. Reuse. What has been achieved? How quickly has it been achieved? What mechanisms

were used to promote use?

. Whan performance problems have arisen, what has been their cause and what steps

were taken to identifi and rectify the problems?

. Experiences in linking Smalltalk with existing legacy systems.

. Experiences in linking Smalltalk with components developed in languages such as as-

sembler, C, or COBOL.

“ Experiences in proting Smalltalk applications from one platform to another.

“ Experiences in using team programming tools.

. Experiences in managing large Smalltalk projects.

“ What metrics are useful? Have useful metrics emerged from projects?

“ What 00A and 00D methodologies are being used in Smalltalk projects?

Last month, Bob Hinlde and Ralph Johnson described the system-independent com-

ponents of their exception handling system. In the second and final part of “Taking Ex-

ception to Smalltalk,” Bob ans Ralph complete their description by describing the compo-

nents of the system that are specific to their target environment, Smalltalk/V 286. These

articles have again highlighted one of Small talk’s often overlooked advantages; the fact

that “system” components such as processes and contexts are Smalltalk objects. This

means that they can’t be manipulated like any other Object in Smalhalk and permits

Smalltalk programmers to augment Smalltalk with new “control-flow” facilities such as

backtracking and exception handling. Look for more articles from Bob and Ralph on the

reflective nature of Smalltalk in future issues.

In our second feature article this month, Mary Beth Rosson from the IBM T.J. Watson

continued on page 18
Thr SrnalltdkRCF.XI[lSSN# 1056-7976)ispublished9 rims a year,CVmymonth CXmpt[or the hia.r/Apr,July/A.g, and NovID= uxnbin.d issues,Pub-
Iishrd by SIGSPubli.ati.ns Group, 580 Broadway,NW York, NY 10012(212!274-0640.~ CopyriEhl1993by SIGS P.blimti.ns, I.c. All ri~ts reserved,
Rqrodwtion of thisrnmmialhy Awr..ic uanwniwion. Xmmxw any.tht-r rndh.adwill h lrtakd .s a willful viola[ion .(rhe US Copyrightlaw and is
flallypr.hibih-d .Makrid maybe repr.d. m-dwilh expresspermi=i.n from lhe publishers,Maikd FirslClass,S.bs.ription raks I ymr, (9 iwxs) d.rnm-
Ii., $65,ForeignandCanada,590,Single..py prim, s9,00,POSTMASTER Sendaddrms,ha.gcs andAs.ripti.. ordersto THE SM.N.LTALK REUN(T, S.b-
wriber SCMCes,Dqm. SML, P.0, Box3cQ0,Dmwille,NJ07#34.Submitarticlesm thf Editorsal 91 %..nd Aw..c, Ottawa,Onmrio KIS 2H4, Canada,

hSnhnr60fJwwww OeJscFOmmmn WXWMMIN
EJECT MAGAZINE, HOTLINE ON OBJECT-ORIENTE
!CWOLOGY,THE C++ REP&T, TFE SMALLTMK-r+
E lNlEw4- 00P kfcwtf, and THE XJwaU

2 THE SMALLTALKREPORT

,*=w

-a

ENWZDeve/cpe~The Proven Standard For
An Architecture You Can Build On
ENVWDeveloper is a multi-user environment
designed for sesious Smalltrdk development.
From team programming to corporate reuse
strategies, ENVYIDeveloper provides a
flexible flamework that can grow with you to
meet the needs of tomorrow. Here are some of
the features that have made ENVYtDeveloper
the industry’s standard Smalltalk development
enviromnenk

Allows Concument Developers
Multiple developers access a shared
repositcny to concurrently develop
applications, Changes and enhancements are
immediately available to all members of the
development team. This embles constant unit
and system integration and test – removing
the requirement for costly error-prone
load builds.

Smalltalk Development
Enables Corporate Soflware Fleuse
ENVY2’Developer’s object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creates
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, while increasing application
reliability.

Oflers A Complete Version Control And
Configuration Management system
ENVYIDeveloper allows an individual to
version and release as much or as little of a
project as required. This automatically creates
a project management chain that simplifies
tracking and maintaining projects, In addition,
these tools also make ENWIDeveloper ideal
for multi-sb-eam development,

Provides ‘Real’
Multi-Platform Development
Whh ENVYLDeveloper, platform-specific
code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

Supports Different Smalltalk Vendors
ENVYLDeveloper supports both
ObjectworksWmalltalk and Smalltalk/V,
And that means you can enjoy the benefits
of ENVY/Developer regardless of the
Smalltalk YOU choose.

For the last 3 years, Fortune 500 customers
have been using ENVY/Developer to deliver
Smalltalk applications. For more information,
call either Object Technology International or
our U.S. distributor, Knowledge Systems
Corporation today!

Q@
Ols#BclTechnology OnaweOmce PhoenixOffioe

ls -

Kmwts@? 114MacKenan Drive, Suite 100

IntemelionelInc Phone(613)UU-120U Phorts(602)222-9519 Cary,NorthCarolina27511
2670CluatnsvimvDrive Fax(613)820-1202 Fax(602)222-3533 CswporatlonPhone(919)481-4003
Olfawa,OntarioK2B8KI E-mail:info@ti,on.ca FaK(919)460-9044

-is a mjs!md IradmmtalObpdTmhnologyIkdwnafiomlInc,Allolharbrandad pducl rrmm araragiskMTrademarks01Ihai MWW mxnpanim.

■ TAKING EXCEPTION TO SMALLTALK
.mntinuedfim page1

the block that was passed as the first parameter of the

handle: do: message. It is fourth because of the order Digitalk

stores local variables in contexts, with first slots for block ar-

guments in reverse order of their appearance, followed by

temporaries in reverse order, then parameters in reverse or-

der. Figuring this out requires some knowledge of the context

layout in V/286; we’ll describe that in more detail when we

discuss contexts below.

The return method is implemented in terms of retumDoing:,

which itself is implemented as follows:

retumnoing: aBlock
“Thestack is unwound to the context of the handle:do:
messagethat caught this Exce@on, at which point
aBlockis evaluated and its value returned as the value
of the harrdl~do: message.”

I arrswerI
answer:= aEllockvalue.
self handlerContextunfidLaterContexts.
(self handlerContextati 2) value: answer

This is analogous to the implementation for proceedDoing:.

The only difference is in accessing the block that will (when

evaluated) return into the right context. In this case retum-

Block is stored in the handler’s context (recall our definition of

handle: do: from Part 1 of this article) and is accessible in the

second slot of the context’s array of temporaries. So evaluat-

ing the retumBlock returns from the handle: do: context as de-

sired. As with proceedDoing:, though, the method must call un-

windLaterContexts first to make sure unwind blocks are

evaluated.

Implementing restart relies on restartslti, a Digitalk-pro-

vided method for class Process, as seen in the following code:

restart
“Restartthe #handle: do: context.”

I index process I
handlerContext unwindIaterContexts.
process :=handlerContextprocess.
index:= process frameIndexOEhandlercontext.
process restarMti index

This method makes a process restart execution at an arbi-

trary context in its context stack. First, as before, the exception

unwinds all contexts above its handlercontext. The exception

then finds the handlerContext’s index in its process, and tells its

process to restart execution there.

To motivate the changes to the Process and Context classes, we

need first to describe how these classes relate in the base system.

Process in V/286 is a subclass of OrderedCollectiom its indexed in-

stance variables are used to store information about the stack of

r.mresolved message sends. Conceptually, we think of each mes-

sage send as being represented by a Contti object. However, for

optimization purposes, V/286 only creates HomeContexts for cer-

tain method invocations. (In particular, they create a HomeCon-

text only if the method that’s evaluated contains a block-) This

dual representation is potentially troublesome, so we hide it be-

hind two new context-related classes. Before looking at these

classes, though, we need to understand the layout of Process’
4

stack. Each message send receives a stack frame of five or more

slots on the stack, with the layout shown in Figure 1.

Each stack frame begins with the frame address of the previ-

ous message. This frame address is unique for each message

send and persists as long as the message is on the stack. In ad-

dition to this address, message sends can be referenced by their

frame index, which is the message send’s position on the stack.

The topmost (i.e., most recent) send is at frame index O, the

previous send is at index 1, and so on.

Ailer the frame address comes the byte array (Smalltalk’s

compiled representation of the method), the compiled

method, the instruction counter, and the message’s receiver. If

a HomeContext exists for the frame, it will be stored in the sixth

slot. If there is no HomeContext for the frame then there will be

slots for each of the parameters and temporary variables (in

the same order referred to above: block arguments in reverse

order followed by temporaries in reverse order followed by pa-

rameters in reverse order).

The Process class provided by Digitalk comes with a

method, contextFo~, which returns the context for a given

frame index. This has two problems for our purposes: First, the

context may not exist, in which case nil is returned; second, the

context returned for blocks (instances of class Context in

V/286) is their HomeContext, which is not the same as their

frame on the context stack; and third, since the frame index

changes as execution proceeds, we really need to use the fi-ame

address to identify our contexts. So we added three methods to

Process indexOfAddress:, frameContextFor:, and groundedCon-

textFo~. The method indexOfAddress:, which converts a frame

address into a frame index, first checks if the input frame ad-

dress matches the address of its top frame. If it does, the receiv-

ing process returns O as the associated frame index. Otherwise

the process returns the index of the first frame whose frame

address matches the input.

~ topFrame
Frame Frame Address for 1 _
Index
n Byte Array I I

‘E%==
I Home Context I

t===+

Frame
Index .

2 . r
I

.

I
Figure 1. Prowss stack layout.
THE SMALLTALKREPORT

irrdexOfAddress:frameAddress
I index address I

frameAddress= topFrame
it’1’rue:[“0].

index := 1.
[address := self frameAt:index -1 offset O.
frameAddress= address]

whileFalse:[
address = O

ifhue: [Ardl].
irrdex:= index + I.

1.

‘index

We discovered the need for the frarneContextFor: method by

trial and error. We had problems in an early version of the sys-

tem with the fetchHandlerBlock method because our search

down the context stack would sometimes skip over one or more

contexts and occasionally fail to find the right exception han-

dler. We found that contextFon was the culprit because when

called on the index of a block’s stack flame, it always returns the

block’s HomeContext, while we wanted the frame for the block’s

own activation. The frameContext-Foc method overcomes this

problem by only returning the HomeContext if it exists and if the

stack frame in question is its own home frame, as follows:

fnuneContextFor frameIndex
“shmverthe context object fromthe stack frame at
frarneIndex,but only if that stack frame is its own

home frame, In particular, don’treturn the HomeContext
for a block’sframe.”

“(self methodk frameIndex) hasBlock
HTrue:[

(self homeFrarneOtframeIndex) = frameIndex
ifllue: [self frameAt:frameIndex offset 5]
ifFalse: [nil]]

ifFalse: [N1]

The other addition to Process is a method called grounded-

ContextFo~-an extended version of conterrtFo~., from which

grormdedContextFo~ differs only in that it always returns a con-

text-like object, whether or not a reaJ HomeContext exists for

the frame requested:

groundedContextFo~frameIndex
I context frameAddressI
context:= self frameContextFocframeIndex.
“context isNil

ifTrue: [
frameAddress:=

(frameIndex= O)
ifltw [topFrame]
ifFal.se:[selfnerrtFrameAti

frameIndex- I].
framwlddress = O

ifhue: [nil]
iffak [PseudoContext

forFrame frameAddress
forRocess: seUl]

ifFalse: [GroundedContext
forcontexh context
forprocess:selfj

This method makes use of the two new classes we added. A
JANUARY1993
GroundedContext object is returned when a real HomeContext is

available for the frame. (We return a GroundedContext rather

than the HomeContext itself because GroundedContexts have ad-

ditional behavior—they particularly have an instance variable

for the process they belong to.) when a real HomeContext is not

available for the frame, frameContext-Fon returns nil, and in that

case the method creates a PseudoContext object. This object

knows only the frame address of the frame it represents, but

using the frame address it can behave exactly like a normal

context. Thus, PseudoContexts and GroundedContexts seem

identical externally, hiding the difference between those frames

with and without HomeContexts.

PseudoContext and GroundedContext are designed to fulfill the

same interface, so we also created an abstract class called Ab-

stractConte~ which is a common superclass for the two.

AbstractContext defines the interface and implements a number

of methods by depending on a few methods from its subclasses.

In particular, it defines the method unwindI.aterContexts as:

umvirdatercontexts
“Searchdownthe stack, starling with the current
context, evaluating the unwindBlockin every
Contex&valueOnUmvindDo:or
ContexG+valueNowOrOnUnwindDo:context. Stop at
the receiver,”

151
seLfthisContext

sendersDo:
[:ctxt 1
ctrrt== seHifhue: [Asetfj.
(ctxt receiver isKindOf:Context)

We: [(s := ctxt selector) ==
#valueOnUnwindDo:
*e: [(ctxt ati 1) value]
ifFalse [s== #valueNowOrOnUnwindDo:

ifTme: [(ctst ah 2) vahre]]]]

This is similar to the fetchHandlerBlock: method. It looks

down the message stack starting at the current context, looking

for any context for the valueOnUnwindDo: or valueNowOrOnUn-

windDo: messages. If it finds one, it evaluates the unwind block,

which is available in the first slot of the valueOnUnwindDo: con-

text or the second slot of the valueNowOrUnwindDo: context.

In addition, AbstractContext defines the sender method as

follows:

sender
~rocess groundedContextFor

(processhrdexOfAddress:self address)+ I

AbstractContext defines the at: and akpuk methods to pro-

vide access to its underlying context’s array of temporary vari-

ables, The at method is implemented as:

at: anInteger
1index 1
index :=process indexOfAddress:self address.
‘process tempAti index numbec anInteger

at:puti works the same way except that it stores into the slot

continued on page 9
5

MINIMALIST
,—.—

lNSTRU~IONFOR
.—

SMALLTALK
— ..—

Ma~ Beth Rosson
~ s the object-oriented paradigm’s potential begins

WA the use of Smalltrdk or oth;r object-oriented l;n-

to be realized in commercial development (see

Bran Selic’s article in the September 1992

SMALLTALKREPORT), companies are exploring

guages in their own development activities. A major roadblock,

however, is still the training of developers: Learning Smalltalk

requires much more than simply learning the syntax or even a

rich class hierarchy—it involves internalization of an entirely

new approach to software design. For the last several years, our

project at the IBM T. J. Watson Research Center (involving

John Carroll, Sherman Alpert, and Kevin Singley) has been de-

veloping an instructional approach to Smalltalk for building an

understanding of object-oriented design from the very start.

THE LEARNING CONTEXT

Our project began by considering a critical group of Smalltalk

learners—professional programmers already experienced in

the use of procedural languages. These potential users repre-

sent the bulk of the commercial soflware development popu-

lation and are likely to have significant technical credibility in

their organizations; they would thus have a major impact on

decisions concerning adoption of this new technology.

Experienced professional programmers are experts

confident of their abilities to design software solutions to just

about any problem. They typically have learned many lan-

guages during their education and careers and have high ex-

pectations about their abilities to acquire new languages. They

are attracted to new tools, especially ones that promise to

speed up or otherwise facilitate the process of designing and

implementing software.

Most experienced programmers initially approach

Smalltalk with enthusiasm. Indeed, a first encounter may

seem promising Smalblk syntax is not especially exotic and

our observations suggest that an experienced programmer can

make some sense of Smalltalk code with little specific instruc-

tion (e.g., recognizing that a temporary variable is being ma-

nipulated and then evaluated via a conditional expression).

Problems arise when programmers attempt to trace through a

bit of code involving one or more instances of other classes. At

this point, learners are confronted by the extensive class hier-

archy and realize how little they understand the objects that

might participate in a typical Smalltalk application. Worse,

the skills needed for tracking down this information (e.g.,
6

heuristics for identifying collaborating objects) are completely

lacking. The net result is that new users often “disappear into

the hierarchy,” spending weeks or months in aimless browsing

of the methods in one class and then another.

An inability to make progress quickly in learning Smalltalk

is especially frustrating and ironic given Smalhalk’s reputation

as a rapid prototyping environment. New users expect

Smalltalk to help them quickly build and experiment with pro-

totype applications, but they soon discover this “quickness”

comes at considerable cost. Indeed, the classes and frameworks

used for implementing user interfaces, a key aspect of any ap-

plication prototype, are among the most complex in the sys-

tem; new users are typically advised to delay exploration of the

user interface code until they are comfortable with simpler,

more conventional classes like Collection.

The problem here is not simply that user interface functionrd-

ity is inherently complex (this is true, but most expert program-

mers have encountered complex user interface code before). It is

that analysis of an interactive application requires a pre-under-

standing of object-oriented design; how responsibility for com-

plex operations is typically shared by a large number of cooperat-

ing objects, normally instances of classes distributed over

disparate pieces of the class hierarchy and how communication

patterns among these objects are established and exercised.

THE MINIMALIST APPROACH

A traditional approach to the teaching of complex skills like

Smalltalk programming is to decompose the skiUs and knowl-

edge needed into more manageable pieces, and then gradually re-

compose those pieces until (reahstic) complex tasks can be at-

tempted.1 For Smalltalk, this translates into teaching about

syntax, foundation classes, etc., prior to application structure and

the design of new classes or frameworks. Such an approach cer-

tainly seems rational, but can easily backfire. Learners must delay

the gratification that comes from working on realistic projects; if

instruction is not carefully managed, learners may not experience

their work with individual components as meaningful, and may

have difficulty later on fitting the bits and pieces of instruction

into the “big picture” of Smalltalk programming and design.

In the Minimalist model of instruction, knowledge and skills

are not broken into components.z Instead, all instruction oc-

curs in the context of realistic (and hence meaningful) tasks. Of

course, because the goal is to let learners work on realistic tasks

as quickly as possible, and because realistic tasks will be too

complex for a new user, the instruction must provide consider-

able support. In general, it should filter and organize informa-

tion about the new domain so that the learner encounters and

attends to just the new information needed for the task in

progress. The task itself should be chosen and managed to build

on whatever prior knowledge the learner can be assumed to

have, as this will make the task more familiar and simple. To

make the task as meaningful as possible, the instruction should

encourage inferences on the part of the learne~ this will serve to

connect the material being learned to other knowledge and

make it more robust and relevant in future tasks. Finally, be-
THE SMALLTALKREPORT

4!!!!!:Y’’’wu;:d:!::;.
w

. . llp
“ Put related classes and methods into a single task-

oriented object called application.
0 Browse what the application sees, yet easily move code

between it and externalenvironment
0Automatically document code via modillab]e templates.
0 Keep a history of previous vemion$ restorethem with

a few keystrokes,
0 View class hiemrchyas graphor list.
0 Print appJ.ications,classes, and methods in a formatted

report,paginatedand commented.
0 File code into applicationsandmerge them together,
0Applications areunaffectedby compress log change

and many otherfeatures..

class ------------------------------......
! DeletedCktSSeS ~

((

rowsers.. ~Appticati@
<“””--”--””””””””-””””-””--”----”””’

....—.
Yam ~Deleted methods !......................................

mager History — ICode recovery]
..

Utilities - Application printing ~ andmore..

CodeIMAGER& V286, VMac $129.95
~~#3JW@&,,~$~20 &249.95

~~e~e o Jn l-J~ii’mmpy

Im

SixGraphm Computing Ltd.
formerlyZUNIQ DATA Corp.
2035C6te de Liesse, suite 201

9+ EnE%?;:;r::7;E56.,032~AOEli is.IW.m&&ofSti Gra&Com@iqLid.
snutlialk/v i , q. lncknlark OfD~,
cause errors certainly wilJ occur, the instruction should antici-

pate them and provide recovery assistance.

MiiJTS MINIMALl~ TUTORIAL AND TOOLS FOR SMALLTALK

Early interactions with the blackjack application focus on under-

standing how blackjack works at a functional level, A simplified

version of the game (having no interactive user interface) is

played in a workspace by creating objects and sending messages.

The learners are provided with a fltered view of the hierarchy (a

Bittitalk Browser) listing just the most important classes used in

the blackjack game. They are given an example of how to create

a blackjack object and send it messages, then are expected to use

the browser to find additional messages needed to complete the

game. By asking the learners to identi@ and generate the mes-

sage expressions themselves, the instruction encourages infer-

ence as well as the development of browsing skills. The browser

hides the actual code for methods, preventing the programmers

from becoming distracted by efforts to trace the implementa-

tions of messages. The instruction manuaJ is also populated with

various “hints” positioned at likely trouble spots.

Subsequently, learners move to analysis of the complete in-

teractive version of bla&jack. Their interactions with the sim-

plified version are now part of their prior experience and serve

as a foundation from which to understand the more complex

interactive application. They are again supported by the envi-

ronment, in this case the View Matcher tool, which displays and

manages several views of the blackjack application as the game is

played. (In Figure 2 the upper right subpane holds the blackjack

game; the upper left holds a message execution stack; the lower

right holds a filtered browser synchronized with selections in the
—

JANUASY1993
stack and the lower left hokls blackjack-specific commentary.)

One of these views is a Bittitalk Browser (this time including the

user interface classes); using this browser, learners can extend
their model of the black-

jack game to include

user-interface classes,

Analysis of message-

passing patterns among

participating objects in

the blackjack game is or-

ganized by a message ex-

ecution stack, a deliber-

ate attempt to build on

programmers’ general

understanding of execu-

tion stacks. Preset break-

points cause the game to

halt and an execution

stack to be displayed, so

that learners can see

“into” the application to

understand how a vari-

ety of objects are passing

messages to one another

to provide blackjack

functionality. Selection

of messages in the stack

is synchronized with se-
—————_________________________
I

I
I 0,the dealer%hand,an

instanceof WHand

la

the plwer-s hand,an t

intin.e mfSJHand I
I
I

I
I
1

I

&

the players i

i%%
Te.tPane

1

<>

the dealer,an
instancenf SJPlayer

! [the nlavw -- \ \ \ /

,Uthe scam,.“
inswmce.f array

I

I
I
I
I

1

\ /athe window,❑n
instanceof TopPane

f

,——____________________________,

Figure 1. The main objects in the blsckjsck game.
7

■ MINIMALIST INSTRUCTION FOR SMALLTALK
lection of classes in the browser, helping to direct the learner’s

attention to relevant information. Blackjack-specific commen-

tary is provided to help make connections between the visible

state of the game, the message execution stack in place, and the

classes and methods present in the browser.

Only after considerable analysis of the structure of the

blackjack application (and through this analysis, a contextual-

ized introduction to major concepts like class instantiation,

message passing, inheritance, and the Smalltalk/V PM user in-

terface framework) are learners introduced to the actual

Smalltalk “code” implementing blackjack. Consistent with the

minimalist focus on realistic tasks, syntax and code compre-

hension are learned in the context of actual programming ac-

tivities, in which first basic blackjack functionality and then

features of its user interface are enhanced.

After four to six hours of bla&jack analysis and enhancement,

learners have acquired the basics of how to understand and mod-

ify an existing application. Because the Bittitalk Browser and the

View Matcher are built from standard system tools (the class hi-

erarchy browser and the debugger, respectively), learners are

well-prepared to carry out similar tasks in the standard environ-

ment. They are supported in making this transition via several

open-ended projects that point out the similarities between
8

learning tools and the standard environment, as well as introduce

new portions of the class hierarchy through analysis, modifications,

and extensions to additional example applications,

EVALUATING MlllS

We have observed dozens of programmers working through

MiT’TS and for the most part have been pleased at its effec-

tiveness. Well-motivated, experienced programmers can

spend a day or so with MiTTS materials and end up with a

good understanding of the blackjack application, as well as a

general appreciation of application structure and skills for an-

alyzing and modifying applications. As one would expect, the

level of accomplishment varies considerably The most suc-

cessful individuals are those willing to experiment with new

concepts under conditions of uncertainty. Many users find

even our “minimal” instruction too extensive, so we are con-

sidering preparing a version that simply offers example appli-

cations, learning tools, a few orienting words, and some sug-

gested projects.

We have noticed that MiTTS materials support program-

ming by analogy-learners can (and do) use the example ap-

plications as models when new problems are encountered.

This suggests that a simple extension to the work might be to
Elle &dlt Smrslltatk Stack ~asses ~artables Methods Commentanr Arxdlcetions m

BlackJaclO>httMe
BJWlndow)>hltMe

BJWindow(Oblect)> >perfornx Ptayw Dealer

MenuWtndow>>performMenultern a Card

BJWlndov@ppllcaUonWlndow)>>performMenultern 1% I

Message>>petionn
NotiftcattonManageO)empty
NotlficaUonMenageo>mn I I

The BJtlayer adds the card passed

‘~

dealer

as an argument In W message to Its hand

current hand. It also checks to see If inlttallze

Ihe card leads to a blackJackor a
bust If so. It repoRs W to Its dealer.
the BlackJack Instance.

biect

. -.

Card

CardGame
BlackJack

Collection
Indexed Collection
Ordered Collection

,,, J .,.
keflerd atid

“’Mds one card reporting a blac~ack
or bust if it happens.”

Figure 2. The View Matcher,
THE SmLLTALK REPORT

■ TAKING EXCEPTION TO SMALLTALK, PART 2 r~~i~~edfio~puge5

(using tempAtmumber:put:) rather than reading from it. The

definition of the address method used in sender and at:

differs for PseudoContext and GroundedContext, with the for-

mer returning the value of its frameAddress instance variable

and the latter returning the frameOffset of its underlying

HomeContext.

FinaJly, we added the method thisContext to Object. Like

sender, this feature is built into Smalltalk-80. Unlike the sender

method, though, thisContext is supported as a pseudovariable

(like self) in Smalltalk-80, but we implement it as a method for

V1286:

tMsContext
‘[] homeContextsender

This completes the implementation of our exception-

handling system. After adding this package to your V/286

system, you can introduce the use of signals to identifi com-

mon or important errors, and so support dynamic responses

to errors in future work. Besides this practical benefit, our

addition of signal handling to V/286 is important as an illus-

tration. Because processes and contexts are objects program-

mers can manipulate, we were able to extend the functional-

ity of the low-level system to support our needs as

application programmers; in particular, methods for Excep-

tion needed to reflect on the system’s operation by knowing

about and accessing V/286’s representation of contexts and

processes. Without that ability, we’d have been unable to

make the necessary changes—only language implementers

could make them by changing the language and the compiler

themselves.

It’s also interesting to compare our implementation with

ParcPlace’s system. While we’ve provided much of the same

functionality, Smalltalk-80’s exception handling has two ad-

vantages over ours. First, their system is more efficient be-

cause it is supported by the virtual machine instead of being

implemented entirely in Smalhalk. They have several impor-

tant optimization to speed up expensive operations such as
JANUARY1993
traversing the context stack looking for the next exception

handler or unwind block. In addition, the reflective nature of

our implementation is slower because we rely on more layers

of message sends and abstractions—this problem wilJ exist

until reflective programming can be recognized and opti-

mized by the compiler. Smalltalk-80 also behaves better be-

cause, as we noted last month, normal method returns are

treated just like returns from exceptions, so unwind blocks

will be executed if skipped over either in exception handling

or in normal computation. We couldn’t provide the same

function because the semantics of method returns are hard-

wired into the V/2 86 virtual machine; we would have

benefited from a more reflective implementation in which

method returns could be modified by the programmer, In the

future we hope to write other articles that highlight reflective

aspects of Smalhalk and other practical benefits of objectify-

ing system internals. ❑

References
1. LaLonde, W., and M. Van Gulik, Building a backtracking facil-

ity in Smalkalk without kernel support. PROCEEDINGSOFOOP-
SLA ’88,OBJECT-ORIENTEDPROGRAMMING SYSTEMS,LAN-
GUAGES,AND APPLICATIONS,pp. 105–122, November 1988.
Printed as SIGPLAN Notices, Volume 23, Number 11.

Bob Hinkle and Ralph E. Johnson are ajiliated m’th the Universityof
Illinoisat Urbana-Champaign. Mr. Hinkle’s work issupported by a
fellowshipfiom the Fannie and John Hertz Foundation.
offer guided exploration of a wider range of examples deliber-

ately crafied to expose other parts of the hierarchy.

MiTTS is only an introduction to Smalltalk, and one of

our current concerns is how we might apply the minimalist

model to more advanced instruction. The materials are

clearly design-oriented, but MiTTS “teaches” design only

through analysis, not through generation. Students finishing

MiTTS have little sense of how to decompose and solve a

programming problem of their own (unless it is conveniently

similar to an example they have already analyzed). MiTTS

makes no pretense at teac”hing learners the foundations of the

class hierarch~ while learners do encounter many basic

Smalltalk classes (OrderedCollection, Dictionary, String, Ar-

ray, etc.), they learn only those aspects that are needed by the

example applications. Our hope is that by emphasizing the

design of Smalltalk applications from the start, MiTTS will
have provided a structure within which to organize and inte-

grate the mountain of Smalltalk learning that lies ahead. ❑

References
1. Gagne, R. M. and L. J. Briggs, PRINCIPLESOF INSTRUCTIONAL

DESIGN.Holt, Rinehart and Winston, New York, 1979.
2. Carroll, J. M. THE NURNBERG FUNNEU DESIGNINGMINIMALIST

INSTRUCTIONFORPRACTICALCOMPUTER SKILL.MIT PreSS>
Cambridge, MA, 1990.

Mary Beth Romon is a research staffmember at IBM’x T.J. Watson
Research Center in YorktownHeights, New York where she has beets
since 1982. Her current re~earchcenters on theproblems of learning
and applying the conceptsof object-on”enteddesign. She has a B.A. in
psychologyfiom Trinity Universi~ and a Ph,D, in experimentalpsy-
chologyfi-omthe Universityof Te.ms. She is on the editorialboard of
Interactingwith Computers, and is a member ofACM SIGCHI, the
Human FactorsSociety,and the Societyfor Computers in Psychology.
9

MALLTALK IDIOMS Kent Beck

An
4.1

Objectworks\Smalltalk
Wrapper Idiom
One of the most significant changes to Smalltalk in re-

cent years is the refactoring of display functionality

into the VisualComponent hierarchy of Object-

works\Smalltalk release 4. I am only beginning to realize the

full implications of factoring borders, composition, and layout

into their own objects.

Some recurring problems arise in using the new architec-

ture, This column addresses the problem of addressing the right

object in an environment of changing compositions of objects.

The solution was invented by Jay O’Connor, a bright new

Smalltalk programmer I’ve been working with for the last year.

My columns have been getting longer and longer, so I’ve have

tried a different approach this time, I will address a specific

problem in a specific context, rather than try to tackle some-

thing as general as “Collections: The Big Picture.” Let me know

what you think. My numbers are listed at the end of the article.

ARCHITECTURE

In the beginning there was View. (Well, not entirely the begin-

ning, but back there someplace). And View was responsible for

rendering a model’s data on the screen. To make pretty pic-

tures on the screen, though, View picked up a few more respon-

sibilities along the way—drawing borders, composing sub-

views, transforming coordinates, and clipping display

operations. All this responsibility and the state to support it

made View difficult to subclass, expensive to instantiate, and

hard to teach to new programmers.

Two things were needed: to split each of the responsibilities

into its own object and to compose the objects so they could

work together to achieve the same results as before. Object-

works\ Smalltalk release 4 introduced the new architecture. It

has three main families of objects: VisualComponents for dis-

playing models, GraphicsContexts to translate and clip display

operations, and Wrappers to modify the GraphicsContext on the

way down to the VisualComponent.

VisualComponent
VisualComponent is an abstract superclass. It requires its sub-

classes to implement displaytln: aGraphicsConte~ which renders

the component, All displaying is done relative to O@O, so the

component need not know where it eventually ends up on the

screen. Subclasses also have to implement prefenedBounds,

which returns a Retigle describing the size the component
10
thinks it should be. Layout may make its screen appearance

smaller.

VisuaWart

VisualPart adds an instance variable, container, to WsualCompo-

nent. A VisualYart is linked to its containing component so it can

send itself invalidate when it wants to be redrawn. In the origi-

nal display model, a View that got an update and wanted to dis-

play itself would do it right then. If several Views redisplayed

this could result in an annoying flicker. With the invalidation

model, all VisualM-ts wanting to display register their interest,

and the next time a Conholler goes through an idle loop it no-

tices that redisplay needs to happen and it all occurs at once.

CornpositePart

A CompositePart puts several Visua[Components together. Their

placement and displayed size are subject to a layout object that

can flexibly position components in either relative or absolute

positions relative to the CompositePart. It is easy to speci~ loca-

tions like “the top third of the composite with a margin of 20

pixels at the top.”

Wrapper
wrappers pass most messages through to their component.

Some messages get intercepted or modified on the way. A

translating wrapper, for instance, would change where its com-

ponent displayed. A color wrapper would change the colors

used by its component. wrappers are supposed to be transpar-

ently composable. That is, you should be able to insert new

wrappers anywhere between the containing object and the

component without interfering with the operation of the com-

ponent or any of the other wrappers,

BoundedWrapper

One of the most common wrappers, BoundedWrapper translates

and clips graphics operations, You’ll almost never explicitly

create a BoundedWrapper. Adding a component to a composite

automatically inserts a BoundedWrapper whose size and location

are set according to the specified layout.

BorderedWrapper

You might think that bordering and bounding would be han-

dled in separate wrappers, in the spirit of purity and compos-
THE SMALLTALKIIXPORT

ability. Instead, apparently for implementation reasons, Bor-

deredWrapper is a subclass of BoundedWrapper. BorderedWrappers

compute their preferredBounds by increasing the size of their

components’ preferredBounds by the size of their border. They

implement displayDm by displaying the border, insetting the

clipping bounds, and asking their component to display,

GraphlcsContext

All graphics operations go through a GraphicsContext. It has

symbolic protocol to display images, lines, rectangles, strings,

and so on. It also carries along a clipping bounds and transla-

tion. Wrappers like BoundedWrapper work by modifying the

GraphicsContext passed along to their component. It also carries

along a foreground color and background color, so compo-

nents that operate in two colors need have no knowledge of

what colors to use, leaving it up to the GraphicsContext to have

the right color set (perhaps by enclosing the component in a

wrapper that sets the color).

The heavy reliance of this model on wrappers leads to a

problem. You would like to treat the chain of wrappers and the

component they enclose as a single unit. You would also like to

insulate the wrappers and their component from changes in

the wrapper chain.

You could write “container container remove: container” to

remove a component from its composite. This assumes that

the container is some form of wrapper and its container is a

CompositePart. When I started using the new framework I

wrote code like this ofien. I also found it breaking ofien, be-

cause I inevitably wanted to insert new wrappers in the chain.

Every time I inserted a new wrapper I’d have to change the

length of “container container ...” expressions to match the new

setup.

A slightly more modular way to fix this problem is to im-

plement a pass through message in Wrapper. The component

could say “conttier remove self” and Wrappe~>remove: aVisuaL

Component could pass the message onto its container. The

problem with this solution is that it introduces many messages

in Wrapper.

IMPLEMENTATION

What we needed was an abstract way to address a message

somewhere in the wrapper chain. We wanted to treat the chain

as a single object for most operations. First we needed to get

the top wrapper in the chain. VisualComponents don’t have a

container, so they assume there are no wrappers.:

VisualComponen*XopWrapper
“BYdet%ult”
“self

VisualParts ask their container for the topWrapper. Note the

nil check. Many methods in VisualPart would be simpler if Visu-

alPart.s maintained the invariant that their container could not

be nil. I have never found a case where it wasn’t nil, except

after a window has been released. The lack of an invariant

leaves you with one more thing to remember—always check

the container before sending it a message.
JANUARY1993
VisuaWrt>XopWrapper
container isNilifltue: [Aselfl.
“container topWrapperFo~self

The argument to topWrapperFor will always be the compo-

nent immediately below the receiver. When you get to an object

that isn’t a wrapper, you return the object below, which is guar-

anteed to be either a wrapper or the original component itselE

ViiualComponent>>topWrapperFo~anObject
‘anObject

WrappePXopWrapperFor anObject
contier isMl ifTme: [“selfl.
‘container topWrapperFo~self

TopWrapper is useful all by itself. I often keep a collection of

VisualComponents that I’m interested in managing. When I

want to remove one fi-om a CompositePart, I need—you guessed

it—the topWrapper. I can say component topWrapper container

remove: component topWrapper. Simple. It no longer matters

what part of the chain I hold onto. I can get to the top and bot-

tom easily.

Back to our effort to send messages “somewhere in the

chain,” We want to send a message to the first wrapper that

implements it, The search proceeds from the top wrapper

down, so we can insert new wrappers to intercept the message

later. This creates the potentiaf for other problems later on,

like accidentally shadowing a method in a lower Wrapper, but

I haven’t found it to be a problem in practice.

VisualComponen~>wrapperSend:asyrobol
‘se~ topWrapperwrapperDelegate:(Messageselectoc aSymbol)

Using this protocol, a component can say things like self

wrapperSend: #disable, assuming that some wrapper in the

chain implements disable, but not assuming where in the chain

it resides.

Now we need to implement wrapperDelegate:. The default

implementation is to perform the message:

VisualComponenWwrapperDelegate:aMessage
“self perform: aMessageselector wit.hluguments:aMessage

arguments

Wrappers need to be a bit smarter. They perform the mes-

sage only if they can understand it; otherwise they pass it onto

their component (remember, search for the appropriate wrap-

per proceeds top down).

Wrappe~>wrapperDelegate:aMessage
“(seLfrespondsTo:aMessageselector)

fie: [super wrapperDelegate:aMessage]
ifFalse: [componentwrapperDelegate:aMessage]

Here is an interesting question: Should the VisualComponent

send the message regardless, or ignore it if it isn’t understood?

I can see both sides. Ignoring it is better for modularity be-

cause if you don’t have a wrapper that responds, the message

disappears without a trace. On the other hand, if someone is

continued onpage 17
11

.

How to Create
Smalltalk Scripts

-—

Juanita Ewing
I
n my last column I discussed a critical concept in Smalhalk

application development Never view your imageasaper.
manent entity. I concentrated on extracting application

source from an image and rebuilding the image by recreating

classes and methods from source, However, with complex ap-

plications, classes, pools, and global variables also must be

defined and initialized, usually with a script,

This column describes how to construct Smalltalk scripts

and includes a discussion of some useful expressions and

structuring mechanisms for scripts.

FORMAT

A Smalltalk script is really just Smalltalk code stored in a file,

usually in tile-out format.* This is the format with the !‘s, in

which most people are used to seeing class and method defini-

tions. The most common way to create a file in this format is

to use a file-out menu item in a browser.

A class definition consists of the definition string followed

by a single exclamation point:

Point subclass: Objeet
inatanceVariableNsmex‘xy’
classVariableaNames:‘‘
pools: “!

Method definitions are more complicated. A header portion

indicates the class to which methods belong. It begins and ends

with exclamation points and is followed by-one or more method

definitions, each ending with a single exclamation point, After

all method definitions, another exclamation point is appended,

indicating that the series of method definitions is ovec

! Point methods !
x

“Returnthe x component of the receiver”
Ax!

= aPoint
“Returntrue if both the x and y coordinates areequal.”
‘selfx = spoird x and: [selfy = apoint y]! !

Most implementations require a separating character be-

tween the last two exclamation points. This is because excla-

mation points in the definition source are doubled when writ-

ten to a file. If there is no separator between them, the system

will interpret it as a single exclamation in the method source.

The header portion of method definitions varies from im-._ .-

“ Described in Chapter 3, TheSrnalltalk-80 Code File Format, OF SMALLTALK-80 : BITS

OFHISTORY, WORDS OFADVICE, edted by Glen Kramer (Addisan-Wesley, 1983).
12
plementation to implementation. The example above uses a

Smalltalk/V style header. In Smalltalk-80-derived implementa-

tions, the header also identifies a protocol:

!PointmethodsFo~ ‘accessing’!
x

‘Return the x component of the receiver”
Ax!!

Other interesting pieces of code that people want to put in

scripts are really just do-its. It turns out that class definitions

are also do-its, so we already know the proper formati code fol-

lowed by a single exclamation point.

USEFUL SCRIPT EXPRESSIONS

I usually start my file-in scripts with a comment describing the

contents of the script and any relevant assumptions. Filing in a

comment has no effect on your image, but is a handy way to

document the contents of a file. Just like any other do-it, an ex-

clamation must follow the expression:

“Thisfile contains the script to load the drawing application. Thisload
procedure has been tested with versionl.4° !

Another common expression in a file is a class initialization.

In this example the message initialize is sent to the DrawingAp-

plication class. The appropriate initialization method will vary

from class to class:

DrawingApplicationinitialise !

You may query the user for the location of relevant files be-

fore proceeding. Note the use of a temporary variable here:

I directory I
directory :=Prompterprompt Where is the srcldvedirectory?’.
directoryisEmpty

Make: [(Diskfile: directory, ‘\archive’)fileIn]!

A dialog with the user might be appropriate during the file-

in process, particularly if the expression is destructive. In this

example, a global name is going to be removed from the sys-

tem. Place interaction with the user at the beginning of the

script to allow automated builds:

I confirm I
cotirm:= Prompter confirm ‘Thenext step is irreversible.Continue?’.
confirmifTnre: [SmaMdlrremoveKey:#Vector] !

Some applications make use of global variables, which can

be declared and initialized in scripts. Current ways to declare
THE SMALLTALKREPORT

global variables reveal some implementation details of the

global name space in Smalltalk implementations. GlobaJ vari-

ables are stored as symbols in Smalltalk, which is a dictionary.

Don’t forget the # mark, which creates a symbol literal in the

expression. In our example we create two global variables, the

first with an initial value of nil. Nil is used as the initial value of

variables in other places in the Smalltalk system

SmalMJr at #DrawingModeput NL
SmallMr ak #DefaultColorpuk ClrBlack!

It is also possible to test if a particular global name has been

defined. This can be useful when combining segments of an

application in a mix and match style. In the first expression the
existence of the global name Vector is tested fo~ if it is not

defined, then the file containing its definition is loaded. This

type of expression is rerdly ad hoc configuration management.

In the second expression the existence of Vector is tested for

and a message displayed if the name is already defined, Since

the user doesn’t furnish any meaningful input, a better alterna-

tive is to write messages to the Transcript instead of putting di-

alogs in the middle of a script:

Smalkalk
ati #Vector
ifAbsenti [(Diskfile: ‘Vector.st’)fileIn] !

(SrnalhalkincludesKey:#Vector)
ifhua [MessageBoxmessage: ‘Aboutto redefine Vector’]!

Another type of globaJ that needs to be declared is a pool.

Current ways to declare pools also reveal some implementa-

tion details. Pools are dictionaries and keys are available in the

methods of classes using the pool. Note that the declaration of

the pool is a separate expression from the subsequent refer-

ences to it, Each expression is independently compiled.The

first expression is compiled and executed, which declares the

pool if necessary. We avoid redefining the pool if it already

exists because that would orphan existing references to its vari-

ables. After the pool has been declared, subseqent do-its can

reference it by name. The second expression defines three pool

variables. This example is appropriate for Smalltalk/V systems.

In SmaUtalk-80-derived systems, the keys should be symbols:

Smalltalk
ati #TypesetigConstants
ifAbsent:[SmaMdlrak ~estigConstsrrts puti Ditionary new]!

~esettingConstants at: ‘Boldputi ‘.B’.
~esettingConstants ak ‘Italic’put ‘.1’.
~es*gConstants ak ‘Underifne’put’.ll’ !

STRUCTURING SCRIPTS

Do-its in a workspace or file are executed, logged in the

changes file, and never referenced again by the system. Typical

Smalltalk source control mechanisms don’t capture do-it$

thus do-its are difficult to maintain. To overcome this problem

in scripts, which typically have many do-its, developers should,

whenever possible, turn do-its into methods. Methods are

maintained by the Smalltalk system and can be browsed and

filed-out. They don’t disappear after execution. An expression

to initialize a class variable, for example, can be turned into a

class method.
JANUARY1993
Files are the basis of another structuring mechanism. Appli-

cation source can be composed of multiple files based on func-

tionality. SeveraJ files based on functionality are more reusable

than a single large application file. It is easier to distribute and

use a piece of functionality if it is separated from the rest of an

application. Because extracting a unit of functionality from a

large application source file is very challenging, interesting

functionality will not be reused if it is not separated.

Even though application source is separated into multiple

files, the application can be reconstructed quite easily. Scripts

often load a series of files in a particular order. In this expres-

sion three files are loaded into an image:

(D~k file: ‘enhancements.st’)filch-i.
(Diskfile: ‘classes.st’)fileIn.
(Diskfile ‘tiltialization, st’) fileIn !

An alternative equivalent expression easier to extend is:

#(
‘enhancements,st’
‘classes.st’
‘initializationst’)

do:
[:each I (Diskfile: each)fileIn] !

The final structurirsg mechanism to discuss is based on a class.

In this mechanism, we devote an entire class to rebuilding an ap-

plication. This class probably also has functionality to store the

source for an application. Do-it expressions not related to a class

should be incorporated into methods in the rebuilding class, For

example, an expression that creates and initializes a global vari-

able should become a method. Then all methods creating global

variables should be called from a controlling method

initializeGlobals
“Defie and initialize globalvariables.”
self ini+idizeDrawingGlobaL
self irdtializeLabelGlobal.
self iniMizeDrawingI.ocationGlobal

Developers should create a similar set of methods for

defining and initializing pools. The entire rebuilding class can

now be maintained by the Smalltdk system, instead of equiva-

lent code maintained by the developer in script files. The

source for the rebuilding class also needs to be archived in the

same manner as the source for the rest of the application.

CONCLUSION

The ability to declare globals and pools and to initialize classes

in a noninteractive mode is important in rebuilding complex

Smalltalk applications. Understanding the file-in format and

having a few examples can go a long way toward creating effec-

tive scripts, but script code should be turned into methods and

classes whenever possible. Be wary of complex scripts and ini-

tialization methods too difficult to debug and maintain. ❑
.-

Juanita Em”ng is a senior ~taff member of DigitalkProfessionalSer-
vices.She has been aproject leaderfor severalcommercial O-O soft-
wareprojetis and is an expert in the design and implementation of
O-O applications,frameworks, and systems. In apreviousposition at
TektronixInc., she wasresponsiblefor the developmentof classli-
brariesfor thefirst commercial-qualitySmalltalk-80system.
13

-—

HE BEST OF comp.lang.smalltalk Alan Knight

Designing a
Data Structure Librarv

*

T
his month’s column centers on issues involved in creat-

ing an O-O library of data structures, specifically those

involving cursors. Because of the background required

and ~e Eiffel-specific nature of much of USENET’s discussion

on this topic, I’ve avoided direct quotes and given a general in-

troduction to the concepts.

CURSORS AND ITERATION

Cursors, in the context of data structures, are an abstraction of

position in a collection. Just as a graphical cursor marks a place

on the screen, these cursors mark a position in the data struc-

ture. As a trivial example, in the loop:

I to: anArraysize do: [:i I
(anArrayati i) prhctOmTranscript].

the integer i acts as a cursoG it marks a position in the array.

If the structure were a dictionary then its keys could serve

the same purpose:

aDiclionay keys do: [:eachKey I
(aDifionary ak eachKey)printOmTranscript].

The choice of cursor can be quite significant. The array ex-

ample above works well, but the dictionary example wastes time

dokg a lookup for every key. A much more eflicient mechanism

(which Difionary iteration methods use) is to operate directly on

the underlying representation, which is an array

1 to aDictionarysise do: [indexIntoPrivateStorage I
I association I
association:=
(aDictionarybasicAt: indexIntoHivateStorage) isNil

ifFalse: [
association value printOn: Transcript]].

This operates much more efficiently than the previous ver-

sion, but has some disadvantages. It makes the code

significantly more complicated, circumvents encapsulation to

expose representation details, and makes the code totally de-

pendent on those details. Overall, it is extremely bad code with

the potential to ruin reputations and turn programmers doing

routine maintenance into homicidal maniacs.

It is difficult to do efficient iteration with explicit cursors

while minimizing bad code and the senseless loss of human

life. The situation only gets worse if we consider structures like

sets, which cannot be indexed at all using public methods. The

solution? Make an abstraction of cursors. While this will have

to be implemented differently for different collections, it

should allow us to write code like:
14
I cursor I
cursor:= aCo~~etioncorsorAtStart.
[cursor atEnd] whileFalse: [
(aCollectionatCurso~ cursor) printOm Transcript.
cursor next].

Why would you ever went to do thet?

I haven’t yet explained why anyone would want explicit cur-

sors. I’m sure many experienced Smalltalkers are shaking their

heads and thinking What’s wrong with do:? as they turn to the

next article. They have a point. For many applications, the best

method of iteration is the standard

aCoUectiondo: [:each I
each printOn Transcript].

Although do: is likely implemented using a cursor, that

complexity is hidden. The code is shorter, clearer, and just as

general. Why bother with explicit cursors? Unfortunately,

there are circumstances in which do: and its siblings just aren’t

adequate. Sometimes the cursors are themselves meaningful

I to aColleelionsise do: [:i I
Transcript show ‘Item’, i printString, ‘=‘.
(aCollectionat: i) printOn Transcript.
Transcript cr].

Sometimes iteration does not break down naturally into

processing single items. For example, on a collection of charac-

ters we might wish to operate on groups (e.g., words). We

might like the decisions on how to group characters to be

made by methods deep inside the processing loop. At the same

time, we want to maintain a clean interface.

We can deal with this situation by making a new object that

contains both the collection and a cursor. If all our methods

deal with this object instead of the collection, then different

methods can use or change the cursor position easily. In

Smalltalk these objects are normally called streams.

STREAMS

Unfortunately, standard Smalltalk streams have a few deficien-

cies. The main problem is that they don’t use a general mecha-

nism for cursors. Instead, streams have an integer index that is

used to record position. Collections (such as sets or dictionar-

ies) that can’t be indexed by integers can’t be used in a stream,

I suspect there are those who would argue that this is a fea-

ture, that integer indices allow us to stream over any ordered

collection, and that we weren’t meant to stream over un-
THE SMALLTALKREPORT

ordered collections. I can’t agree with this. First of all, I see

nothing wrong with streaming over unordered collections.

Second, even if we restrict ourselves to collections with order,

integer cursors are only really practical for array-based repre-

sentations. Using an integer cursor for a large linked list or tree

structure would be very inefficient.

MORE COMPLEX STRUCTURES

The limited implementation of streams is most likely a symp-

tom of the lack of different data structures in the standard

Smalhalk image. Because everything in the normaJ image is ar-

ray-based, integer indices are fine.

In contrast, a good data structures library will have many

different structures, each with variations and trade-offs. These

structures will require more sophisticated cursor mechanisms;

exploiting the structures fully will require us to use them.

For instance, a standard data structures technique is the use

of cursors to exploit locality of reference. Consider a sorted

collection in which items are to be located using binary search.

Although there may be no fixed pattern to the searches that

would let them be directly optimized, we know that consecu-

tive searches otlen look for items that are close together. Using

this information, we can store the position of the last object

searched for and use that position as a starting point for the

next search. Although there are no guarantees that any particu-

lar search will be faster using this technique, the average search

time may be significantly improved. More complicated struc-

tures and search schemes might exploit several cursors for

greater improvements. Cursors aren’t the only way of exploit-

ing these types of patterns. Another method is to reorganize

the data structure itself for greater efficiency on particular

queries. This is the basis of some list-organizing heuristics and

of data structures like splay trees.

STORING CURSORS

The USENET discussion that started sdl this began by comparing

two different Eiffel libraries: those from ISE and SIG Computer.

Paul Johnson (paj@gec-mrc.co .uk) writes:

The ISE library has the notion of a cursor within the ob-
ject being traversed, Hence to traverse a list you put the
cursor to the beginning of the list and then at every step
you move it forwards.. .In the SIG library, the cursors
(caJled iterators) are separate from the objects.

This raises an issue we haven’t considered—where cursors

should be stored. At first glance, the ISE idea of storing a cur-

sor inside the object seems very strange. There’s no major ad-

vantage over using a stream and it would make multiple simul-

taneous iterations very difficult.

I suspect that some of the reasons for doing this have to do

with Eiffel’s limitations. Although I’m not very familiar with

Eiffel, I don’t think it has blocks or an equivalent that would

make operations like do: possible. Without these, all iterations

would have to use an explicit cursor, and storing the cursor in-

side the collection would make basic iteration code the simplest.

Multiple simultaneous operations are handled by providing
JANUARY1993
methods that save and restore the cursor state. This makes

multiple iterations possible, but code must explicitly guard

against that possibility, reducing generality.

This technique does have one significant advantage, how-

ever. That is in dealing with iteration over changing collections.

ITERATING OVER CHANGING COLLECTIONS

A standard Smalhalk error is to iterate over a collection and

have the iteration block modify the collection. This can cause

very strange effects and be difficult to track down.

While experienced Smalltalk programmers rarely do any-

thing as obvious as:

aCoUefion do: [:each I
aCollectionremove: each].

there are more subtle variations that can catch the best of us.

The~ve certainly caught me. One moderately subtle example is

iterating over the collection of all active windows, closing

them. Unfortunately, when you close a window, it gets re-

moved from the collection of active windows. A cursor embed-

ded in the collection itself could automatically be updated to

compensate for these kind of changes.

A more general approach is to make a copy of a collection

being streamed over or as soon as it is modified. This adds

overhead and complication to the implementation, but should

be invisible to the user and makes the semantics more consis-

tent. Improved semantics alone may make the cost worthwhile.

Peter Deutsch (deutsch@smli.eng.sun.tom) recommends

this approach, for which he credits Xanadu’s Smalltalk-to-C++

development environment:

The bookkeeping for doing copy-on-write is much less
than the actual cost of the copy, so if there aren’t any
read/write collisions, you never make the copy if there
is a read/write collision, it may still be possible to copy
incrementally. I, for one, would rather pay the cost to
have well-defined semantics than implementation-de-
pendent happenstance . . .
Taking a leaf from databases: reading should create a
virtual copy, but writing should be exclusive.

To reduce copying expense, it is worth looking at the work

on “persistent” data structures to reduce the amount of copy-

ing. This is a different use of the word persistent than is com-

mon in O-O circles. It refers to data structures that allow up-

dates as well as access to all previous states without just

copying at each step.

CONCLUSION

Writing truly general and reusable libraries requires a lot more

thought and design than just assembling a few useful bits of

code. Good abstractions require careful consideration of the

needs of different domains as well as ways the system may need

to be extended.

Alan Knight is a researcher in the Department of Mechanical and
AerospaceEngineering at Carleton University,Ottawa,Canada,
K2C 3P3. He can be reached at 613.788.2600 x5783, or by ernailat
knightk%nrco.carleton.ca.
15

. ..

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested in being included in this feature should send press releases to our editorisl ol%ic~ Product Announcements Dept., 91 Second Ave., ~

Ottawa, Ontario KIS 2H4, Canada.
ParcPlace Systems has introduced Vkualworks, an applica-

tion development environment for corporate developers who

need to create graphical client/sewer applications that are in-

stantly portable across PC, Macintosh, and UNIX platforms.

The key components of VisualWorks include a graphical user

interface (GUI) builder, database access capabilities, a reusable

application framework, and instant cross-platform portability.

VisualWorks is based on ParcPlace’s ObjectWorks\Smalltalk, a

mature, fully object-oriented programming environment. Us-

ing VisualWorks, MIS departments can quickly create graphi-

cal applications to fill increasing user demands for information

access, as well as leverage an object-oriented architecture to ad-

dress complex application development needs.

VisualWorks is ParcPlace’s first product in the emerging

ADE market. Currently, software vendors from various cate-

gories are entering this market by offering products that inte-

grate interface builders, database access tools, and application

logic for clientisemer applications. VisualWorks sets a new

standard by providing the components of an ADE with the

added advantages of instant cross-platform portability, and

object-oriented foundation and an application framework.

ParcPface Systems, SS9E ArquesAve.,Sunnyvsle,CA940a6,

40!2.461.s090,fsx 403.461.9095

ObjecTime Ltd. has released an upgrade to its object-oriented

CASE tool for distributed, event-driven systems. ObjacTima

4.0 supports executable specification and design models for

real-time interworking via TCP/IP sockets. For example, vari-

ous hardware or software entities can be controlled directly

from an executing ObjecTime model. ObjecTime supports an

advanced methodology for the analysis and design of dis-

tributed, event-driven systems known as real-time object-ori-

ented modeling (ROOM). ROOM includes graphical design

concepts and a highly interactive development process that

help to eliminate error-prone discontinuities between the vari-

ous phases of sofhvare development. As a unique feature, Ob-

jecTime enables the creation of executable analysis and design

models that can be tested in an extensive workstation-based

runtime environment.

The high-level, object-oriented concepts are independent

of programming language. Either C++ or ObjecTime’s Rapid

Prototyping Language (based on Smalltalk-80) maybe used at

the detailed design level. To broaden the appeal of Objec-
16
Time’s ability to intermix graphical design content with de-

tailed level programming, version 4.o contains improved C++

support. The package supports both the GNU compiler and

AT&T’s cfront.

ObjeclimeLtd.,240MarchRd., Ste. 200, Kanata, Ont., Canada K2K

2S4, toll-free 800.567.llME, 619.591.3400, fax 613.561.3764

aales@obJectlme.on.ca

Dlgitalk Inc. is shipping the 32-bit version of its object-ori-

ented Smalltalk/V development environment for 0S/2 2.0. The

new version results in Smalltalk/V applications that are up to

100% faster and 50~o smaller than 16-bit OS/2 applications.

The 32-bit package offers many improvements over its 16-

bit predecessor, including the ability to call both 16-bit and 32-

bit Dynamic Link Libraries, a debugger with enhanced single-

stepping capability, improved support for bitmaps, double-byte

character set characters in SmalltalkW code, and support for

0S/2’s common dialog boxes,

Dlgltelk Inc., 6641 Airport Btvd., Los Angeles, CA 60045,310.645.1062,

fax 310.545.1306

Servio Corp., developer of the GemStone object database

management system (ODBMS), and Object Technology inter-

national (OTI) Inc., developer of the ENVY/Developer software

engineering environment, have announced a cooperative rela-

tionship to support Smalltalk applications’ development and

delivery. The integration of ENVY/Developer and GemStone,

through the GemStone Smalltalk Interface (GSI), provides de-

velopers with a complete client/server-based application devel-

opment and delivery environment for building robust

Smalltalk applications.

Through the cooperative partnership, Smalltalk applica-

tions developed using ENVY/Developer will have access to all

of GemStone’s Smalltalk object database support, including in-

tegrated garbage collection of persistent Smalltalk objects and

support of cooperative client/semer applications. ENVY/De-

veloper is used to coordinate team development, version con-

trol, and configuration management. GemStone, in turn, is

used to store and retrieve Smalltalk objects, providing high

performance and active server functionality in support of dis-

tributed Smalltalk applications.

Servlo Corp., S50 Marina Village Pkwy., Ste. 110, Alameda, CA 64301,

510.614.6200, far 510.814.6227
THE SMALLTALKREPORT

IT’S TIME

to become a

CONSULTANT

Numerous Immediate Southern California

Consulting Opportunities for

00P PROFESSIONALS

-- Smalltalk
-- ENFIN
-- C++; 0S/2 (Heavy Experience)
-- Other Significant 00P Exp.

Software Management
Consultants, Inc.

500 No. Brand Blvd., Suite 1090
Glendale, CA 91203

Voice (818) 240-3177
Fax: (818) 240-7189

manystate of the art openings.
+

LONGTERMASSIGNMENTS

HIGHESTCOMPENSATION

SMALLTALK80

COMPUTEFI COFIPORATION

[212 Avenue of the Americas.New York, NY 10036, 9th Floor
212) 840-8666 ● (800) 843-9119 ● Fax (212) 768-718.9
SMAUTALK IDIOMS conti~~dbmwv ZI

counting on the return value, the “doesNotUnderstand” case will

cause an error, Besides, I like having a notifier pop up during

development if I send a message no one understands. It’s usu-

ally because I have made a mistake.

WrapperSend: has made my life much easier. I now use

wrappers as they were intended independent bits of function-

ality that can be composed in different ways with abandon. I

no longer pause to think if any of my code depends on the

configuration of the wrapper chain.

Another useful implication is that in using the wrapper pass

through mechanism described above I had to implement my

messages in three places: VisualComponent for some default be-

havior, Wrapper for delegation, and wrapper subclass for imple-

menting the method for the real behavior. With wrapperSend, I

only put it in one place the class that really implements it. AU

the other wrappers pass it along automatically.
JANUARY1993
CONCLUSION

Wrappers make amazingly powerful and flexible interface ob-

jects. Coloring, highlighting, visibility, selection, and double

buffering are some of the activities that used to be built into in-

terface objects that can now be factored into their own wrap-

per. Once you have a library of wrappers you can create new

interface objects by composition, never having to create new

classes. The possibilities are mind boggling and not nearly fully

explored. If you find new wrappers, send them to me and I’ll

put them in this column. Ca~ me at 408.338.4649 or fax meat

408.338.1115. ❑

Kent Beck has been discoveringSmalltalkidiomsfor eightyears at
Tektronix,Apple Computer, and MmPar Computer. He ixalsothe
founder of First ClassSoftware,which developsand distributes
reengineeringproducts for Smalltalk.He can be reached at First Class
Sojlware,P.O. Box 226, Boulder Creek, CA 95006-0226.
17

The Smalltalk Project Browser
Seam Code Ahnugenwnt system for Smalltalk/V

Version 2.00

Empower Sotlxvare is pleased LOarmounce the release of The

SuallMk Project Browser, version 2.00. The &sdhalk Project

Browserallowsdevelopers to track nnd menage changes LO

SmaUtslk/V sysmmg, and to develop and anelyze code more

effectively. Version 2.00 enteodsthh tookwt m include the following:

Project Browser - project source code management

Project Class Browser - source code editing & tracking

Source NeBroweer - external source code anelysis

Qess Msrfece Browser - clsdprotocol edking

Navigator - eohsncedInspector for inter-object trsverwds
PNIgram Shelf - simple Smalltelk/EXE progrsm launcher

Amitabhm fmSIZS($?S
b msi.skidmm) prim
iodldmqpcdfabab
Vwrr4(1.CU.o)Ed
VFWVOS2(1.3-2.0),Iilo
—,rlUt LmcTmmd.Aw
S5ddP@s mU.S.A. m
Camdl, Slsekwbac. CA
m- * 6.=% Hku rm.
CaUrmqmmily. klsl
~

—, Orrm -
inrmlmam. !%palo SCM
WI- .

Q

Empower Software

279 S. Beverly Drive, Suite #217

Beverly HI1ls, Ca. 90212

Voice: (213) 878-2327 CIS: 71031,2640

Voss
Virtual Object Storage System for

SmalltalklV
Seamless persistent object management

for all Smalltalk/V applications
● Transparent access ta all kinds of Smalltalkobjectson disk.

● Transaction commit/mllback of chang= to virtual objeck.

● A-to individual elements of virtual mllections for ODBMSup
to 4 billionobjectsper virtual space; objectscached for speed.

● Multi-keyand multi-value virtual dictiomries for query-buifding
by key range selection and set intersection.

● Works directly with thkd party user interface & SQL classes etc.

● Class R-tructure Editor for renaming clas- and adding or
removing instance variables allows applicationsto evolve.

● Shared acc=s to named virtual objert spaces on disk; object
portability between image. Virtual objeck are fullyfunctional.

● Source cede supplied.

SomecommenisruehaverereiwdaboutVOSS:

“,. clan ., elegant. Works like a charm.”
-Hal Hildebnrnd, Aname) Zzborakvies

“Works absolutely beautifully; excellent performance and
applicability,” –RaulDurmr,Micrqynics Instruments

VOSS/Windows$1950,V05S/2S6 $1450 VDS5/os2 indevelopment.

logic ~mantitydiscountshum30%far twoor marempies.(Askfordetails)
,MasterCardandEuroCardaccepted.Pleaseadd$15fors~pping.

~R T S Lo.@cArk Ltd 75 HenringfordRoad,Cambridge,England,CBI 3BY
TEL +44223212392 FAX +44223245171

18
■ EDITORS’ CORNER . mflii-dfim PIW2

Research Center reports on the use of MiTTS (Minimalist Tu-

torial and Tools for Smalltalk). MiTTS is a research project at

IBM that aims to foster an approach to learning Smalltalk

based on building an initial understanding of object-oriented

design. The work of Mary Beth and her colleagues is impor-

tant for all of us who help programmers climb the Smalltalk

mountain. As Smalltalk continues to be widely adopted by the

MIS community, training organizations are being presented

with the challenge of teaching Smalltalk to programmers

whose previous experience has been largely in COBOL or 4GL.

Mso in this issue, Kent Beck describes the Wrapper idiom

introduced in release 4.1 of Objectworks\Smalltalk 4.1 and de-

scribes how, with a library of wrappers, new interface objects

can be created by composition rather than by creating new

classes. In this month’s Getting Real column, Juanita Ewing

described the pros and cons of using scripts (code stored in

file-in format) to perform tasks such as declaring globals and

pool variables and class initialization. Finally, Alan Knight,

with help from USENET contributors, looks at the issues in-

volved in designing a data structure library.

Best wishes to all our readers for 1993.
Excerpts from industry publications

SPECIFICALLY SMALLTALK

It has been ten years since I implemented my first object-ori-

ented language: our first version of Smalltalk And so, it is in-

teresting at this point to reflect on the man advances and

changes that have taken place over the last ten years and specu-

late on what the future holds for object-oriented technology. I

think there is a unifying theme in alt of this and that it relates

to making people productive, to allowing programmers and

analysts to do a better job and meet the changing requirements

of their companies and their own personal situations.

Objectinsider: George Boswoti, OBJECTMAGAZINE11-/2/92

STANDARDS

. . . We maybe looking forward to the electronic equivalent of
the Tower of Babel if everyone insists on doing things their own

wy—W’ingto 10CkUp all of the market with mutuallY eXClU-

sive approaches. I have a colleague who says that the need for

standards is a middle-age disease. Standards are unquestionably

dull, but they are precisely what make telephones and fax ma-

chines so useful (and widely used). We need to apply some of

the same logic to the next round of operating environments.

Industry watch: What do Micresofi Ml ond Apple have in common?,

~dsord Dalton, WINDOWS, 8192
THE SMALLTALKREPORT

—. ...—— ——...—.—.

For more than a century, Eli Lilly and Company demystify OOT, and facilitate communication
has been dedicated to improving the quality of life among 00T projack.
throughout the world. Today, we are a $5+ billion A BS or MS degree and minimum 3 years experi-
global research-based corporation that develops, ence in 00 design and programming are required.
manufacture, and markets pharmaceuticals, med- Strong communication, interpersonal end problem-
ical devices and diagnostic products, and animal solving skills with the proven abili@ to handle multi-
health products. ple projectsin a team environment also needed.

Central to our eucceaeis our dedication to the qual- EJi Lilly end Company offers competitive compen-
ity of our producb and the quality of our emplwees. sation, extensive development programs, and a su-
We carafdly select applicants and provide for their perb work environment. We will reimburee
development through ongoing training programs, a reasonable moving expenses for those who join us at
promotion-from-within policy, end opportunities to our corporate headquertem in Indianapolis, Indiana
improve the skills needed to grow in their careers. Indianapolis is an active growing city offering an ex-

We cumently seek a systems professional with ob- cellent quality of Me end en tiordable mat of living,
ject-oriented project experience h work in our corpo- as well as broad-based cultural, recreational, and
rate technology group, with responsibility for sports activities.
developing an object-oriented technology strategy for For prompt consideration, please send a cover le&
the company and defining the roles needed in the ter end resume b. Eli Lilly and Company, Corporate
00 environment. The successful candidate will help Recruitment - Systems Dept. 001S, Lilly Corporate
ua integrate 00T into our software de-

w

Center, Indianapolis, IN 46285.
velopment proceaa, promote the appro- We are an equal opportunity employer
priate application of 00T, help to committed to divereib in the workplace.

.

JANUARY1993 19

Where can you find the
best in object-orientedtraining?

Thesameplaceyou found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk7V

Whetheryou’re launching
a pilot project, modernizing
legacy code, or developing a
largescale application, nobody
elsecan contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoringt custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

Only Digitalk offers you a
complete solution, Including
award-wihningproducts,proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either wax you’ll learn from a

reduce your learning curve,
and you’ll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

Digitalk5 training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

staff that literally wrote the
book on object-oriented
design (the international’y
respected “Designing Object
Oriented Software”).

Weknow objects and
SmalltalWVinsideout, because
we’ve been developing real-
world applications for years.

The result? You’llabsorb
the tips, techniques and
strategies that immediately

Spri;t, plus many ;hers.
And Digitalk is one of only
eight companies in IBM5
International Alliance for
AD/Cycle-lBM5 sot?ware
development strategy for the
19905. For a full description
and schedule of classes, call
(800) 888-6892 x41O.

Let the people who put
the power in SmalltalkA.(help
you get the mostpowerout of it.

boost your productivity You71

	By Article Title
	An Objectworks\Smalltalk 4.1 wrapper idiom
	How to create Smalltalk scripts
	Minimalist instruction for smalltalk
	Taking exception to smalltalk, part 2

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Hinkle, Bob
	Johnson, Ralph E.
	Knight, Alan
	Rosson, Mary Beth

	By Topic
	comp.lang.smalltalk
	Getting real
	Smalltalk Idioms

