
The International Newsletter for Smalltalk Programmers

October 1992 Volume 2 Number 2

OBJECT

C

Features

I Object
necess
by Reb

Columns

5 Produc
nology
by]an
Barbar

12 GUIS:S
the app
by Gre

15 Smallta
by Ken

19 Getting
storing
by]uan

2 I The be
Some S
by Alan

h

c

h

VISIBILITY:

MAKING THE

NECESSARY

ONNECTIONS

By Rebecca Wirfs-Br(]ck

Contents:

visibili~ Making the

those clct

design de

process t

dLlring [h

tochflngc

‘I”urllill

silnil;~i-iti

hlucpi-ints

of nl:]ttrii]

conlp(~sed

nl~king o

built. You

‘I”hcsi~lnc

]]cforc

sc)liw~lrc

during co

quires nla

Snlfillti~lk

ary connections
ecca Wi+-Brack

t Review:Object Tech-
’s ENVY Developer
Sceinmanand
a Yates

eparating the GUI from
lication, Par-t2

g /iend/ey and Eric Smiti

lkidioms:Collection idioms
t Beck

real: The dangers of
objects

ita Ewing

st of comp.lang.smalltalk
malltalk stuff
Knight

;I solu[il)n

don’1 inve

projec[. S

I)rilrics. ‘1

jol>, even

IJcf[)rr

our Snlilll

Sn];~llt:]lk

unless [he

needs tn h

is Jll done

Snl;llltfi[k

techniclLlc

rncllt~l i]l

tcchnicl Ll

HCI-C:

. fin ohic

to S1na
:lils: how to tLlrll Jn inlprccisc list ofcollfil~onltit)lls illtt] J nlt)rc rigorous”

scription iInd tin filly into Snl:dltillk ct)de-il rckltivcl!’ stri]ightfc~rw~rd

il[c~ln he [;lckled ~ys[cln;ltic;llly. I:olk)wing il fcw gcncr~l principles

is [r~lll.sl;l[ion }Iroccss results ill cliIsscs thi~t fire nlorc rcus;~l)lc find cfisicr

or cllh;lncc.

g iln i~rchitcct(lr:ll dr,lwing into :1de[tiiled se([~[hlucprints sh~res il (CW

s with [he sotiw~ll-e c(lllstruction [lr(~ccss. Jvhcn dcvck)pillg detailed

, LIn;~rchitcc[t~lnskrtcs :1lough :lrchi[ectufi~l drilwing intt) it specific list

ls 1(>ht! ust!d kind a ftlir]y cxp]icit milp [)fhow those nl:~tcria]s shc)ll]d be

in [he tinished prodLlct. ‘l’his still ICJVCSJ lot ofl~titLldc for drcision-

nd crcfitivity during ct)llstructi(~ll—just ;]sk ;Inyt)ne wh(> hils htid a h(>use

don’t slart construction” expecting :1horn ;Inci end LIp with il skyscfilper!

principles il~)ply to cons[ruc[ing s(~liwilrc.

turning ;ln object-orien[ed” design description into J dct~lilcd set of

lucprintsl y(lu Inus[consider thti tools” ~lnd tnviron]nent you will use

nstruction. ” ,Mflpping iln ~)l>jcct-oriented design into !inl~lltitlk code re-

tching LIp oi~jecl-orienlcd” design concepts with the ,lppr[~pri~]f(’

l~ngutige :Ind pr[)gr~mlning ct)ns[ructs. It’s tsscnti,~l when ct>nstructing

to hi~ve Llgood” Lllldcrst:ln ding (>fprc- existing c(~nlponcnts. Architects

nt ncw kinds t)tffistcncrs or hLlilding nlil[~riill f(]r ei]tihconstruction”

ill] ililrly, prt~ticicnt Snl;~Iltillk progr~nlnlcrs know their Sn~alltalk CIJSSli-

’hcy don’[construct i~ncw cli]ss when :1rt~ldily ;lv~lil:lhle one will do the

it’it isn’t }Ier(ccl.

systcnlilticillly ~ldding nll)rc rigor 10 [)llr Ct)ll;lllt)hltiolls, Ict’s Cxilnline

tillk construction” rnvironnlcn[, How lnilny diticrcnt wfiys fire thrre in

(or onc t)hicct to IILIVCvisihili[y ()[i]n()th~r? ~)l)jcc[sc:ln’t coll~horilte”

y can sclld cilch ()[her mcssfigcs. ‘1’hcclient, or sender o[a rncssogc, tirst

i~vc visil>ility of the server or rcctivcr ut the nlcss;~ge. l~esstige sending

within the ct)n[cxt ofil nleth[~d. Anyone with a]llodest anlc)unt L)I

pr[)gr;lnlnling cxpcricnuc shouki [>c;Ihle 10 come LIp with most t)fthcsc

s f.lirly cluickly. [:or ncw snl~l]ltfilkcrs this is L1good” Cxcrcise in (LIndiI-

l}llclllcll[iltion constrllcts. YOU will usc these constrLlcts (:~nd other

cs) whcll yoLl tRlllSILltL’ dCSigllS illlo CXCCLllJh[C progr;lnl Code.

Irc some wilys i~nol~jcct nlily he visible wi[hin ;I Inc[h[)d:

ct ;llw;lys 11;1svisihilily ()(ilsell (sending Incssklgcs to self is fLlnd;lnlcnt;ll

llt;~lk prt)gr;~nlnling)

TIM $malttam Report
Editors
john Pugh and Paul Whm

&rlesan I-Ink-shy ~ The ObIect Peopk

SIGS PUBUCATSONS

AdvisoryBoard
Tom Atwood, object DES@

Gidy Beech, natkmd

George Basworsh, Dl@alk

Bsad COX hformmion @ Conmking

Chuck Duff, Symanrac

Adele Goldberg hrcllaca Sysrems

Tom LOW orgwarE

Bettrand M9er, ISE

Melllr Page-Jones, Way!and ~wns

klk ~ CemmUne Sufrware

P. ~dlad kshols, Verzant Objacf Techno~

~me Ssrousrrup, AT,ST S4 labs

Dave Thomas, Ob@c Technolq Inc.zmational

THE%ALLTAUS~PORT

Editorial Board
Ilm Anderson, DIgdk
Mele Goldbe~ S%@lace Systems

Red Phfil@ Kndwi6dgE Sws Corp.
MikeTaylor, D-

be Thornsri ~eaTahnoJw lmemadmd

Columnists
KentBe4 Em a= %fmvare

Iuanlsa Ewifl.g Dlgh7dk

Greg Hendiey. Knowledge Sysr.emsCWP.

Ed ~, Lmaa E@merh-g Inc

Alan Kni@q Carleton lh+versky

Suzsnne .skubllcs, Objem Technol.agyWsemadonal

%k Smith, Knowledge SysummCm’p.

{ebecca VWa-Bro4 D@cdk

5iGS PubikationsGroup, inc.
Wad P. Frladman

%undar g Group Publisher

ArWroduetion
KrlstlnaJoukhssar,f+sm?ghlgEdkOr
k cm Fll$rfm Rod, Ltd., Crcafim D-

Karen Tots@h, Pmdudon Editor

JennSkm E@nder, ~. tirdmtor

ClrculriHon

Ken14arsxb FWibnmcrlamgar

Dkneeadwsy, CJm$adm Suskm5a-r

John Schrelber, Circuhtlon Amman,

Vi Maock, Cfrcukdon Asimam

Markadng/Advertising
DhsMClrmd@~~C5dGmdS
Hdlyrlehker,AdWdrk$l”faFw. &5250pe
HdmNAhg,Fkmlimmsa42a
Ss4rHarfhn,k4mfkrn&qH—Mbm
L0rnaLyiqhutk7cl~
CNwlPolner,~f=W-
Mmhsktrasion
0- Tomoum,BuslmssManagar
DavSdClfauerpaul, Auc+mdng

C4akJ0kmx41 ~fl-lw

S%@ 6alrd, Confaren. Technld -

h-w~w
EDITORS’
CORNER I

John Pugh Paul White

Since many of you will be reading this while attending 00PSLA’92 in Vancouver, we

thought it appropriate to take stock of the impact OOPSLA has had on the growth of

Smai.balk and vice versa. As we mentioned in our editorial last year following 00PSLA,

we were struck by Smalltalk’s “emergence” as an industrial-strength vehicle for large-scale

object-oriented system development. Looking back, it’s probably fair to say that was a

new role for most of us. For the first time, it seemed we did not have to constantly defend

the decision to use Smalltaik. For the first time, we regularly heard the question, Why

aren’t you using SmailtaIk?

Both of the major Smalltalk vendors have major plans for 00 PSLA. Digitalk has re-

cently released the 0S/2 version of PARTS Workbench, their long-awaited parts assembly

and reuse tool set technology. Will this product lead us closer to the promised land of ap-

plication construction fi-om prefabricated software parts? ParcPlace will be showing Vi-

sual/Works, their new application development environment for client-server, GUI-based

applications. With a growing number of third-party vendors also showing Smalltalk-re -

Iated products, the 00PSLA exhibits floor will be an active place for Smailtalkers. Watch

for reviews of many of these products in upcoming issues of the REPORT.

Once again, we feature Rebecca Wirfs-Brock’s design column in the REPORT. This

month, Rebecca describes the different ways one object cm be visible to another and sug-

gests guidelines for managing this visibility, In the long run, she suggests, it is vital for

“teams to develop and stick to a style guide that addresses when and how to use parti,- .-til

Smalltaik constructs.” Having faced these issues many times before on projects, we can

only add that we agree wholeheartedly.

1%0 in this issue, Kent Beck introduces us to a number of collection idioms, illustrat-

ing how best to use Smailtaik’s collection class library, which has traditionally been one of

Smalltalk’s best-selling features. Greg Hendley and Eric Smith return to their pro-

posal for a three-layered architecture for building GUIS using a more complex example to

highlight many of the pitfalls normally encountered during GUI development, Alan

Knight rolls up his sleeves in this month’s Best of comp.lang.smalltaik column and covers

a number of very specific and technical questions relating to the implementation of

Smalltaik. As he points out, many of the discussions he covers this month offer “only an

understanding of the source of the problems” rather than solutions. Finally, Jan Stein man

and Barbara Yates review ENVY Developer by Object Technology International. In our

ongoing coverage of team programming tools, Jan and Barbara describe ENVY’s philoso-

phy and put ENVY’s features into perspective with respect to the many other tools cur-

rently on the market.

If you are attending 00 PSLA, why not take a few minutes to drop by and talk with us?

It is always useful to find out what kind of things you’re interested in and how you’re us-

ing Smalltalk. See you there!
The SmallmlkRqmi (lSSN# 1056-7976)is puhlishcd9 limesa year,evcq month exceptfor the Mar/Apr, J.ly/AuE, and Nov/Om mnhimd issues.P.b-
Iidxd by SIGSPublicationsInc., 588 Broadway,Ncw York, NY 10012(112]2744164!2.G Copyrigim1992bysIGS Publiatiom, Inc. All righ[src.xrwd. Rc-
prcductionof tfi makrid byelectronictmmmiuim, Xeroxm my otherrm{bad will h. m-aicdasa willi%lviolationof theUS (%pyri~t Lawandis flatly

pr.bibitcd. Materialmaybe rcpmducedwith cxprempennimim fmrn thepublishers.Mailed Firstc,,assSubscriptionratesI year,(9 iss.cs)domestic,$65,
Foreignand Canada,$9o, %@ copyprim, $s.02,FOSThL%STEfCSendaddrm chmsm and subscriptionordersm THF S!.IAI.ITA[K RWOW, Subsm,%er
ServicesDept.SML, P.O. Box3LIW,DenvilIq NJ07834.
Submit articks to the Editors at SmaJltalk Report, 91 Second A.tmue, Ottawa, Ontario KM 2H4,Canada.

w M* AdmlrrMlwla AsshOm

+&t’4onck

~SIGS
PUBLICATION?

2 THE SMALLTALK REPORT

10YearsAgo
men ~1 Sugg
ThatObject-tiented

TechnologyWould
Revolutionize

TheSoftwareIndust~,
PeopleCalledUs

Cr~...

Now,TheySimplyCallUs.
For over 10 years, OTI has been on the
leading edge of object-oriented software
engineering. And today, as more and more
companies adopt ti]s exciting, new
technology, OTI remains the leader in
providing industrial and commercial
object-oriented solutions.

Partners in
Object-Oriented Development
OTI’Sunique technology alliance program
provides a means of acceleratingproduct
development and introducing new software
technology. OTI’Stechnology is being used
in products ranging from pen computers to
real-time systems. Through these alliances,
we’ve earned a solid reputation for developing
high-quality, reliable software - on-time,
within budget and to demanding product
specifications.This success is atrnbuted to

OTI’SENVY@/Developer- the first multi-user
development environment for object-oriented
engineering.

OTI’S ENVY/Developer - Product
Development Tools For Smalltalk
With ENVY/Developer, large and small
software engineering teams work within an
interactive, shared programming environment.
Inside this environment, team members share
common development tools, common software
components and common source code – that
means faster cycle times, increasedproductivity.
virtually no duplicated code, and no wasted
effort.

Applications are created efficiently and
effectively, from beginning to end. Using
ENVY/Developer, the team passes the
application through each phase of the software

manufacturing lifecycle – conceptualizing,
prototyping, manufacturing, testing, release
and maintenance– without ever leaving the
environment. ENVYIDeveloperalso tracks
this process by providing complete software
version control and multi-platform
configuration management.

Interested?
If your organization is interested in joint
research and development or you would like
more information on ENVY/Developer and
object-oriented programming environments,
call us today.

@

Object Technology
International Inc.
Engineering Ideas
Into Products

CanadaTelephone:613-820-1200● Fax:613-820-1202● E-mail: inlo@oti.on.ca USATelephone:602-222-9519 ● Fax:602-222-8503
ENVYis a registeredIrademarkof ObjectTechnologyInternationalInc.

OBJECT VISIBILITYcon~nuedfiompawI

continued on page 1I

. .
. thoseobjects passed in as arguments

. an object’s class (by sending the message self class)

“ values of instance variables-objects that are part of the ob-

ject’s encapsulated state

. any object returned as a result of sending a message to an

object already visible

- objects assigned to temporaries

● any class whose name is known

* you can create an object whenever you need it (assuming

you know the name of its class)

* an object that is a value of a global variable (for example,

Smalltalk)

“ class variables of the object’s class or any of its superclasses

● variables in pools specified by the object’s class

* constant objects known to the language (e. g., nil, true, and

false)

● literals (including integers and floating point objects,

strings, literal arrays, a literal block)

Enough! I asked my colleagues for additions and got several

that were far too obscure to include in this column. Let’s orga-

nize these objects into four categories

1. Globals of varying scope. We can include globals, pools and

pool variables, and even class variables in this category.

These global spaces typically contain objects visible to many

other objects. If you can name an object in one of these

global spaces, it’s yours for the accessing,

2. Objects that dynamically become known within the context of

a method These include objects passed in as arguments and

any object returned from a message. #m object that be-

comes visible in this way can ilways be retained for later

reference or discarded as needed.

3. Objects that are part of an object’s encapsulated state, i.e., in-

stance variables.

4. Basicprogramming constructs. It’s difficult to write any

significant code without using nil, true, or false. Literals also

fall into this catego~ and are just as ubiquitous.

EXAMINING THE EXPLORATORY DESIGN
Most collaborations are recorded between objects at the same

or next layer of detail. If a designer has figured out the details

of an algorithm, quite a number of collaborators at very differ-

ent conceptual levels may be listed. This is an exception rather

than the rule; it is more common to have a vague idea that

some kind of collaborative effort is required. Most ofien col-

laborators are a list of objects that will become known dynami-

cally, not those that are permanently visible.
4

Lists of collaborators certainly aren’t exhaustive or very pre-

cise. But this doesn’t mean we have a bad design, just a prelim-

inary one. During the early design stages, we determine when

to use the services of some key collaborators; we don’t yet need

to determine precisely how we will use them. First, we develop

a model of what an object should do along with a vague idea of

some of its key collaborators. Next, we need to try out a num-

ber of alternatives.

To add precision, we need to determine whether an on-

going dialog will be required or whether a single message

will do. We need to construct a model of how each respon-

sibility will be accomplished. This requires experimenta-

tion, since there’s no one right way to decompose a solu-

tion. However, when working out these details, there are a

number of principles worth following to make your imple-

mentation cleaner.

LIMIT VISIBILITY
One guiding principle is to make objects visible to each other

on a need-to-know basis. An even stronger statement: Don’t

retain visibility of any object if you absolutely don’t have to. In

general, design objects so they know as few other objects for as

short a time as possible. If an object only needs to know about

another for the duration of a method, pass it in as an argument

and let the client supply necessary information. Carrying this

to extremes, however, will result in objects with poorly de-

signed interfaces.

SIMPLIFY COLLABORATION SEQUENCES
Complex message protocols that have lots of arguments or re-

quire exacting sequences of messages between client and

server make objects difficult to use and understand. A balance

must be achieved between exposing too much complexity and

giving enough controls to the client. Simple interfaces are

worth striving for.

For example, I prefer to drive a car with a manual trans-

mission because of the extra control I have, while my mother

has driven an automatic car for years. She switched from

manual when automatic transmissions became popular be-

cause she preferred the simplicity. It certainly is much easier

to accelerate a car by sending the single message mycar acceler-

ate. I go through this sequence whenever I need to shift gears

before accelerating:

myCsrdepressClutch
myCa shiftGesr a GearValue
myCarreleaseflutch
myCaraccelerate.

Most people prefer a simpler interface, provided the neces-

sary services are offered. Too many software engineers offer a

manual transmission when their clients prefer the simpler

driving method.
THE SMALLTALKREPORT

~- ‘-
Object Technology’s
ENVY Developer

—.

Jan Steinman arm! Barbara Yates
THE PROBLEM
Sincethemid- 1970s Smalltalk has been the development envi-

ronment by which all others are measured. The simple, rapid

hypertext-like browsing of code combined with incremental

compilation raise programming expectations to the level of

instant gratification.

Smalltalk gained a reputation as a toy, not because it lacked

power or expressiveness, but because few large systems were

written in it. Although it was certainly possible to do big pro-

jects in Smalltalk (SmaUtalk itself being the best example),

most of its work reached a certain critical mass then stopped—

roughly at the limit of what one person could manage. The ul-

timate individual software development environment was just

that: an indiw”dutdenvironment.

A big part of Smalltalk’s instant gratification is the way it

manages change. Each time you save a method, its source code

is recorded in a file and can be retrieved if necessary. This works

fine for individual developers, but is unmanageable for teams.

At Tektronix Laboratories we realized that the lack of team

facilities was holding Smalltalk back. Tek wanted to reap the

object-oriented benefits of Smalltalk on larger projects, so we

developed different team programming environments for use

within the company. These “groupware” environments fell

into two general categories: those that maintained the basic

Smalltalk “what you saved is what you get” philosophy, and

those that followed the C/UNIX “check-in, check-out” philos-

ophy. Beyond this philosophical split, they all attempted to ad-

dress a common set of basic groupware needs.

NEEDS
We’ve studied and worked on the groupware problem at Tek-

tronix and as consultants, Through interviews with users and

their managers, literature research, and personal experience

implementing and using many groupware tools, we came up

with a basic set of requirements for Smalltalk team program-

ming, roughly prioritized by importance:

. Integration. Groupware must support the combining of

code received from different developers, which is primarily a

function of detecting conflicts and managing dependencies.

. Code sharing and concurrency control. A developer must

be able to work on a code module without undue concern

that other developers are also modifying the same module.
OCTOBER 19$42
. Revision history. Different versions of code need to be

maintained so that if new versions are found to have prob-

lems, old ones can be easily retrieved.

. Configuration management. Different combinations of

code modules need to be assemblable; previous versions of

configurations are necessary for regression testing.

“ Documentation. In addition to standard Smalhalk method

and class comments, the new components necessary to

groupware require documentation support.

● Branching and merging. It is sometimes necessa~ to di-

verge from a single development path; then the two paths

usually must be brought back together.

Aside from these basic needs, a number of specialized needs

are otlen provided by groupware environments, including per-

formance monitoring and tuning tools, object storage mecha-

nisms, and facilities for generating link libraries. We’ll examine

how Object Technology International’s (OTI) ENVY/Devel-

oper, referred to here simply as “Envy,” meets these needs.

ENVY PHILOSOPHY
It is apparent that Envy was designed, and not simply cobbled

together.

Envy adheres fairly well to the philosophy that “few

concepts, rigorously applied” are better than special cases

for everything. Although it has a complicated user interface,

and does take some learning, most users find it predictable

and easy to understand once they have absorbed the central

concepts.

Envy maintains the original “what you saved is what you

get” paradigm, rather than succumbing to the easier-to-imple-

ment “check-in, check-out” pattern, and uses the Smalltalk

method as the smallest unit of code sharing. This means that

team members can instantly view each other’s work, fostering

communication and avoiding needless branching.

Envy is conservatively designed to avoid accidents. It uses

error avoidance rather than error detection. If an operation

does not make sense in the current state, its menu selection is

disabled. Sometimes this can be frustrating, but we’re con-

vinced it is much better than picking up the pieces after inad-

vertently selecting a “you asked for it, you got it” operation. As

a corollary to error avoidance, Envy uses multiple browsers to
5

■ PRODUCT REVIEW
let you examine the present state of the system rather than rely

on multiple reports to tell you what happened after a problem.

Large-scale design is fostered by partitioning the problem

into functional units. In fact, En@s base image comes pre-

partitioned into functional units, making it easier, for instance,

to substitute a completely different user interface.

Class ownership has been debated in this and other publica-

tions. Envy is subtly different. It insists upon class definition

ownership: Any number of developers can provide methods

that extend a class, but only one developer is allowed to change

a class’s structure. Other groupware systems eschewing class

ownership can result in many conflicting definitions for a class,

which is deadly to large projects!

Finally, Envy obeys Einstein’s dictate that “everything

should be made as simple as possible, but no simpler.” Where

it makes sense to override a concept with a special case, Envy

does so.

ENVY CONCEPTS
Envy works from these basic concepts:

“ All source code resides in a shared repository.

“ There is a hierarchy of software components that have con-

tainer relationships to each other.

“ Loading and unloading a component is atomic.

■ Sofhvare components progress through stages, from edition

to version to release,

■ Work in progress is carried out in mutable editions of

components,

. Components become immutable when declared versions.

■ Users are associated with components in specific roles,

which may or may not be enforced.

Shared repository
AUsource code resides in a shared repository, which accepts

changes and makes them immediately shareable. Instead of the

typical sources and changes files, images are connected to a

shared network repository. As soon as a change to source code

is saved, the new code is appended to the repository. Since all

the team members are connected to the same repository, code

I IlpphtmlionUIIIILI1lS
~ EmMm I DefinBd&Winded —

,*b
I PrErBqulsl19s II

Y
012-Td2(9 fwgusi I 99261 :

4I

? ~~4

‘d

* Too16 -

Fila5y5temRI.20
Grqhlm R1,20
KsmalR I .zoa.. .

D..* v Grou t.4sn’b8rs
Jan42d@olnierBemrm 1.0+ .
Jm<ontexMod61. I dmh $e=oC .

Jan+riniismnl 1.1 BanyOnlesby
Jan.SMngSolecim@&al) 1.10, a. M, BenUcKlll

ToolsRi 20, b,damti tian SiOlnm

I \aulbmhnswm / 1

S@mtiC.me” I
Figure I: Application msnsger derails, and history or an Application.
6

changes are immediately accessible to other members of the

team, who can view or load the new code into their image as

desired. Both the source strings and the compiled bytecodes

are stored in the reposito~, loading compiled code from the

repository is five to ten times faster than file-in.

Hierarchy of softwarecomponents
There is a hierarchy of software components that have con-

tainer relationships to each other. These components are

methods, classes, subapplications, applications, and configura-

tion maps, The smallest component is the method, which is al-

ways a part of a class or class extension. Methods have version

history, as do all other components.

Classes differ from class extemiom in that classes include the

class definition and class comment, while class extensions in-

clude only methods. Classes and class extensions are contained

by applications or subapplications. As mentioned earlier, class

extensions provide for multiple owners of bits and pieces of a

class. We use the term class to mean either class or class exten-

sion, unless a distinction is needed,

An application is a collection of classes that together serve a

useful purpose. Applications declare prerequisites, which are

other applications required to be present so they cars function.

Loading an application loads its contained classes and their

contained methods (Figure 1).

Applications are actual Smalltalk classes and, as such, they

can implement behavior. For example, when an application is

loaded into an image, it is sent the message loaded. The devel-

oper puts into the loaded method any needed initializations

that should occur when the classes in the application are

loaded, such as initializing pool dictionaries. Another behavior

of applications is that they cars respond to some standard sys-

tem events, such as image startup and shut down, by imple-

menting the methods startUp and shutDown. Objectworks

Smalltalk has a similar function via dependents, but since it is

implemented using a dictionary, the order of events is nonde-

terministic. In Envy, system event messages are sent in prereq-

uisite order, so applications can respond to the events in a pre-

dictable sequence.

Subapplications are applications with some restrictions

placed on them. They are always contained in and loaded as

part of an applicatio~ they cannot be loaded by themselves,

Subapplications have two typical uses: to isolate platform de-

pendencies and to organize classes within a large application.

When an application is loaded, the loading of each subapplica-

tion is controlled by a boolean configuration expression; that is

how a platform-specific subapplication is loaded appropriately.

We use the term application to mean either application or sub-

application, unless stated otherwise.

Configuration maps are named collections of applications.

Most teams will use a configuration map to periodically rebuild

their image, bringing in the latest integrated and tested versions

of all their applications. Another use of configuration maps is a

“one button” way to load an application and all of its prerequi-

sites. In a large organization that promotes firm-wide compo-
THE SMALLTALK REPOIIT

nent reuse, configuration maps are used to load all the firm-

specific versions of base applications, such as those containing

Object, Wing, etc. Other configuration maps are centrally man-

aged to load the latest versions of the firm’s reusable compo-

nents. Each project team may then have its own configuration

map to load its applications on top of the firm’s customized

base, plus whatever reusable components the team needs.

Atomic loads
Loading and unloading a component is atomic. Envy performs

“loadability” tests before beginning the load of a component

and notifies you of the first error it finds (if any). The image is

never left in an inconsistent state—loading either succeeds

completely or fails completely. This is especially important in

big components, subapplications and larger.

A totally foreign concept to Smalhalk users is that of un-

loading. Any component that has been loaded can be un-

loaded, Until Envy, a developer typically unloaded unwanted

code by ditching the image and fde in everything except the

unloaded code!

Component stages
Sofhvare components progress through stages, from edition to

version to release. Work in progress is carried out in mutable

editions of components. Declaring an edition to be a version

disables changes. Aversion is released to its containing compo-

nent. All components make one or more passes through a

change cycle between “first code” and completion. Any new

component is an edition when it is created. Editions can be

changed and are signified in the user interface with a times-

tamp next to the component name. The developer works on

the component until it has reached a stage that should be
OCTOBER 1992
“frozen” (especially if it’s working and the developer wants to

make some changes that could break it!). The developer then

makes the component a version.

Versiom are identified by a label next to the component

name, instead of the iirnestamp that denotes editions. Envy sug-

gests version names, but the developer can specify an arbitrary

string, such as “for testing 1.0. ” Once a component has been ver-

sioned, it and its label are fkozen and cannot be changed. There-

fore, before a component can be versioned, all its parts (and all

their parts, recursively) must have been versioned.

If developers wish to make changes to a version, they create

a new edition of the component. If those changes destroy the

component beyond all recognition, or if the developer simply

wants to do regression testing, the old, unchangeable versions

can be reloaded easily.

At some point, the developers decide it is time to foist

their creation on their peers. If they own the component,

they can release it to its containing component, at which

point those who load the containing component get the

new part.

To avoid unnecessary interference with the traditional

Smalltalk programming style (as well as interference among

team members), special rules apply to some components’ pro-

gression through the change cycle:

● Methods are always editions and, if currently loaded, are

implicitly released to their containing class.

“ Changing a method in a class version automatically creates

a new class edition.

. Classes must be versioned to be released to their containing

appliution or subapplication,

These exceptions allow you to use Envy transparently for at
7

■ PRODUCT REVIEW
least WYO of what a Smalltalk developer normally does, while

keeping your “work in progress” from being accidentally

propagated.

User roles
Envy users fill roles with respect to software components, own-

ers, and developers; flexible access protection may restrict the

roles an individual user may fill. The creator of any component

automatia.lly has the most authority. This user is called the

owner or manager of the component, and an reassign this role

to another user. The roles exist for one version and are carried

over into new editions until they are reassigned. We use the term

owner to mean either owner or manager, unless otherwise stated.

Any number of developers maybe assigned to a class. These

developers make changes to the class in their own edition,

which they alone can version. The class owner can then release

the class to its containing application.

Flexible permissions are associated with an application. Un-

less the owner of an application explicitly changes it, anyone has

permission to load applications, make new editions of classes,

and view source code, This default allows development of a class

to be a collaborative effort. If desired, application owners can re-

strict these operations to either themselves or the assigned devel-

opers. Private methods can be controlled separately from public

methods, enforcing the “contract” interfaces between teams.

Owners of applications and configurations are the only

people who may version them. They also have other responsi-

bilities, such as determining the prerequisites for an applica-

tion or creating new editions. In the simplest case, common in

many organizations, one person owns all the classes and man-

ages the application.

ENVY TOOLS
Envy has a variety of browsers for different purposes. Usually

the developer will use the Application Manager and one of the

development browsers; the choice of browser depends on their

preferred view of the “world” of their image. Many operations

are available in more than one browser, so the developer is not

forced to switch browsers to perform common tasks.

The development browsers consist of two views of the im-

age world class-centered or application-centered, The Classes

Browser arranges all classes in inheritance order and has a sec-

ond pane that shows which applications define or extend the

class. Italics indicate prototols that are not part of the selected

application or applications. Many list panes throughout Envy

allow multiple selection-doing this in the protocols pane

shows the union of their lists in the methods pane. Also avail-

able is a Class Browser for browsing a single class.

The Applications Browser (and the single application Ap-

plication Browser) presents the alternate, application-centered

view. Selecting an application shows a list of all the classes it

defines and extends, plus a toggle option to show all the pre-

requisite classes,

Some prefer the Classes Browser and others the Applications

Browser. Smalltalk-80 users may find applications somewhat
8

Il. object ediliom in Kernel
7 I

Ff’411
The dniault behwior Is to create a No Subdassas mn o!mmldethis rrcxsage ~
appropriate rnasuageand to allow I
Subdasm$ m OVBtidOthis rm w ObJecirrQssageNotUndersb30dSlgnal IIll

aejl

113 #JJgU$l199212:4653 beanirm 9 mrmTran > nOt@$

Figure 1 Hisu.ry of ObjecL showing differences berween rwo editions.

analogous to class categories and therefore prefer the Applica-

tions Browser. Smalltalk/V users are often more at home with the

alphabeticaUhierarchical view presented by the Classes Browser.

The Application Manager allows manipulation of the devel-

opment stage of applications and classes. This browser lists all

of the applications loaded in the image, with subapplications

indented according to their nesting level. With one application

selected, the other panes list the defined and extended classes,

the application’s prerequisites, and the application owner and

assigned developers. This browser is used for organization and

management beyond normal code development, such as load-

ing and unloading applications or classes, versioning applica-

tions and classes, releasing classes, and determining the com-

position of applications.

Recreating an image in Envy is easy. Using the Configuration

Maps Browser, simply load one or more configuration maps into

the image supplied by OTI, Generally, teams define configura-

tion maps that list the various applications comprising their “de-

liverable.” AU of the base image applications in the repository

supplied by OTI are already listed in the supplied configuration

map called Envy/Manager. Developers can examine existing

maps in the repository, create new maps, and edit the contents of

map editions. When all the applications in a configuration map

are versioned and the map is loaded, a configuration map owner

can version it, The map owner does not have to experiment with

the load order of the applications in a map—the applications’

prerequisites determine the order and the entire load is atomic.

A prime feature of Envy is the collection of tools for version

history and comparison. In all the development browsers, it is

possible to open a browser on all editions of a selected comp-

onent. These history browsers list, in reverse chronological or-

der, all the editions and versions of the component. From the

editions list it is possible to load a selected edition or select any

two editions and browse their differences in a Changes Browser.

This browser displays differences by highlighting lines and al-

lows loading of the alternate edition if desired (Figure 2).

Sometimes there will be concurrent development of the

same component by two (or more) developers. This happens

at the class level because, unlike “check-in, check-out” systems,

..-
THE SMALLTALK RSPORT

ODBMS

@

k
ODBMS
The Objectoriented Database

❑ Persistent Object Storage for Srnalltalk
❑ Handles Complex Data ~
❑ Object Ownership, Versio- Security,

arid Object Distribution
❑ Programmer and Enduser V’ions
❑ Stand Alone or Network Ccm@uration
❑ Database Classes licensed fix

OEM Distribution
D Licenses fbr Edumtional Purpmes

Add+m Applications
u Distributed Smalltalk Sc&vare

Development Environment
❑ SfJL-Interhce fbr 0S/2

ODBMS
Objectoriented Technology by
VC Sofhmre Construction

W%3kMs6% <>vcsofnmmc’
kc, 101 %@ a Hnrvmt MA O~4S1, Td

GmbI-L
untmwdl ZSt3500Braumdmig, Gmmny,’lM 4!431-Z4Z400,F.

+49ss1-2424rwt
there is no exclusive locking of a class to prevent others from

making needed changes. This might occur at the application

level when a production version of an application is undergo-

ing maintenance while other developers are working on “the

next release.” The same Changes Browsers that show you the

differences between two editions also allow you to merge two

editions by installing one or the other version of a method or

definition, or by copying, pasting, and compiling a new devel-

oper-merged edition of a method

There are two buttons in development browsers worthy of

special mention, The public/private toggle displays public or

private classes (in the classes pane), or public or private meth-

ods (in the methods pane). Private classes should not be refer-

enced and cannot be subclasses outside of their applications.

Subclassing of private classes is strictly enforced referencing

results in a warning. Private methods should not be called out-

side of their inheritance hierarchy. The application owner can

deny non-group members the ability to read the private code.

If you don’t like the tools provided, keep in mind that Envy

is an open system. Certain low-level code that accesses the

database is hidden, not so much because OTI doesn’t want you

finding out their secrets (determined Smalltalkers will find

ways to view this code), but because changing these methods

could damage the database. Custom user fields can be associ-

ated with any Envy component if additional state is needed for

some reason. If an organization needs custom capabilities,

adding them to Envy is not much more difficult than adding

them to Smalltalk. An added advantage is the many reusable

classes that can be used royalty-free in your application.

FEATURE COMPARISON
Table 1 shows how some groupware environments compare in

solving basic needs of the Smalltalk development team, along

with the platforms supported by each. Not all are currently

availabl.q we listed those we know about to contrast different

capabilities and demonstrate the growth in the genre.

Ad hoc refers to individuals working in separate images,

filing out bits of code. This is, unfortunately, how a lot of team

Smalltalk is still written,

Change set refers in general to techniques that exploit the

Smalltalk-80 change set mechanism. Tektronix developed

browser support for multiple change sets Knowledge Systems

Corporation later refined the concept and marketed change

set tools.

Team took, developed for internal use at Tektronix, com-

bined change set tools with configuration management, method

revision history, and limited merging. Team tools used UNIX

RCS to implement-check-in, check-out concurrency control.

Instantiation enhanced and extended the team tools con-

cepts to produce a product called Application Organizer, Dig-

italk has since acquired Instantiations; the future of former In-

stantiation products is unclear.

AM/ST is a Coopers & Lybrand product currently available

for Smalltalk/V only. AM/ST was reviewed in THE SMALLTALK

REPOFiT, March/April 1992.
OCTOBEN 1992 9

■ PRODUCT REVIEW
WHO CAN BENEFIT
Not every Smalltalk development team needs a groupware

product as powerful as Envy. In particular, teams of up to

three people working in the same physical location can get

by with ad hoc methods. Corporations with multiple two-

to three-person Smalltalk projects can choose to “roll their

own, ” and develop and maintain groupware based on

change sets or other file-outs and RCS or SCCS. However,

these methods break down as the number of team members

climbs above three or multiple teams need to share com-

pany-wide reusable components.

Envy really shines for managing large projects with dozens

of developers. By spreading project responsibility over three

distinct levels (configuration, application-subapplication, and

class), managers can control a large project with precision.

Since subapplications can be nested, project responsibility can

be further divided to an arbitrary level.

Envy has special abilities—as well as an established track

record—in developing embedded systems. Anyone wishing to

run Smalltalk from anything except a graphical workstation

should consider Envy the only solution at this time.

Envy eases parallel development with its merging and

differencing capability, Very few projects have the luxury of

never needing to split the development path, perhaps for an

important demo or due to geographical distance, It is never

fun merging diverged code, but Envy makes it much easier.

In short, if you have between roughly 4 and 40 Smalltalk

developers on a single project, you can benefit from Envy, The

larger the team, the greater the benefit. As the project leader of
Table 1. Comparison of groupware environments. eve

L

I Platforms I Features [

System 80 286 Mac PM Win int share hist Cfq doc cliff perf DLL obi

ad hoc ● ● ● ● ● @ @ 3 0 0 !0 @ r3 a

change ● o 0 0 0 @ o ~ @ o ~J @ o ‘~
set

team ● o c1 o 0 0 @ ● ● o ● @ o ‘o
tools

Object ● ~ 0 0 0 0 @ ● o ● ● @ o 0
Master

AMIST ~ o ● ● ● ~ ~ o 0 ● c1 ● ● (3

F nvu ● ● O ● ● ● e ● ● ● ● ● ● ●

611 Smalftalk+O Int dBpendsncies, dBtBcting conflicts dift dtirencing & mwging

266: SmalltallvV-286 share: cede sharing, concurrency pstt performance tuning

Mae Smalltalk V/Mac blat revision history DLL: link hbraty generation

PM: Smalltalk V/PM Clg configurafton management obt object storage facifily

Win: Smalltalk WWindows dm documentation support

O featurs is not suppcmfed
● fsalure is supported
C “check with system” available Sandard with Smalftalk+O
c “off-fine” mnffici detdon possible after Iosd of conflating coda; no depandancy mechanism
O code sharing and configuration in arbiirav units as decided by developer, with no concurrency control
@ code sharing and configuration in atitrary units as decided by developor, using Unin ~CS
O pmfill~ standard with Smalltalk+O
O Sinary Object Storage Sewics available for Objdworks Smalltalk+O
0 cede sharing only at Ihe application Iwol
O cede sharing of configurations, applimtions, subsppfications, classes, and methods

c

t

c

c

t

U
J

m

a

o

t

E

c

f

i

t

p

i

t

a

w

f

n

10
a successful commercial product using embedded Smalltalk

and about two dozen developers put it, “We could not have

done it without Envy!”

IMPROVEMENT OPPORTUNITIES
Envy has a solid, industrial-strength feel to it. When something

unexpected happens, you tend to question yourself, rather

than Envy, It is truly a product without glaring deficiencies; in

this case, “improvement opportunities” is not just a eu-

phemism for bug fixes! There are, however, some areas in

which OTI should concentrate future development, These are

listed in what we believe to be order of importance.

Multiple libraries
While Envy nicely satisfies an unprecedented groupware popu-

lation of up to several dozen developers working in a single li-

brary, it begins to show stress as that number is pushed above

50 or so, or if the organization wants a multi-library architec-

ture. The needs of a corporate-wide code repository are funda-

mentally different from those of groupware developmen~ ease

of finding and browsing functional units predominate. While

Envy has export/import ability between libraries, it would be an

advantage to be able to access at least a descriptive comment

about applications in other libraries prior to importing them.

Renamingand deletion
Renaming is not supported, so you cannot correct mistakes as

silly as misspelling an application name. Nor can you delete a

version, such as one called OBSOLETE! DO NOT USE! (How-

r, knowing their mistakes will

ontinue to embarrass them

ends to make developers more

areful!) Envy needs a carefully

ontrolled renaming and dele-

ion facility.

ser interface
ust as climbing a hill reveals the

ountain behind, user interface

dvances bring out issues that

ther less capable tools have yet

o conceive. Error avoidance in

nvy is wonderful, but with it

omes the responsibility of in-

orming the user what is happen-

ng. New users suffer what we call

he “gray blues’’—wanting des-

erately to perform some menu

tem, but being frustrated because

he menu item is grayed out (dis-

bled). Context-sensitive help

ould be a desirable addition.

The need to support so much

unctionality combined with the

eed to support multiple plat-
THE SMALLTALK REPORT

OBJECT VISIBILITY continuedfrom page 4
STORE FACTS IN ONE PLACE
If the same objects are used in a number of methods, hold on

to this shared information in the object’s class. Class methods

can be easily designed to yield this default information. It is a

matter of style whether these objects should be returned from

class methods or stored in class variables. From an instance’s

perspective, maintenance of this constant information is an

appropriate responsibility of its class, regardless of how it is
accomplished. This eliminates sprinkling the same literal ob-

jects over a number of instance methods. If a literal value

needs to be modified, the programmer only has to make the

change in one place.

Work at reducing the number of objects that a class de-

pends on. Direct reference to any global objects is considered

harmful by many Smalltalkers, Code with “hard-wired refer-

ences to other objects is fragile and highly dependent on cor-

rect context being established before it can run. It is difficult to

reuse code containing global references in another context. To

be reused, code must either be reworked to remove direct

global references or scaffolding code must be executed to set

up the necessary global context,

LIMIT DEPENDENCIES ON OBJECT STRUCTURE
Sending messages to self is a valuable implementation tech-

nique for two reasons: It allows programmers to separate de-

tailed steps from main parts of an algorithm, and clearly

identifies steps in an algorithm that can performed differently

by a subclass method,
— .—...——

OCTOBER 1992
Just as important, sending accessing messages to self al-

lows code to be insulated from changes in instance variable

structure. It also allows subclass developers to override those

accessing methods and provide the necessary information in

another way.

DEVELOP A SENSE OF STYLE
Don’t try to use every language construct when translating

design-level collaborations into a Smalhalk implementation.

Current Smalltalk environments have too many ways, for my

taste, to make objects visible. Teams should develop and stick

to a style guide that addresses when and how to use particular

Smalltalk constructs and how to simplify collaboration pat-

terns. Smalltalk programming style is an art and different or-

ganizations quite naturally develop their own styles. It is im-

portant to cultivate a sense of style and create some coding

guidelines before translating a design into code. ❑

Rebecca Wirfs-flrockis Director of Object Technology Servicesat
Digitalk, co-author oJDesigning Object-Oriented Sofiwarc, and
program chair for 00PSLA ’92. She has 17years’ experience de-
signing, implementing, and managing soJ7wareproducts. For the
lasteight years she hasfocused on object-oriented~ojhvare,includ-
ing managing the development of Tektronix Color Srnalltalkand
developing, teaching, and lecturing on object-orientedsojlware.
Comments, further insights,or wild speculationsare greatly appre-
ciated by the author. Rebecca can be reached via email at re-
becca@digitalk.corn. Her U.S. mail address is Digitalk, 921
S.W.Washington, Suite 312, Portland, Oregon 97205.
forms creates multiple browsers that differ significantly from

the Smalltalk vendor-supplied browsers. (Smalltalk/V users

complain about the “Smalltalk-80–like browsers,” and

Smalltalk-80 users complain about the “Smalltalk/V-hke

browsers,” but they are both complaining about the same

browsers!) We can’t offer easy solutions, but keeping closer to

native browsers would help.

Peer review
An important aspect of successful large projects is peer review.

Since browsing others’ code is so easy, we experimented with

using Envy for code review, as have others (see “Implementing

Peer Code Reviews In Smalltalk,” S. Sridhar, THE .5MALLTALK

REPORT, July/August 1992), by making annotations in place.

Although it works fairly well with no deliberate support, its

usefulness could increase if more attention were given to peer

review. For instance, automatic notification that a review had

taken place, release controls until review conditions are met,

and easy feedback to reviewers,

Documentation
The Envy manual is accurate and concise, but it is only a ref-

erence manual. The menu item in each pane of each browser

is described in turn, but there is no user-centered, task-based
description of the development process, Desperately needed

are a tutorial and a “cookbook” of “how do 1. ..” questions

and answers.

CONCLUSION
Smalltalk groupware has had a long struggling childhood, The

recent availability of several products designed to foster group-

ware ushered in a gangly, clumsy adolescence, with bits miss-

ing here and bugs hiding there. Envy brings Smalltalk group-

ware into adulthood, with a complete feature set that fulfills

today’s groupware needs and the stability expected of a mature

product. Any team of Smalltalkers working on a common pro-

ject should consider it a leading candidate for solving most

programming problems. ❑

Jan Steinman and Barbara Yates are partners in Bytesmiths,a tech-
nicalservicescompany ~pecializingin object-orienteddesign, imple-
mentation, and training. Jan has worked nith Bytesmiths’clientsto
create windowless(“headless”)Smalltalkserversusing Envy and has
conducted evaluationsof Smalltalkgroupwareproductsfor clients.
Barbara teachesEmy training classesfor BytesmithJ’clientsand has
assistednumerous teams in conversion to Enyy, Together, Jan and
Barbara have workedwithover 80 Envy usersand an equal number
of other Smalltalk groupware environment users.
11

r UIS Greg Hendley and Eric Smith

Separating the GUI fmm
the application,Part 2
I
n a recent column (THE SMALLTALK REPORT, May 1992)

we presented an application architecture for separating the

host-GUI-dependent, presentation-dominant parts of an

application from the control and semantic portions, In brief,
the ICM architecture divided interactive applications into

three primary components: (1) the interface component, re-

sponsible for all aspects of input handling and output presen-

tation that directly involve host GUI features; (2) the control

layer, the actual intelligence, which carries out commands,

maintains selections, keeps track of operational validlty, etc.;

and (3) the domain model layer, comprised of all the objects

representing the information with which the user is working.

We pointed out several advantages deriving from the use of

this architecture. Chiefly, ICM applications are very easily

ported to different platforms. Second, maintenance is eased

because less volatile sections of code are insulated from more

volatile ones like the interface. Finally, project maintenance is

facilitated because the work of application developers and user

interface specialists is more clearly delineated.

SCALING UP
Theexample code we previously provided implemented a sim-

ple log-on dirdog. Although it illustrated the concepts of ICM,

it was much too simple to be a useful guide to implementing

an entire application. We will try to make up for this by cover-

ing in some detail a few of the problem areas that arise when

one first attempts to construct an ICM application.

GUIDING THE USER
In any reasonably modern GUI-based application, end users

are likely to expect menu selections and push buttons that rep-

resent currently invalid operations to be disabled or grayed

out. Under the ICM model, implementing this behavior in-

volves both the interface and the control components.

The control part of the application knows what each com-

mand’s prerequisite conditions are. If well designed, it knows

immediately when any given command has become invalid.

However, it has no knowledge of what type of user interface el-

ement presents the command as an option to the end user. It is

possible that the current interface does not present the com-

mand at all. Therefore, the control must pass on to the inter-

face a request to disable whatever interface element, if any, it

uses to present the command in question.
12
For example, assume that the interface has two buttons A

and B, which represent the control commands cmti and cmdB,

respectively. Further assume that when one is pressed, the

other becomes invalid. In Smalltalk/V PM, this would result in

the code segment shown below.

INTERFACE CODE
The following four methods are instance methods of some

subclass of ViewManager.

M aPene
‘The end user pressed button ‘A’.”
self control cmdA

bcW aPane
‘The end user pressed button ‘B’.”
self confxolcmdB
disableCmdA“CommandA is no longer a valid option.”
(self paneNamed:‘buttonA’)
disable disableCmdB “CommandB is no longer a valid option.”
(self paneNamed:‘buttonB’)disable

CONTROL CODE
The following two methods are instance methods of the class

that defines the control for the interface.

cmti
‘Theend user has chosen commandA.”
“Dowhatever needs done to the domain model here.”
“CommandBis no longer an option.”
selJ userInterface disableComandB

cmdB “Theend user has chosen commandB,“
“Dowhatever needs done to the domairrmodel here.”
“CommendAis no longer an option.”

self userInterface disableComandA

This may seem like quite a few methods just to accomplish a

simple taslc However, there are many advantages to this ap-

proach. First, if the user interface experts later decide that these

commands should be represented both with buttons and menus,

only the interface layer would need to change. Each of the disable

messages would then disable both a button and a menu option.

The control layer would remain unchanged, unaware of whether

it is disabling a button, a button and a menu selection, or noth-

ing at all as a result of sending the message to the user interface.

Another advantage is that portability has been maintained.

Should the application be moved to another platform that uses

a different protocol for disabling user interface elements, then
THE SMALLTALK REPORT

CALENDAR
November 16-20
C++ World
Meadowlands Hilton, Nj

2!2.274,9135

February I-4, 1993
Object World (OMG)
Boston,MA

800,225.4698

February IA and
February 4-5, 1993
OOP’93 and C++ World
Munich,Germany

2/2.274.9/35

February 21-26, 1993
SotltvareDevelopment ’93
SanJose,(Y

415.905,2741

March8-I I, 1993
KWorld
VewYork, KJY

Z12,274,9135

March8- I2, 1993
INTEROP
Mashing&on,DC

IOO,NTEROP
—
all that must be reimplemented is the interface layer. There is

no need to comb through the control code looking for proto-

col that depended on the old host GUI,

QUICK POP-UPS
A small but tempting violation of the separation between the

platform specific interface and the portable control occurs

when very small amounts of additional information are re-

quired when carrying out a command. A user may need to ob-

tain a file name or confirm an unexpected or extreme conse-

quence. In that case, the quickest solution is to have the control

ask the user directly. For example

cmdA
“Theend user has chosen commandA.n
I fileName I
tletiame := Prompter prompti ‘Entera file name’defauk ‘file.dat’,
“Dowhatever needs done to the domain model here.”
“CommandBis no longer an option.”
self userInterface disableComandB

However, this presents several difficulties. By referring directly

to the class Prompter, platform-specific information is woven into

the application control and cross platform portability is compro-

mised. Second, if the user interface designers decide to use some

dialog other than the prompter to obtain fde names, then all of

the control layer must be examined for expressions such as those

above. Finally, the user interface may have already obtained a file

name from the user, which was entered in a text entry field in the

window from which this command was initiated. The control

code does not and should not know which is the case,

Although tedious, the best solution is to go to the user in-
OCTOBER1992
terface to accomplish all tasks. The control should send a re-

quest to the user interface to obtain the file name by any means

and return it. The following two methods illustrate this,

Interfacecode

getFileName
“Sentby the application conhol.
hswer a file name or nil if one is unavailable.”

I aFileNameI
aFileName:= Prompter prompti ‘File:’defaulb ‘FILE.DAT’.
(aFileNameisNilOK[aFileNametrimBlanks isEmpty])

ffTrue:[“ Nl].
AaFileNametrimBknlrs

Control code

cmdA
“Theend user has chosen commandA.”
I aFikName I
aFileName:=seLfuserInterface getFileName,
“Dowhatever needs done to the domain model here.”
“CommandB is no longer an option.”
self userInterface disableComandB

This problem worsens when an untoward event discovered

deep within the domain model—the worst possible place to di-

rectly involve platform-specific classes—requires a confirmer

or quick dialog. The best solution is to use some kind of excep-

tion handler so that the domain model code can notify the

control code of the unexpected problem. The application con-

trol assisted by the user interface can help manage the neces-

sary interaction with the end user.
13

H SEPARATING THE GUI FROM THE APPLICATION, PART 2

.. . .
SUBORDINATE APPLICATIONS
It is problematic to mix interface and control code when a sec-

ondary application is opened as a result of a user command. The

application control recognizes the need to open a new window

but knowledge about the protocol used to open new windows,

and the classes that represent them, is interface- and platform-

specific and shotdd not be included in the control layer. The fol-

lowing method in the control layer violates the ICM architecture.

esndBmweeLlocument
‘Theend user wants to open a browseron the selected document.”

SorneKindOfViewMarragernew
openOmseLfselectedDocument

This method causes many of the same difficulties as direct

reference to class Prompter in the first example above. The de-

cision as to which interface should be used in browsing docu-

ments is moved out of the interface layer. Further, this type of

reference, from the control layer to a class in the interface layer,

introduces a complication when porting the application to a

new platform. When there are no direct references to classes in

the interface layer in either of the model or control layers, these

lower two layers can be easily ported to a new platform and a

new interface layer built on top of them. Methods like the one

above will introduce unresolved references when ported with-

out the interface layer. These will have to be carefully located

and resolved when the new interface is constructed.

Once again, the correct method for handling this sort of

problem is to pass the problem back to the user interface in a

manner similar to that used for prompters and conformers.

This might result in the following set of methods.

Interfacecode

mcBmwseDoeusnent
“Theend-user has chosen the BrowseDocumentmenu option.”
self control cmdBrowseDocument

cmateDoeumentiroweerOn: aFii
“Opena document browser application on the argument.”
self documentBrowserClassnew openOn:tiile

documentBmwserflass
“Answerthe class which defines the preferred document browser
interface.”
ASomeKindOfViewManager

Control code

enrdBrowseDocument
“Theend user has chosen commandA.”
self userInterface

createDocuccrentBrowserOmself selectedDocrrment

Again, this might seem an excessive number of messages

back and forth between the interface and control portions of
14
the applications, when one could simply ask the control for

the selected document and open the correct kind of browser

from the mcBrowseDocument method, However, as the ap-

plication grows in complexity, the question to browse, or ex-

actly which document to browse, may become quite compli-

cated, Such a decision will involve numerous factors of

which only the control layer is aware. If the interface has

short-circuited the control’s responsibilities the command

will behave incorrectly.

OTHER PROBLEMS
As we move up the scale to more sophisticated applications

with increasingly rich interfaces, nastier problems begin to

crop up. Handling errors and exceptions can prove especially

difficult. This can involve sudden invalidation of assumptions

made by both the interface and control layers, The designer of

the control must be able to provide the user interface layer

with notification of any exceptional conditions. The interface

must be able to present the end user with useful, non-confus-

ing information regarding the situation. This task is especially

difficult without a good exception-handling mechanism.

The separation of presentation and control is most difficult

to maintain when the presentation of the underlying domain

model to the end user is highly graphical in nature. The most

convenient implementation in such cases is to design the

model objects so that they know how to draw themselves on

some graphic medium. However, this involves burying plat-

form-specific code all the way down in the domain model.

In our experience, there are several plans of attack for solv-

ing these problems. Not all of them are entirely satisfying, espe-

cially in the case of exception handling. As solutions for these

situations evolve, we will include them in future columns. ❑

FOR FURTHER READING
Many of the ideas on which ICM architecture is based, particu-

larly the strong separation of presentation and control, grew

out of the work of the Dialog Management System group at

Virginia Tech in the late 1980s, For interested readers the frd-

lowirrg references are provided:

Hartson, H. R., Control and communication in user interface man-
agement, Technical Report TR 88-3, Department of Computer Sci-
ence, Virginia Polytechnic Institute and State University.

Hartson, H., R. Johnson, D. Hix, and R.W. Ehrich, A human-
computer dialogue management system, PROCEEDINGS OF

INTERACT ’84, London, England: IFIP, Vol. 1, pp. 57-61.

Yunten, T. and H.R. Hartson, A Supervisory methodology and no-
tation for human-computer system development, ADVANCES IN Hu-
MAN-C• MPUTEII INTERACTION, H. Rex Hartson, editor, Ablex, 1985.

Greg Hendley and Eric Smith are both technicalstaff members at
KnowledgeSystemsCorp. Greg Hendley’s 00P experience is in
Smalltalk/V (DOS), Smalltalk-802.5, ObjectWorksSmalltalkRe-
leme 4, and Smalltalk/V PM. Eric Smith’sspecialtyis customgraphi-
cal user interfaceusing Smalltalk (various dialects)and C. The au-
thorsmay be contactedat KnowledgeSystemsCorp, 114 MacKenan
Drive, Suite 100, CaV, NC 27511, or at Compu~erve 72000,1056.
THE SMALLTALK REPORT

MALLTALK IDIOMS

Collection idioms

Kent Beck
Compared with procedural languages, Smalltalk’s collec-

tions feature is universally regarded as saving the most

programmer time. The Smalltalk collection hierarchy

has been widely copied by many, including the popular Na-

tional Institute of Health class library for C++. Along with num-

bers, collections share the distinction of being the most portable

class among the three major Smalltalk implementations: Ob-

jectworks\Smalltalk, Smalltalk/V (all flavors), and Enfin/3.

Once I started talking to my friends about how they use col-

lections I realized I had enough material for two idiom

columns. Most Smalltalk programmers don’t take full advan-

tage of collection’s features, but the more experienced have a

bag of tricks (some of which are not obvious at first glance)

with everything collections have to offer. These programmers

also know where the traps lie and how to avoid them.

The remainder of this column takes you through the perils

of subclassing collections and some of the richness of the col-

lection protocol. Next month we’ll take a brief tour of the most

common classes, how they are implemented, and when they

should be used.

SUBCLASSING COLLECTIONS
My aesthetic sensibilities are always offended when someone

creates a subclass of a collection class just because the object

being created includes a collection. The most obvious example

of this kind of subclassing is Sy.stemDictionmy. Until I started

writing this column I never had a solid engineering explana-

tion for my reaction. Now I think I can explain.

Unfortunately, subclassing a collection is one of the first

ideas that comes to mind when you finally understand inheri-

tance. “Oh, I need a polygon. I’ll just subclass OrderedCollec-

tion. That way 1’11get all the adding behavior for free.” Lo and

behold, you can add and remove points from a polygon as

soon as you define the class. Pretty neat, this Smalltalk stuff.

It’s not until later that the danger of subclassing a collec-

tion becomes apparent. While there may be a couple of mes-

sages that make perfect sense for your new class, others don’t

make sense and still others are actually harmful. I confirmed

this by executing Smalltalk removeKey #Object in Objectworks\

Smalltalk. Away went class Object, never to return. Smalltalk/V

Mac asks for confirmation that you want to delete the class,

but there are other messages just as harmful that no one

thought to protect.

By subclassing to gain a collection you have opened up an
OCTOBER 1992
enormous window onto the implementation of your object, vi-

olating its encapsulation and potentially opening it up to

harmful messages. You can protect your class by overriding the

offending methods with self shouldNoffmplement. By the time

you are done, though, you will have a class that gainfully inher-

its a couple of messages while explicitly eliminating a dozen

others. Even so, you are still vulnerable to someone coming in

later and adding a method to the superclass that re-exposes

your subclass, At that point you may as well have inherited

from Object, added an instance variable for the collection, and

forwarded the messages you cared about to the collection.

Back in the olden days, there were few gratuitous subclasses

of collections. Objectworks\Smalltalk 4.1 has a half dozen classes

that inherit from a collection, but don’t otherwise act like collec-

tions. In its defense, UninterpretedBytes (more of which later) is a

subclass of Object even though it is implemented as a collection

of numbers. In looking at the V image I see only CompiledMethod

and Process as collection subclasses that don’t really belong

(both of these classes are done “right” in OW\ST).

This perspective on subclassing collections runs counter to

my usual advice on using inheritance. I am a firm believer that

inheritance does share implementation, and that’s what it should

be used for. Rather than read inheritance as “is-a” or “is-kind-

of,” I read it as “is-implemented-like.” This explanation of in-

heritance is simple for beginners to grasp. It admits a simple

metric for ewduating inheritance decisions, such as which aher-

native allows the most code sharing. Beginners can flounder for

months trying to understand “inheritance as abstract specifica-

tion” (ala contracts) or “inheritance as classification” (a ZuAI).

I don’t have a glib response to this apparent inconsistency.

Perhaps the reason collections are not good to inherit from is

that they have so much behavior at the abstract level. Any sub-

class that isn’t really a new kind of collection is bound to find

many of those methods inappropriate. Perhaps collections

have too much behavior and a different factoring of the system

would yield a more satisfying answer. I do know that subclass-

ing to share implementation usually works, but that collections

are a notable exception to that rule.

INDEXABLE SUBCLASS
While I’m on the subject of subclassing and collections let me

mention a life-saving facility I have had occasion to use once

or twice. Let’s say you followed the above advice and made

your objects subclasses of Object and gave each one an instance
.

15

■ SMALLTALK IDIOMS
variable that holds onto a collection. If the objects are small

and numerous, the overhead of the additional object (usually

12 bytes of object header and 4 bytes in the referencing object)

can add up. If the collection is simple (an h-ray, for instance)

you can eliminate the space overhead and improve the locality

of reference by declaring your object to be an indexable sub-

class. This will add a number of indexed instance variables (the

number is set at instance creation time in the argument to

new) to your object. The conversion will be made much easier

if you were careful to use coIlectionAk and collectiotit:puti to

access the collection. You can converh

colleelionfit anlnteger
‘colletion a~ anInteger

to.

colletinsl~ anlnteger
“selfah anhteger

and so on.

COLLECTION MESSAGES
Collection implements a variety of behavior for its subclasses.

It is a triumph of object design that all of that functionality de-

pends only on the existence of three methods in a subclass: do:,

add:, and remove: ifAbsenk. When implementing new kinds of

collections, I have been amazed at how quickly I can get going

just by implementing those three methods.

ENUMERATION
Of the behavior implemented in Collection, the enumeration

methods are the most powerful and hardest to understand.

The methods are interesting because they are safe to use: None

of them modifi the collection they iterate over. The ones that

return a collection always allocate a new object for the result.

I’ll go through the messages, describing what each one does,

how it is implemented, and when you might want to use it.

do:

Do: executes a block for each element in a collection. It oper-

ates strictly through side effects and the results of evaluating

the block are discarded. Do: must be redefined in each new

subclass of Collecbon.

I went through all senders of do: in the Smalhalk/V Mac 1.2

image and I couldn’t find any clever idioms. I was surprised at

how often it was used when one of the other messages would

have served better. Interestingly, the times do: was used incor-

rectly were primarily when a temporary variable was experi-

encing side effects. If an argument or instance variable was

changed the use of do: was usually correct. As a positive exam-

ple, look at Colleciion>>printCkr:

printOrNaStream
astream nextPutAlb self class name.
astream nextPut: $(.
se~ do: [:each I aStieanrpr-intieach space].
a.strearnnextpu~ $)
16
collecd

Instead of just executing code for its side effects, perhaps you

want to transform all the elements of a collection. Collect exe-

cutes a block for each element, but saves the results and re-

turns them when done. For example, if you want to return the

absolute values of a collection of numbers you could write:

absolu~ acollehon
I result I
result:= aColletion species new aColletion size.
I to: aCollecbonsize do: [:each I

result a’ceach puti (aCollectiona’ceach) abs].
‘result

or you could just write:

absolute:aColleetism
‘aCollection collect [:each I each abs]

Collect and the following messages all have the admirable

property of removing the need for temporary variables when

they are used. Methods often shrink by several lines when you

find a way to use one of the enumeration messages.

Another big advantage of enumeration messages is that they

are not sensitive to the kind of collection they operate on, The

first version of absolute: above assumes that aCollection is in-

derrable by integers (responds to ah and akpuk with an integer

first argument). If I decided later that the parameter to abso-

lute: could also be a Set, which isn’t indexable, I would have to

change absolute: to deal with both cases. Since all collections

respond to collech, by using it instead I am completely insu-

lated from changes in what kind of collection is passed in.

Here is another example where colleck is useful. I often

make the mistake of converting objects several places within a

single class. For instance, I might write

foo
figs do: [:each I each assymbol ...]

Then I might convert strings to symbols in several other

loops in other methods. The object in question isn’t taking

enough responsibility. It should provide the service of convert-

ing its strings to symbols:

tigsAssymbols
“sbingscokxt [:each I each as

Then I can write:

foo
self string~Symbols do: [:each

ymbol]

,..1

What advantages does this approach provide? First, it’s more

modular. If I want to stop storing strings and store something

else (or compute it on the fly) I can just change sb-ingaslssyrnbok

and not have to touch every method where the instance variable

strings was used. Second, if converting strings to symbols is a

performance problem I may never see it if it’s buried in half a

dozen methods. Putting it in a single method makes the perfor-

mance implications clear and provides a simple way of imple-

menting caching should that become necessary.
THE SMALLTALK REPORT

”
w ““---””“-”---”““”---“--”““”--”““”--
The dangersof storing objects

Juanita Em-ng
smalltalk systems now include the ability to correctly write

representations of composite objects to disk. Early

Smalltalk systems could not deal with objects containing

circular references, so the capability of storing objects was not

widely used. Now that many kinds of objects can be written,

other issues have arisen: When is it appropriate to use this

mechanism? Is this a good way to provide long-term storage of

objects? Can this capability be overused or misused?

Object storage was first implemented for Tektronix

Smalltalk by Steve Vegdahl.1 In Smalltrdk/V this capability is

called Object Filing. In Objectworks\Smalltalk, this capability

is implemented by BOSS (Binary Object Streaming Service).

In all these implementations, an encoded representation of

an object is written to a file. The representation of the object

consists of structural information required to recreate the ob-

ject from the data in the file. Objects recreated fi-om the data

on disk are not the same as tie original object. These systems

do not maintain object identity across read/write operations

and are therefore not persistent object systems.

WHAT IS WRITTEN TO DISK?
When the representation of an object is written to disk, it must

include all the data necessary to recreate the object. The class

name is written to designate the class of object to be recreated.

Each component of the object, numbered slots and instance

variables, is written. If the component is a reference to another

object, that object is also written.

Each implementation has different restrictions on precisely

which objects are written. The values of global variables such

as Transcript are not written. Instead, a reference to the vari-

able’s name is stored and when the object is recreated its refer-

ence is bound to the current value of the identifier.

The representation of an object in these systems is the data

from the private internal implementation of the object. The

public interface to an object is not used to recreate the object.

Private, low-level methods are used instead.

WHY DO DEVELOPERS WRITEI
RECREATE OBJECTS?
The big advantage of object storage systems is that they permit

a SmalltaLk developer to externalize objects without designing a

special file format or writing inputioutput methods. Developers

might use object storage systems to “transfer” objects from one

image to another. Other members of a development team
OCTOBER 1992
might need an object that is difscult or time consuming to

recreate. A prototype might have objects built by hand instead

of programatically or objects might be created from a data feed.

Developers sometimes use this ability to “save” objects; they

want the objects to exist longer than an image. Another use is

to reduce the size of an application image by building an exter-

nal “database” of stored objects. Then only the objects that are

actually being used need to be loaded.

SOPHISTICATED USE
An application I helped develop had visual components that

were used off-screen to generate a composite graphic. This

graphic was stored in an instance variable, but we didn’t want

it saved when we wrote our objects to disk. It was large and

took more time to read from disk than to recreate. We needed

a way to control which components of an object are written.

Both Object Filer and BOSS have a mechanism to cus-

tomize what is written on a per class basis.

“ With Object Filer, you implement a method with the selector

fileOutSurrogate:, which returns a surrogate object to be writ-

ten to disk in place of the receiver. The surrogate can be a

copy of the original object with modified instance variables.

● With BOSS,you implement a method with the selector rep-

resentBinaryOrc, which uses other BOSS methods to write

the representation of the object to a stream.

Sophisticated use of these systems requires developers to

write special methods that modify the written representa-

tion of the object, usually by changing the private instance

state of the stored object. The manner in which these sys-

tems are customized is an indication of the limitations of

these systems; they manage the storage of an object at the

structural level.

DANGERS
Class definitions are volatile. Instance variables, class variables,

and pool dictionaries can be added or deleted. Once a change

is made to the private implementation of an object, such as

adding an instance variable, the written representation on disk

is no longer accurate. Because the representation consists of

private implementation data, the public interface of that object

is not used to recreate the object.

Problems arise from: renaming a class; changing represen-

tations; restructuring a class and refactoring a hierarchy.
19

■ GEmNG REAL
Most of these systems have mechanisms to handle simple

variations in an object’s definition. In the case of added and

deleted instance variables, Object Filer brings up a graphical

interface that interactively lets you map instance variables on

disk to the instance variables in your image. This mechanism is

particularly useful when instance variables have been renamed.

Object Filer also has a mechanism to support classes that have

been renamed.

CHANGING REPRESENTATIONS
Suppose a composite object consists of a deeply nested tree

structure. When this object is written to disk, a representation

of it and all its composite objects is written. Later, the develop-

ers add a cache of recently accessed leaf node to the object.

This cache, an instance of OrderedColleciion, is stored in an ad-

ditional instance variable. The representation of the object on

disk does not specify a value for the cache instance variable.

When the object is recreated, it has a nil value for the cache.

The methods in the composite object must be specirdly de-

signed to accommodate a value of nil for the cache. Accessing

methods for the cache must check for nil instead of assuming

an instance of OrderedColletion and, if necessary, create an in-

stance of OrderedCollection. The developers then save some

composite objects to disk-

Later the cache is changed to be an instance of Ditiona.ty.
Accessing methods are again modified to check not only for

nil, but for instances of OrderedCollection; if necessary, the

cache is modified to be an instance of Difiomry. More com-

posite objects are saved to disk.

What is the situation now? The developers now have repre-

sentations of composite objects with the following variations:

. no cache instance variable

“ cache instance variable bound to instance of OrderedCollection

. cache instance variable bound to em instance of Difiona~

In this example of changing representations, what you really

have is a mess, with code for backwards compatibility in every

relevant accessing method. The situation is even worse if you

don’t use accessing methods and instead directly reference in-

stance variables. You end up with code for backwards compati-

bility in every method that references the instance variable.

The series of modifications I’ve described is very typical.

The original definition of a class is rarely corre~, definitions

are changed to accommodate optimizations as described

above. Functional extensions also require modifications. For

example, an ellipse class describes an elliptical element with a

border width and color. It has instance variables to store the

attributes’ width and color. The developers later add function-

ality for filling the inside area of the ellipse. The class definition

is modified as another instance variable stores the fill color.

REFACTORING AND RESTRUCTURING
The most devastating kind of change is not addition or dele-

tion of instance variables. It is the refactoring and restructuring

of classes into sets of classes, or the combination of severrd
20
classes into a single class. As developers create an application,

the design evolves. Responsibilities are redistributed and new

classes are created.

Let’s look at a simple example of restructuring. Suppose your

application records information about people such as their

name, which is an instance of Wing. Later you decide a single

string is not a good representation and you want to model the

first and last names as two separate entities. If you have stored

objects with the name represented by an instance of Stig, you

must make extensions to the object storage system to:

“ Read the name

*Detect the class

● Potentially parse the string to model first and last names

separately.

An example of refactoring recently discussed in several pub-

lications is from the Objectworks\Smalltalk user interface li-

brary. The class View has been refactored into a number of

smaller classes, each with less functionality. Is it possible to

take a view that has been stored on disk and recreate it in terms

of the new classes? No doubt it would be easier and less time

consuming to rewrite the code used to create the view than to

recreate its equivalent from the object representation on disk.

ALTERNATIVE
It is easier to rewrite code to make a view because rewritten

code uses the public interface to objects. Writing objects to

disk using the private implementation data is okay for a quick

transfer, but not a good idea for any long-term needs.

Object storage systems are very handy for short-term use,

but because of the dynamic nature of classes, they are unsuit-

able for long-term use. These systems encode structural imple-

mentation rather than the semantics of information.

Every major Smrdltalk application I know of that used an

object storage system for long-term storage ultimately had to

be modified to use a less implementation-dependent storage

format. A good format captures the data without directly spec-

ifying objects and the values of their instance variables. Instead

it captures relevant data in an object-independent format by

storing only semantic data. Methods that read the data instan-

tiate new objects by sending public messages. H

Reference

1. Vegdahl, S.R. Moving structures between Smalltalk images,
PROCEEDINGS OF THE ACM CONFERENCE ON OBJECT-ORI-

ENTED PROGRAMMING, SYSTEMS, LANGUAGES AND APPLICA-

TIONS, Portland, OR, September, 1986, pp. 466–471.
..

Juanita Ewing is a senior staffmember of DigitalkProfessionalSer-
vices(formerly Instantiation, Inc.). She has been a project leaderfor
severalcommercial object-orientedsoftwareprojectsand is an expert
in the desigrsand implementationof object-orientedapplications,
frameworks, and ystems. In a previousposition at Tektronix Inc.,
she wasresponsiblefor the development of the classlibran”esfor the
first commercial-qualitySmalltalk-80system.HerproJ2ssionalactiv-
itiesinclude Workshopand Panel Chairsfor the annual ACM OOP-
SLA confmence.
THE SMALLTALK REPORT

HE BEST OF comp.lang.smalltalk

Some Smalltalk stuff

Alan Knight
T
he last few editions of this column have dealt with very

broad O-O issues. This time we will discuss three de-

tailed, language-specific issues: Smalltalk text, imple-

menting method pre- and postconditions, and determining a

source filename during filein. Although we can’t solve all of the

problems, we will get a better understanding of them.

FORMATTING
There are programs available for formatting or “pretty-

printing” most computer languages. The simpler ones, based

on recognizing simple syntactic cues, often break when con-

fronted with complex syntax or strings with escape sequences.

The more sophisticated a formatter gets, the closer it comes to

actually parsing the language,

ParcPlace Smalltalk has a built-in formatter. Because it is

part of an integrated environment, it can directly use the

parser to do its formatting. This is not necessarily good, as

William Eric Voss (voss@cs.uiuc.edu) describes:

I generally love the ‘format’ item on the CodeView

menuHowever, occasionally I encounter a long method

with more than a dozen lines. I would like to place inline

comments in such methods. However, if I then invoke ‘for-

mat’ my comments jump a line or more, often becoming

very misleading as a result.

Could someone clearly explain why thii happens?.. .Does

anyone have a workaround (other than don’t use ‘format’)?

Danny Epstein (dje@scs.carleton. ca) explains:

The ‘format’ command works by parsing the source

code and then pretty-printing the parse tree. When a

comment is read in (by the scanner, if I remember cor-

rectly), it is attached to the ‘current’ parse node. This

isn’t really what is desired since there are several places

in the source code where a comment could go, all of

which would get associated with the same parse node,

Multiple comments are handled, but their positions are

not stored. A better technique would be to associate a

comment with the parse node whose code immediately

precedes it. If there are several, then the largest one

should be used. For example:

x:= 1 + 2. “comment for statement”

x:= 1 + 2 “comment for +“.

Note that the second comment is not bound to the 2. The
pretty printer then outputs comments after the code. The

only exception is that comments are never associated with
OCTOBER 1$)92
the entire method. What we call method comments are really

comments on the method header (since they appear after it).

You could change the parser as described above. I can’t

think of a quick hack to fm the problem.

AI1this being said, 1 myself never use ‘format’ because I

don’t like its formatting rules. C’est la vie. A good format-

ter should have lots of user options so it can get close to

what the user would do manually,

Unfortunately, this explanation doesn’t provide a solution

or workaround, only an understanding of the source of the

problem. Anybody care to undertake the job of writing a really

good formatter for Smalltalk?

ASSERTIONS
One of the nice things about Smalltalk is its flexibility, its abil-

ity to implement interesting features of other languages. One

worthwhile feature might be assertions, which allow you to

specifi the behavior of code in a way that can be checked (as

opposed to comments), Assertions are a staple of formal meth-

ods and an important part of the Eiffel language. It’s easy to do

a trivial version of assertions. We define an Object method:

aeeefiaZeroArgumentBlock
selfasser+ionCheckingIsOnifllue: [

aZeroArgumentBlockvalue ifFalse: [
self error: ‘assertionfilled’]].

We check some sort of state variable to indicate if assertions

are active; if so, we evaluate the block. An example of using this

method is:

eomeMethod aParamater
self doSomeWorkaParameter;

assert [alreadyProcessedListincludes: aParameter].
‘self.

This verifies that the parameter has been added to the list of

processed items. Although this is useful and provides about the

same level of functionality as the C “assert” macro, it’s not

nearly up to the level of Eiffel assertions, which are built into the

language. Eiffel supports assertions as method preconditions,

postcrmditions, and class invariants. A precondition specifies the

necessary conditions before a method can execute and is

checked just before execution. A postcondition specifies what

should always be true after the method has finished executing

and is checked just after method execution, A class invariant

specifies something that should always be true for an instance of

a class and is checked every time an operation modifies an in-

stance. We’d like to be able to use these much more useful asser-

tions in Smalhalk, Bernhard Humm (humm@cs.uow.edu. au)

specifies the requirements in more detail:
.-—

21

To place a recruitment ad, contact
Helen Newling at 212.274.0640

IT’S TIME

to become a .

CONSULTANT

Numerous Immediate Southern .California

Consulting Opportunities for

00P PROFESSIONALS

.- SMALLTALK

ENFIN.-
C++; 0S/2 (Heavy Experience)--
Other Significant OOP Experience--

SOFTWARE MANAGEMENT
CONSULTANTS, Inc.

S05 No. Brand Blvd., Suite 660

Glendale, CA 91203

Voice: 818.240.3177

Fax: 818.240.7189

k

■ THE BESTOF COMP.LANG

2

I would like to introduce the concept of ASSERTIONS

(e.g., [Meyer 90]) into Smalltalle pieces of code to be exe-
cuted before (precondition) and after (postcondition) exe

cution of the method body. I would have thought extend-

ing Smalltalk with this feature would be easy. I defined the
following reqtiements:

. The definition of the method body is done in exactly the
same way as without using assertions. The semantics of ex-

ecution does not change (including the semantics of a re-

turn statement and a missing return statement).

* Pre- and postconditions are defined in the method defini-

tion (not in separate methods).

“Invoking the method with the assertions does not differ

from invoking the method without assertions (this ensures

that you can add assertions to previously defined messages

without changing other parts of the system).

Example
plsmaNumber
%alf

precondition [aNumber iaOfType:Integer]
body [“aNumber + selfl
postbndition [:res [res is- Integer]

However, the implementation of precondition: body post-

Condition seems to be difficult. The problem is the seman-
tics of the return statement (which, when encountered, im-

mediately exits the method invocation without any chance

to perform the postcondition).

This clearly defines the previously described problem with the
2

assertion mechanism. The return stitement apparently makes it

impossible to be sure assertions will be checked anywhere except

the beginning of the method, and even this cannot be guaranteed

if there is a return statement in the assertion block.

Blocks
Thereason for the difficulty is the peculiar nature of blocks in

Smalltalk. Blocks are similar, but not quite identical, to func-

tions (in a language where functions are first-class), Blocks can

have local variables (at least in recent ParcPlace implementa-

tions); they can be assigned, passed as parameters, and evalu-

ated, They are also lexically scoped: a block “inherits” the

scope of the method by which it was created.

Blocks and functions differ in the return statement. A re-

turn exits from a function but exits from the method in which

the block was defined. This is necessasy because of how

Smalltalk uses blocks, but it can cause difficulties and confu-

sion. Consider the following collection method

dateeL aBlork
selfdo: [:eachItero I

(aBlockvalue: eachItem)
ifl’rue: [“eachItem]].

In this case, we really want the return to exit from the de-

tect: method rather than either of the enclosing blocks. If state-

ments are written using blocks, a return that only exits the lo-

cal block would make it impossible to write the common

Smslltalk statement:

someCondition
ifl’rue: [“something]
ifFalse: [“somethingElse].

On the other hand, consider the case of a complicated sort

block

SomeMethod
I sorLBlockcollection I
sortBlock:= [:thingl :thing2 I

Wngl condition MTrue:[tie].
thingl condition2 ifhue: [“hue].
(thingl condition3 and: [thing2 condition])

ifhue: [“true].
“false].
colledio n:=SortedColletion sostBlock sofllock.
‘collefion.

If blocks were redly functions this would return a SortedCollec-

tion using this peculiar sorting condition. Instead it returns a col-

lection that reports an error as soon as an item is inserted. Specifi-

cally, sorneMethod returns the local mll~on. If we then say
collefion add. anObject.

the same invocation of someMethod tries to return again,

causing a very confusing walkback, The very idea of a function

invocation returning twice is bizarre.

Different semantics don’t cause a serious problem in this

case, which is easy to work around. We can implement a

method to do the comparison, or it cars be written using nested

ifs or a case statement. Complex code inside blocks present one

reason I find the lack of any kind of case statement in Smalltalk

irritating enough to write my own. These semantics cause

more difficulty for assertions.
THE SMALLTALK REPORT

Universal Database
OBJECT BRIDGE m

This developer’s tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIH, Lotus, and Excel.

IntelligentSystems, Inc.
j
~ S06N. State Sireet, Ann Arbor. MI4S104 (313) 996dZ3S(313)W6dZ41 fa

— ..-.
Backto assertions
One way of handling the problem would be to define two sepa-

rate kinds of return operations, one restricted to blocks, This

would do the job but is a lot of work, a substantial change to

the language, and hardly fits the description of Smalltalk as be-

ing flexible enough to easily implement language features.

Fortunately, at least in ParcPlace Smalhalk, there is an

easier way, which Mario Wolczko (mario@cs,man.ac. uk)

describes:

In SmaUtalk80, since version 2.4, you can associate an ‘un-

wind’ block with a method to deal with exactly this situation.

Example
[f:= (Fiiemme named ‘foo’) writeStream.
self doSomathingWith: ~
valueNowOrOnUnwindDo:[f close].

Even if the code invoked by doSomethingWith: causes a re-

turn ‘over’ this method, the ‘unwind’ block (argument to

valueNowOrOnUnwindDo:)will be executed, closing the fde
cleanly.

Your method will look something lile
precondition: preBloek body bodyBlock postcondition
postBloek

self check: preBlock,
‘bodyBlockvalueNowOrUnwindDo:[self eheelc postBlock]

This seems an ideal solution to a very difficult problem. My

only question is whether there might be a substantial perfor-

mance cost associated with using an unwind block.

FINDING FILENAMES
Another question from William Eric Voss (voss@cs.uiuc,edu):

When you have a multiple file goodies package, it is very

common to have a file which looks something like:

I baseDti I

“Change the nent line then fileIn this file.”
baseDir:= Filename named

‘/where/this/stuff/lives’.

(baseDir constru~ ‘filel.st’) fileIn.

(baseDir conslzuch ‘file2.st’) fileIn.

...etcm..

‘Lessportable implementations use sb-ingl, string2 instead

of the construti method.’

It seems like there should be some way to do away with

that annoying ‘change this’ line. (AFilename requestPile-

name: line is just as bad.)

There should be a method something like

baseDir:= Filename whatIAsnBeingFiledInProm.

SomethingliketheCsndSh&criptstandardofsettingARG[O] to
theprogram’siilenamqbut for61eina.

DoessuchamethodexistsomewherethatIamunawareof?

ifFalse: [ParcPlace please consider this an enhancement

request].

I’m afraid this is also one of those questions without an easy

answer, but Jan Steinman (steinman@is,morgan.tom) has

some good starting points

—

OCTOBSR 1992
I

A neat hack that I added to Tek Smalltalk some years ago

was to give the fileIn a receiver, which is quite easy to de-

fine as the ~eam being filed in from. Then, it becomes a

simple matter of sending messages to ‘self in the fileIn,

such m:

(self direetosy oldFileNamed ‘nextFileC) fileIn!

(That’s an old Tek Smalltalk idiom—kids, don’t try this at

home!) I had used this to provide a dependency mecha-

nism, whereby a fileIn could determine if what it needed

waa present, and if not, it could go load it!

Now I’m using Envy, and therefore have no need of such

things, and have not tried to do them in PPS Smalltalk. As

a start, look at PeekableS’ixeam>>fileIn and try changing
Objeetevaluatorclass

evaluate: self nextchunk logged: ...
to:

Objeetwaluatosllass
evaluate: self nesdchunk fo~ self logged: ...

This will cause ‘self in the fdeIn to refer to the Stream be-

ing read. Then you can do things like
I baseDir I
baseDir:= FileDireetoxyfuUPathFor

self ioConnaetion name!
in your fileIn code. Be careful of ‘self if the fileIn code might

not be a tile, since ‘self could be an instance of Peekable-

Stream (which has no ioConneetion), or ioConnection might

bean instance of ExternalConnedfrm (which has no name).

Disclaimed I have not done any of this in PPS Smalltalk!

Browse the Stream classes and PileConnection to discover

other neat things you might do with this mode. Happy

hacking! ❑

Alan Knight is a researcher in the Department of Mechanical and
AerospaceEngineering at Carleton University, Ottawa,Canada,
KIS 5B6. He currentlyworksin ParcPlaceSmalltalkon problems re-
latingtofinite element analysis,and has worked in mo~tSmalltalk
dialectsat one time or another. He can be reached at +1 613788
2600 x5783, or by e-mail at knight@mrco.carleton.ca.
.-.

23

Where can you find the
best in object-orient&training?

Thesameplaceyou found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk7V

Whetheryou’re launching
a pilot project, modernizing
legacy code, or developing a
largescale application, nobody
elsecan contribute such inside
expertise. Trainingt design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

Only Digitalk offers you a
complete solution. Including
amrd-winning prmiucts,proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way you’ll learn from a

reduce your learning curve,
and you’ll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

Digitalkk training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

staff that liters/ly wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/Vinsideout because
we’ve been developing real-
world applications for years.

The result? You’llabsorb
the tips, techniques and
strategies that immediately

Sprint, plus many others.
And Digitalk is one of only
eight companies in lBM’s
International Alliance for
AD/CyclE+lBMk software
development strategy for the
19905. For a full description
and schedule of classes, call
[800) 888-6892 x411.

Let the people who put
the power in Smalltal~ help
you get the mostpowerout of it.

boost your productivity You’ll

	By Article Title
	Collection idioms
	Making the necessary connections
	Object Technology's ENVY Developer
	Separating the GUI from the application, Part 2
	Some Smalltalk stuff
	The dangers of storing objects

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Hendley, Greg
	Knight, Alan
	Smith, Eric
	Steinman, Jan
	Wirfs-Brock, Rebecca
	Yates, Barbara

	By Topic
	comp.lang.smalltalk
	Getting Real
	GUIs
	Object Visibility
	Product Review
	Smalltalk Idioms

