The Smalitalk Report

The International Newsletter for Smalltalk Programmers

January 1993 Volume 2 Number 4

n the last issue (Nov./Dec. 1992 SmariTaLk RErorT), we described
the system-independent parts of our implementation of an excep-
tion-handling system. This month’s article describes those parts of
our implementation that rely on Smalltalk V/286 specifics, with

TAKING
EXCEPTION TO
process stacks, how contexts fit onto that stack, and how temporaries are laid out

SMALLTALK in contexts. The ability (o examine and manipulate contexts is both powerful and
’ useful and has been exploited in (wo other programming efforts that we know of.
The first and foremost is the system debugger, which uses all of contexts’ capabili-
PART 2 ties, including the modihication of local variables and the resumption of execution
at any point in the stack. The other example is a backtracking system for Smalltalk
developed by Wilf LaLonde and Mark Van Gulik,! which, like our exception han-
dler, uses contexts Lo implement non-standard control flow.

special emphasis on contexts. We will describe the architecture of

The last few pieces to our implementation are system-specific methods in the
class Exception, extensions to the fundamental classes Process, Context, and Home-
Context, and the addition of three new context-related classes. The changes in
By Bob Hinkle & Ralph E. Johnson these classes are extensions to Digitalk’s base that make processes and particularly
contexts casier to work with. The same changes might not be necessary in another

Contentsm'.] implementation of Smalltalk; in particular, ParcPlace’s Smalltalk-80 provides all
the functionality we need and more.

THE MACHINE-DEPENDENT IMPLEMENTATION

Featurles/Artche.s We still need three Exception methods to describe: fetchHandlerBlock:, restart, and re-
1 ;Z:tm; exception to Smalltalk, tun. Each of these methods depends on some specitic aspects of V/286.

We begin with fetchHandlerBlock:, the method used by propagatePrivateFrom:,

by Bob Hinkle & Ralph E. Johnson |) o . o
to find the correct handler for the receiving exception. FetchHandlerBlock: is im-

6 Minimalist instruction for Smalltalk .
plemented as:

by Mary Beth Rosson
Columns fetchHandlerBlock: startContext
. . startContext sendersDo: [:ctxt |
10 Smalltalk Idioms: An Objectworks\ (ctxt selector == #handle:da:
Smalltalk 4.1 wrapper idiom and: [ctxt receiver accepts: signal])
by Kent Beck ifTrue: [handlerContext := ctxt.

12 Getting Real: How to create “etxt at: 4]].

Smallitalk scripts
by Juanita Ewing

“nil
In general, startContext will be the value of the exception’s signalContext in-

14 The Best of comp.lang.smalftalk stance variable, which is the contexl of the raise message. The message sendersDo:

by Alan Knight is used to iterate down the context stack from startContext, applying the block to
Departments cach context in turn. The block checks cach context looking for a handler for the
16 Product Announcements exception; the correct handler context will be the first one reached where han-
18 Highlights dle:do: was sent to the exceplion’s signal or one of its parents (which is what the

accepts: method checks for). When such a context is found, it's remembered as
the handlerContext, and the object in its fourth slot is returned. This object will be

continied on page 4.

EDITORS’
CORNER

John Pugh Paul White

malltalk has many advantages, but what about all these stories of performance problems?
This is a common refrain among companies considering Smalltalk as a mainstream devel-
opment vehicle and certainly a common battle song for those who feel compelled to enter
the language wars debate on the side of C++. We'll stick to the high ground and steer clear
of language comparisons. Experienced Smalltalk programmers know that the time taken
to produce a working application is of paramount importance and can often be cut by an
order of magnitude by using a productive programming environment. We know that the
performance of most systems can be improved enormously by examining the small frac-
tion of the code where the application spends most of its time. Performance problems are
most often due to the implementors selecting a bad design or choosing an inefficient algo-
rithm rather than any deficiency of the programming language.

What's the reason for this diatribe? Well, most companies considering Smalltalk don’t
have the benefit of our experience. Indeed, many of our readers would also welcome be-
ing able to share in the experiences of others. We would like to solicit “experience re-
ports” for publication in Tae SMALLTALK REPORT that focus on practical issues. Perfor-
mance is but one topic of interest. Here’s a list of others to get you started:

* The use of Smalltalk in domains as diverse as banking and computer integrated manu-
facturing.

* Reuse. What has been achieved? How quickly has it been achieved? What mechanisms
were used to promote use?

* Whan performance problems have arisen, what has been their cause and what steps
were taken to identify and rectify the problems?

* Experiences in linking Smalltalk with existing legacy systems.

* Experiences in linking Smalltalk with components developed in languages such as as-
sembler, C, or COBOL.

« Experiences in proting Smalltalk applications from one platform to another.
« Experiences in using team programming tools.

« Experiences in managing large Smalltalk projects.

* What metrics are useful? Have useful metrics emerged from projects?

* What OOA and OOD methodologies are being used in Smalltalk projects?

Last month, Bob Hinkle and Ralph Johnson described the system-independent com-
ponents of their exception handling system. In the second and final part of “Taking Ex-
ception to Smalltalk,” Bob ans Ralph complete their description by describing the compo-
nents of the system that are specific to their target environment, Smalltalk/V 286. These

articles have again highlighted one of Smalltalk’s often overlooked advantages; the fact
that “system” components such as processes and contexts are Smalltalk objects. This
means that they can’t be manipulated like any other Object in Smalltalk and permits
Smalltalk programmers to augment Smalltalk with new “control-flow” facilities such as
backtracking and exception handling. Look for more articles from Bob and Ralph on the
reflective nature of Smalltalk in future issues.

In our second feature article this month, Mary Beth Rosson from the IBM T.J. Watson

continued on page 18

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr. July/Aug, and Nov/Dec combined issues. Pub-
lished by SIGS Publicatians Group, 588 Broadway, New York, NY 10012 (212)274-0640. € Copyright 1993 by SIGS Publications, Inc. All rights reserved,
Reproduction of this malerial by clectronic transmission, Xerox ar any other method will be Irealed as a willful violation of the US Copyright Law and is
flatly prohibiled. Malerial may be reproduced with express permission from the publishers. Mailed First Class. Subscription rates 1 year, (9 issues) domes-
tic, §65, Foreign and Canada, 590, Single copy price, 58,00, POSTMASTER: Send address changes and subscription orders ta: THE SMALLTALK REPONT, Sub-
scriber Services, Dept. SML, P.O. Rox 3000, Denville, NJ 07834. Submit articles to the Editors al 91 Secand Avenue, Ottawa, Onlario K15 2H4, Canada.

The Smalitalk Report

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS PUBLICATIONS

Advisory Board

Tom Atwood, Object Design

Grady Booch, Rational

George Bosworth, Digiralk

Brad Cox, Informarlon Age Consulting
Chuck Duff, The Whitewater Group
Adele Goldberg, ParcPlace Systems
Tom Love, OrgWare

Bertrand Meyer, ISE

Mellir Page-Jones, Wayland Systems
Sesha Pratap, Centerline Software

P. Michael Seashols, Versant

Bjarne Scroustrup, ATAT Bell Labs
Dave Thomas, Object Technology Internacional

THE SMALLTALK REPORT
Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems

Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digitalk

Dave Thomas, Object Technelogy International

Columnists

Kent Beck, First Class Software

Juanita Ewing, Digiralk

Greg Hendley, Knowledge Systems Corp.
Ed Klimas, Linea Engineering Inc.

Alan Knight, Carleton University

Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher
Art/Production

Kristina Joukhadar, Managing Editor

Susan Culligan, Piigrim Road, Ltd, Crearive Direction|
Karen Tongish, Production Editor

Jennlfer Englander, Art/Prod. Coordinator
Clirculation

Ken Mercado, Fulfilment Manager

John Schreiber, Circulation Assisant

Vickl Menck, Qreulation Assistant
Marketing/Advertising

Diane Morande, Advertising Mgr—East Caast/Canaca
Holly Meinzer, Advertising Mgr—West Coas/Europe
Helen Newling, Exhibit/Recruitment Sales Manager
Sarah Hamilton, Promotions Marmger—Publicatons
Lomna Lyle, Promotions Manager—Conferences
Caren Polner, Promodons Graphic Artst
Administration

Ossama Tomoum, Business Manager

David Chatxerpaul, Accounting

Claire johnston, Conference Manager

Cindy Balrd, Technical Program Manager

Amy Friedman, Projects Manager

Margherita R. Monck
General Manager

WSIGS

PUBLICATIONS

1

Publishers of JOURNAL OF ORIECT-ORIENTED PROGRAMMING
OeECT MAaGAZINE, HOTLINE ON OBJECT-ORIENTED
TecHNoLoaY, THE C-++ REFORT, THE SMALLTALK REPORT,
THE INTERNATIONAL OOP DReCTORY, and THE X JOuRNAL

2

THE SMALLTALK REPORT

ENVY/Developer: The Proven Standard For Smalitalk Development

An Architecture You Can Build On
ENVY/Developer is a multi-user environment
designed for serious Smalltalk development.
From team programming to corporate reuse
strategies, ENVY/Developer provides a
flexible framework that can grow with you to
meet the needs of tomorrow. Here are some of
the features that have made ENVY/Developer
the industry’s standard Smalltalk development
environment:

Allows Concurrent Developers

Multiple developers access a shared
repository to concurrently develop
applications. Changes and enhancements are
immediately available to all members of the
development team. This enables constant unit
and system integration and test — removing
the requirement for costly error-prone

load builds.

Enables Corporate Software Reuse
ENVY/Developer's object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creates
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, while increasing application
reliability.

Offers A Gomplete Version Control And
Configuration Management System
ENVY/Developer allows an individual to
version and release as much or as little of a
project as required. This automatically creates
a project management chain that simplifies
tracking and maintaining projects. In addition,
these tools also make ENVY/Developer ideal
for multi-stream development.

Provides ‘Real’

Multi-Platform Development

With ENVY/Developer, platform-specific
code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

Supports Different Smalltalk Vendors
ENVY/Developer supports both
Objectworks™"Smalltalk and Smalltalk/V*,
And that means you can enjoy the benefits
of ENVY/Developer regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using ENVY/Developer to deliver
Smalltalk applications. For more information,
call either Object Technology International or
our U.S. distributor, Knowledge Systems
Corporation today!

Object Technology Dtiawa Office
International Inc
2670 Queensview Drive

QOttawa, Ontario K2B 8K1

Fax: (613) 820-1202

Phone: (613) 820-1200

E-mail; info@oti.on.ca

Phoenix Office
Phane: (602) 222-9519
Fax: (602) 222-8503

114 MacKenan Drive, Suite 100
Cary, North Carolina 27511
Phone: (919) 481-4000

Fax: (919) 460-9044

Knowledge

J mmn

EBVY s a registered Irademark of Objec! Technology Intemational Inc. All olher brand and product names are registered lrademarks of heir respective companies.

m TAKING EXCEPTION TO SMALLTALK

...continued from page 1

the block that was passed as the first parameter of the
handle:do: message. It is fourth because of the order Digitalk
stores local variables in contexts, with first slots for block ar-
guments in reverse order of their appearance, followed by
temporaries in reverse order, then parameters in reverse or-

der. Figuring this out requires some knowledge of the context -

layout in V/286; we’ll describe that in more detail when we
discuss contexts below.

The return method is implemented in terms of returnDoing:,
which itself is implemented as follows:

returnDoing: aBlock
"The stack is unwound to the context of the handle:do:
message that caught this Exception, at which point
aBlock is evaluated and its value returned as the value
of the handle:do: message."

| answer |

answer := aBlock value.

self handlerContext unwindLaterContexts.
(self handlerContext at: 2) value: answer

This is analogous to the implementation for proceedDoing:.
The only difference is in accessing the block that will (when
evaluated) return into the right context. In this case return-
Block is stored in the handler’s context (recall our definition of
handle:do: from Part 1 of this article) and is accessible in the
second slot of the context’s array of temporaries. So evaluat-
ing the returnBlock returns from the handle:do: context as de-
sired. As with proceedDoing:, though, the method must call un-
windLaterContexts first to make sure unwind blocks are
evaluated.

Implementing restart relies on restartAt:, a Digitalk-pro-
vided method for class Process, as seen in the following code:

Testart
"Restart the #handle:do: context.”

| index process |

handlerContext unwindLaterContents.

process := handlerContext process.

index == process frameIndexOf: handlerContext.
process restartAt: index

This method makes a process restart execution at an arbi-
trary context in its context stack. First, as before, the exception
unwinds all contexts above its handlerContext. The exception
then finds the handlerContext’s index in its process, and tells its
process to restart execution there.

To motivate the changes to the Process and Context classes, we
need first to describe how these classes relate in the base system.
Process in V/286 is a subclass of OrderedCollection; its indexed in-
stance variables are used to store information about the stack of
unresolved message sends. Conceptually, we think of each mes-
sage send as being represented by a Context object. However, for
optimization purposes, V/286 only creates HomeContexts for cer-
tain method invocations. (In particular, they create a HomeCon-
text only if the method that’s evaluated contains a block.) This
dual representation is potentially troublesome, so we hide it be-
hind two new context-related classes. Before looking at these
classes, though, we need to understand the layout of Process’

stack. Each message send receives a stack frame of five or more
slots on the stack, with the layout shown in Figure 1.

Each stack frame begins with the frame address of the previ-
ous message. This frame address is unique for each message
send and persists as long as the message is on the stack. In ad-
dition to this address, message sends can be referenced by their
frame index, which is the message send’s position on the stack.
The topmost (i.e., most recent) send is at frame index 0, the
previous send is at index 1, and so on.

After the frame address comes the byte array (Smalltalk’s
compiled representation of the method), the compiled
method, the instruction counter, and the message’s receiver. If
a HomeContext exists for the frame, it will be stored in the sixth
slot. If there is no HomeContext for the frame then there will be
slots for each of the parameters and temporary variables (in
the same order referred to above: block arguments in reverse
order followed by temporaries in reverse order followed by pa-
rameters in reverse order).

The Process class provided by Digitalk comes with a
method, contextFor:, which returns the context for a given
frame index. This has two problems for our purposes: First, the
context may not exist, in which case nil is returned; second, the
context returned for blocks (instances of class Context in
V/286) is their HomeContext, which is not the same as their
frame on the context stack; and third, since the frame index
changes as execution proceeds, we really need to use the frame
address to identify our contexts. So we added three methods to
Process: indexOfAddress:, frameContextFor:, and groundedCon-
textFor:. The method indexOfAddress:, which converts a frame
address into a frame index, first checks if the input frame ad-
dress matches the address of its top frame. If it does, the receiv-
ing process returns 0 as the associated frame index. Otherwise
the process returns the index of the first frame whose frame
address matches the input.

-t topFrame
Frame Frame Address for 1 P
Index
0 Byte Array
Compiled Method
InstructionCounter
Receiver
Home Context
Frame |Frame Address for 2 [—
Index Byte Array
1 -
CompiZed Method
InstructiorCounter
Receiver
Home Context
Frame
Index .
2 .

Figure 1. Process stack layout.

4

THE SMALLTALK REPORT

indexOfAddress: frameAddress
| index address |

frameAddress = topFrame
ifTrue: [0].
index =1.
[address := self frameAt: index - 1 offset: 0.
frameAddress = address]
whileFalse: [
address =0
ifTrue: ["nil].
index := index + 1.
1.

“index

We discovered the need for the frameContextFor: method by
trial and error. We had problems in an early version of the sys-
tem with the fetchHandlerBlock: method because our search
down the context stack would sometimes skip over one or more
contexts and occassionally fail to find the right exception han-
dler. We found that contextFor: was the culprit because when
called on the index of a block’s stack frame, it always returns the
block’s HomeContext, while we wanted the frame for the block’s
own activation. The frameContextFor: method overcomes this
problem by only returning the HomeContext if it exists and if the
stack frame in question is its own home frame, as follows:

frameContextFor: frameIndex
"Answer the context object from the stack frame at
framelIndex, but only if that stack frame is its own
home frame. In particular, don't return the HomeContext
for a block's frame."

~(self methodAt: frameIndex) hasBlock
ifTrue: [
(self homeFrameOf: frameIndex) = frameIndex
ifTrue: [self frameAt: frameIndex offset: 5]
ifFalse: [nil]]
ifFalse: [nil]

The other addition to Process is a method called grounded-
ContextFor:—an extended version of contextFor:., from which
groundedContextFor: differs only in that it always returns a con-
text-like object, whether or not a real HomeContext exists for
the frame requested:

groundedContextFor: frameIndex
| context frameAddress |
context := self frameContextFor: framelndex.
~context isNil
ifTrue: [
frameAddress :=
(frameIndex = 0)
ifTrue: [topFrame]
ifFalse: [self nextFrameAt:
framelndex - 1].
frameAddress = 0
ifTrue: [nil]
ifFalse: [PseudoContext
forFrame: frameAddress
forProcess: self]]
ifFalse: [GroundedContext
forContext: context
forProcess: self]

This method makes use of the two new classes we added. A

GroundedContext object is returned when a real HomeContext is
available for the frame. (We return a GroundedContext rather
than the HomeContext itself because GroundedContexts have ad-
ditional behavior—they particularly have an instance variable
for the process they belong to.) When a real HomeContext is not
available for the frame, frameContextFor: returns nil, and in that
case the method creates a PseudoContext object. This object
knows only the frame address of the frame it represents, but
using the frame address it can behave exactly like a normal
context. Thus, PseudoContexts and GroundedContexts seem
identical externally, hiding the difference between those frames
with and without HomeContexts.

PseudoContext and GroundedContext are designed to fulfill the
same interface, so we also created an abstract class called Ab-
stractContext, which is a common superclass for the two.
AbstractContext defines the interface and implements a number
of methods by depending on a few methods from its subclasses.
In particular, it defines the method unwindLaterContexts as:

unwindlaterContexts
"Search down the stack, starting with the current
context, evaluating the unwindBlock in every
Context>>valueOnUnwindDo: or
Context>>valueNow0OrOnUnwindDo: context. Stop at
the receiver."
s |
self thisContext
sendersDo:
[zchit |
ctxt == self ifTrue: ["self].
(ctxt receiver isKindOF: Context)
ifTrue: [(s := ctxt selector) ==
#valueOnUnwindDo:
ifTrue: [(ctxt at: 1) value]
ifFalse: [s == #valueNowOrOnUnwindDo:
ifTrue: [(ctit at: 2) value]]]]

This is similar to the fetchHandlerBlock: method. It looks
down the message stack starting at the current context, looking
for any context for the valueOnUnwindDo: or valueNowOrOnUn-
windDo: messages. If it finds one, it evaluates the unwind block,
which is available in the first slot of the valueOnUnwindDo: con-
text or the second slot of the valueNowOrUnwindDo: context.

In addition, AbstractContext defines the sender method as
follows:

sender
~process groundedContextFor:
(process indexOfAddress: self address) + 1

AbstractContext defines the at: and at:put: methods to pro-
vide access to its underlying context’s array of temporary vari-
ables. The at: method is implemented as:

at: anInteger

| index |
index := process index0fAddress: self address.
~process tempAt: index number: anInteger

at:put: works the same way except that it stores into the slot

continued on page 9

JANUARY 1993

5

MINIMALIST

INSTRUCTION FOR _
SMALLTALK

Mary Beth Rosson

s the object-oriented paradigm’s potential begins
to be realized in commercial development (see
Bran Selic’s article in the September 1992
SmaLLTALK REPORT), companies are exploring
the use of Smalltalk or other object-oriented lan-
guages in their own development activities. A major roadblock,
however, is still the training of developers: Learning Smalltalk
requires much more than simply learning the syntax or even a
rich class hierarchy—it involves internalization of an entirely
new approach to software design. For the last several years, our
project at the IBM T. J. Watson Research Center (involving
John Carroll, Sherman Alpert, and Kevin Singley) has been de-
veloping an instructional approach to Smalltalk for building an
understanding of object-oriented design from the very start.

THE LEARNING CONTEXT

Our project began by considering a critical group of Smalltalk
learners—professional programmers already experienced in
the use of procedural languages. These potential users repre-
sent the bulk of the commercial software development popu-
lation and are likely to have significant technical credibility in
their organizations; they would thus have a major impact on
decisions concerning adoption of this new technology.

Experienced professional programmers are experts
confident of their abilities to design software solutions to just
about any problem. They typically have learned many lan-
guages during their education and careers and have high ex-
pectations about their abilities to acquire new languages. They
are attracted to new tools, especially ones that promise to
speed up or otherwise facilitate the process of designing and
implementing software.

Most experienced programmers initially approach
Smalltalk with enthusiasm. Indeed, a first encounter may
seem promising: Smalltalk syntax is not especially exotic and
our observations suggest that an experienced programmer can
make some sense of Smalltalk code with little specific instruc-
tion (e.g., recognizing that a temporary variable is being ma-
nipulated and then evaluated via a conditional expression).
Problems arise when programmers attempt to trace through a
bit of code involving one or more instances of other classes. At
this point, learners are confronted by the extensive class hier-
archy and realize how little they understand the objects that
might participate in a typical Smalltalk application. Worse,
the skills needed for tracking down this information (e.g.,

heuristics for identifying collaborating objects) are completely
lacking. The net result is that new users often “disappear into
the hierarchy,” spending weeks or months in aimless browsing
of the methods in one class and then another.

An inability to make progress quickly in learning Smalltalk
is especially frustrating and ironic given Smalltalk’s reputation
as a rapid prototyping environment. New users expect
Smalltalk to help them quickly build and experiment with pro-
totype applications, but they soon discover this “quickness”
comes at considerable cost. Indeed, the classes and frameworks
used for implementing user interfaces, a key aspect of any ap-
plication prototype, are among the most complex in the sys-
tem; new users are typically advised to delay exploration of the
user interface code until they are comfortable with simpler,
more conventional classes like Collection.

The problem here is not simply that user interface functional-
ity is inherently complex (this is true, but most expert program-
mers have encountered complex user interface code before). It is
that analysis of an interactive application requires a pre-under-
standing of object-oriented design; how responsibility for com-
plex operations is typically shared by a large number of cooperat-
ing objects, normally instances of classes distributed over
disparate pieces of the class hierarchy; and how communication
patterns among these objects are established and exercised.

THE MINIMALIST APPROACH

A traditional approach to the teaching of complex skills like
Smalltalk programming is to decompose the skills and knowl-
edge needed into more manageable pieces, and then gradually re-
compose those pieces until (realistic) complex tasks can be at-
tempted.! For Smalltalk, this translates into teaching about
syntax, foundation classes, etc., prior to application structure and
the design of new classes or frameworks. Such an approach cer-
tainly seems rational, but can easily backfire. Learners must delay
the gratification that comes from working on realistic projects; if
instruction is not carefully managed, learners may not experience
their work with individual components as meaningful, and may
have difficulty later on fitting the bits and pieces of instruction
into the “big picture” of Smalltalk programming and design.

In the Minimalist model of instruction, knowledge and skills
are not broken into components.2 Instead, all instruction oc-
curs in the context of realistic (and hence meaningful) tasks. Of
course, because the goal is to let learners work on realistic tasks
as quickly as possible, and because realistic tasks will be too
complex for a new user, the instruction must provide consider-
able support. In general, it should filter and organize informa-
tion about the new domain so that the learner encounters and
attends to just the new information needed for the task in
progress. The task itself should be chosen and managed to build
on whatever prior knowledge the learner can be assumed to -
have, as this will make the task more familiar and simple. To
make the task as meaningful as possible, the instruction should
encourage inferences on the part of the learner; this will serve to
connect the material being learned to other knowledge and
make it more robust and relevant in future tasks. Finally, be-

6

THE SMALLTALK REPORT

cause errors certainly will occur, the instruction should antici-
pate them and provide recovery assistance.

MITTS: MINIMALIST TUTORIAL AND TOOLS FOR SMALLTALK
Early interactions with the blackjack application focus on under-
standing how blackjack works at a functional level. A simplified
version of the game (having no interactive user interface) is
played in a workspace by creating objects and sending messages.
The learners are provided with a filtered view of the hierarchy (a
Bittitalk Browser) listing just the most important classes used in
the blackjack game. They are given an example of how to create
a blackjack object and send it messages, then are expected to use
the browser to find additional messages needed to complete the
game. By asking the learners to identify and generate the mes-
sage expressions themselves, the instruction encourages infer-
ence as well as the development of browsing skills. The browser
hides the actual code for methods, preventing the programmers
from becoming distracted by efforts to trace the implementa-
tions of messages. The instruction manual is also populated with
various “hints” positioned at likely trouble spots.

Subsequently, learners move to analysis of the complete in-
teractive version of blackjack. Their interactions with the sim-
plified version are now part of their prior experience and serve
as a foundation from which to understand the more complex
interactive application. They are again supported by the envi-
ronment, in this case the View Matcher tool, which displays and
manages several views of the blackjack application as the game is
played. (In Figure 2 the upper right subpane holds the blackjack
game; the upper left holds a message execution stack; the lower
right holds a filtered browser synchronized with selections in the

Smalltalk/V users: the tool
for maximum productivity

o W

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.

© Keep a history of previous versions; restore them with
a few keystrokes.

° View class hierarchy as graph or list.

° Print applications, classes, and methods in a formatted
report, paginated and commented.

° File code into applications and merge them together.

° Applications are unaffected by compress log change
and many other features..

| Deleted classes |
rowsers Appllcatl_(E]< .
Yam i Deleted methods |
mager, History ——[Code recovery
Utilities.. Application printing | and more..

CodeIMAGER™ V286, VMac $129.95

VWindow & VPM $249.95
Shipping & handling: §13 mail, 520 , per copy
Diskette: []32 [Js#
——r SixGraph™ Computing Ltd.
formerly ZUNIQ DATA Corp.
L 2035 Cote de Liesse, suite 201

Montreal, Que. Canada H4N 2M5

Tel: (514) 332-1331, Fax: (514) 956-1032
CadeIMAGER is a reg. n'llhmuk ofSulGnE: Computing Lid.
Sroalltalk/V is a reg. trademark of Digitalk,

Feghatel

stack; and the lower left holds blaclkjack-specific commentary.)
One of these views is a Bittitalk Browser (this time including the
user interface classes); using this browser, learners can extend
their model of the black-

the dealer's hand, an
instance of BJHand

the player's hand, an
instance of BJHand

the dealer, an
instance of BJPlayer

player, an \
BJFIay:v

|ru1:m:a

the game, an
instance of Blackjack

the score, an
instance of array

the shuffled deck, an
instance of CardDeck

the player's

pane, an
instance of
TextPane

the view manager,
an instance of
BlackjackView

jack game to include
user-interface classes.
Analysis of message-
passing patterns among
[thedeaers | participating objects in
(instance of) the blackjack game is or-
ganized by a message ex-
ecution stack, a deliber-
ate attempt to build on
programmers’ general
understanding of execu-
tion stacks. Preset break-
points cause the game to
halt and an execution
stack to be displayed, so
that learners can see
“into” the application to
understand how a vari-
ety of objects are passing
messages to one another
to provide blackjack
functionality. Selection
of messages in the stack

the window, an
instance of TopPane

Figure 1. The main objects in the blackjack game.

is synchronized with se-

JANUARY 1993

7

= MINIMALIST INSTRUCTION FOR SMALLTALK

lection of classes in the browser, helping to direct the learner’s
attention to relevant information. Blackjack-specific commen-
tary is provided to help make connections between the visible
state of the game, the message execution stack in place, and the
classes and methods present in the browser.

Only after considerable analysis of the structure of the
blackjack application (and through this analysis, a contextual-
ized introduction to major concepts like class instantiation,
message passing, inheritance, and the Smalltalk/V PM user in-
terface framework) are learners introduced to the actual
Smalltalk “code” implementing blackjack. Consistent with the
minimalist focus on realistic tasks, syntax and code compre-
hension are learned in the context of actual programming ac-
tivities, in which first basic blackjack functionality and then
features of its user interface are enhanced.

After four to six hours of blackjack analysis and enhancement,
learners have acquired the basics of how to understand and mod-
ify an existing application. Because the Bittitalk Browser and the
View Matcher are built from standard system tools (the class hi-
erarchy browser and the debugger, respectively), learners are
well-prepared to carry out similar tasks in the standard environ-
ment. They are supported in making this transition via several
open-ended projects that point out the similarities between

View Matcher - Halted

Sliack Mode: ¢

learning tools and the standard environment, as well as introduce
new portions of the class hierarchy through analysis, modifications,
and extensions to additional example applications.

EVALUATING MITTS

We have observed dozens of programmers working through
MIiTTS and for the most part have been pleased at its effec-
tiveness. Well-motivated, experienced programmers can
spend a day or so with MiTTS materials and end up with a
good understanding of the blackjack application, as well as a
general appreciation of application structure and skills for an-
alyzing and modifying applications. As one would expect, the
level of accomplishment varies considerably: The most suc-
cessful individuals are those willing to experiment with new
concepts under conditions of uncertainty. Many users find
even our “minimal” instruction too extensive, so we are con-
sidering preparing a version that simply offers example appli-
cations, learning tools, a few orienting words, and some sug-
gested projects.

We have noticed that MiTTS materials support program-
ming by analogy—learners can (and do) use the example ap-
plications as models when new problems are encountered.
This suggests that a simple extension to the work might be to

OPPLD

e it Smalltalk Stack Classes ariable ods ons I

BJWindow{ApplicationWindow)>>performMenultem:
Message>>perform

NotificationManager>>empty
NotificationManager>>run

The BJPlayer adds the card passed
as an argument In this message to Its
current hand. [t also checks to see if
the card leads to a blackjack or a
bust. if so. it reports this to its dealer.
the BlackJack Instance.

. DJPlayer
Card
CardGame
BlackJack
Collection

e]

Player Dealer

: Player:
8@
[

IndexedCollection
OrderedCo_!_lection

] ® instance

| Oclass

takeCard: aCard

"Adds one card, reporting a blackjack
or bust if it happens.”

Figure 2. The View Matcher.

THE SMALLTALK REPORT

offer guided exploration of a wider range of examples deliber-
ately crafted to expose other parts of the hierarchy.

MITTS is only an introduction to Smalltalk, and one of
our current concerns is how we might apply the minimalist
model to more advanced instruction. The materials are
clearly design-oriented, but MiTTS “teaches” design only
through analysis, not through generation. Students finishing
MITTS have little sense of how to decompose and solve a
programming problem of their own (unless it is conveniently
similar to an example they have already analyzed). MiTTS
makes no pretense at teaching learners the foundations of the
class hierarchy; while learners do encounter many basic
Smalltalk classes (OrderedCollection, Dictionary, String, Ar-
ray, etc.), they learn only those aspects that are needed by the
example applications. Our hope is that by emphasizing the
design of Smalltalk applications from the start, MiTTS will

have provided a structure within which to organize and inte-
grate the mountain of Smalltalk learning that lies ahead.

References

1. Gagne, R. M. and L. J. Briggs, PRINCIPLES OF INSTRUCTIONAL
DESIGN. Holt, Rinehart and Winston, New York, 1979.

2. Carroll, J. M. THE NURNBERG FUNNEL: DESIGNING MINIMALIST
INSTRUCTION FOR PRACTICAL COMPUTER SKILL. MIT Press,
Cambridge, MA, 1990.

Mary Beth Rosson is a research staff member at IBM’s T.]. Watson
Research Center in Yorktown Heights, New York, where she has been
since 1982. Her current research centers on the problems of learning
and applying the concepts of object-oriented design. She has a B.A. in
psychology from Trinity University and a Ph.D. in experimental psy-
chology from the University of Texas. She is on the editorial board of
Interacting with Computers, and is a member of ACM SIGCHI, the
Human Factors Society, and the Society for Computers in Psychology.

@ TAKING EXCEPTION TO SMALLTALK, PART 2 coninued from page 5

(using tempAt:number:put:) rather than reading from it. The
definition of the address method used in sender and at:
differs for PseudoContext and GroundedContext, with the for-
mer returning the value of its frameAddress instance variable
and the latter returning the frameOffset of its underlying
HomeContext.

Finally, we added the method thisContext to Object. Like
sender, this feature is built into Smalltalk-80. Unlike the sender
method, though, thisContext is supported as a pseudovariable
(like self) in Smalltalk-80, but we implement it as a method for
V/286:

thisContext
~[] homeContext sender

This completes the implementation of our exception-
handling system. After adding this package to your V/286
system, you can introduce the use of signals to identify com-
mon or important errors, and so support dynamic responses
to errors in future work. Besides this practical benefit, our
addition of signal handling to V/286 is important as an illus-
tration. Because processes and contexts are objects program-
mers can manipulate, we were able to extend the functional-
ity of the low-level system to support our needs as
application programmers; in particular, methods for Excep-
tion needed to reflect on the system’s operation by knowing
about and accessing V/286’s representation of contexts and
processes. Without that ability, we’d have been unable to
make the necessary changes—only language implementers
could make them by changing the language and the compiler
themselves.

It’s also interesting to compare our implementation with
ParcPlace’s system. While we've provided much of the same
functionality, Smalltalk-80’s exception handling has two ad-
vantages over ours. First, their system is more efficient be-
cause it is supported by the virtual machine instead of being
implemented entirely in Smalltalk. They have several impor-
tant optimizations to speed up expensive operations such as

traversing the context stack looking for the next exception
handler or unwind block. In addition, the reflective nature of
our implementation is slower because we rely on more layers
of message sends and abstractions—this problem will exist
until reflective programming can be recognized and opti-
mized by the compiler. Smalltalk-80 also behaves better be-
cause, as we noted last month, normal method returns are
treated just like returns from exceptions, so unwind blocks
will be executed if skipped over either in exception handling
or in normal computation. We couldn’t provide the same
function because the semantics of method returns are hard-
wired into the V/286 virtual machine; we would have
benefited from a more reflective implementation in which
method returns could be modified by the programmer. In the
future we hope to write other articles that highlight reflective
aspects of Smalltalk and other practical benefits of objectify-
ing system internals. B

References

1. LaLonde, W., and M. Van Gulik. Building a backtracking facil-
ity in Smalltalk without kernel support. ProceepinGs or OOP-
SLA ’88, OBJECT-ORIENTED PROGRAMMING SYSTEMS, LAN-
GUAGES, AND APPLICATIONS, pp. 105-122, November 1988.
Printed as SIGPLAN Notices, Volume 23, Number 11.

Bob Hinkle and Ralph E. Johnson are affiliated with the University of
llinois at Urbana-Champaign. Mr. Hinkle’s work is supported by a
fellowship from the Fannie and John Hertz Foundation.

To

The Smalltalk Report

SuBSsScRrRIBE TO

CaLL 212.274.0640 or
FAX YOUR REQUEST TO
212.274.0646

JANUARY 1993

MALLTALK IDIOMS

Kent Beck

An Objectworks\Smalltalk

4.1 Wrapper Idiom

ne of the most significant changes to Smalltalk in re-
O cent years is the refactoring of display functionality

into the VisualComponent hierarchy of Object-
works\Smalltalk release 4. T am only beginning to realize the
full implications of factoring borders, composition, and layout
into their own objects.

Some recurring problems arise in using the new architec-
ture. This column addresses the problem of addressing the right
object in an environment of changing compositions of objects.
The solution was invented by Jay O’Connor, a bright new
Smalltalk programmer I've been working with for the last year.
My columns have been getting longer and longer, so I’ve have
tried a different approach this time. I will address a specific
problem in a specific context, rather than try to tackle some-
thing as general as “Collections: The Big Picture.” Let me know
what you think. My numbers are listed at the end of the article.

ARCHITECTURE

In the beginning there was View. (Well, not entirely the begin-
ning, but back there someplace). And View was responsible for
rendering a model’s data on the screen. To make pretty pic-
tures on the screen, though, View picked up a few more respon-
sibilities along the way—drawing borders, composing sub-
views, transforming coordinates, and clipping display
operations. All this responsibility and the state to support it
made View difficult to subclass, expensive to instantiate, and
hard to teach to new programmers.

Two things were needed: to split each of the responsibilities
into its own object and to compose the objects so they could
work together to achieve the same results as before. Object-
works\Smalltalk release 4 introduced the new architecture. It
has three main families of objects: VisualComponents for dis-
playing models, GraphicsContexts to translate and clip display
operations, and Wrappers to modify the GraphicsContext on the
way down to the VisualComponent.

VisualComponent

VisualComponent is an abstract superclass. It requires its sub-
classes to implement displayOn: aGraphicsContext, which renders
the component. All displaying is done relative to 0@0, so the
component need not know where it eventually ends up on the
screen. Subclasses also have to implement preferredBounds,
which returns a Rectangle describing the size the component

thinks it should be. Layout may make its screen appearance
smaller.

VisualPart

VisualPart adds an instance variable, container, to VisualCompo-
nent. A VisualPart is linked to its containing component so it can
send itself invalidate when it wants to be redrawn. In the origi-
nal display model, a View that got an update and wanted to dis-
play itself would do it right then. If several Views redisplayed
this could result in an annoying flicker. With the invalidation
model, all VisualParts wanting to display register their interest,
and the next time a Controller goes through an idle loop it no-
tices that redisplay needs to happen and it all occurs at once.

CompositePart

A CompositePart puts several VisualComponents tagether. Their
placement and displayed size are subject to a layout object that
can flexibly position components in either relative or absolute
positions relative to the CompositePart. It is easy to specify loca-
tions like “the top third of the composite with a margin of 20
pixels at the top.”

Wrapper

Wrappers pass most messages through to their component.
Some messages get intercepted or modified on the way. A
translating wrapper, for instance, would change where its com-
ponent displayed. A color wrapper would change the colors
used by its component. Wrappers are supposed to be transpar-
ently composable. That is, you should be able to insert new
wrappers anywhere between the containing object and the
component without interfering with the operation of the com-
ponent or any of the other wrappers.

BoundedWrapper

One of the most common wrappers, BoundedWrapper translates
and clips graphics operations. You’ll almost never explicitly
create a BoundedWrapper. Adding a component to a composite
automatically inserts a BoundedWrapper whose size and location
are set according to the specified layout.

BorderedWrapper
You might think that bordering and bounding would be han-
dled in separate wrappers, in the spirit of purity and compos-

10

THE SMALLTALK REPORT

ability. Instead, apparently for implementation reasons, Bor-
deredWrapper is a subclass of BoundedWrapper. BorderedWrappers
compute their preferredBounds by increasing the size of their
components’ preferredBounds by the size of their border. They
implement displayOn: by displaying the border, insetting the
clipping bounds, and asking their component to display.

GraphicsContext

All graphics operations go through a GraphicsContext. It has
symbolic protocol to display images, lines, rectangles, strings,
and so on. It also carries along a clipping bounds and transla-
tion. Wrappers like BoundedWrapper work by modifying the
GraphicsContext passed along to their component. It also carries
along a foreground color and background color, so compo- -
nents that operate in two colors need have no knowledge of
what colors to use, leaving it up to the GraphicsContext to have
the right color set (perhaps by enclosing the component in a
wrapper that sets the color).

The heavy reliance of this model on wrappers leads to a
problem. You would like to treat the chain of wrappers and the
component they enclose as a single unit. You would also like to
insulate the wrappers and their component from changes in
the wrapper chain.

You could write "container container remove: container" to
remove a component from its composite. This assumes that
the container is some form of wrapper and its container is a
CompositePart. When I started using the new framework I
wrote code like this often. I also found it breaking often, be-
cause [inevitably wanted to insert new wrappers in the chain.
Every time I inserted a new wrapper I’d have to change the
length of "container container ..." expressions to match the new
setup.

A slightly more modular way to fix this problem is to im-
plement a pass through message in Wrapper. The component
could say "container remove: self" and Wrapper>>remove: aVisual-
Component could pass the message on to its container. The
problem with this solution is that it introduces many messages
in Wrapper.

IMPLEMENTATION

What we needed was an abstract way to address a message
somewhere in the wrapper chain. We wanted to treat the chain
as a single object for most operations. First we needed to get
the top wrapper in the chain. VisualComponents don’t have a
container, so they assume there are no wrappers.:

VisualComponent>>topWrapper
"By default"
~self

VisualParts ask their container for the topWrapper. Note the
nil check. Many methods in VisualPart would be simpler if Visu-
alParts maintained the invariant that their container could not
be nil. I have never found a case where it wasn’t nil, except
after a window has been released. The lack of an invariant
leaves you with one more thing to remember—always check
the container before sending it a message.

VisualPart>>topWrapper
container isNil ifTrue: [*self].
~container topWrapperFor: self

The argument to topWrapperFor: will always be the compo-
nent immediately below the receiver. When you get to an abject
that isn’t a wrapper, you return the object below, which is guar-
anteed to be either a wrapper or the original component itself:

VisualComponent>>topWrapperFor: anObject
~anObject

Wrapper>>topWrapperFor: anObject
container isNil ifTrue: {~self].
~container topWrapperFor: self

TopWrapper is useful all by itself. I often keep a collection of
VisualComponents that I'm interested in managing. When I
want to remove one from a CompositePart, I need—you guessed
it—the topWrapper. I can say component topWrapper container
remove: component topWrapper. Simple. It no longer matters
what part of the chain I hold onto. I can get to the top and bot-
tom easily.

Back to our effort to send messages “somewhere in the
chain,” We want to send a message to the first wrapper that
implements it. The search proceeds from the top wrapper
down, so we can insert new wrappers to intercept the message
later. This creates the potential for other problems later on,
like accidentally shadowing a method in a lower Wrapper, but
I haven’t found it to be a problem in practice.

VisualComponent>>wrapperSend: aSymbol
~self topWrapper wrapperDelegate: (Message selector: aSymbol)

Using this protocol, a component can say things like self
wrapperSend: #disable, assuming that some wrapper in the
chain implements disable, but not assuming where in the chain
it resides.

Now we need to implement wrapperDelegate:. The default
implementation is to perform the message:

VisualComponent>>wrapperDelegate: aMessage
~self perform: aMessage selector withArguments: aMessage
arquments

Wrappers need to be a bit smarter. They perform the mes-
sage only if they can understand it; otherwise they pass it on to
their component (remember, search for the appropriate wrap-
per proceeds top down).

Wrapper>>wrapperDelegate: aMessage

~(self respondsTo: aMessage selector)

ifTrue: [super wrapperDelegate; aMessage]
ifFalse: [component wrapperDelegate: aMessage]

Here is an interesting question: Should the VisualComponent
send the message regardless, or ignore it if it isn’t understood?
I can see both sides. Ignoring it is better for modularity be-
cause if you don’t have a wrapper that responds, the message
disappears without a trace. On the other hand, if someone is

continued on page 17

JANUARY 1993

11

ETTING REAL

How to Create
Smalltalk Scripts

n my last column I discussed a critical concept in Smalltalk

application development: Never view your image as a per-

manent entity. I concentrated on extracting application
source from an image and rebuilding the image by recreating
classes and methods from source. However, with complex ap-
plications, classes, pools, and global variables also must be
defined and initialized, usually with a script.

This column describes how to construct Smalltalk scripts

and includes a discussion of some useful expressions and
structuring mechanisms for scripts.

FORMAT
A Smalltalk script is really just Smalltalk code stored in a file,
usually in file-out format.* This is the format with the !’s, in
which most people are used to seeing class and method defini-
tions. The most common way to create a file in this format is
to use a file-out menu item in a browser.

A class definition consists of the definition string followed
by a single exclamation point:

Point subclass: Object
instanceVariableNames: 'x y'

classVariablesNames: '’
pools: ' '!

Method definitions are more complicated. A header portion
indicates the class to which methods belong. It begins and ends
with exclamation points and is followed by one or more method
definitions, each ending with a single exclamation point. After
all method definitions, another exclamation point is appended,
indicating that the series of method definitions is over:

! Point methods !

X
"Retum the x component of the receiver”
x!
= aPoint
"Return true if both the x and y coordinates areequal."
~self x = aPoint x and: [self y = aPoint y]' !

Most implementations require a separating character be-
tween the last two exclamation points. This is because excla-
mation points in the definition source are doubled when writ-
ten to a file. If there is no separator between them, the system
will interpret it as a single exclamation in the method source.

The header portion of method definitions varies from im-

* Described in Chapter 3 , TheSmalltalk-80 Code File Format, of SMALLTALK-80 : BiTs
of HisTory, WoRps oFADviIcE, edited by Glen Krasner (Addison-Wesley, 1983).

Juanita Ewing

plementation to implementation. The example above uses a
Smalltalk/V style header. In Smalltalk-80-derived implementa-
tions, the header also identifies a protocol:

!Point methodsFor: 'accessing'!
X
"Return the x component of the receiver”
i O
Other interesting pieces of code that people want to put in
scripts are really just do-its. It turns out that class definitions
are also do-its, so we already know the proper format: code fol-
lowed by a single exclamation point.

USEFUL SCRIPT EXPRESSIONS

I usually start my file-in scripts with a comment describing the
contents of the script and any relevant assumptions. Filing in a
comment has no effect on your image, but is a handy way to
document the contents of a file. Just like any other do-it, an ex-
clamation must follow the expression:

"This file contains the script to load the drawing application. This load
procedure has been tested with version1.4" !

Another common expression in a file is a class initialization.
In this example the message initialize is sent to the DrawingAp-
plication class. The appropriate initialization method will vary
from class to class:

DrawingApplication initialize !

You may query the user for the location of relevant files be-
fore proceeding. Note the use of a temporary variable here:

| directory |

directory := Prompter prompt: 'Where is the archivedirectory?'.

directory isEmpty

ifFalse; [(Disk file: directory, "\ archive’) fileIn]!

A dialog with the user might be appropriate during the file-
in process, particularly if the expression is destructive. In this
example, a global name is going to be removed from the sys-
tem. Place interaction with the user at the beginning of the
script to allow automated builds:

| confirm |

confirm := Prompter confirm: The next step is irreversible. Continue?'.

confirm ifTrue: [Smalltalk removeKey: #Vector] !

Some applications make use of global variables, which can
be declared and initialized in scripts. Current ways to declare

12

THE SMALLTALK REPORT

global variables reveal some implementation details of the
global name space in Smalltalk implementations. Global vari-
ables are stored as symbols in Smalltalk, which is a dictionary.
Don’t forget the # mark, which creates a symbol literal in the
expression. In our example we create two global variables, the
first with an initial value of nil. Nil is used as the initial value of
variables in other places in the Smalltalk system:

Smalltalk at: #DrawingMode put: nil.

Smalltalk at: #DefaultColor put: ClrBlack !

It is also possible to test if a particular global name has been
defined. This can be useful when combining segments of an
application in a mix and match style. In the first expression the
existence of the global name Vector is tested for; if it is not
defined, then the file containing its definition is loaded. This
type of expression is really ad hoc configuration management.

In the second expression the existence of Vector is tested for
and a message displayed if the name is already defined. Since
the user doesn’t furnish any meaningful input, a better alterna-
tive is to write messages to the Transcript instead of putting di-
alogs in the middle of a script:

Smalltalk
at: #Vector
ifAbsent: [(Disk file: 'Vector.st') fileIn] !
(Smalltalk includesKey: #Vector)
ifTrue: [MessageBox message: 'About to redefine Vector']!

Another type of global that needs to be declared is a pool.
Current ways to declare pools also reveal some implementa-
tion details. Pools are dictionaries and keys are available in the
methods of classes using the pool. Note that the declaration of
the pool is a separate expression from the subsequent refer-
ences to it. Each expression is independently compiled The
first expression is compiled and executed, which declares the
pool if neccessary. We avoid redefining the pool if it already
exdsts because that would orphan existing references to its vari-
ables. After the pool has been declared, subsegent do-its can
reference it by name. The second expression defines three pool
variables. This example is appropriate for Smalltalk/V systems.
In Smalltalk-80-derived systems, the keys should be symbols:

Smalltalk
at: #TypesettingConstants
ifAbsent: [Smalltalk at: #TypesettingConstants put: Dictionary new]!

TypesettingConstants at: 'Bold' put: '.B'.
TypesettingConstants at: 'Ttalic' put: ".I'.
TypesettingConstants at: 'Underline’ put:'.U" !

STRUCTURING SCRIPTS

Do-its in a workspace or file are executed, logged in the
changes file, and never referenced again by the system. Typical
Smalltalk source control mechanisms don’t capture do-its;
thus do-its are difficult to maintain. To overcome this problem
in scripts, which typically have many do-its, developers should,
whenever possible, turn do-its into methods. Methods are
maintained by the Smalltalk system and can be browsed and
filed-out. They don’t disappear after execution. An expression
to initialize a class variable, for example, can be turned into a
class method.

Files are the basis of another structuring mechanism. Appli-
cation source can be composed of multiple files based on func-
tionality. Several files based on functionality are more reusable
than a single large application file. It is easier to distribute and
use a piece of functionality if it is separated from the rest of an
application. Because extracting a unit of functionality from a
large application source file is very challenging, interesting
functionality will not be reused if it is not separated.

Even though application source is separated into multiple
files, the application can be reconstructed quite easily. Scripts
often load a series of files in a particular order. In this expres-
sion three files are loaded into an image:

(Disk file: ‘enhancements.st') fileln.

(Disk file: 'classes.st") fileIn.

(Disk file 'initialization.st') fileIn !

An alternative equivalent expression easier to extend is:

#(

'enhancements, st'

'classes.st’

‘initialization.st')

do:
[:each | (Disk file: each)fileIn] !

The final structuring mechanism to discuss is based on a class.
In this mechanism, we devote an entire class to rebuilding an ap-
plication. This class probably also has functionality to store the
source for an application. Do-it expressions not related to a class
should be incorporated into methods in the rebuilding class. For
example, an expression that creates and initializes a global vari-
able should become a method. Then all methods creating global
variables should be called from a controlling method:

initializeGlobals
"Define and initialize global variables."
self initializeDrawingGlobal.
self initializeLabelGlobal.
self initializeDrawingLocationGlobal

Developers should create a similar set of methods for
defining and initializing pools. The entire rebuilding class can
now be maintained by the Smalltalk system, instead of equiva-
lent code maintained by the developer in script files. The
source for the rebuilding class also needs to be archived in the
same manner as the source for the rest of the application.

CONCLUSION

The ability to declare globals and pools and to initialize classes
in a noninteractive mode is important in rebuilding complex
Smalltalk applications. Understanding the file-in format and
having a few examples can go a long way toward creating effec-
tive scripts, but script code should be turned into methods and
classes whenever possible. Be wary of complex scripts and ini-
tialization methods too difficult to debug and maintain.

Juanita Ewing is a senior staff member of Digitalk Professional Ser-
vices. She has been a project leader for several commercial O-O soft-
ware projects and is an expert in the design and implementation of
O-O applications, frameworks, and systems. In a previous position at
Tektronix Inc., she was responsible for the development of class li-
braries for the first commercial-quality Smalltalk-80 system.

JANUARY 1993

13

Designing a

HE BEST OF comp.lang.smalltalk

Alan Knight

Data Structure Library

his month’s column centers on issues involved in creat-

ing an O-O library of data structures, specifically those

involving cursors. Because of the background required
and the Eiffel-specific nature of much of USENET’s discussion
on this topic, I've avoided direct quotes and given a general in-
troduction to the concepts.

CURSORS AND ITERATION
Cursors, in the context of data structures, are an abstraction of
position in a collection. Just as a graphical cursor marks a place
on the screen, these cursors mark a position in the data struc-
ture. As a trivial example, in the loop:

1 to: anArray size do: [|

(anArray at: i) printOn: Transcript].

the integer i acts as a cursor; it marks a position in the array.

If the structure were a dictionary then its keys could serve
the same purpose:

aDictonary keys do: [:eachKey |
(aDictionary at: eachKey) printOn: Transcript].

The choice of cursor can be quite significant. The array ex-
ample above works well, but the dictionary example wastes time
doing a lookup for every key. A much more efficient mechanism
(which DicHonary iteration methods use) is to operate directly on
the underlying representation, which is an array:

1 to: aDictionary size do: [:indexIntoPrivateStorage |
| association |
association :=
(aDictionary basicAt: indexIntoPrivateStorage) isNil
ifFalse: [
association value printOn: Transcript]]-

This operates much more efficiently than the previous ver-
sion, but has some disadvantages. It makes the code
significantly more complicated, circumvents encapsulation to
expose representation details, and makes the code totally de-
pendent on those details. Overall, it is extremely bad code with
the potential to ruin reputations and turn programmers doing
routine maintenance into homicidal maniacs.

It is difficult to do efficient iteration with explicit cursors
while minimizing bad code and the senseless loss of human
life. The situation only gets worse if we consider structures like
sets, which cannot be indexed at all using public methods. The
solution? Make an abstraction of cursors. While this will have
to be implemented differently for different collections, it
should allow us to write code like:

| cursor |
cursor := aCollecHon cursorAtStart.
[cursor atEnd] whileFalse: [
(aCollection atCursor: cursor) printOn: Transcript.
cursor next].

Why would you ever want to do that?
I haven’t yet explained why anyone would want explicit cur-
sors. I'm sure many experienced Smalltalkers are shaking their
heads and thinking What’s wrong with do:? as they turn to the
next article. They have a point. For many applications, the best
method of iteration is the standard:

aCollection do: [:each |

each printOn: Transcript].

Although do: is likely implemented using a cursor, that
complexity is hidden. The code is shorter, clearer, and just as
general. Why bother with explicit cursors? Unfortunately,
there are circumstances in which do: and its siblings just aren’t
adequate. Sometimes the cursors are themselves meaningful:

1 to: aCollection size do: [:i |
Transcript show: 'Ttem ', i printString, '=".
(aCollection at: i) printOn: Transcript.
Transcript c].

Sometimes iteration does not break down naturally into
processing single items. For example, on a collection of charac-
ters we might wish to operate on groups (e.g., words). We
might like the decisions on how to group characters to be
made by methods deep inside the processing loop. At the same
time, we want to maintain a clean interface.

We can deal with this situation by making a new object that
contains both the collection and a cursor. If all our methods
deal with this object instead of the collection, then different
methods can use or change the cursor position easily. In
Smalltalk these objects are normally called streams.

STREAMS
Unfortunately, standard Smalltalk streams have a few deficien-
cies. The main problem is that they don’t use a general mecha-
nism for cursors. Instead, streams have an integer index that is
used to record position. Collections (such as sets or dictionar-
ies) that can’t be indexed by integers can’t be used in a stream,
I suspect there are those who would argue that this is a fea-
ture, that integer indices allow us to stream over any ordered
collection, and that we weren’t meant to stream over un-

14

THE SMALLTALK REPORT

ordered collections. I can’t agree with this. First of all, I see
nothing wrong with streaming over unordered collections.
Second, even if we restrict ourselves to collections with order,
integer cursors are only really practical for array-based repre-
sentations. Using an integer cursor for a large linked list or tree
structure would be very inefficient.

MORE COMPLEX STRUCTURES

The limited implementation of streams is most likely a symp-
tom of the lack of different data structures in the standard
Smalltalk image. Because everything in the normal image is ar-
ray-based, integer indices are fine.

In contrast, a good data structures library will have many
different structures, each with variations and trade-offs. These
structures will require more sophisticated cursor mechanisms;
exploiting the structures fully will require us to use them.

For instance, a standard data structures technique is the use
of cursors to exploit locality of reference. Consider a sorted
collection in which items are to be located using binary search.
Although there may be no fixed pattern to the searches that
would let them be directly optimized, we know that consecu-
tive searches often look for items that are close together. Using
this information, we can store the position of the last object
searched for and use that position as a starting point for the
next search. Although there are no guarantees that any particu-
lar search will be faster using this technique, the average search
time may be significantly improved. More complicated struc-
tures and search schemes might exploit several cursors for
greater improvements. Cursors aren't the only way of exploit-
ing these types of patterns. Another method is to reorganize
the data structure itself for greater efficiency on particular
queries. This is the basis of some list-organizing heuristics and
of data structures like splay trees.

STORING CURSORS

The USENET discussion that started all this began by comparing

two different Eiffel libraries: those from ISE and SIG Computer.
Paul Johnson (paj@gec-mrec.co.uk) writes:

The ISE library has the notion of a cursor within the ob-
ject being traversed. Hence to traverse a list you put the
cursor to the beginning of the list and then at every step
you move it forwards...In the SIG library, the cursors
(called iterators) are separate from the objects.

This raises an issue we haven’t considered—where cursors
should be stored. At first glance, the ISE idea of storing a cur-
sor inside the object seems very strange. There’s no major ad-
vantage over using a stream and it would make multiple simul-
taneous iterations very difficult.

I suspect that some of the reasons for doing this have to do
with Eiffel’s limitations. Although I’'m not very familiar with
Eiffel, I don’t think it has blocks or an equivalent that would
make operations like do: possible. Without these, all iterations
would have to use an explicit cursor, and storing the cursor in-
side the collection would make basic iteration code the simplest.

Multiple simultaneous operations are handled by providing

methods that save and restore the cursor state. This makes
multiple iterations possible, but code must explicitly guard
against that possibility, reducing generality.

This technique does have one significant advantage, how-
ever. That is in dealing with iteration over changing collections.

ITERATING OVER CHANGING COLLECTIONS

A standard Smalltalk error is to iterate over a collection and
have the iteration block modify the collection. This can cause
very strange effects and be difficult to track down.

While experienced Smalltalk programmers rarely do any-
thing as obvious as:

aCollection do: [:each |

aCollection remove: each].

there are more subtle variations that can catch the best of us.
They’ve certainly caught me. One moderately subtle example is
iterating over the collection of all active windows, closing
them. Unfortunately, when you close a window, it gets re-
moved from the collection of active windows. A cursor embed-
ded in the collection itself could automatically be updated to
compensate for these kind of changes.

A more general approach is to make a copy of a collection
being streamed over or as soon as it is modified. This adds
overhead and complication to the implementation, but should
be invisible to the user and makes the semantics more consis-
tent. Improved semantics alone may make the cost worthwhile.

Peter Deutsch (deutsch@smli.eng.sun.com) recommends
this approach, for which he credits Xanadu’s Smalltalk-to-C++
development environment:

The bookkeeping for doing copy-on-write is much less
than the actual cost of the copy, so if there aren’t any
read/write collisions, you never make the copy; if there
is a read/write collision, it may still be possible to copy
incrementally. I, for one, would rather pay the cost to
have well-defined semantics than implementation-de-
pendent happenstance...

Taking a leaf from databases: reading should create a
virtual copy, but writing should be exclusive.

To reduce copying expense, it is worth looking at the work
on “persistent” data structures to reduce the amount of copy-
ing. This is a different use of the word persistent than is com-
mon in O-O circles. It refers to data structures that allow up-
dates as well as access to all previous states without just
copying at each step.

CONCLUSION

Writing truly general and reusable libraries requires a lot more
thought and design than just assembling a few useful bits of
code. Goad abstractions require careful consideration of the
needs of different domains as well as ways the system may need
to be extended.

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada,
K2C 3P3. He can be reached at 613.788.2600 x5783, or by email at
knight@mrco.carleton.ca.

JANUARY 1993

15

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. :
Vendors interested in being included in this feature should send press releases to our editorial offfices, Product Announcements Dept., 91 Second Ave., I
Ottawa, Ontario K18 2H4, Canada.

ParcPlace Systems has introduced VisualWorks, an applica-
tion development environment for corporate developers who
need to create graphical client/server applications that are in-
stantly portable across PC, Macintosh, and UNIX platforms.
The key components of VisualWorks include a graphical user
interface (GUI) builder, database access capabilities, a reusable
application framework, and instant cross-platform portability.
VisualWorks is based on ParcPlace’s ObjectWorks\Smalltalk, a
mature, fully object-oriented programming environment. Us-
ing VisualWorks, MIS departments can quickly create graphi-
cal applications to fill increasing user demands for information
access, as well as leverage an object-oriented architecture to ad-
dress complex application development needs.

VisualWorks is ParcPlace’s first product in the emerging
ADE market. Currently, software vendors from various cate-
gories are entering this market by offering products that inte-
grate interface builders, database access tools, and application
logic for client/server applications. VisualWorks sets a new
standard by providing the components of an ADE with the
added advantages of instant cross-platform portability, and
object-oriented foundation and an application framework.

ParcPlace Systems, 999 E. Arques Ave., Sunnyvale, CA 94086,
408.481.9090, fax: 408.481.9005

ObjecTime Ltd. has released an upgrade to its object-oriented
CASE tool for distributed, event-driven systems. ObjecTime
4.0 supports executable specification and design models for
real-time interworking via TCP/IP sockets. For example, vari-
ous hardware or software entities can be controlled directly
from an executing ObjecTime model. ObjecTime supports an
advanced methodology for the analysis and design of dis-
tributed, event-driven systems known as real-time object-ori-
ented modeling (ROOM). ROOM includes graphical design
concepts and a highly interactive development process that
help to eliminate error-prone discontinuities between the vari-
ous phases of software development. As a unique feature, Ob-
jecTime enables the creation of executable analysis and design
models that can be tested in an extensive workstation-based
runtime environment.

The high-level, object-oriented concepts are independent
of programming language. Either C++ or ObjecTime’s Rapid
Prototyping Language (based on Smalltalk-80) may be used at
the detailed design level. To broaden the appeal of Objec-

Time’s ability to intermix graphical design content with de-
tailed level programming, version 4.0 contains improved C++
support. The package supports both the GNU compiler and
AT&T’s cfront.
ObjecTime Ltd., 340 March Rd., Ste. 200, Kanata, Ont., Canada K2K
2E4, toll-free 800.567.TIME, 613.591.3400, fax: 613.591.3784
sales@objectime.on.ca

Digitalk Inc. is shipping the 32-bit version of its object-ori-
ented Smalltalk/V development environment for 0S/2 2.0. The
new version results in Smalltalk/V applications that are up to
100% faster and 50% smaller than 16-bit OS/2 applications.
The 32-bit package offers many improvements over its 16-
bit predecessor, including the ability to call both 16-bit and 32-
bit Dynamic Link Libraries, a debugger with enhanced single-
stepping capability, improved support for bitmaps, double-byte
character set characters in Smalltallk/V code, and support for
0S/2’s common dialog boxes,
Dightalk Inc., 9841 Alrport Bivd., Los Angeles, CA 90045, 310.645.1082,
fax: 310.645.1306

Servio Corp., developer of the GemStone object database
management system (ODBMS), and Object Technology Inter-
national (OTI) Inc., developer of the ENVY/Developer software
engineering environment, have announced a cooperative rela-
tionship to support Smalltalk applications’ development and
delivery. The integration of ENVY/Developer and GemStone,
through the GemStone Smalltalk Interface (GSI), provides de-
velopers with a complete client/server-based application devel-
opment and delivery environment for building robust
Smalltalk applications.

Through the cooperative partnership, Smalltalk applica-
tions developed using ENVY/Developer will have access to all
of GemStone’s Smalltalk object database support, including in-
tegrated garbage collection of persistent Smalltalk objects and
support of cooperative client/server applications. ENVY/De-
veloper is used to coordinate team development, version con-
trol, and configuration management. GemStone, in turn, is
used to store and retrieve Smalltalk objects, providing high
performance and active server functionality in support of dis-
tributed Smalltalk applications.

Servio Corp., 950 Marina Village Pkwy., Ste. 110, Alameda, CA 94501,
510.814.6200, fax: 510.814.6227

16

THE SMALLTALK REPORT

RECRUITMENT

IT'S TIME
to become a
CONSULTANT

Numerous Immediate Southern California
Consulting Opportunities for
OOP PROFESSIONALS

-- Smalltalk

-- ENFIN .
-- C++; 0S/2 (Heavy Experience)
-- Other Significant OOP Exp.

Software Management
Consultants, Inc.
500 No. Brand Blvd., Suite 1090
Glendale, CA 91203

Voice (818) 240-3177
Fax: (818) 240-7189

We are a rapidly growing
consulting company with
many state of the art openings.
*

LONG TERM ASSIGNMENTS
HIGHEST COMPENSATION

SMALLTALK 80

CompPuTeERr CORPORATION

1212 Avenue of the Americas, New York, NY 10036, 9th Floor
(212) 840-8666 * (800) 843-9119 * Fax (212) 768-7188

SMALLTALK IDIOMS continued from page 11

counting on the return value, the "doesNotUnderstand" case will
cause an error, Besides, I like having a notifier pop up during
development if I send a message no one understands. It’s usu-
ally because I have made a mistake.

WrapperSend: has made my life much easier. I now use
wrappers as they were intended: independent bits of function-
ality that can be composed in different ways with abandon. |
no longer pause to think if any of my code depends on the
configuration of the wrapper chain.

Another useful implication is that in using the wrapper pass
through mechanism described above I had to implement my
messages in three places: VisualComponent for some default be-
havior, Wrapper for delegation, and wrapper subclass for imple-
menting the method for the real behavior. With wrapperSend:, I
only put it in one place: the class that really implements it. All
the other wrappers pass it along automatically.

CONCLUSION

Wrappers make amazingly powerful and flexible interface ob-
jects. Coloring, highlighting, visibility, selection, and double
buffering are some of the activities that used to be built into in-
terface objects that can now be factored into their own wrap-
per. Once you have a library of wrappers you can create new
interface objects by composition, never having to create new
classes. The possibilities are mind boggling and not nearly fully
explored. If you find new wrappers, send them to me and I’ll
put them in this column. Call me at 408.338.4649 or fax me at
408338.1115. B

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPar Computer. He is also the
founder of First Class Software, which develops and distributes
reengineering products for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226.

JANUARY 1993

17

The Smalltalk Project Browser
Source Code Management System for Smalltalk/V
Version 2.00

Empower Software is pleased Lo announce the release of The
Smalltalk Project Browser, version 2.00. The Smalltalk Project
Browser allows developers to track and manage changes 1o
Smalltalk/V systems, and to develop and analyze code more
effectively. Version 2.00 extends this toolset to include the following:

Project Browser - project source code management
Project Class Browser - source code editing & tracking
Source File Browser - external source code analysis
Class Interface Browser - class/protocol editing
Navigator - enhanced Inspector for inter-object traversals
Program Shell - simple Smalltalk/EXE program launcher

Available now for $125 (325
for regiatered unsms): price
inchudes support for both
VWIN (1.0-2.0) and
VPM/VOS2 (1.3-2.0), full
source, and vaer mamal, Add
$5 shipping in U.S.A. or
Canada, $1S clscwhere. CA
residenis add B.25% sales tax.
Call for quantity or dealer
discounts, or for more
information. Corporsie POs
welcome.

Empower Software

279 S. Beverly Drive, Suite #217

Beverly Hills, Ca. 90212

Voice: (213) 878-2327 CIS: 71031,2640

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management
for all Smalltalk/V applications
® Transparent access to all kinds of Smalltalk objects on disk.
® Transaction commit/rollback of changes to virtual objects.
® Access to individual elements of virtual collections for ODBMS up
to 4 billion objects per virtual space; objects cached for speed.
® Multi-key and multi-value virtual dictionaries for query-building
by key range selection and set intersection.
® Works directly with third party user interface & SQL classes etc.
® (Class Restructure Editor for renaming classes and adding or
removing instance variables allows applications to evolve.
® Shared access to named virtual object spaces on disk; object
portability between images. Virtual objects are fully functional.
® Source code supplied.
Some comments we have received about VOSS:
“...clean _..elegant. Works like a charm.”
~Hal Hildebrand, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability.” —Raul Duran, Microgenics Instruments

. VOSS/Windows $1950, VOSS /286 $1450, VOSS /OS2 in development.
[0 g lc Quantity discounts from 30% for two or more copies. (Ask for details)
Z7&J) " Visa,MasterCard and EuroCard accepted. Please add $15 for shipping.
A R T S Logic Arts Ltd 75 Hemingford Road, Cambridge, England, CB1 3BY
£3 2% - Y TEL: +44223212392 FAX: +44 223 245171

mEDITORS' CORNER ...continued from page 2

Research Center reports on the use of MiTTS (Minimalist Tu-
torial and Tools for Smalltalk). MiTTS is a research project at
IBM that aims to foster an approach to learning Smalltalk
based on building an initial understanding of object-oriented
design. The work of Mary Beth and her colleagues is impor-
tant for all of us who help programmers climb the Smalltalk
mountain. As Smalltalk continues to be widely adopted by the
MIS community, training organizations are being presented
with the challenge of teaching Smalltalk to programmers
whose previous experience has been largely in COBOL or 4GL.

Also in this issue, Kent Beck describes the Wrapper idiom
introduced in release 4.1 of Objectworks\Smalltalk 4.1 and de-
scribes how, with a library of wrappers, new interface objects
can be created by composition rather than by creating new
classes. In this month’s Getting Real column, Juanita Ewing
described the pros and cons of using scripts (code stored in
file-in format) to perform tasks such as declaring globals and
pool variables and class initialization. Finally, Alan Knight,
with help from USENET contributors, looks at the issues in-
volved in designing a data structure library.

Best wishes to all our readers for 1993.

Highlights

Excerpts from industry publications

SPECIFICALLY SMALLTALK

It has been ten years since I implemented my first object-ori-
ented language: our first version of Smalltalk. And so, it is in-
teresting at this point to reflect on the man advances and
changes that have taken place over the last ten years and specu-
late on what the future holds for object-oriented technology. I
think there is a unifying theme in all of this and that it relates
to making people productive, to allowing programmers and
analysts to do a better job and meet the changing requirements
of their companies and their own personal situations.

Object insider: George Bosworth, OBJECT MAGAZINE, [1-12/92

STANDARDS
.. . We may be looking forward to the electronic equivalent of
the Tower of Babel if everyone insists on doing things their own
way—trying to lock up all of the market with mutually exclu-
sive approaches. I have a colleague who says that the need for
standards is a middle-age disease. Standards are unquestionably
dull, but they are precisely what make telephones and fax ma-
chines so useful (and widely used). We need to apply some of
the same logic to the next round of operating environments.
Industry watch: What do Microsoft, IBM and Apple have in common?,
Richard Dalton, WINDOWS, 8/92

18

THE SMALLTALK REPORT

_ _

RECRUITMENT

[' . - - b T T H
- To PLACE A RECRUITMENT AD,
CONTACT HELEN NEWLING AT
212.274.0640

For more than a century, Eli Lilly and Company
has been dedicated to improving the quality of life
throughout the world. Today, we are a $5+ billion
global research-based corporation that develops,
manufactures, and markets pharmaceuticals, med-
ical devices and diagnostic products, and animal
health products.

Central to our success is our dedication to the qual-
ity of our products and the quality of our employees.
We carefully select applicants and provide for their
development through ongoing training programs, a
promotion-from-within policy, and opportunities to
improve the skills needed to grow in their careers.

We currently seek a systems professional with ob-
ject-oriented project experience to work in our corpo-
rate technology group, with responsibility for
developing an object-oriented technology strategy for
the company and defining the roles needed in the
OO environment. The successful candidate will help
us integrate OOT into our software de-

demystify OOT, and facilitate communication
among OOT projects.

A BS or MS degree and minimum 3 years experi-
ence in OO design and programming are required.
Strong communication, interpersonal and problem-
solving skills with the proven ability to handle multi-
ple projects in a team environment also needed.

El Lilly and Company offers competitive compen-
sation, extensive development programs, and a su-
perb work environment. We will reimburse
reasonable moving expenses for those who join us at
our corporate headquarters in Indianapolis, Indiana.
Indianapolis is an active growing city offering an ex-
cellent quality of life and an affordable cost of living,
as well as broad-based cultural, recreational, and
sports activities.

For prompt consideration, please send a cover let-
ter and resume to: Eli Lilly and Company, Corporate
Recruitment - Systems Dept. 001S, Lilly Corporate
Center, Indianapolis, IN 46285.

velopment process, promote the appro-
priate application of OOT, help to

We are an equal opportunity employer
committed to diversity in the workplace.

JANUARY 1993

19

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, OS/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

THE TOP NAME
IN TRAINING IS ON
THE BOTTOM
OF THE BOX.

DICI ALK

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
strategies that immediately
boost your productivity. You'll

reduce your learning curve,
and you’ll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
techniques you can put fo
work immediately on your
project. Just ask our clients
like IBM, Bank of America,
Progressive Insurance,
Puget Power & Light, U.S.
Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM'’s
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990's. For a full description
and schedule of classes, call
(800) 888-6892 x410.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it.

DIGITALK

	By Article Title
	An Objectworks\Smalltalk 4.1 wrapper idiom
	How to create Smalltalk scripts
	Minimalist instruction for smalltalk
	Taking exception to smalltalk, part 2

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Hinkle, Bob
	Johnson, Ralph E.
	Knight, Alan
	Rosson, Mary Beth

	By Topic
	comp.lang.smalltalk
	Getting real
	Smalltalk Idioms

