
The International Newsletter for Smalltalk Programmers

November/December 1992 Volume 2 Number 3

-_TAKING

By Bo

Feetur
1 Tak

Par
by

Colum
6 GU

Sm
Win
by

9 Get
with
by J

12 ti
by A

15Snr
by

20 Put
Des
by

Depart

22 Boo
ENG
by

23 Hig

xception handling is an important part of many languages. Al-

though Ilot provided in the original Snlalltalk-80 or in Smalltalk/V,

it is supported in the latest version of ParcPlace’s Smalltalk-80. This

article will show how to build an exception handler for any version

s

c

0

n

l

b

s

L

a

o

i

g

EXCEPTION TO

““SMALLTALK,

PART I

b Hinkle & Ralph E. Johnson

Contenb

ee/Mes
ing exception to Smalltalk,

❑
wny, we’ll

mechanisms

The cxc

Smalltalk-8

(>rden, 1an

ported Typ

cc~>tion ha

dler is simi

sirrn descri

work intere

A QUICK

Briefly spe

trol in a pr

An exceptio

can deal w

file, dividin
t I
Bob Hinkla & Ralph E, Johnson

ns
/s: Significant suppoti events in
alltalk/V PM se illuminated in
dow Builder

Greg Hendlay & E& Smith

iiW Real: How to manage source
out tools
uanita Ew”ng

Beat of comp.larrg.smslHslk
lan Knight

s/fta/k /dioms: Collection idioms
Kent Back

ting it in perapectiw:
cribing your design
Rebecm Witfs-Brock

ments

k Retiew: OBJECT-ORIENTEO
INEERINGby John R. Bourne

Richard L. Peskin

hlights

scheme, a p

and then co

a signal is r

that was reg

found, contr

handler wil

changes are

where the h

This dcsc

cess to proce

text stilck to

colltrt)l tlt)w

lLIIlguJges b

(~l~jects;Ind

gr~mmcr. S

c;llled r(:/lt~(

their illtcrn~

way. progfilm

themselves.

makes il l;lll
(If Smalltalk a]ld will usc Smalltalk/V 286 as all example. Along the

how yOLIwhy it’s useful for languages to treat seemingly internal

such ;ISprocesses and contexts as first-class ol)jects.

ption handler WdS first built for an rarly version of ‘~ektronix’s

. It \vas modeled afier a version described in an article by Evelyn Van

d we used it in the type inference system of Typed Smalltalk.z When we

ed Smalltalk to ParcPlace Smalltalk, we wanted to use their faster ex-

dler, so we modified ours to l)e compatible. Thus, our exception han-

ar to ParcPlace’s, but less powerful. We then developed the V 286 vcr-

ed here, b(>th to test the generality of the solution and to make the

ting to a wider audience.

OOK AT EXCEPTIONS

king, exception handling is the provision for non-lexical flow of ccrn-

gr~m when something out of the ordinary (i.e., exceptional) occurs.

n hzndler is a part of the program (usually a block in Smal]talk) that

th some possible l]ut unlikely event, such as reading past the end of a

by zero, or referencing out of bounds in an array. In the usual

rogram registers an exception handler for a particular kind of event

ntinues with its normal processing. If an exceptional event does occur,

aised as a Ilotificatiml to the system. The system finds the last handler

istered for that signal by searching down the context stack. If one is

ol passes into the cxccpti(~n hi]ndler. Depending on the system, the

l have diflkrcnt options.” The hondler can usually make whatever

]lecessfir~ executi(]]l call then resume where the signal was raised or

a]ldler was registered, or return from where the handle was registered.

rip[i(>ll shows th:]t implcme]lting An exception handler requires ac-

sses illld their ct)lltext stacks. AI1 cxccption Ilceds to search the con-

find [he correct h;~lldler for ;I givcll signal and implement nt)n-loc~l.

. As iI I-esLIIL,cxccptio]l hfirrdling could (JIIly be ridded to tr,lditiollisl

y the Ianguagc designer. In Sm:lllt;llk, h(>wevcr, where processes tire

colltcxts call hc t)hjccts, exception handling ciln he ;ldded l)y ;I pro-

lllalltillk’s first -clilss lrc:ltmcllt of contcx[s is one ;lspect of’0 co]lcept

”/io}I, which is [he ide~ [hfit I;lllguagcs JIICIsystems should objecti$

~l mcchallisrns to milkc them accessible to the pr(>grammer, 111that

s caIl nlo]litc)r and change their behavior, in a sense reflecting on

our ex;~mplc of exception handling shows how some reflectiveness

gu~ge more ildaptal>lc.
,.i))jrilriii,il (),, JI,I.K(, .1, ,.

me$matMk Report

JOhnP@wd%21Whlre
~uiwaqatiww

SIGs PwucATm4s
Advkosy Board
Wnkwood.oae=o=ssn
EDITORS’
CORNER

John Pugh Paul White
Grdv Omth,ruansI
Geow Bmvorth, D@irsilk
l?lmdcO%Mcmwk41Ag9ccduPg
chuck D4#,nmwhfimwr Group
AddeGd&w’$Psm#buIN
Tcmwmzw=e
BaiYmdkyar, fss
Mdllr Paw-JoM Wsybd Spm-ns
srshaPncap#centdJmsA9nm
P.Ptl@d5f!idds,vaf%snt
f@nm%WSrUT+ATATS dfLalM
i%w-eT&lumbsYhmmssMd

THESMALWAUCIkmm
Ed?kiAdi%ad
JknAJldmomDf$Elk
MdeGotdkg,F’sraQs)meln3
RaedFMip&xnwAdga%!ri8nnca-p
Mgdsykw.w
Dslml?lOnn%Qt&sTqhmeduul

Columrst$m
KmtMklhzcfss5s0fMre
juantsaEudng#D@mik
G- kdtey, fbwfdsa Spem Carp.
H~unsisE@mm-bIulnc
Ahfl KrllgJmcsdssmunlwdq
-m .%&b, Ob@t Tezhmdogj”fmematforal
E4icSffdchJ~SyltunS c0rp.

Rateaawrk-hck ofgib!k

Sms Pt&btkm Group, Inc.
RfChdP.PdedfnM
tiufI&&cKmpFwfsflU

KrktfmjwlA$w, ~sdhoc
s4Bmlcd@kR@n Pds41f&GwhJBhc&k4
KJuenTungi14bdBcdufsdfmt
jnwa&rEnmdF,Am?md.cnOIqmw

&need& &sdLlnsu44mscmm+g&r
xan MercAw&ls4m2f%g4w

* -#-~AuJstut
wdr&ad$qwksbnMsfam

~--
bAaacfs&A+7kb8mcauG?d4
l+0yFw4uaGAd!—blsMs—vAxtcOswsww
Hdmm ~5alsaMBn4ssr
santl~”mnc<3mydMmb
Lrmnmb@x14~
mm+lm ~M*
II
nother OOPSLA has come and gone. This conference represented a significant milestone,
both personally (since it’s finally done and behind us!) smd as Smalltalk users. Based on
this conference, it would appear the language wars of the past are now over. SmalItalk is

definitely well-entrenched as the language of choice within many organizations and few, if
any, of the so-called research-language-type complaints about Smalltalk were to be
found. Smalltsdk has clearly made it.

Interestingly, the void left by the language wars seems already to have been filled by a

full-fledged, drag-em-out war over methodologies. It seemed there were nothing but
methodology tools vendors on the exhibit floor. Many were designed specifically for
methodologies such as Booth or Rumbaugh, while others were “applicable to all method-
ologies” (which, of course, more often than not means “usefid for none”).

Two aspects of this methodology war are worth noting. First, it is not clear that any
one will emerge as the winner. That is not such a bad thing. Just as no one language is ap-
propriate for all applications, even within an organization, no one methodology should be
applied universally. Like the language wars before it, though, this plea for reason and tol-

erance will likely be lost among the battle cries.
The second and more subtle aspect of this war is that these methodologies seem better

geared for the C++ world. Smalltalk developers seemed, for the most part, removed form
the debate. They telked much more about tools that would help you deliver and much less
about methodologies. We will have more to say on this subject and the need for better
tools that go beyond any particular methodology in future issues.

It is with great pleasure we introduce Ralph Johnson and Bob Hinkle, two well-known
members of the Smalltalk community, as our featured writers this month. Over the next
few issues, they will address in detail the issue of exception handling using Smalltalk. This
is a topic important to all computing languages and one that is often misunderstood. In
their opening article, they describe the interface for their exception handler, along with
the machine-independent aspects of its implementation.

Also in this issue, Kent Beck continues his survey of the Collection classes, highlight-
ing interesting facts about many of the more popular classes. Rebecca Wirfs-Brock
speaks about the need for properly described classes and applications. Juanita Ewing de-
scribes a straightfomvard mechanism for managing source code on small projects. Greg
Hendley and Eric Smith survey the events supported by PM’s Pane classes. Richard Pe-
skin reviews John Bourne’s new textbook, written for engineering programs that intro-
duce the object-oriented paradigm. Finally, Alan Knight returns with more discussion
from the USENET world.

Happy holidays to all!
The Smalltalk Scporl (ISSW 1056-7976) is pubfkhcd 9 timn a year, wv month except for the Mm/Apr, July/Aug, and NOVIDCCmmbhud issues.
Published by SIGS P.blicmi.ns 1..., 5BBBroadway, New York, NY 10012 [2111274-0640, .9 cnp~ighl 1991 by SIG5 Publim4i.ns, Inc. All F@ re-
send Seprdmli.n of this material by decwonic trann-nkiom xerm m my other mdhnd will be Ireakd u a willful violation of the US Cnpyright
Law and is flatly pr.hibitcd, Material maybe reproduced with express pmnissi.. from [he p.bfishms. Mailed First Claw. Subscription rates 1 year, (9
issues) domestic, 565, Foreign and Canada, S90, Si@ copy prim, S8.MI. POSTMASTER Smd addrms chm~es md subscription mders to: THE

SMALLTALK REPORT, Subscriber Services, Dept. SML, P.O. Box 3000. Denville, Nl 07034. Submit articles 1. the Edimm at 91 Second Ave.q
OtImm O.lnrio KIS 2H4, Canada.

chb!aj@muAkpf!kqa -

7@J?Fw+---
-F=f?y@-ti
?&&dAz4s@4i

‘Uliiiis

whtm7djaw4kLoFclflsuQuiufmmoww41%
m--+mw~rm--w,
;* RmAsr,m smu-fbusRwm, THsb4naM4-fm.w
*.qqi@nwd7hexJwwL

2 THE SMALLTALKREPORT

TAKINGEXCEPTIONTO SMALLTALKcontirruedj?ompageI Universal Database
OBJECT BRIDGE m

This developer’s tool allows Smalltalk to read and tite to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIH, Lotus, and Excel.

Intelligent Systems, Inc.

1[306 N. 3Sate2fTeet,Ann Arbor, Ml 4S104 (313) 9V6-423S(913) 9v6d241 frn
This article and its sequel next month present a Smalltalk im-
plementation of exception handling. This month, we’ll describe
the system’s interface and the machine-independent aspects of
its implementation, Next month, we’ll complete the picture by
describing the V 286-specific implementation.

THE EXCEPTION HANDLING INTERFACE

At the heart of the exception handling system are the classes
Sigml and Exception. h instance of Signal represents an excep-
tional event that might occur and its most important methods,
handle: do: and raise. Sending handle: do: to a Signal object regis-

ters a block that can be evaluated if that event occurs. For ex-
ample, suppose OutOilloundsEnor is a global variable that holds

a Signal object. As the name implies, this signal is intended to
signify out-of-bounds references in arrays and might be used
in a method of class Arrayasfollows

eheelfFMbElemant
OutOfBoundsError

handle: [:exception I “self handleEsceptionexception]
do: [‘self ak 5]

The effect of handle: do: is to evaluate the second parameter

(do: block), with the addition that a raised OutOfBoundsError
will be handled by evaluating the first parameter (handle:
block). So, as you might expect, evaluating #(1 23 45) check-
FifthHernent will return 5, but evaluating #(1 z 34) check-
FifLhElernentwill cause the block [exception I self handleExcep-
tion: exception] to be evaluated. What happens next depends
on Mrap>handleExceptiorc It might define a default value for
that array, prompt the user for information, or form some

other appropriate response.
For this scheme to work, the system must use OutOfBounds-

h-ror to signify the out-of-bounds condition. This can be done

by sending the raise message to OutOfBoundsErrorin the midst
of at (and methods like it), as follows:

at anlndax
<primitive:60>

(selfoutOfSounds:anhrde~)
ifltue: [“OutOfSoundsErrorraise]

One interesting aspect of the handleExceptiom message is its
parameter exception, which is an instance of the class Exception,
Each time a signal is raised, a new exception is created to ob-
jectify that fact. The exception is a convenient place to encap-
sulate information about both the signal and the context in
which it was raised, Particular error information or a special
error message can be associated with an exception by using
variations of the raise message, in this case raiseWith: and
raiseErrorString:, respectively. In this way, an exception han-

dling block can learn a great deal about the error by accessing
the exception, which allows it to respond more intelligently.

In addition, class Exception provides support for common
exception-handling techniques, including the messages
proceed, reject, restart, and return. When an exception pro-
ceeds, control resumes in the context where its signal was
NOVEMBER/DECEMBER 1992
raised, and a value can be returned if desired. This is how a
new default value can be defined for an array. Thus, handleEx-
ception could be implemented as:

handleExce@ion:anhcaption
rdxception proceedWth:‘Bob’

This will cause the string ‘Bob’to be returned as the value for

any index outside the array’s bounds. In addition to proceed,
you can send restart to an exception, which causes the handle: do:
context to be restarted, or send return, which causes the han-
dle:do: message itself to return, again with the option of return-
ing a specified value. Finally, sending reject to an exception is a

way of saying that the current handler can’t solve the problem.
The system looks for the next handle: do: context down the stack

that can handle the signal and evaluates its handle: block. These
possibilities are illustrated in Figure 1,

For the purposes of this example, we assume that k-ra~>foo
is implemented as

foo
Transcriptshow self checkMthElement printitring

Now, if #(l 23 4) foo is selected and evaluated, when fetch-

HandlerBlock returns, the context stack will be as shown in Fig-
ure 1, with the exception’s instance variables signalContext and

handlerContext referring to the indicated contexts.
There are several ways to define Arrap>handleException:.

One possibility is for it to proceed from the exception, as in

1

2

3

4

5

6

L

‘7

8

hiExceptionpropagatePrivateFrorn

Signal raiseWith:startingAt:
extn3St.rin&pmceed

I Signal mime I

~

— .9ignalC0ntext

+ handlerContext

I Army checkFifthElernmt I

(Array f.. I

Figure 1. Stack during exception handling.
3

■ TAKINGEXCEPTIONTO SMALLTALK,PARTI
handleExceptloruawepfion
exception proceed

In this case, when the handle: block of handlerContext is evalu-
ated, nil will be returned as the value of the Arrap>ah message

send, the fifth context on the stack, and execution will proceed
in the sixth context. However, if handleExceptiorv is defined as

hendWrrceptkm: excepUon
exce@on retmrr

then nil will be returned as the value of the Signabhandle:do:

message send corresponding to the sixth context on the stack,
and execution will proceed in the seventh context. Using
restart, as in

handleErrcepiion:exception
exception restart

will cause the handlercontem the sixth context on the stack, to be
restarted from the beginning, in effect reevaluating the do: block

Finally, the exception handler may reject the Exception, as in

handleExce@on exceplion
exception reject

In this case Exception>>propagatePrivateFrom: will be called
again, but this time the search for a handler will proceed
downward from the context just below the handlerContext, in

this case the seventh one on the stack.

66
Briefly speaking, exception handling

is the provision for non-lexical

flow of control in a program when

something out of the ordinary (i.e.,

exceptional) occurs.
99

There is one final part of the system that interacts with ex-
ception handling, though it’s not implemented in either of the
above two classes. This feature is something called an unwind
mechanism, which is away for a programmer to ensure that
certain actions are performed, even if a context is skipped dur-
ing exception handling. For example, when an exception does
a proceed, restart, or return, the flow of control jumps into
lower contexts on the procedure’s stack, and any higher ccm-
texts are removed from the stack without ever returning to
them. This can be a problem: The contexts that were skipped
might have performed some clean-up actions, such as closing
files or releasing semaphores, if they’d been allowed to finish
execution and return normilly. Skipping these contexts during
4

exception handling means skipping important clean-up jobs.

The solution to this problem is to define a special method,
whose purpose is to ensure clean-up blocks will be executed,
even in the presence of exception handling. The name of this
method in Smalkdk-80 is valueOnUnwindDo:.Assuming
aCoUectionis defined, evaluating

[aCollectioncheclrFiRhElement]
valueOnUnwindDo:~anscnpt show ‘Timeto cleanup!’]

will cause the first block, [aColleclioncheckFifthHement], to be
evaluated. If aCoUeciionhas five or more elements, the value of
the fiflh element will be returned, and nothing more needs to be
done. However, if aCoUecbonhas four or fewer elements, and if
the exception handler for OutOfBoundsErrorcauses control to re-
turn past the context of the valueOnUnwindDo:method (in effect

skipping it), the second block will be evaluated, allowing any
clean-up or finalization to be done. In Smalltalk-80, unwind
blocks are even executed ifthey’re skipped by a normsl method
return, because up-arrow is treated just like a return from an ex-
ception. In V 286, though, the meaning of up-arrow is hardwired
into the virtual machine, so we can’t duplicate this behavior.

THE MACHINE-INDEPENDENT IMPLEMENTATION

Although an implementation of exception handling inevitably
delves into system-specific code, much of our solution is sys-
tem independent, In fact, the same implementation of class

Signal is used for Tektronix and Digitalk platforms (and poten-
tially for ParcPlace), and most of class Exception is common as

well. This section considers the system-independent aspects of
the exception-handling package.

To begin with, there area number of predefine signals, all
of which are defined in the Signal class>>initialize method and
accessible using messages to Signal. These basic signals include
ones for unhandled exceptions and keyboard interrupts, In ad-
dition to these, a class variable called ErrorSignal is added to
Object (just be careful how you add it!) and is accessible by us-
ing Object>>errorSignaL

To create a new signal, you send the message newSignal to
an existing signal. So, for example, we could create the signal
OutOfBoundsErrorby evaluating

OutOfEoundsError:=ErrorSignalnewSignal

either in a workspace or (more likely) in a class initialization
method. The newsignal method creates the new object and sets
its parent instance variable to the receiver. The parent variable
in class Signal is used to provide more structure in signal han-
dling. When a signal is raised, it can be handled by an excep-
tion handler for the signal, by one for the signal’s parent or by

one for any of the signal’s ancestors. In this way, a programmer
can define some general response for a tree of signals by regis-
tering a handler for the signal at the root. This response can

then be specialized by registering more specific handlers for the
signals further down in the tree.

Once a signal has been defined, sending it handle: do: regis-
ters an exception handler for it. The code for handkdo: is
THE SMALLTALKREPORT

handk. handlerBlodcdmdoBloek
“Evaluatedolllock. If all goes well, return its value, If an exception
occursthen the returned value could be generated by evaluating
returnBlock.”
I retorrtllock I
returnBlock:= [walue I “value].
‘doBlock value

This method’s most significant role is as a placeholder. Its basic
function is simply to evaluate its second parameter, the do:
block. But it also marks a place on the context stack so the sys-
tem can find an appropriate handler when an exception oc-

curs. How this happens will be explained next month when we
consider Exception>>fetchHandlerBlock. The block stored in the
returnBlock temporary variable is used to make implementing

Exception>>return easier.
The only other method we mentioned for class Signal was

raise. As we said before, there are acturdly many variations of
the raise message, depending on whether the exception han-

dler can proceed through the exception, whether there’s a pa-
rameter or error string needed, and so on. AI1these raise
combinations call the same private method, which is Sig-
nal>>raiseWith:startingAkextraString: proceed:. This is imple-
mented as follows:

raiseWitlxparameter stasUngAticontext
h-g: * procea4 aBoolean

“Createanew exce~on and have it look for handlers
starling at context,”
I exception I
exception:= se~ newException

sigmk self
pammete~ parameter
extra.%ing: W

proceedllloclc

NOVEMB~ /DECEMBEtI 19$J2
(aBoolean
iflluc [[:vahse I “value]]
ifFalse: [nil]).

“exception propagateFrorn context

This method creates a new instance of Exception, passing the
signal as one of the parameters in the creation message. In ad-
dition, if aBoolean is true, the signal is “proceedable”, which

means that the handler is allowed to send the exception the
proceed message, in effect declaring the error completely re-
solved and causing a return from the raise message send. If it is

proceedable, the new exception will be passed the block [:value
I “vahre]. Like returnltlock in the handle: do: method, the block
here simplifies our implementation, in this case making Excep-
tion>>proceedDoing: much simpler. Finally, this new exception
is sent the message propagateFrom: with the context passed in as
a parameter. This begins the process of finding a handler for
the exception.

Exceptions have five instance variables: signal, parameter,
etiaSting, proceedBlock, and handlerContext. The first four
are set by the signal: parameter: extraString :proceedBlock: mes-
sage, which is sent by a signal when”the exception is created.
The value of proceedBlock, if it isn’t nil, is the [:value I “value]
block we saw above. Afier creating a new exception, a signal
sends the propagateFrom: message, which in turn calls the
propagatePrivateFrom method, In addition to error handling,

propagatePrivateFrom: sends the message fetchHandlerBlock to
find the right handler for the exception (in the process, it sets
the instance variable handlerContext to the appropriate han-
dle:do: message’s context) and evaluates that handler. The
implementation of fetchHandlerBlock is described in next

continued on page 14,..
5

r“””-’””UIS Greg Hendley and Eric Smith

Significant supported events in Smalltalk/V PM

as illuminated by Window Builder
I
f you have used Whdow Builder by Cooper& Peters, then
you have taken advantage of its fill-in-the-blank way of
writing when:pefinn: statements for the open method.

You have probably noticed there are more events than you
thought you needed. You may have even asked yourself,

“Should I be using these events and, if so, how?”
In this installment of GUI Smalhalk, we will discuss some of

the significant supported events for the subpanes and controls
directly supported by Window Builder. This is not intended to

bean exhaustive discussion of every evenu it will, however, get
the adventurous off to a good start.

We decided classes that implement supportedEvents would

be the most interesting to look at. The remaining classes should
inherit their superclasses’ behavior. We will discuss each class in
turn, including some significant supported classes.

TopPane

Nearly all windows involve some kind of TopPane, which is
usually the window containing all the other controls. TopPanes
support a number of events that no other kind of window is

interested in.

● #validated. This event is generated as the final act in open-
ing a TopPane. When this occurs, the pane represents a
valid Presentation Manager (PM) window. This event sel-
dom requires a handler. However, in some rare instances, it
provides an opportunity to do any necessary twiddling of
the PM frame window after it has been opened but before
any of the children have been opened.

9 #activate. When a frame window becomes the ‘active’ win-
dow (i.e., it is selected, given the active window border
color, and the input focus), the window message W’l_ACl’I-
VATEis sent along to the PM frame window. In Smalltalk,
this results in the #acbvate event. A newly opened window

usually becomes the active window, so this happens when
the window is opened as well as each time the frame win-
dow is activated.

● #menuBuilt. The #menuBuilt message is generated after the
menu bar has been created but before children are opened
or the TopPanevalidated. If you are using WindowBuilder,this
event is unlikely to occur. Cooper & Peters have circum-
vented the normal menu bar creation methods in their open
6

●

✎

✎

m

methods. Ordinarily, this event might be used to initialize
the enable/disable state of the various menu choices, add
custom menus, etc. When using WindowBuilder,these sorts
of activities can be performed in the #initWindow method.

#close. Whenever TopPane, not ViewManager,receives the
message #close, it will generate the event #close before tak-
ing any action. If there is no handling method, or the han-
dling method returns nil, then the close operation will pro-
ceed normally, Otherwise, no panes will be closed. Handlers

for this event are quite common, particularly if dependents
are used. This provides the ideal place to clean up depen-

dents, PM resources, and other potential garbage as the

window disappears.

#help. The #help event occurs when help is called for via

the F1 key. Using the help menu (should one be available)
will not generate this event. The handling method may do
whatever it pleases by way of providing help (e.g., toss up a
dialog, open another application, put up a message box). If
there is no handling method, or the handler returns nil,

then the problem will be passed along to the PM help man-
ager. Note that if you have a HelpManager defined for a win-
dow as well as a handling method for the help event, then
unless the handling method returns nil, the PM help man-
ager will not come up when F1 is pressed.

$Mmer. This event will be generated whenever the flame win-
dow receives the window message W’M_TIMER.This only occurs

in special circumstances beyond the scope of this column,

#opened. This event is a red herring. It won’t hurt a TopPane
to have a handler for this event, but that handler will never
be activated because TopPanes don’t generate this event.

DialogTopPana

DialogTopPanesbehave just like TopPanes in most respects (in-
cluding those having to do with generating events). AUthe

events described for TopPane above are inherited, except that
those having to do with the menu bar will not be given a
chance to occur. One additional event is generated by dialogs:

9 #opened. Ailer a dialog is built, but before processing be-

gins, the event #opened occurs. This provides the owning
ViewManagerwith the opportunity to fill in entry fields, ini-
tialize button choices, etc.
THE SMALLTALKREPOUT

SubPane
SubPane is included even though it is an abstract class. Many
normal behaviors are described in this class. We will take ad-
vantage of inheritance in our descriptions and only deviations

and additions will be described for subclasses.

● #display, While SubPane supports this event, it is only re-

ceived by GraphPane. So for all other subclasses, unless you
write a method that sends event: #display, you can disregard
this event.

● #resize. This is sent after PM has resized a top pane (or
other subclasses of ApplicationWtidow). Most applications
have no need for this event. Possible exceptions are special
uses of GraphPane and GroupPane. Most resizing is handled
with the normal get contents and display methods. This is
supposedly one of the advantages of using an existing win-
dowing system such as PM.

● #getPopupMenu. This event normally occurs as a result of
the mouse button2 click. No surprise here.

● #getMenu. This event is usually not sent if the window was
built using Whdow Builder. The exception (there’s always
an exception) is when the pane looks for its pop-up menu.

If it can’t find one, it looks for its regular menu to use for a
popup. Therefore, it is your choice to use this or the previ-

ous event for your pop-up menus. Proper discussion of
menus would require its own column.

● #getContents. Now we are back on familiar ground. This
event is sent whenever a subpane is opened. It is used to set
the text of a text pane, list of a list pane or combo box, and
label or text for other controls. This setting is normally
done using the method contents:. It is also sent as part of
the restore and update methods for many classes.

● #help. This is normally sent when the F1 key is pressed. Not
all subclasses receive this event.

TextEdit

“ #textChanged. This event is sent each time a character key,
backspace, or delete is pressed. Think about whether you
want to respond. This event will be sent frequently if entire
paragraphs are being typed.

● #horizScrolL You normally will not care about this event,
which is sent when you scroll using the horizontal scroll
bar, It also happens with automatic scrolling, which occurs
when you type past the pane and word wrap is off.

9 #vefiScroU. This is similar to horizScrolL

● #help, #getPopupMenu, and #getMenu. None of these are
received.

TextPane

TextPane inherits events from TextEdit. It also adds one event:

● #save. This is sent through selecting the “save” item in the
pop-up menu for TextPane.
NOVEMBER/DECEMBE~ Igg2
ListBox

9 #charInput. Most Smalltalkers do not use this event; they

use the event #select, which happens when a character is
typed. If a character is the first character of one of the items,
that item is selected.

● #drawItem and #highlightItem. Seldom used by most
Smalltalkers, these are sent only when a user-drawn item is
included in the list of items. This deserves its own column
and will not be discussed here.

9 #select. This event occurs when an unselected item is se-
lected, not when a selected item is re-selected. It also occurs

when an item is selected by typing its first character.

● #doubleClickSelect. This event happens whenever an item is

double clicked. Behavior is the same whether or not the
item was already selected.

ListPane

Although neither super- nor subclass of ListBox,ListPane be-
haves similarly. The exception is as follows:

● #select. This event occurs when selecting an item that is al-
ready selected.

ENTRYFIELD

En@field is the Smalltalk class representing one-line entry ar-
eas commonly seen littered about dialogs, -although they may

be used in any window. Most of En@field’s interesting behav-
ior can be used by paying attention to only two events:

.

.

#getContents. As with most other panes, this event is gener-
ated by an Enhyiield when it first comes up. It provides a
nice opportunity to initialize the text contained in the entry
field before the user gets to it. This is done in the handling
method by sending #contents: to the pane with an appro-
priate Wing as an argument.

#textChanged. Any time the contents of an Entryfield are
changed, the #textChanged event is generated. It doesn’t
matter how the change originated; whether the user typed
in more characters or somebody sent #contents: to the En-
@field, a #textChanged event is generated. This means that

setting the contents of an Entryfield in the handler for a
#textChanged generated by that En@field will lead to

infinite recursion.

ComboBox
9 #textChanged. Be careful about using this event as a trig-

ger for other activities. We recommend you save the new
text somewhere or note that the text is changed. One thing

you do not want to do is update. This will create a circu-
larity. The event #textChanged is sent in response to sev-
eral activities: once when contents is set and twice when
you type the first letter of one of its list elements. It is not
sent when you type any other character. It is sent when
7

■ GUIS
.,
.

.

.

●

m

.

you press the pull-down button and when you select an
item from the list.

#charInput. This happens whenever any character is typed.

Notice the difference between this and the previous event. A
character can be typed without being entered into the text

part of the combo box.

#aaleet This event occurs at peculiar times the way

#textCi’rsngeddoes. It is sent twice when text is in the entry
field part and the list is pulled down. It is sent once when
no text is in the entry field part and the list is pulled down.
It is not sent when an item is selected that matches the text
in the entry field part. It is sent once when an item is se-
lected that does not match the text in the entry field part.

#doublet3iekSeket. This event does not happen for the

ComboBox.

#drawItem, This event occurs when a user-drawn item
needs to be drawn. Most Smalltalkers will not use this event.

#highLightItem. This event occurs when a user-drawn item

needs to be highlighted. Most Smalltalkers will not use this
event.

#listVisible. This happens when you press the pull-down
button. Most Smallta~ers will not use this event.

BUTTON

Button is the superclass of several kinds of controls that get
clicked, Nearly all of them generate events, which are expected
to be handled in similar ways.

●

✎

#getContents. This occurs when the pane first comes up. It
can be used as an opportunity to set the contents of the but-
ton. For most kinds of Button, the #contents: message ex-
pects a String as an argument. This Sting will become the
label for the button.

#elieked. Anytime a Button is pressed, the #clicked event
occurs. For instances of Button, all you need to know is that
the Button was pressed. For toggle-type buttons, the action
of your handler may depend on whether the button was

clicked on or off. This can be determined by sending the
message #selection to the button. The Boolean returned will
reflect the state of the button.

DrawnButton

The classDrawnButtonrepresents a fairly special subclass of Button.
It isn’t like the others in that it has no predefmed look- Instead, the
owning window (or, in our me, the VmvManager)is expected to
draw whatever it wank on the button’s graphics context.

9 #getContente. This event occurs when the pane first comes
up. It maybe used as an opportunity to provide the pane
with a Bitmap, which it will draw on itself. DrawnButtons ex-
pect a Bitmap as an argument for the #contents: message.

“ #drawItem. Anytime a DrawnButton pane that does not have
a Bihnap is asked to display, it will generate this event. When
8

the handling method gets control, the DrawnButton pane will

have a valid graphics tool. The handler method may then ask
for its pen and draw whatever it wants on it. Note that this
event also occurs as a result of the button being clicked.

● #hightlightItam. This message is genkrated as a result of
pressing a DrawnButton.The underlying PM window messages
inform as to whether highlighting is to be added or removed.
Alas, by the time we reach the event level, this information has
been lost. As with #drawItem, the graphics tool of the Drawn-

Button in question is valid while this event is processed.

SpinButton

Admittedly, this class is not directly supported by Window
Builder. It is included in the standard image and can be added
to Window Builder as a custom pane.

.

.

.

~ @SWSUW=SL~d-. Noneofth-~~~

#textClranged. This is an unusual event in the number of
times it occurs for a given action. It is sent once for each
character typed. It is normally sent once when the up or
down button is pressed. When there is text in the entry field

that does not match any of its enumerated values, and the
up or down button is pressed, the event happens twice. It

happens once when the backspace key is pressed and twice
when the delete key is pressed.

#up. This event is sent when the up button is pressed. Nor-
mally, you would ordy look at the #textChanged event,

#down. This event is sent when the down button is pressed.
Normally, you would only look at the #textChanged event.

#getContanta, This event is igrsored if the spin button is nu-
meric, When the spin button is non-numeric, it expects to
be told its list of enumerated values.

ScrollBar

Scrolling, with or without the scroll bar control, deserves
more space than we can give here. We can, however, point out
a few features.

The following events occur as a result of pressing the ar-
rows, clicking in the blank areas, or moving the tab: #nextPage,
#prevPage, #nextLine, #prevUne, #sliderPosition, #slideflrack,
and #endScroll.

The following events do not occur: #getMenu, #getPopup-
Menu, and #help.

#getContents occurs in the same manner as for most sub
panes, but scroll bars do not know the method contents:. In-

stead, they use position:. ❑

GregFIendlqvisa member o~the technical staflat KnowledgeSys-
tem~Corporation.His 00P experience is in Smalltalk/V(DOS),
Stnalltalk-802.5, ObjectWorksSmalltalkReleare4, and
SmalltalkWPM. Eric Smith isalsoa member ofthe technicalsta~at
KnowledgeSystemsCorporation. His specialtyis customgraphical
user inteqtacesusing Smalltalk[variousdialects)and C. The authors
may be contactedat KnowledgeSystemsCo~oration, 114 MacKe-
nan Drive, Suite 100, Caty, NC 27511, or byphone, 919.481.4000.
THE SMALLTALKREPOHT

”
~---”-”----”-””--””‘“””-“----”-
How to manage source
without tools

~uanita Ewing
M
any Smalltalk programmers develop significant ap-

plications without any source-management tools.
Although it takes a certain amount of discipline,

small- to medium-sized applications can be developed without
additional tools. This column will describe several sound prac-

tices for the successful management of application source.
The code in this column is for versions of Smalhalk/V un-

der Windows and 0S/2. The ideas are applicable to other ver-
sions of Smalltalk/V and to Objectworks\Smalltalk.

CONCEPTS
One concept is critical for successful management of applica-
tion source:

. Never view your image as a permanent entity.

And there are two corollaries:

. Don’t depend on your image as the only form of your
application.

- Store your application in source form and rebuild your
image frequently,

Viewing the image as a non-permanent entity doesn’t nec-

essarily imply that vendors are selling unreliable software,
There are several ways an image can become non-functional,

other than a serious Smalltalk bug or disk crash.
An image can become unusable because of some simple

mistake on the part of a developer, such as accidentally remov-
ing a class that is relevant to the application under develop-
ment. If the image is the only form of an application, recover-
ing sources for an application class can be difficult and tedious.
Another common mistake is the accidental deletion of the
change log or changes file. The source for all the changes
you’ve made to an image is stored in this file.

Not all motivation for storing an application outside an im-
age derives from mistakes, When your vendor releases a new

version, migration to the new version maybe necessary to take
advantage of new features or continue to the highest level of

technical support.

PRACTICE

What is your application? In Smalltalk, this is not always a
straightforward answer. Images contain large class libraries,
and applications are developed by adding to and modifying
NOVEMBSS/DSCSMBER 1992
class libraries. There is no clear distinction between system and

application code. Because of this, it is very difficult to ewmct
all parts of an application from an image, especially after the
development is completed. It is better to extract or list the
parts of your application as you develop it, Then short-term

memory can help you decide if the modification you made was
necessary for your application or if a temporary modification
was needed for debugging. One of the most common errors is
to omit a critical piece of one’s application,

I will discuss two techniques for extracting your application
code as you develop it. The first technique uses the browser to
file out code right afier it is developed. Most application code
will be located in new classes, which can be fled out as a unit.
Other application components are extensions to system classes,
which can be filed out at the method level. The result of this
technique is many small files.

There are dependencies among the classes defined in these
files. For example, a subclass depends on its superclass. I use a
script to reassemble all these files in correct order, rather than
try to remember what the dependencies are. It is possible to

create the script for reassembly at the same time the parts of an

application are filed out.
Figure 1 contains a script for installing multiple files. The

script consists of a list of file names, which is enumerated to in-
stall each fde into the image.

“Readmrdjlle-in app[icationfiks,“
#(
‘TxtendedListPane.cLs’
‘AviationGraphPane.cls’
‘JetEngine.cls’

93JetEngine.cks E!ListPane-
listAttributes.mth

Figure 1. E~mple of rewnstrucling an application using multiplefiles.
9

■ GEmING REAL

I

I\ ,
‘PropEngine.cLs’
‘RudderMechanics,cIs’
‘Li.rtPane-class-supportedEvents.mtl’
‘I&tPane-listAtbibutes.mth’
‘LisWane-listAttributes:.mth’
‘GraphicsMedium-besierCurve:,mth’

)
do:

[:fileNameI
(D~k file: fdeName)fileIn]

Another technique is to make a list of all relevant application
pieces as they are developed. The list can be maintained in order

of reassembly and used to extract all components of an applica-
tion on demand. The result of extraction is a single file. Recon-
struction of the application is a simple matter of installing one

file, The source carI be partitioned into several files, if necessary.
In Listing 1, the script has three lists: one for classes, one for

instance methods, and one for class methods. The classes listed
in the first script are written to the stream, then the methods in
the second list are written to the stream. The file-out code
makes use of ClassReader,which knows about Smalltalk source-

fde format.
This script makes use of a new method, fileOutClassOn:,

defined in Listing 2. The new method, which writes a class

definition and its methods on a stream, takes an instance of
filestream as an argument. It is similar to an existing method,
fileOut, which takes a file name as an argument, creates the file,
then writes a class and its methods to the file

The script in Listing 1 works in the simplest cases, in which
there are no forward references to classes. For example, if code
in the class JetEngine refers to the class PropEngine, the filein
will not proceed properly. This problem can be avoided by

defining all classes before any methods, as in the script in List-
ing 3. This script also has two lists, but the first list is enumer-
ated over twice. A supporting method is defined in Listing 4.

INITIALIZATION

Applications consist of more than classes and methods. In-
stances of windows, panes, and domain-specific classes are
also part of an application. Application reconstruction, there-

fore, must consist of more than filing in class and methods.
The expressions executed in a workspace or inspector to set
up the state of your application, such as initializing classes
and creating new objects, need to be re-executed when your
application is reconstructed. Save these expressions by col-
lecting them in a file and executing them a!ler reconstructing
your application. In a future column I wdl discuss these types

of expressions, and ways to execute them as part of a script.

ERRORS

The most error-prone portion of these techniques is recording
pieces of tbe application as it is developed. Source-manage-
ment tools are quite valuable because they record this informa-
tion automatically. Because pieces of the application are
recorded by hand, it is also common practice to search back
through the change log to make sure no pieces have been for-
10
Listing 1. Esample of cresting a eingle file Ior application reconstruction.

I sourceStrearaleadeYI
“Createfilestreamfir storingsources.“
sourceSheam:= Diskfile: ‘AviationSource.st’.
“Writeapp[icdionclasses.”
#(
ExtendedListPane
AviationGraphPane
Jetingine
PropEngine
RudderMechanics)

do:
[:cLssaNameI
reader :=ClassReaderforClass:(Smalltalkat className).
reader fileOutClassOn:sonrceStieam].

‘Writestandaloneinstancemethods”
#(
(IistRurelistAttributes)
(List%rreli.shttbibutes:)
(GraphicsMediumbesierConre:)
)

do:
[:classNameAndSelectorI
reader :=ClassReaderforClass:(SmaUtaUrat:

(classNamdndSelector at: I)).
reader

tileOutMethod:(classNameAndSelectorat: 2)
on:sonrceSbeam].

“Writestandaloneclassmethods”
#(
(ListpanesupportedEvents)

)
do:

[:classNameAndSeIectarI
leader :=ClassReaderforClas~ (SmaUtaUrati

(classNameAndSeleetorak I)class).
reader

fileOutMethod:(classNameAndSelectorah 2)
on sourceStream].

soorceStieam close.

Listing 2. Supporhg code in ClassReaderfor filing out ❑ class onto a etream.

ClassReader
instance method

tWeOrrtClemOn:apilefi’tream
Writethesourcefir theclass(includingtheclassdefinition,
instancemethods,andclassmethods)in chunkjileforrnrrt
toafleStream. ”
class isNilifTrue: [Aselfl,
CursorManagerexecute change.
afiIeStreamlineDetimiter:Cr.
class fiIeOutOn:afileStream.
afAeStreamnextChunkPuti String new.
(ClassReaderforclass: class class) fileOutOn:afileStream.
self fileOutOn:afile.%ream.
CursorMsnagernormal change

Listing 3. E~ample of creating a single filefor application reconstruction.

I sourceStieam classfistreader I
nCreatejile streamfmstoring sources.u
sourceStieam:= Diskfile:’AviationSource.st’.

corsti”nuedonnextpage
THE SMALLTALKREPORT

—

I

—

#& p#U/vuysd:he:oa;. . .m *

0 Put related classes and methods into a single taak-
oriented object called application.

0 Browse what the application sees, yet easily move code
between it and external environment.

0 Automatically document code via mtilable templates
0 Keep a hiitory of previous versions; restore them with

a few keystrokes.
e View class hierarehy as graph or list,
0 Print applications, classes, and methods in a formatted

report, paginated and commented.
0 File code into applications and merge them together.
0Applications are unaffected by compress log change

and many other features..
.

/’--”’<:-”<:z:::T-Appiicatiiq

<
[mager history — \Code reeovery]

\u~ilitie&-_ Application ~~~ J and ~~~.m
...

CodeIMAGERm V286, VMac $129.95
VWindow & VPM %249.95
Shipping& hsndlimg:S13mail,57!0U , percopy

Diskette: ❑ S’n ~ 5W

— SixGraDbm ComDuting Ltd.

Ei2 formerlj ZUNIQ DAT~COI-p,+ 2035C&e de Liesse. suite 201

NOVSMBER/DECEMBER1992
gotten. This activity is usually performed in a regular fashion,
such as before each snapshot.

Another common error is to rebuild an application on top
of an image that has been used for development. This is not a

good idea because the state of the image is unknown. There
may be unwanted side effects from objects in the image. It is
imperative, therefore, that the application is reconstructed
from a clean, pristine image.

FREQUENCY

How often should the application be rebuilt? Early in develop-
ment, when many classes are being created, the scripts are
modified rapidly. It valuable to rebuild often to test the scripts; if
they’re too far out of sync with the application source, it can be
difficult to debug the reconstruction process. In the middle stages

of development the scripts are not in so much flux and the appli-
cation doesn’t need to be rebuilt so often to test them out. Other
considerations may force application reconstruction, such as re-
design of parts of an application. As the product is nearing com-
pletion, the development team may want to reconstruct the ap-
plication often to confirm that the build process is bug-free. ❑

Juanita Ewing is a seniorstaffmember of DigitalkProfessional Ser-
vices.She has been aproject leaderfor severalcommercial O-O soft-
ware projects,and is an expert in the design and implementation of
O-O applications,frameworks, and sy~tems.In a previouspositionat
TektronixInc., she was responsible for the development of cfass li-
braries for thefirst commercial-quality Smalltalk-80system,
—

Ming 3 continued

“Classesintheapplimtion”
Clas.w.ist:= #(
ExtendedListPane
AviationGraphPme
JetEngine
RopEngine
RudderMechanics).

“Wnleapplicationclassdefinitions.”
Classl,ist

do:
[className [
reader :=ClassReaderforClass:(SmaUtaUrat: className).
readerfileOutClassDefinitionOnsourceStream].

“Writsthe methodsfir the applicationclass”
Clawist

do:

[:class.lkuneI
reader :=ClassReaderforClass:(Smalltallrah className).
reader fileOutOn:sourcestrearn].

“Writestandaloneinstance methods”
#(
(ListPanelistAttributes)
(ListPaneIistAthib.tes:)
(GraphicsMediunrbezierCurve:)

)
do:

~classNamAndSe[ector I
reader :=ClassReaderforClass:(SmalkaUrah

(classNameAndSelectorat l)).
reader

tileOutMethod:(classNameAndSelectorak 2)
on30urceSheam].

“Writestandaloneclassmethods”

#(

(ListPanesupportedEventa)

)
do:

[:classNameAndSelectorI
reader :=ClassReaderforClass:(Smalk.aUrati

(classNameAndSelectorat: l)class).
reader

fileOutMethod:(claseNameAndSelectorah 2)
om.sourceStieam].

sourceStieam close.

Listing 4. Supporting cmde in ClassReader for filing out
s class definition without methods.

fiktitiassDefiitinOm=kSWam
“Writethesourcefir theclass(butnotfor theinstance
methodsandclassmethods)inchunkfileformat
to aFileStream,”
class isNi\ifTnre: [“sew.
CursorManagerexecute change.
aFileStreamlineDebrnite~ Cr.
class FileOutOn:aFileSbeam.
aFileSheamnextChurd&k Shing new.
CursorManagernormal change
11

HE BEST OF comp.lang.smalltalk Alan Knight

Smalltalk performance
M
any people think of Smalltalk as slow. Unfortu-
nately, they’re right, especially as compared with the
reference point of optimized C. This column will ex-

plore why Smalltalk code runs so slowly, just how slow it is,
and the possibility for improvement.

WHY IS SMALLTALK SLOW?

Although surprisingly fast for what it does, SrnaUtalk is slow for
various reasons, conventional wisdom blames garbage collec-

tion. Afler all, Smalltalk collects garbage while those other, fast
languages don’t. Garbage collection does have a price, but not
nearly as high as people think. More time-consuming is safety

checking. Smalkdk checks all array references to make sure they
are in bounds, every object reference for null vrdue~ every integer

operation for overtlow, and so on. C does none of these things,
If you have a compiler like Turbo Pascal, which allows you to

turn array-bounds checking on and off, try doing it with a pro-

gram that uses arrays. The effect on performance is very notice-
able. I still leave checking on by default, and always turn it on

when I’m trying to debug. When I learned C I wasted a lot of
time trying to figure out how to turn on bounds checking, but I

finally did. It involves paying a lot for an interpreter so my code
can run more slowly than equivalent Smalltalk, but it’s worth it.

Of course, these approaches have the advantage that you

only pay the price during development. Safety features can be
turned off when shipping the “bug-free” production code, It
would be an interesting experiment for a vendor to provide a
fast, unsafe version of the Smalltalk virtual machine for stand-
alone applications.

Another important factor is message passing, for two rea-
sons. First, message sends are a little pricier than fimction calls.
You have to additionally figure out which function to call at
runtime. However, the high cost of message sends is due to
their number. Everything in Smalkalk except instance-variable
access requires a message send. Even if messages cost less than
function calls, the fact that there are so many more in the aver-
age Smalltalk program than the average C program makes
Smalltal.k slower.

HOW SLOW IS IT?

Quantitative performance measurements are always difficult.
Results vary greatly between applications and minor changes
can make a big performance difference.
12
Given this difficulty, we are fortunate to have someone with
a good knowledge of the subject, at least with respect to Parc-

Place Smalltalk. This impressive disclaimer is from Peter
Deutsch (deutsch@smli.eng.sun.tom)

I was the principal designer and implementor of Parc-

Place’s SmalItalk code generators, including the portability

architecture, the code generation framework, the stack

management architecture, and the individual generators

for 680x0, 80386, SPARC, MIPS, and RS/6000. The opin-

ions expressed below are my own and should not be at-
tributed to ParcPlace or to Sun.

He then writes:

In my experience, based on a variety of both micro- and

macro-experiments, the ParcPlace Small talk system does
benchmark around a factor of 8 slower than optimized C

for integer, structure, and array computation that does not
contain large numbers of procedure-call-free loops. For

straight-line integer computation, the ratio can get down
as low as 4 or 5 to 1. (Of course, ParcPlace Smalltalk does

overflow checking on all arithmetic operations, so any such
comparison is not entirely appropriate.) For highly opti-

mizable loops, especially ones involving access to arrays or

strings (which ParcPlace Smalltalk always bounds-checks,

and C never does), the ratio can getup as high as 40 or 50

to 1 under the most unfavorable circumstances, such as

the 1-statement loops of st.den or *epy.

It is because of these thinga that ParcPlace recommends
that, when necessary, users write their high-usage loops in

C. Smalltalk’s advantages are in areas other than highest

performance for unchecked inner loops.

IS THIS FAST ENOUGH?

For many applications, this kind of speed is high enough. The
numerous advantages of Smalltalk are worth the performance
hit in these areas. For other application areas, the speed is

detlnitely unacceptable, but this is partly psychological. If
Smalltalk is running as fast as it reasonably can, we must either
accept the performance or use another language. If, on the other

hand, it runs slowly because the implementors haven’t bothered
to make it go faster, then we may get annoyed about it.

A strong voice for the possibility of improving performance
comes from the implementors of Self. Self is a prototype-based
language that is even more dificult to optimize than Smalltalk,
THE SMALLTALKREPORT

but its implementation achieves much better performance.
This is done using an extremely aggressive optim~zing com-
piler. For example, Self exploits range information in integer

computations. Using this information, it can omit overflow
checks in cases where they’re shown to be unnecessary.

Bruce Samuelson (bruce@ling.utafl.edu) doesn’t think cur-

rent Smalltalk performance is fast enough. He writes:

ParcPlace, your dynamic compilation technology, is indeed
impressive. . . . But you can do better, and you have chosen
not to because you don’t think it is high priority

1) The Selfauthors claim in the literature that Smalhalk could

be sped up by about a factor of 5. They claim in person that

PPS is not interested in doing so (at least as of 00PSLA ‘91).

2) Mike Khatis recent posting showed that Smalltalk did

integer arithmetic in a tight loop about 1/8 the speed of

C... .This is in the ballpark of what one would expect for

such low level comparisons.

3) A Smalltalk ‘W implementor” told me at OOPSLA ’91

that the machine code generated by the dynamic translator

is of “plain vanillafl unoptimized quality, For example, he

thought the code for SPARC machines (he was not the

SPARC VM implementor) did not make use of register win-

dows, SPARC’S idiomatic t-lque for passing function ar-

guments effiaently. Perhaps he was wron~ or perhaps I mis-

understood him, but times past when I’ve posted this and
asked for comments from PPS, you have remained silent. It

seems like this is one area in which you could apply some

fairly standard optirniiation techniques in your VM that
wouldn’t require modifications to the compiler in the VI.
4) A PPS employee was engaged in a serious optimization

project before he left PPS. I have not heard from PPS on the
status of this project, except a comment I would paraphrase
as follows: “We are impressed with the speed of forthcoming
new machmes [baaed, I suppose, on DEC Alpha, HP-PA, In-
tel 586, TI vii% etc] and feelthat hardware vendors will

solve possible Smalltalk performance problems.”

5) Critique of (4): Yes, Smalltalk grows faster in proportion

to the hardware. But so does every other language, and

Smalltal.kremains 5–lo times slower than C. The hardware

vendors are not improving the competitive position of

Smalltalk, except to make it feasible to use at all, and they

already did that a few years ago. As machines get faster, ap-

plications get more ambitious and demand more cpu cy-

cles, . . .A soilware vendor offering a development envi-

ronment should regard decent optimization as a priority.

Reviews of software products, whether of languages or ap-

plications, usually give performance a prominent place.
You will make us, your customers, look better if you give

us the tools to write blazing applications.
6) I have had to spend more time on optimizing my

Smalltalk code than I would have liked, which has taken

time away from more productive activities. I imagine this

has happened to other programmers.

7) A turbocharged Smalltalk that could even modestly

compete with C and C++ in speed would be an absolute
NOVEMBER/DECEMBER Igg2
dynamite product. How many of the postings to
comp.lang.c++ give efficiency as a reason for using this

“engineering compromise”? Take away elliciency as a criti-
cism of Smalltalk and a lot of programmers and managers

will take note.
8) Digitalk must have had some money to spend to able to
buy out Instantiations. What if they put some of their

money into doing a bang-up job at optimizing ST/V?
Where would that leave ParcPlace?
9) Despite all these comments, which are directed to PPS in
response to Tim Rowledge’s posting I realize that PPS is a

small company with finite resources. Your founders have
profoundly influenced the entire computer industry
(GUIS, object orientedness) for the better. And you sell a
very nice Smalltalk environment indeed. So I wiU counsel
myself to remain patient and trust your marketing in-
stincts. But please don’t keep performance on the back
burner forever . . .

REGISTER WINDOWS

There are quite a few complaints here, and I entirely agree with
the main thrust that ParcPlace needs to place more emphasis on

performance. I’d like to specifically deal with one of the claims

that attracted particular attention on the neti the assertion that
ParcPlace Smalltalk does not use register windows on the
SPARC. For those of you even more blissfully ignorant of hard-
ware than myself, I will attempt to explain register windows.

Machine registers are very fast to access and CPU designers
like to have lots of them. The downside of this (apart from
having to use valuable chip space) is that when there are many
registers, more bits in the instruction word are needed to spec-
ify which one you want.

There are various ways of getting around this. One is to
have more than one set of registers, used for different purposes
(e.g., integer and floating point). The SPARC designers pro-
vided lots of registers, but made only a few of them visible at a

time. By changing the register “window,” you change which
registers are visible.

Changing the window normally is done when making a pro-
cedure call. Rather than put arguments onto the stack, which is
in main memory and therefore slow, one can put them into reg-
isters, then change the register window. Since the windows have
some overlap, values put into the bottom of the register window
of the calling routine will appear in the top of the window of the
called routine. The arguments are immediately available and the
called routine has its own set of registers to play with.

This technique can speed up procedure calls quite a bit.
SUN claimed in some document I once read that register win-
dows were aimed specifically at incrementally compiled lan-
guages like LISP and Smalltalk. In these languages, the compiler
doesn’t have as much time to think about how to optimize code
and there are many procedure calls. Register windows are sup-
posed to allow these calls to be easily optimized.

If SPARC can’t or doesn’t exploit SPARC register windows,
it sounds like there’s a serious communication problem be-
tween chip and language designers.
13

■ THE BESTOF COMP.LANG ■ TAKINGEXCEPTIONTO SMALLTALK,PART1

14
mnfinu.dfiompage 5

month’s system-dependent section because it depends on the

layout of contexts.
Once the handler block is found, it’s evaluated with the ex-

ception as a parameter. This allows the handler block to send

the proceed, reject, restart, and return messages to the exception,
and to query the exception for information about the error.
Below are the implementations for proceed and rejeet-those
for return and restart are in next month’s article because they

depend on some specifics of the V 286 system.
Proceeding is simple: Since we have the instance variable

proceedBlock, all we need to do is evaluate it, perhaps with
some meaningful parameter, as in

pmceedDoing:altlock
“Returnthe value of aBlockas the value of the raise signal. Unwind
the stack up to that point snd resume execution in the context that
raised the signal.”
I answer I
answer:= alllockvalue.
signalConterrtunviindlaterConterrts.
proceedBlockvak answer

Evaluating proceedBlock causes control to return into the

context where the signal was first raised. The only subtle
thing to remember concerns the unwind mechanism. Before
evaluating proceedBlock, we call unwindLaterContexts, which

evaluates the unwind blocks of every context we’ll skip by
proceeding.

Implementing reject is also quite simple. The current han-
dler context (as found by fetchHandlerBlock) is stored in the
exception’s handlerContext instance variable, so to find the next

handler below the current one, we just need to look for some
handler for the exception’s signal below handlerContext. We
can do that by sending propagatePrivateFrom to the receiver ex-

ception with handlerContext as the parameter.
At this point we have a system-independent implementa-

tion for much of our package. The class Signal is complete and
we need only three more methods for class Exceptioru return,
restart, and the private method fetchHandlerBlock. We also
need to implement unwindLaterContexts to implement our un-
wind mechanism. Finally, we need some extra functionality for
class Process. Next month, we will describe these final aspects
of our system, such as the need to create a new set of context-

related classes to make dealing with contexts in V 286 consis-
tent and relatively trouble-free. El

References
1. Van Orden, E. Application talk, HOOPSLA! 1(2), 1988.
2. Graver, J. Type-checking and type-inference for object-ori-

ented programming languages. Doctoral thesis, Universi~ of
Illinois at Urbana-Champaign, 1989.

Bob Hinkle and Ralph E. Johnson are afiliated with the Universi~ of
Illinoisat Urbana-Champaigrr.Mr. Hinkle’s work issupported by a
fellowshipfi-omthe Fannie and John Hertz Foundation.
This claim provoked discussion about how easily register
windows could be used—whether they would interfere with
garbage collection (since values in registers outside the current
window would not be easily visible) and other such topics.

Urs Hoelzle (urs@xenon.stanford. edu) mentioned that Self
has been using SPARC register windows with garbage collec-
tion for some time. Peter Deutsch provided a comprehensive

analysis of reasons for Smalhalk not to use them:

The problem of pointers buried in register windows is in-

deed a significant one, but it is not the reason why I would

recommend against modifying the Objectworks/SmaUtalk

(Ow/ST) implementation to use register windows. First,
the performance gains would not be dramatic. Ow/ST

spends a substantial fraction of its time in support code

written in C, which would not be affected. A substantial

fraction of the time in compiled Smalltalk code is spent do-
ing message sends, type checks, etc., which would also not

be affected. Also, since Smalltalk stacks get very deep and

fluctuate more deeply than C stacks, the 7- or 8-register

window on current SPARfi would over- and underflow

significantly otlen. My best guess was that we would not

see more than 20–259’o performance improvement. (On fis-
ture SPARC processors, where both the cost of memory

references relative to register accesses and the number of
register windows might be larger, this improvement might

be somewhat greater.) Second one of the keys to Ow/ST’s

remarkable portability is that it uses a very similar internal

storage format for stack frames on all platforms. However,

because saving and restoring register frames is done on the

SPARC by code that is not accessible to ParcPlace, we can-

not affect the storage format for these frames. So in order

to use the SPARC register frames, we would have to either

provide a complete second set of, or add radical new flexi-

bility to, the large body of code in the runtime support sys-

tem that manipulates stacks. The bottom line is that, in my

opinion, the work required to fit Ow/ST to the SPARC’S

frame model would not justify the relatively small perfor-

mance improvement. As for the comparison against Self,

the Self authors acknowledge that the factor of 5 is only
achievable under some circumstances. I do think it would

be exciting to apply the Self compilation ideas to SmaUtalk,

and doing this could well produce dramatic performance

improvements (on all platforms), but this would require

wholesale redesign of most of the platform-independent
code (other than the memory manager) in the Ow/ST run-

time support system. The optimizing compilation experi-

ments I did at ParcPlace were based on an alternative ap-

proach that would not have required such substantisd

changes to the Ow/ST virtual machine, but might have re-
quired type declarations (or at least type hints) provided

by the user (or a type inference system). ❑

Ah Knight isa researcherin the Department ofMechanical and
AerospaceEngineering at Carleton Universi~, Ottawa,Canada,
K2C 3P3. He can be reached at +1 613.788.2600x.5783, or by e-mail
at knightd?mrco.carleton.ca.
THE SMALLTALKREPORT

..

MALLTALK IDIOMS

Collectionsidioms:
standard classes

Kent Beck
Our previous column focused on enumeration methods
and how to use all of them to advantage. This column
covers the common collection classes, how they are

implemented, when you should use them, and when you
should be careful.

COLLECTION CUSSES
Array

Use an Array if you know the size of the collection when you
create it, and if the indices into the elements (the first argu-

ment to aL and at:puk) are consecutive integers between one
and the size of the array.

Arrays are implemented using the “indexable” part of ob-
jects, Recall that you can declare a class indexable. You can

send new anInteger to an indexable class and you will receive
an instance with anhteger-indexable instance variables. The
indexable variables are accessible through ati and akput. Array
needs no more than the implementation of ak and akpuk in
Objec$ and the implementation of new in tlass to operate,

Many people use OrderedCollefions everywhere they need a
collection. If you

“ want a dynamically sized collection without the OrderedCol-
Ietion overhead (see below)

“ are willing to make the referencing object a little less flexible

. don’t often add or remove items, compared with how often
you access the collection

you can use arrays instead. Where you had:

initialize
collection:=OrderedColletinnnew

you have

initialize
collefion :=Arraynew“oreven#()”

then you replace add: and remove: sent to collection with copy-

Witi and copywithouh and reassign collection

foo
collefion add: #bar

becomes
foo

coUefion := collection copywiti #bm

The disadvantage of this approach is that the referencing object
now has built into it the knowledge that its collection isn’t re-
NOVEMBER/DECEMBER 1992
sizable. Your object has, in effect, accepted some of the collec-
tion’s responsibility.

ByteArray

ByteArraysstore integers between Oand 255 inclusive, If all the

objects you need to store in an Array are in this range, you can

save space by using a ByteArray, Whereas Arrays use 32-bit slots

(i.e., soon-to-be-obsolete 32-bit processors) to store object ref-

erences, ByteArrays ordy use 8 bits.

Besides the space savings, using ByteArra~ can also make
garbage collection faster. Byte-indexable objects (of which
ByteArraysare one) are marked as not having any object refer-
ences. The collector does not need to traverse them to deter-

mine which objects are still reachable.
As I mentioned in the last column, any class can be declared

indexable. Instances are then allowed to have instance variables
that are accessed by number (through ab and akput:) rather

than by name. Similarly, you can declare classes to be byte in-
dexable. at and at:pub for byte-indexable objects retrieve and
store one-byte integers instead of arbitrary objects. A
significant limitation of byte-indexable objects is that they

can’t have any named instance variables. This is to preserve the
garbage-collector simplification mentioned above.

If you want to create an object that is bit-pattern oriented,
but shouldn’t respond to the whole range of collection mes-
sages, you should create a byte-indexable class. Such objects
are particularly useful when passed to other languages because
the bits used to encode the objects in a byte indexable object
are the same as those used by, for instance, C, whereas a full-
fledged SmaOlnteger has a different format than a C int,

Dictionary
Dictionaries are like dynamically sized arrays where the indices
are not constrained to be consecutive integers. Dictionaries use

hashing tables with linear probing to store and lookup their
elements (Figure 1). The key is sent “hash” and the answer
modulo the basic size of the Dictiona~ is used to begin search-
ing for the key. The elements are stored as Associations.

Dictionariesare rather schizophrenic. They can’t decide

whether they are amays with arbitrary indices or unordered collec-
tions of associations with the accessing methods ak and atiput:, It
doesn’t help that Dicdonarysubclasses Set to inherit the imple-
mentation of hashed lookup. I treat them like arrays, If I want to
15

Ir
I
I
I
I

I
I
I
I
I

I

I ! I

Figure 1. A typical Dictionary.

think of them as associations I use the message “associations” to
get a set of associations I can operate on unambiguously.

When a Ditionasy looks up a key it uses= to determine if it has
found a match. Thus, two strings that are not the same object but
contain the same characters are considered to be the same key.
This is why when you reimplement =, you must also reimplement
hash. If two objects are=, they must have the same hash wdue.

If you read your Knuth, you will see that hashed lookup
takes constrmt time—it is not sensitive to the number of ele-

ments in the collection. This mathematical result is subject to
two pragmatic concerns, howeve~ hash quality and loading.

When you send hash to the keys you should get a random dis-
tribution, If many objects return a number that is the same

modulo the basic size of the Difionary, then linear probing de-
generates to linear lookup. If most of the slots in the Dictionary
are full, the hash is almost sure to return art index that is al-

ready taken and, again, you are into linear lookup. By random-

izing the distribution of hash values and making sure the Dic-
tionary never gets more than 60% full, you will avoid most of
the potential performance problems.

IdentityDictionary

IdentityDictionaries behave like Dictionaries except that they
compare keys using == (are the two objects really the same ob-
ject?). Identi~Dictionaries are useful where you know that the
keys are objects for which = is the same as == (e.g., Symbols,
Characters, or SrnallIntegers).

R
#puce 14

#mauve 27

Figure 2. A typical Identity Dictionary.
16
Instead of being implemented as a hash table of associa-
tions, IdentityDictionaries are implemented as two parallel ar-

rays. The first holds the keys, the second the values (Figure 2).
This implementation saves space because each association

in a Dictionwy takes 12 bytes of header+ 8 bytes of object refer-

ence = 20 bytes. The total memory usage for a Dictionary is 12

bytes for the header of the Dictionary+ 4 bytes times the basic

size of the Dictionary+ 20 bytes times the number of entries.

The memory required for an IdentityDictionary is 24 bytes for

the header of the object and the value collection + 8 bytes times

the basic size,

For example, a 10,000-element DictionW that has 5,000 en-

tries free would take 12+ (4* 15000) + (20* 10000) = 260,012

bytes. You can see how the overhead of the Associations adds

up. The same collection stored as an Identi~Dictiona~ would

take 24+ (8 * 15000) = 120,024 bytes.

OrderedCollection
OrderedColIectionsare like Arrays in that their keys are consecu-

tive integers. Unlike Arrays, they are dynamically sized. They
respond to add: and remove:. OrderedColletions preserve the or-
der in which elements are added. You can also send them
addFirst:, addLask, removeFirst, and removeIast.

Using these methods, it is possible to implement stacks and
queues trivially. There are no Stack or Queue objects in
Smalltalk because it is so easy to get their functionality with an
OrderedCollection. To get a stack you use addLas~ for push, last
for top, and removeLast for pop (you could ilso operate the
stack off the front of the OrderedCollection). To implement a
queue you use addFirst: for add and removeLast for remove.

As an example of using an OrderedCollectionfor a queue,

let’s look at implementing level-order traversal. Given a tree of
objects, we want to process all the nodes at one level before we
move onto the nexti

Tree>XevelOrderDo:aBlock
I queue I
queue := OrderedColleetionwith: self.
[queue isEmpty]whileFalse:

[I node I
node:= queue removeFnst.
aBlockvalue node,
queue addAllLsst:node children]

OrderedCollectionskeep around (
extra storage at the beginning

OrderedCollection
and end of their indexable parts
to make it possible to add and n

first 2

remove elements without having I Iast] 3 I I
to change size (Figure 3).

-1 h-l
I

I
Because OrderedCollectionsare I

dynamically sized they preallo-

H

2 2.5

cate a number of slots when they 3 3.7

are created in preparation for 4 nil

obiects beirw added. Ifvou are
using lots of OrderedCollections Figure 3. The result of (Ordered-

Collection new 4) add: 2.5;
and most are smaller than the add: 3.7.
THE SMALLTALKREPORT

initial allocation, the space overhead and its effect on the stor-
age manager can be significant. I have heard stories of pro-

grams speeding up by a factor of 60 just by replacing Ordered-
Collecbon new with OrderedCollefion new 1 at the right spot.

Gather statistics on the number and loading of your Ordered-
Collections to determine if this optimization will help you.

Another performance implication of using Ordered-
Collections is the level of indirection required to access ele-
menti. ati as defined in Objectjust invokes a primitive to index
into the receiver’s indexed instance variables. To implement at:

and akpub, OrderedCollecdons have to take first into accounti

OrderedCollection>>akanInteger
anInteger> se~ sizeifl’nm [selferror ‘Outofbounds’].“
superati anInteger+fist -1

RunArray

RunArrays have the same external protocol as OrderedColleebon,

but they are optimized for storing collections in which the

same object is added consecutively many times. Rather than

just store the objects one afker the other, RunArrays store two

collections one of the objects in the collection, the other the
number of times the object appears (Figure 4).

Each entry in a RunArrayrequires two object references.
RunArraysrequire storage related not to the number of ele-

ments in the collection, but to the number of times adjacent
objects are different. In the worst case, RunArraysrequire twice
as much storage as an OrderedCollefion.

Indexing into a RunArrayis potentially an expensive opera-
tion, requiring time proportional to the number of runs. Here
is an implementation of at:

RunArrap>ak arrInteger
I index I
index:= O.
I to: runs size do:

Leach I
index + (runs ati each) >= anInteger

Whue: [“values ak each].
index := index+ (runs ati each)]

This simple implementation makes code like

1 to: runArraysize do: [:each I nmArray ati each]

RunArray

values

runs

5 #plain

2 #bold

3 #boldItalic

Figure 4. The result of RunArray new addAlk (plain plain plain plain plain
bold told boldltalic boldkalic boldltalic).
NOVEMBZR/DSCEMBSR 1992
take time proportional to the number of runs multiplied by the

number of elements in the collection. Because the access pat-

tern for RunArrays usually marches along the collection from

first element to last, RunArrays cache the beginning of the run

in which the last index was found. Looking up the following

index only requires checking to make sure that the new index

is in the same run as the old one:

RunArrap>ati anhrteger
‘anInteger >= cachedIndex

Hrue: [self cachedslk anInteger]
ifFalse: [self lookUpAtiatinteger]

cachedfifi anInteger
enInteger - cachedhdex ~ (runs ah cachedRun)

ifTrue:
[cachedIndex:= cachedIndex + (runs at cachedRun).
cachedRun:= cachedRun+ 1].

%alues ak cachedRun

lookUpAtianInteger
I index I
index:= O.

1 to: runs size do:

[:each I

index + (rims at: each) >= anlnteger

We: [%ahres ab each].

index:= index + (runs ati each)

Whh this implementation, an access pattern like the one above

will now be slightly slower than the equivalent OrderedCollec-

tion because of the overhead of checking for the common case.

Accessing the RunArray in reverse is now proportional to the

number of runs squared.

Interval

Another kind of run-length encoded collection is IntervaL An
Interval is created with a beginning number, an ending num-

ber, and an optional step number (one is the default). #(123
4) and Interval from: 1 to: 4 are equivalent objects for most pur-
poses. Numbe~Xo: and to:by are shorthand for Interval

class>>from:to: and from:to:by.
Intervals are commonly used to represent ranges of num-

bers, such as a selection in a piece of text. A common idiom is
using an Interval with collect.

foo
‘(l to: self size) colleck [:each I each -> (self ati each)]

Species is sent to an object when a copy is being made for use
in one of the enumeration methods collect: and seleti. The de-
fault implementation in Objectjust returns the class of the re-
ceiver, SequenceableColletion implements collech and seLect:,
and expects the result of self species to respond to at :pub. Since
Intervals don’t respond to akpuk, they have to override species
to return the class Array.

SorteelCollection

Another dynamically sized collection is the SortedCollection.
Unlike OrderedCollections, which order their elements ac-
17

■5MALLTALKIDIOMS
cording to the order in which they were added, SortedCollec-
tions rely on a two-argument block to determine, pairwise,
the order for elements, This block defaults to [:a :b I a<= b],
so simple SortedCollections sort their elements from lowest
to highest,

One thing to watch out for when using SortedCollections is
sending them add: when you don’t have to. add: does a binary

search of the collection, moves all of the elements afier the
added object down one, and inserts the added object. Monng
the elements to make room takes time proportional to the size

of the collection, If you know you are going to be adding sev-
eral elements at once, use addAll:, which will stick the new ele-
ments at the end and resort the entire collection. Here is a
method for comparing time spent using these two methods
(notice that I don’t hold myself to the same coding standards

in workspaces):

lscrtlt21
sc := SortedCoUectionnew,
r := Randomnew.
tl := l%ne miUisecondsToRun:

[1000timesRepeati [SCadd: r next]].
sc := SortedCollectionnew.
t2 :=TimemiUisecondsToRum

[SCaddAIL((1 to: 1000) colleh [:each I r next])].
‘Add ‘,tl print%ing, ‘addAlh‘,t2 pcintstring

Executing this results in ‘Add:10725 addAll: 1386’.

String

Stings in SmalItalk are like Arrays whose elements are restricted

to Characters. Strings are byte- indexable for compactness. They

redefine the indexing methods to convert from 8-bit numbers

to characters and vice versa

String>>at: anInteger
“Charactervalue: (super ak anhrteger)

Wring>>atianInteger put acharacter
“super at: ar-hteger put: aCharacterascilValue

It is common to use , to concatenate Strings. You can

use , to concatenate any two sequenceable collections

(OrderedCollection, Array, RunArray, and so on). Less com-

mon is the use of the other collection methods with

Strings. You can capitalize all the characters in a String

with collect:

asUppercase
‘iselfcoIleck [:each I each asUppercase]

Interestingly, even the ParcPlace release 4.1 image imple-

ments this method with five lines containing an explicit loop

and indexing,

Digitalk’s Sting class is implemented with the simple model

described here. ParcPlace has a much more elaborate imple-

mentation that takes care of muhibyte characters and different

character sets on different platforms, even for odd characters.

The design requires six classes for strings and three more for
symbols.
18
Symbol

Symbolsbehave in most ways like Wings, except that if you
have two symbols containing the same characters, they are

guaranteed to be the same object. So while String>>= takes time
proportional to the length of the strings, Symbol>>=takes con-
stant time:

Symbol>>=anObject
“self == anObject

To preserve uniqueness, Symbolscannot be changed once
they are created, abpuk is overridden to raise an error.

Like Interval, because Symbols don’t respond to at:puh, they

override species. SYmbol>>speciesreturns the class String.
Thus, executing “#abc, #clef” returns ‘abcdef’, a String, not a
SymboL

If you are programming in Smalltalk/V, be careful of cre-
ating too many symbols. There is a limit of 2A16 Symbols.
While this may seem like a lot, afier you have created many
new methods and used Symbols for indices in several places,
it is very possible to run out of Symbols. The scrambling you

have to do to climb out of the “limited Symbol pit” is not
pretty.

A last oddity of Symbolsand Stcirrgsis the asymmetry of =.
“’abc’= #abc” returns true because the String receives the mes-
sage and successfully checks to see that the characters in the re-

ceiver are the same as those in the argument. “#abc = ‘abc’”re-
turns false because the two objects are not identical. I can

remember long debates at Tektronix over the propriety of this
strange fact. The upshot of the debates was that it’s regrettable
things work this way, but the alternatives are afl less attractive

for one reason or another.

Sete
Sets are dynamically sized collections. They respond to add:
and remove: but, unlike OrderedCollections,they don’t guarantee
any particular ordering on the elements when they are used

later (e.g., by do:), Sets also don’t have any indexed access (no
at: or at:put:).

Sets implement includes:, add: and remove: efficiently by

hashing. The element to be added is sent hash, and that
value is used modulo the size of the storage allocated for the

Set as the index to start looking for a place to put the ele-
ment (or remove it). Note that storage for a Set will contain
more indexed variables than the Set has elements, so hash-
ing is likely to encounter an empty slot. The Set contains an
instance variable, tally, which records how many of the slots
are filled. Set>>size just returns tally,

You can eliminate duplicates from any collection (albeit

while losing its ordering) by sending it asSet.

IdentitySet

Sets use = to determine if they have found an object. Identity-
Sets use ==. They are useful where the identity of objects is
important. Most applications are in meta-object code, where
THE SMALLTALKREPORT

White Paper

I
“AnEvaluationof

Object-OrientedAnalysisand
DesignMethodologies”

This 72-page information-packed report compares and contrasts

eight leading O-O A&D methodologies. Written in a clear, concise,

easy-to-read style, this report presents a rational approach for both

qualifying and quantifying the strengths and weaknesses of the lead-

ing eight techniques, Using a specific application domain as an exam-

ple, this white paper illustrates how you can identify the methodology

that best meets the needs of your project. This timely report is essen-

tial reading for anyone implementing or managing O-O projects.

“An Evaluation of Object-Oriented Analysis and Dmign Methodolo-
gies” is a functional resource clarifying and analyzing the differences

among notations, terminologies, and models proposed by the eight

leading analysis and design methods:

s Booth ● Rumbaugh

“ CoadNourdon “ Shlaer/Mellor

. Edwards/Odell/Martin . Wasserman/ Pircher

“ Graham . Wirfs-Brock

Who should read this report?

Anyone about to introduce the benefits of O-O technology early in
the development cyclq specifically, project leaders, developers, soft-
ware analysts, and designers.

Aboti the authors: John Cribbs, Colleen Roe, and Suzanne Moon
work in the Advanced Projects Group at Alcatel Network Systems. To-
gether, these published authors have over ten years of
O-O A&D experience implementing and managing in-house O-O
projects.

ImW$K: IO-DAY MONEY BACK GUARANTEE.

1
F --------- ------------------------ ------------ --
i
I ORDER FORM

NYstateresidentsadd

IPlease send me the white paper for just $400.00 > w$i(abl~SalMtan.
1
I_kk etldod (Makecheckspayableto SIGSBook USdollarsdrawn cma USbank:
! Vssa _MasterCad _AsnEx card #
1-
; Signature I Exp. Date
i
I Name
I
; Mdress
1
: co State
I

_zip
: country
I

you are manipulating the objects but not asking them to do
anything. For instance, if you designed a remote object sys-

tem where transparent copies of objects were transmitted
over a network, you might store the objects in an Identi~et.
If you transmitted two objects that were= but not ==, and
later changed one of them, storing them in an Identi@Set
would ensure that they were different objects on the remote

systems.

Bag

Instead of discarding duplicate elements like Sets, Bags count
them. Executing this code:

Isl

s := Set new,
s addAlb#(a a b b C).S
size

returns 3. Changing it to a Bag

Ibl
b:= Bagnew.
b addAIL#(a a b b c).
b size

returns 5.

Use Bags anywhere you want a quick implementation of in-
cludes—that is, when you don’t care about the order of elements

and you need a compact representation of duplicate elements.
Bags are not used anywhere in the ParcPlace release 4.1 im-

age or in Smalltalk/V Mac 1.2. The only time I can remember

using Bags is in Profile/V, Every time I take a sample, I put the

program counter in a Bag. When I display the profile, I map

the stored program counters back to source statements, giving
the user profiling at the level of individual statements.

CONCLUSION

The Collection classes are one of the most powerful parts of the
Smalhalk system. Choosing the right collection for a circum-
stance has a dramatic influence on the behavior and perfor-

mance of your system. I have tried to lay out what each major
collection class does, what it is good for, what to watch out for,
and how it is implemented.

I am amazed at the richness of this seemingly simple set of
classes. Originally, I thought I would have to stretch to get
enough material for just one column. After two columns that
have covered the major issues in using collections, there is
still more to be written. I’ll give it a rest for now, however,
and go on to something else—I’m not sure what just yet. If

you have any ideas call me at 408.338.4649 or fax me at
408.338.1115. ❑

Kent Beck has been discoveringSmalltalkidiomsfor eightyears at
Tektronix, Apple Computer, and MasPar Computer. He is alsothe
founder of First ClassSoftware,which developsand distributesre-
en~”neeringproductsfor Smalltalk.He can be reached at First Class
SoJlwarCP.O. Box 226, Boulder Creek, CA 95006-0226.
~ Phone Fax
I
I Return to Whii Paper, MB Broadway, Suite 604, NY, NY 10012
I
I PHONE212/274-0640 or FAXto 21U274-0646
L-------- ------ ------ ------ -------- -------------

NOVSMBER/ DECEMBSR1992

—
——————

Describingyour design

—.—————.———————————

Rebecca Wi@Brock
Objects can be simplistic and passive, holding on to
small pieces of information, or they can be busy and
active, serving an important role in framing the over-

all architectural structure of an application. The possibilities
for what an object can represent are limited only by human
imagination. In this column I want to expJore some effective
techniques for describing classes so they can be understood,

used, and refined by others. You, the author of a class or a
group of collaborating classes, know how you intend them to
be used. How can you effectively impart this knowledge to oth-
ers? However you describe a class, your original design intent

will be mulled over by different people, each with a slightly
different set of expectations, needs, and experiences.

There are basic things that need to be said about any class.
These essentials cover roughly 50% of the issues, which I’ll
cover first. Then I want to explore the remaining 501%that are

often Iefl unsaid.

COVERING THE BASICS

Each class you construct in your design has a specific purpose.

You know what the class was intended to do and probably

what it was never intended to do. (It is easy for someone to
torture your code in ways you never dreamed of, but I don’t

know how to solve that problem.) You also know whether
your creation is of major or minor importance, whether you
have a polished implementation, or whether you have left
room for improvement. The exact details you need to commu-

nicate vary depending upon the role of the reader. Different in-
formation and levels of detail are needed by

. a programmer wanting to use this class in a program

“ a developer creating a subclass to add new functionality or
override existing behavior

“ someone adding new functionality to your class

“ anyone trying to understand a class inheritance hierarchy

. a tester developing test suites

“ someone 15xinga programming error

When we describe our classes and our applications, we need
first to provide a global context (a road map of the ternto~).
This provides a broad view, allowing readers to understand how
individual classes fit into the overall fabric of your design. This
should then be augmented by a consistent discussion of classes
20
from both an exterior (usage) and interior (implementation)
perspective. Arguably, all potential readers of class documenta-
tion need a basic understanding of how a class should be used.

Let’s concentrate on what informed class users need to know.

At first glance, to use a class, a programmer needs to knovz

. what the class was designed to do and not to do

“ ways to create an instance of that class and, subsequently,
how it typically is used

. what it depends on, including other objects, global states, or

host-operating system features

“ where to look for further details

Subclass developers need this information to ensure that
their new addition follows the expected patterns of behavior
defined by its superclass, They should not fix one problem only

to break pre-existing contracts with all current users of the
class. They need even more details than users, but all proceed
from these basics.

Not all basic information is gleaned by poring over a class-

browser reading code. Some have claimed that Smalltalk’s pro-
gramming environment eliminates much need to describe this
kind of information, but this is just another rather lame argu-
ment that XXX code (replace XXX with yoI.u favorite pro-
gramming language) is self-documenting.

Learning an application by reading code and performing
experiments can take along time and often isn’t the most
effective way to transfer krsowledge. We designers and imple-
mentors of classes should explain how to create and use our
objects. Documentation should supplement a programmer’s
ability to find and use the right classes for the job.

From an exterior view, I certainly need to know less than

someone who is intending to modify, extend, or create a subclass.
I want you, the designer, to hide those things I shouldn’t care
about. I really don’t want to concern myself with any of the ob-
ject’s instance variables, unless you explicitly choose to give me

access to them. I also don’t care about implementation details
encapsulated within methods. And I certainly don’t care about
code that is private, intended to be executed by sending messages
to self. So please label those private, internal details as such. Your
chosen method partly depends on your Smalltalk environment,
and partly on style guidelines used within your organimtion.

Understanding how to create and use an object can some-
times become confused by all that wonderful detail exposed by
THESMALLTALKREPORT

the browser. This is precisely why more recent Smalltalk pro-

gramming environment extensions come equipped with mech-
anisms and tools that explicitly enable designers to package the

presentation of a class and its interfaces to casual users.
I do not want to digress into a discussion on the merits of

recent additions to Smalltalk programming environments. (I
am absolutely convinced of their utility.) Nor do I particularly
want to defend Smalltalk against languages with explicit sup-
port for public and private declarations (which have problems
in actual use). However, developers of these newer Smalltalk
environments have recognized the danger of information over-
load. Without removing detail, it maybe difficult to discover
the essence of a class.

We often create an instance and only use a fraction of its

class’s features. And we are completely content to do so. I
strongly advocate a written textual description of a class, de-
scribing the typical and most important patterns of use. De-
scribe the essential 201?40,50%, or 80°h (your percentage will
vary depending on how full-featured a class is and how much

exploration a programmer makes) in a few short paragraphs.
Accompany this description with a few pictures describing
typical object-interaction sequences. Leave the rest for me to
discover by either reading through a more detailed class-de-

sign document or by exploring your code and comments. If
you are trying to leave a helpful trail for users, embed a typi-
cal object-creation message with appropriate arguments in-
side a comment within an instance creation method. More
elaborate examples can be developed with detailed com-
ments, either to be filed into an image or executed.

SPEND TIME ON WHAT MAl?ERS
Not every class is worthy of the same amount of attention. A

class of limited utility, intended to be seen by a very small au-

dience, only deserves light treatment. I am not a proponent of

mandating equal discussion for all classes. That leads to either

lots of useless boiler-plate documentation or developer

mutiny. Instead, spend the time creating a well-considered dis-

cussion for classes that provide broadly useful functionality or

are central to your design.

Complex classes that require a lot of set up or have highly

stylized patterns of usage demand extra attention. From an ex-
ternal viewpoint, I need to know common patterns of usage, as
well as how to diagnose an object that’s broken and not func-
tioning as expected. We creators of initial designs ofien don’t

realize how easy it is for someone else to misinterpret our
work. So this kind of discussion is definitely worthwhile, if
only to get an idea of potential hot spots.

MAKING THE CONNECTIONS

It is relatively easy to produce documentation for a class intended
to be used in isolation. It is much harder to describe classes that
are part of a larger framework and intended to be used in con-
junction with a number of collaborators. To use a framework re-
quires understanding how objects interact, what role each object
plays, and when and how objects should be created and used.
NOVEMBER/DECEMBER 1992
A description for a framework of interacting classes must

not only cover the central classes, but also establish a clear
model of how these classes are intended to work together. This

year’s 00PSLA conference had a refreshing paper by Professor
Ralph Johnson that explained his process describing a graphi-
cal editor framework in Smalltalk, called HotDraw. HotDraw

was originally developed by Ward Cunningham and Kent
Beck. In five pages of text, Ralph described the central ideas be-
hind HotDraw and documented some common patterns of

key objects and their interactions. A nice touch was clear refer-
ences to the next layer of detail as well as pointers to related
concepts for each pattern of use.

Simple, helpful descriptions of object-interaction patterns
are straightfotward reading. They require that the author has a
clear vision of the core ideas of a framework and a simple, if
not terse, writing style.

It reminded me of the ClmoJe Your Own Adventure books

my kids used to read. Afier one or two pages, you were asked a
question. Depending on your answer, you were directed to one
of two pages. You could read the entire book and get several
different stories, each with different endings. My kids were
never satisfied until they had explored all possible paths.

Documentation of interlocking classes of objects needs this
touch. First you need a description of core concepts. Then you

need to tour key interactions at your own pace, allowing you to
discover and explore according to your personal choices. De-

scriptions should let you navigate, point you to more detail (if
you want it), and let you move on (should you want to
broaden your understanding),

CONCLUSION

New, useful ways for describing classes of objects and groups
of cooperating objects are active research topics. There’s plenty

of room for formal techniques as well as informal descriptions,
What I constantly strive for are pragmatic ways to impart de-

sign insight to users.
I don’t want you to leave with an impending sense of

doom or writer’s block. I don’t like writing reams of paper
that no one reads. And I won’t recommend that you take ex-
traordinary measures nor do what I personally am not willing
to do myself,

I especially want to appeal to you cynics who might be
thinking as you read this, “But she’s a writer. Of course she can

recommend we do these things. Writing comes naturally to
her.” Writing is definitely not a natural act for me. I have to
struggle to write concise, precise documentation. But as a user
of some pretty nicely described systems, I encourage you to
perform an enormous service to your users. Take some time to
describe how to properly use your classes. ❑

Rebecca Wirfs-flrockisDirector of ObjectTechnologySem”cesat Dig-
italkand co-author ofDmmt.mm OBJECT- ORIENTED SOFTWARE.

Comments,further insights,or wildJpeculationsare greatlyappreci-
ated by the author. Rebeccacan be reached w“ae-mail at
rebecca@di~”talk.com. Her U.S. mail addre~sisDi&”talk,7585 SW
Mohawk Street, Tualatin, Oregon 97062.
21

m ‘“--”-‘--”-‘“”--“-”“---””‘“”-
OBJECT-ORIENTED ENGINEERING
by John R. Bourne

Richard L, Peskin
T
he subtitle of this book is Building Enginem”ng Systems

Using Smalltalk-80. It is to Boume’s credit that he ad-

dresses the important topic of engineering applications

of object-oriented software systems. While simulation was a pri-

mary target of early object-oriented languages, such as Simula
and original versions of Smalltalk, more recent activity in the

subject area apperm to emphasize business applications, data
base applications, etc. If Smalltalk is to take its place alongside
more commonly accepted languages, its success in scientific and
engineering applications will have to be demonstrated on a
much broader scale than is present today. Bourne’s effort pro-
vides an important step in that direction, namely a book that ad-
dresses uses of Smalltalk in the engineering domains.

The author has made some valuable contributions to appli-

cations of Smalltalk in the college classroom, one example be-
ing his work on engineering tutorial systems implemented in

Smalhalk. The book, however, is somewhat disappointing as a
classroom tool or general resource for engineers who want to
learn more about Smalltrdk’s potential for technical applica-
tions, The material is much too general in its treatment of ac-

tual engineering applications, yet at the same time contains too
much code-level detail without providing sufficient prepara-
tion for beginners.

Part I is an overview of general concepts such as representa-

tion of physical processes in terms of objects and behaviors. A

serious deficiency is the lack of historical perspective and pre-

sentation of important recent contributions in engineering ap-

plications of Smalltalk. Notably absent is any mention of the

contributions of the (now defunct) Tektronix group. Applica-

tions such as INKA, a system that assists in instrument service,

represent important real engineering Smalltalk projects. Also

omitted are the contributions of Thomas et al. on the uses of

Smalltalk in realtime instrumentation and control, work done

at Rutgers on scientific data management, and other real-world

cases discussed in recent journals and proceedings. Engineers

need to be motivated by actual applications.

Turning to more specific issues, this reviewer would have

liked to have seen more emphasis on behavioral paradigm, as

opposed to software structural aspects (inheritance, etc.). En-
capsulated behavior of objects is the crux of what Smalltalk has

to offer engineering simulation. Bourne puts much emphasis

on the MVC paradigm and attempts to draw real-world analo-

gies. Not only is MVC out of date, but the author’s analogies
22
are somewhat questionable, My greatest criticism of this part,

and of the book as a whole, is the emphasis it places on use of

ACOM cards for the “pre-specification” of a Smalltalk design.

Bourne goes so far as say that one must use 4x6 cards as op-

posed to 3x5 cards for writing down the desired classes, proto-

cols, etc. This approach reflects the traditional “specification”

approach to software, not the interactive prototyping stYle that
is Smalltalk’s forte. Although he references a 1986 paper by

Cunningham and Beck as his rationale for emphasis on ACOM

cards, my own reading of that paper was that cards were only a

“literary aide” to help explain O-O concepts. The first part of

the book ends with an overview of other O-O languages, in

which the author does emphasize the importance of having a

complete class library for a particular O-O environment to be

of real benefit.

Part II concentrates on “tools,” namely the Smalltalk lan-

guage and environment. This section does not flow smoothly

from topic to topic and I fear it will be difficult for beginners to

follow. Smalltalk code examples are presented in numerous

figures without proper preparation for the lay reader. Perhaps
Bourne intended this section to be covered by additional class-

room material. In addition to Smalltalk specifics, this section
covers issues such as “look and feel” (but omitting that PPS re-
lease 4 does not have a complete native platform look and feel)
and bit editors (without making clear that release 4 does not
really support this and Pens as part of the system). As in Part I,
great store is place on the ACOM card method and how to
transfer information from the cards to the Browser. However,
there are some useful pieces in this section. While the discus-
sion on page 147 mixes animation with drawing, at least one is
shown how to draw a line using PPS release 4. Chapter 8 con-
centrates on MVC. There is too much detail, particularly about
the viewBuilder, and that level of detail is really not germane to
the subject of engineering applications. It is interesting to note
that the author’s own code example for MVC illustrates the

typical MVC problem that is, whereto put drawing methods.

The “Counter” examples ParcPlace used to distribute would be
better in this context. The author discusses the “Pluggable
Gauges” package (from KSC), but doesn’t refer to the active
value concept that is central to that package and important to
engineering applications.

Part III deals with engineering applications, which I found to
be the most disappointing. Most of the discussion about exam-
THE SMALLTALKREPORT

pies is cursory at best. There is a need in this section for empha-

sis on real examples. The non-elefical engineering coverage is

understandably the weakest, but his circuit simulation example
is again too detailed with emphasis on code rather than simula-
tion of physical behaviors, As in prior parts of the book, details

of extraneous subjects take up too much space-the external in-
terface description is a notable example. While Boume does not

face some critical issues in engineering applications of Smalltrdk,
such as handling of large numbers of objects generated in tech-
nical computations, he does address performance problems with
a d~cussion of user primitives. However, he confuses user prim-

itives (which are limited by the context loss across calls in PPS
release 4) and a true C interface (not yet released for PPS at this
writing). Table 12.2 illustrates the serious problem with this
book It is a method listing consisting of user prims (~rimitive:
11106>, etc.) with no comments, and is presented before the
reader is even introduced to the necessary semantics, The book
does end with a fairly good discussion of simulation and

Smalltalk applications in simulation. Perhaps this discussion
should have been presented much earlier.
NOVEMBER/DECEMBER 1992
All in all, I was disappointed. Given the great need for
books and monographs on scientific and engineering applica-
tions of Smalltalk, perhaps I expected too much. In all fairness,

the book is accompanied by an instructor’s manual and code

disks, which were not available in time for this review. Perhaps
their presence would have presented the text in a different

viewpoint. Future books on this topic should emphasize
Smalltalk as a behavioral paradigm for computational simula-
tion of physicrd processes. This important “forest” should not

be hidden by “trees” of small details. ❑

Richard L. PeskinisProfessorof Mechanical and AerospaceEngi-
neering at Rutgers Universityand directorof the CAIP Center Com-
putational Engineerhg .SystemsLab. He has been involvedm“thengi-
neering and scientificaspectzof Smalltalksince 1984. In addition to
doing research in computationaljluid dynamic~and non-linear dy-
namics, he is one of the designersof the SCENE (Sa”entijicComputa-
tionEnw”ronmentfor Numerical Experimentation) syJtem,a
Smalltalk-baseddisti”butedcomputing environmentthat implements
computationalsteering toolssuch as interati”vescientificgraphics
and data management, automatic equation solvers,and mathemati-
cal expert systems,
Excerpts from industry publications
CONCEPTS
,., In most languages, learning to program means learning the

syntax. Learning to program in Smalltalk, however, involves
much more. The programmer must have a clear grasp of ob-
ject-oriented concepts. In addition, Smalltalk’s development
environment strongly influences the entire approach to
sofhvare creation, It is absolutely essential that the developer

become familiar with the classes provided by the Smalltalk en-
vironment. Nthough this cars take some effort, it’s a prerequi-

site for developing more than the most trivial programs. Fortu-
nately, this is an interesting activity and is one of the best ways

to learn Smalltalk.
An eaful o(Smalltol~ John D. Wi//iam$ PCAl, 9-/0/92

TASKS

. . .The tasks in an object-oriented effort are different. New
tasks are required to identify, characterize and document ob-

jects. These tasks focus on identifying objects and the interac-
tions required of these objects to provide a system that meets
stated requirements. Object-oriented efforts, like other devel-
opment approaches, need requirements and design
specifications. Yet these documents localize around objects,
and not functions or data. In addition, these specifications

clearly delineate which components are reused from an in-
house reusability library and which are developed from scratch
to support the application at hand. Tasks associated with the

construction of structure charts, data flow diagrams and other
function- or data-oriented modules are obsolete and replaced

with modeling approaches more in concert with object-
oriented development.

Designingthe object-oriented wa~ Ron Scfsuhz,

OPEN SYSTEMS TODAY, 7120192

END-USER DEVELOPERS

-.. No fundamental change in the pace of software develop-

ment can occur until there is a significantly higher level of appli-

cation development. In other words, end users must become de-

velopers. Object-oriented programming could allow end users
to do just that. The ideal application development environment
would consist of enormous libraries of prefabricated, modular

program parts (super high-level objects). These modules could
be configured and combined in virtually unlimited combina-
tions to build complete applications across the entire spectrum
of software use. Applications would be built exclusively in a
high-level tool of this sort, Conventional code-level program-
ming would focus on creating object components. , . .End users
would have unprecedented programming opportunities.

The new shangrklo?,Joseph !%moge, SOFIWARE MAGAZINE 7/92
23

Where can you find the
best in object-orientedtraining?

Thesameplaceyou found
the best in object-oriented
products. At Digitalkt the
creator of Smalltalk7V

Whetheryou’re launching
a pilot project, modernizing
legacy code, or developing a
largescaleapplication, nobody
elsecan contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

Only Digitalk offers you a
complete solution. Including
awwd-wnningprtiucts, prvven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either wax you71learn from a

staff that /itera//y wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

Weknow objects and
SmalliWWVinsideout because
we’ve been developing real-
world applications for years.

The result? You’llabsorb
the tips, techniques and
strategies that immediately

reduce your learning curve,
and you’ll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

Digitalkk training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance,
Puget Power& Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in lBMk
International Alliance for
AD/Cycle—lBMk software
development strategy for the
19905. For a full description
and schedule of classes, call
[800) 888-6892 x412.

Let the people who put
the power in Smalltalk#l(help
YOUget the mostoowerout of it.

boos~your productivity You’11 - -

11’.’ ‘ o: ~A~

	By Article Title
	Collection idioms
	Describing your design
	How to manage source without tools
	Object-Oriented Engineering -- Book Review
	Significant supported events in Smalltalk/V PM as illuminated in Window Builder
	Taking exception to Smalltalk, part 1

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Hendley, Greg
	Hinkle, Bob
	Johnson, Ralph E.
	Knight, Alan
	Peskin, Richard L.
	Smith, Eric
	Wirfs-Brock, Rebecca

	By Topic
	Book Review
	comp.lang.smalltalk
	Getting Real
	GUIs
	Smalltalk Idioms
	Putting it in Perspective

