The Smalitalk Report

The International Newsletter for Smalltalk Programmers

July/August 1992

Volume | Number 9

IMPLEMENTING
PEER CODE
REVIEWS IN
SMALLTALK

By S. Sridhar

Contents:

Features/Articles

| Implementing Peer Code
Reviews in Smalitalk
by S. Sridhar

3 Quality assurance issues for
Smalltalk-based applications
by Ed Klimas

Columns

14 The Best of Comp.Lang.Smalltalk:
What's wrong with OOP?
by Alan Knight

18 Smalitalk Idioms: Abstract
control idioms
by Kent Beck

21 Getting Real: Creating subclasses
by Juanita Ewing

Departments

24 Lab Report: Smalltalk research at
the University of Florida
by Justin O. Graver

25 Product Announcements
26 Highlights

malltalk programmers routinely read more code than they write. One of the

more difficult things in mastering Smallralk is mastering the underlying

class libraries. The act of programming consists of “hunting” for the appro-

priate protocols in the appropriate classes. The hallmark of a good
Smalltalker is the ability to efficiently navigate the increasingly vast landscape of the class
libraries. It is very likely that a well-written class will be read many times over. Typically,
these classes serve as role models for people who aspire to be good Smalltalkers. In the
same vein, badly written classes that have to be used all the time serve as poor role models
and tend to propagate poor programming practices.

Code reviews are a critical software engineering activity. Research studies have shown
that code inspection alone can catch 75-90% of the errors. Code reviews serve as a cri-
tique of a software component by someone other than the author of the component. Typi-
cally, reviewers are peets in the same organization who may or may not be on the develop-
ment team. Different organizations employ different practices for implementing code
reviews. [n traditional software organizations, the author prints out a listing of the modules
to be reviewed and circulates it to the review team. The reviewers mark it up using guide-
lines. They meet with the author in a face-to-face meeting a few days later where they pre-
sent and discuss the review comments page by page. The author is then left with the
daunting task of collating and integrating the comments of all the reviewers. It is quite
possible that more than one person has caught the same programming infraction; that
means multiple reviewers have spent time documenting the same problem and possibly
suggesting the same fixes. This is an unnecessary duplication of effort.

This article describes a code review process that is specifically geared to reviewing small
or large chunks of Smalltalk code. I'll discuss extensive guidelines for effective code cri-
tique and review, and describe a rigorous process that we have adopted in our organization
to execute a comprehensive review.

THE PROCESS
My work group, like most Smalltalk work groups, uses a team software engineering tool to
manage the software development process. The tool we use is the ENVY/Developer envi-
ronment (hereinaftet refetred to as ENVY). This tool provides the facilities required for
the development and maintenance of large software systems. It provides sophisticated ver-
sioning, configuration and release management capabilities as well as mechanisms for co-
ordinating and integraring the software development activities of multiple developers. All
of the program development information including source code, compiled methods, mod-
ule dependency graphs, component ownership, versioning and configuration details are
stored in a shared repository. This tepository is accessible to all members of the technical
team. We use ENVY as a practical tool to aid in our code review process. It would be feasi-
ble to adapt this approach to code reviews in the context of other team development envi-
ronments as well.

At the outset of a project, we typically pattition the tasks among the developers along
functional lines. For example, one developer may be working on specific domain abstrac-

continued on page 8...

v

EDITORS’
CORNER

John Pugh

Paul White

euse is the name of the game. Headlines shout. Marketing literature trumpets. Salesmen
ooze. Objects will solve your reuse problems. Not true, of course. Programmers solve
reuse problems.” So says Kent Beck in the prelude to his Smalltalk Idioms column in this
issue. Kent knows, as do most experienced Smalltalk programmers, only too well that
reuse does not come for free and is far from easy to attain. Developing truly reusable
components adds an extra dimension to the design and programming process, and addi-
tional time and skill is required.

What if we had access to a quality set of reusable components for objects for some ap-
plication domain? Would it now be easy to “assemble” new applications from these com-
ponents? Unless a great deal of thought has gone into the design and implementation of
the components (probably not), we will still need a Smalltalk guru to wire the pieces to-
gether. Here is a sample list of questions for which we would need affirmative answers.
Do we have the right components? Do the components have the required functionality?
Have they been fully tested? Do we have prefabricated components that model common
processes within the domain, or do we simply have a collection of low-level building
blocks? Have the components been desighed with standard interfaces? Have they been
designed to work together!?

Clearly, a number of things have to be in place before we can use a software-by-
assembly approach to application development. However, there are lots of analogous
real-world examples where the benefits of this approach can be clearly seen such as the
assembly of personal computers or the manufacture of automobiles.

It’s this software-by-assembly approach to application development that Parts (formerly
LAFKit—Look and Feel Kit), a product currently under development at Digitalk, is at-
tempting to address. In his keynote address at Object Expo in New York City, Digitalk CEO
Jim Anderson teased the audience with a preview of the notions of softwate construction
from parts. Watch for more information on Parts in future issues of The Smalltalk Report.

This issue features two significant contributions from recognized members of the
Smalltalk community that deal with the delivery of quality software. First, S. Sridhar re-
turns to The Smalltalk Report with a description of a mechanism for catrying out peer
code reviews on Smalltalk projects. As is the case with all software development,
whether done using Smalltalk or any other language and environment, code reviews are
a vital to ensuring the quality of deliverables. As Sridhar points out, “code reviews
should be viewed as a rigorous software enginering activity.” His discussion focuses on
two aspects of code reviews, namely the process by which they should be carried out and
a set of guidelines to be followed by reviewers. Second, Ed Klimas' article discusses many
issues that make testing Smalltalk systems unique and puts forward a number of guide-
lines and strategies for planning for and documenting the development of test suites.

Also in this issue, Juanita Ewing addresses many of the problems involved in carrying
out proper subclassing within Smalltalk applications. Always a confusing issue for people
new to Smalltalk, she describes the differing goals subclassing is used to satisfy and pro-
poses hueristics for making decisions concerning subclassing decisions. Alan Knight
brings us up to date on a thread of discussion on USENET dealing with the hype sur-
rounding object technology. And finally, Justin Graver describes the activities of the
Smalltalk research group at the University of Florida.

7-; Lo ?L. L‘_ Q 3\ \V..r,(lg'{f‘)’

The Smalltalk Repart (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues.
Published by SIGS Publ Graup, 588 Broad New York, NY 10012 (212)274-0640. © Copyright 1992 by SIGS Publications, Inc. All rights
reserved. Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violarion of the US Copyright
Law and is Aatly prohibiteil. Marerial may he reproduced with express permission from the publishers. Mailed First Class. Subscription rates | year, (9
issues) domestic, $65, Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and subscription orders to: THE
SMALLTALK REPORT, Subscriber Services, Dept. SML, P.O. Box 3000, Denville, NJ 07834. Submit articles ta the Editors at 91 Second Avenue,
Otmwa, Ontario K1S 2H4, Canada.

The Smalitalk Report

Editors
John Pugh and Paul Whice
Carleton University & The Object People

SIGS PuBLicATIONS
Board

Tom Atwood, Object Design

Grady Booch, Radonal

George Bosworth, Digialic

Brad Cox, Informarion Age Consuking

Chuck Duff, Symantec

Adele Goldberg, ParcPlace Systems

Tom Love, OrgWare, Inc.

Bertrand Meyer, ISE

Mellir Page-Jones, Waytand Systems

Shesa Pratap, Centerline Software

P. Michael Seashols, Versant

Bjarne Stroustrup, ATAT Ball Labs

Dave Thomas, Object Technolegy Imernadional

THE SMALLTALK REPORT
Editorial Board

Jim Anderson, Digitalk

Adbsle Goldberg, ParcPiace Systems

Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digialk

Dave Thomas, Object Technalogy Inermatioral

Columnists

Juanita Ewing, Digimlk

Greg Hendley, Knowledge Systerms Corp.
Ed Klimas, Linea Enginesring Inc.
Suzanne Skublics, Object Technology Ind.
Eric Smith, Knowledge Systems Comp.
Rebecca Wirfs-Brock, Digimalk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher
Art/Production

Kristma Joulthadar, Managing Editor
Pilgrim Road, Ltd., Creative Direction
Karen Tongish, Producdon Edizor
Jennifer Englander, Arv/Prod. Coordinaror
Circulation

Ken Mercado, Fuliifiment Manager

Diane Badway, Circulation Business Manager
Yicki Monck, Cirauation Assisant

John Schreiber, Circulation Assistant
Marketing/Advertising

Diane Morandie, Account Execudve

Holly Meintzer, Accoun Executive
Geraldine Schafran, Recruinment Sales

Sarah Hamiiton, Promorions Marager
Caren Poiner, Promedons Graphic Artis
Administration

Cindy Roppel, Conference Coordinator
Amy Stewart, Projects Manager
Jennifer Fischer, Public Relations
Helen Newling, Administrazive Assistant

Margheria R. Monck
General Manager

WSIGS

PUBLICATIONS

Publishers of foundl of Object-Oriented Program-

ming, Object Mogazine, Hotline on Object-Orientad
Technelogy, The C++ Report, The Smalleak Report,
The International OOP Directory, and The X Joumol.

THE SMALLTALK REPORT

QUALITY
ASSURANCE
ISSUES FOR
SMALLTALK-BASED
APPLICATIONS

Ed Klimas

It is absurd to divide software into good and bad.
Software is either charming or tedious.
—loosely based upon Oscar Wilde

malltalk-based object-oriented programming has
several technical advantages for improved pro-
grammer productivity and code quality over other
programming environments. These include:

® Reuse of existing pretested robust libraries
e Inherent encapsulation against “runaway code”
® The absence of error prone pointer manipulations

® Automatic memory management capabilities

These inherent technical features do not, however, auto-
matically result in higher quality software. It is necessary to
take explicit steps to design in quality from the start. One of
the most important of these steps is resting.

This article will cover a number of issues associated with
commetcial Smalltalk application testing and propose a stan-
dardized, yet flexible, platform independent protocol so class
libraries and frameworks from multiple sources can be easily
integrated and tested.

Testing is only part of the quality assurance process. Software
quality assurance begins with design and code reviews and pro-
gresses through a life cycle that is standard irrespective of the
programming tools. Whether a waterfall or iterative develop-
ment model is employed, the purpose of each step in the soft-

ware quality life cycle can be summarized by the following stages:

Pre-implementation phase
® Preliminary design reviews
® Detailed design reviews

® Code reviews, inspections and walk throughs

Code development phase
® Unit testing
¢ Integration testing
e Validation testing

The benefits of pre-implementation code reviews and in-
spections should not be underestimated. In terms of impacting
overall finished product quality, inspections and design re-
views are much less costly than computer-based regression
testing to isolate the same errots. Many existing review and
inspection techniques are quite appropriate to the preimple-
mentation phase of the O-O software quality assurance life cy-
cle. Still, one significant contribution to a commercial prod-
uct's final quality is the testability of the code.

The object-oriented development paradigm differs from
conventional structured development in several ways, and so
one should not assume that all O-O testing is necessarily the
same. Testing commercial OOP/Smalltalk-based applications
still follows the software quality life cycle model. Likewise,
Smalltalk does not pose any greater burden than conventional
languages in this regard and may in fact offer some advantages
under some circumnstances. For example, procedural languages
such as Fortran usually require several functions to be imple-
mented before testing can begin. Smalltalk programs permit
classes to be used and tested as soon as they are designed and
the initial undetlying methods are defined. This permits mean-
ingful testing to occur eatlier in the development cycle and of-
fers the cost saving opportunity to diagnose and correct prob-
lems earlier. Therefore, it is important to design Smalltalk
programs for easy testability of the code from the start.

REGRESSION TESTING

Unit and integration testing are intended to uncover latent
software errors, while validation testing demonstrates trace-
ability to the requirements. Each of these steps typically re-
lies upon some sott of regression testing. Regression testing is
an important part of testing the impact of changes on the to-
tal body of code. Just as Smalltalk is encapsulated in an envi-
ronment for development, commercial developers should
wrap their products into an environment that will easily sup-
port full testability of their work. If a few simple testing
guidelines are followed from system conception, significant
time can be saved later during the subsequent refinements of
the system.

Commercial software requires the development of ancillary
test code to verify the proper initial functioning of the soft-
ware, and to verify that the properly working functions of the
software system are not inadvertently altered during subse-
quent code additions or modifications. Unfortunately, in
many organizations, the test suites are usually developed after
the software is well underway and often by groups that are not
necessarily part of the original software design team. This does
not take advantage of the specific knowledge the original pro-

VvoL. 1, No. 9: JuLy/AuGust 1992

B QUALITY ASSURANCE

duction code developer may have had of the system's intended
functionality. Another shortcoming of many test strategies is
not testing for defects as soon as possible. The longer in the
development cycle a defect has to go to be detected, the
higher the cost of fixing that defect.

STRATEGIES AND GUIDELINES FOR MAKING CODE TESTABLE
Testing is an extremely challenging task requiring software de-
sign skills significantly exceeding those of ordinary developers.!
Testing strategies change for different aspects of the develop-
ment process. For example, an issue rarely addressed during
rapid prototyping is testing strategies and the amount of effort
required to develop meaningful test suites. To reduce the effort
associated with producing test suites and as a means for im-
proving the quality of the test suites, software should be de-
signed with testing in mind from the start. Most Smalltalk de-
velopment involves the creation of “test harnesses” to exercise
code during developrment. Following a few simple guidelines
can help ro evolve the normally throw-away test harnesses into
valuable permanent tools for improving overall product qual-
ity. The following is a synopsis of test strategies and guidelines
to be followed duting the various phases of Smalltalk-based
product development.

Guideline: In object-oriented programming, the class is a nat-
ural unit of unit testability. Test suites should be based on ver-
ifying the proper functionality of each method (both instance
and class methods) associated in with a class.

Guideline: In object-oriented programming, the application
or project is the natural unit of integration testability. The in-
tegration tests should focus on testing the proper functionality
of collections of classes.

Rationale: Integration testing is important because many
sources of bugs can be between pieces of code where one
method makes assumptions that another doesn’t fulfill.
Guideline: Take advantage of the higher productivity of ob-
ject-oriented development environments, and push more of
the unit and integration testing up front into the developers’
domain as soon as possible.

Rationale: This approach will permit the developer, who has
detailed knowledge of the expected functionality, to develop
test strategies more effectively and to begin using them in
conjunction with the code development.

Guideline: Validation testing should be performed by an in-
dependent testing group in conjunction with the code devel-
oper(s), to verify the conformance of the software to the re-
quirements specifications. The validation testing should not
only verify proper functionality, but acceptable timing perfor-
mance also.

Rationale: This approach permits a fresh opportunity to un-
cover quality problems the original developer may have to-
tally overlooked as well as an independent, and unbiased veri-
fication of the actual quality level of the system.

Guideline: Each developer should prepare a formal unit and in-
tegration test strategy plan and appropriate test suites for all of

the production code and possibly even prototype code. A test
plan should be composed of at least two basic components *:

® 3 brief description of the scope, applicable documents, test
strategy

® the actual test procedures, their purposes, test data, and ex-
pected results

Guideline: Create a test plan that covers every method in a
class and every path within a method.

Rationale: Complete coverage is the objective of the test
process. In conventional programming languages, with
many lines of code in a module or subroutine, this task can
be quite daunting. Fortunately, good OOP style promotes
the idea that methods should be short, typically less than
ten lines of code. This significantly reduces the complexity
of possible paths to be tested within a given method. An-
other benefit of short methods is that it is much easier ta
look for bugs in small pieces of code rather than in large
program segments.

Guideline: Test cases should be written to uncover general
classes of problems rather than one discrete error.

Guideline: Results of testing should typically be logged to a
file in a standard format that contains a record of the success-
ful/unsuccessful test of classes and methods that have been
petformed.

Guideline: If the system permits, the status of the tests should
also be displayed directly on the screen using standardized for-
mats. If direct writing on the screen is not possible, then a file
should be used.

Rationale: Displaying status to a window during testing is typ-
ically problematic as it may cause unwanted cycling of win-
dows, that can complicate testing.

Guideline: Print general messages (i.e., Testing class XYZ) di-
rectly on the screen not in windows.

Rationale: The transcript window shouldn’t be cluttered with
routine and unnecessary status information. If the application
has created a bug in the windows there is a possibility that the
test toutines themselves may be affected.

Guideline: Display errors and log messages along with the
date and time in the transcript window.

Rationale: The transcript window provides a window that al-
ways exists to record error log messages for later retrieval.
Guideline: Application windows should be at least momen-
tarily displayed for testing.

Rationale: Testing windows in a specific environment can be
performed using various third party packages to record
keystrokes and mouse movements and then play the sequence
back testing for the appropriate tesponse or display in a win-

* The overall high level plan, scope and test strategy are most conve-
niently documented using a code management system to associate
them with an applicarion or project, while the actual test procedures
can be associated with the related classes.

THE SMALLTALK REPORT

ImageSeft

AM/ST defines Smalltalk / V applica-
tions as logical groupings of classes and
methods which can be managed in source
files independent of the Smalltalk /V
image. An application can be locked and
modified by one developer, enabling other
developers to browse the source code. The
source code control system manages multi-
ple revisions easily.

Coopers

&Lybrand

AM S ™ e T T The original and still premier
T — Lo
I g | application manager for
R W Smalltalk/V.™
g:l
AM/ST, developed by the SoftPert [EEERTE ru - . ChangeBrowser. As an additional
Systems Division of Coopers & :L::"‘ :'ﬂm' tool available for Smalltalk / V PM
Lybrand, enables the developer to [“Meko 0L Lok and Smalltalk/V Windows, Change-
manage large, complex, object-orient- Eon Jompirten | P apiceton - i Browser supports browsing of the
ed applications. The AM/ST Appli- PP #l Smalltalk/V change log file or any
cation Browser provides multiple file in Smalltalk /V chunk format.
views of a developer’s application The addition of Tto the

ImageSoft Family of software develop-
ment tools enhances and solidifies
ImageSoft's position as —

“The World’s Leading Publisher
of Object-Oriented Software
Development Tools.”

1-800/ 245-884Q
ImageSeit

Publisher of Develapment Tools

All rademarks are the property of their respective owners, [

geSoft, Inc., 2 Haven Avenue, Port Washington, NY 11050 516/767-2233; Fax 516/767-9067; UUCP address: medhuplimage!info

dow segment. Unfortunately, this strategy cannot be easily
implemented when testing the application for multiple plat-
forms. If the application is to be executed on multiple plat-
forms, a pragmatic strategy for testing the windows is to dis-
play all of the windows in sequence. Although this may not be
as rigorous as some commercial quality testing criteria, the ap-
proach usually has a very high probability of identifying prob-
lems that were caused by inadvertent changes to the code
somewhere in the system.

Guideline: A library of standard routines should be evolved to
assist developers in mote easily testing their code functional-
ity. Candidate functions for this library can include routines
to force standard keyboard inputs, mouse movements, and
possibly even to compare screen displays against previously
stored and tested pixel displays. Interactive applications
should test themselves (i.e., Dispatchers test models). Some
dialects of Smalltalk support an event: or an event:with: message
that can be used to easily simulate mouse and keyboard func-
tions for regression testing purposes.

Guideline: During incremental development, unit and inte-
gration test suites should be simultaneously developed and
exercised.

Rationale: Problems with the code will most likely occur with
the new functionality added to the system. The developer can
efficiently focus debugging efforts on the small subset of new
code rather than a labor intensive debugging of a much larger,
more complicated piece of code.

Guideline: Testing strategies need to incorporate mechanisms

for testing a system's ability to properly function even when
there are significant interrupts to the normal processing flow.
Rationale: Stress testing is one strategy that is intended to
capture subtle bugs such as memory leaks or deadlock condi-
tions that may not be evident under other types of resting.
Stress testing should include testing over a wide range of volu-
minous inputs for a long period of time.

Guideline: Testing strategies should include timing as an im-
portant characteristic in determining if functionally correct,
but nonetheless detrimental, changes have been inadvertently
introduced into the system.

Guideline: Do not assume that only the changed class and its
subclasses need to be retested. All superclasses as well as sub-
classes of a new class need to be retested whenever a change is
made to a class.?

Rationale: One might argue that, theoretically, no testing of
superclasses is required if the changes to the class do not ac-
cess any superclass variables or superclass methods. However,
it is impossible to automatically guarantee that such an inter-
action can not occur. Object-oriented programs must test all
of the methods in a hierarchy both above and below the cur-
rent class position in the hierarchy (subclasses inherit all of
the changes in their superclasses, while superclasses can have
their apparent functionality overridden by subclasses). There
are a number of examples one can conceive where subclasses
can change data in their superclasses via global variables or by
accesses of superclass instance variables. This situation is fur-
ther complicated by the possibility that a subclass might inad-

VoL. 1, No. 9: JuLy/AuGusT 1992

B QUALITY ASSURANCE

vertently call superclass methods in an incorrect sequence and
thereby create an invalid state for other potential classes that
need to interact with the superclass. For example, consider a
subclass that erroneously instructs a superclass to clear a dis-
play window rather than put up a grid whenever a display
command is received. Other subsequent operations might be
expecting a grid to already be on the screen. Hence, there is
no silver bullet in avoiding complete regression testing of class
hierarchies whenever a change is made.

Guideline: Do not assume that a superclass test method is ad-
equate for testing a method that overrides it in a subclass.Z Ev-
ery method in a class needs to be tested even if it overrides su-
perclass methods that are tested in the superclass.

Rationale: Overriding methods can have significantly differ-
ent functionality than their superclasses and they need to be
tested accordingly. For example, a class may have a method to
update a display window and there may be an optimized sub-
class that has the same overriding method to only update the
corrupted part of a display window. Both of these cases need
separate test strategies to confitm proper functionality.
Guideline: Every class should have a class method called self-
Test that will execute all of the class and instance methods and
return a Boolean true if all of the test cases pass or else return a
Boolean false if any test fails.

Rationale: The test routines should have standard protocols
to leverage off the object-oriented polymorphism and inheri-

'Ii‘ligll.i*ii.’l.iiit‘iiiliil.iiiii‘it'iji
Project : RegressionTest

Date :May 26, 1992

Time :12:01:25

Introduction

me———————

Regression testing framework

partially complete example.

This application will permit a user to

include a class method called selfTest

in each class to test the various

instance and class methods for proper
functionality. If the tests pass, selfTest

is expected to return a Boolean true, otherwise
a Boolean false.

The testing is initiated with
Object testAll.

The result of this test is a collection
of all of the failed classes.

Dependencies: none
Invoked By:

Object testall

Description

Fully Owned Classes * :

Object
.RegTest *
..NotOKkTest *
..OkTest *

Methods of Partally Owned Classes: #
#testAll defined in Object class.

hkkkF ARk kA bk d bk hd ok hd kb h W kR

Smalltalk at: #0bject ifAbsent: [
nil subclass: #0bject
instanceVariableNames: "
classVariableNames:
‘RecursionInError Dependents RecursiveSet '
poolDictonaries: "]!

Object subclass: #RegTest
instanceVariableNames: "
classVariableNames: "
pootDictionaries: "

RegTest subclass: #NotOkTest
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "!

RegTest subclass: #0kTest
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "!

'NotOkTest class methods !
selfTest

"Public-"

~Malse! !

'RegTest class methods !
selfTest

"Public-*

“tue! !

!0bject class methods !

testAll
"Public-Find all of the classes which implement the class
method selfTest and execute the method for those classes
returning an ordered collection of all of the failed classes. To
test, execute

Object testAll
with a show it."

| allObjectSubclasses testClasses okClasses failedClasses |
testClasses := OrderedCollection new: 30.

okClasses := OrderedCollection new: 30.

failedClasses := OrderedCollection new: 30.

self withAllSubclasses
do: [:eachClass |
(eachClass class includesSelector: #selfTest)
ifTrue: [testClasses add: eachClass]].

testClasses
do: [:each |
each selfTest
ifTrue: [okClasses add: each]
ifFalse:[failedClasses add: each]].
~ailedClasses! !

THE SMALLTALK REPORT

tance that promote increased productivity and reusability. It
is important that this protocol is followed as a standard so
that testing can be automatically accomplished even when
applications, projects, or frameworks from different develop-
ers atre combined into larger systems. By following this guide-
line’s standard protocol, any or all of the code in the system
can be regression tested for any unexpected side effects using
a simple method such as

Object testAlL

where the method selfTest would be included in each class to
be tested (see Example 1).

Guideline: Every class should have an example or set of ex-
amples showing its use as shown in Example 1.

Guideline: Every example should have an executable test case
in a comment as shown in Example 1.

AN ERROR CHECKLIST
A number of common ertors can be the basis for testing rou-
tines.! These tests ** can include checks for:

1. Input and output validity

2. Missing inputs

3. Range violations

4. Proper handling of incorrect inputs
5

. Unwanted interactions with other methods and classes
via global or class variables or pool dictionaries

6. Integrity of data structures (e.g., do petsistent objects
match the current classes’ instance variables?)

7. Proper error handling (e.g., can a recursive etror cause
the system to abort?)

8. Nonexecutable code
9. Infinite loops

10. Testing at the limits of data structures or around mini-
mum and maximum values

CAVEATS

Guideline: Immediately seek help if an impasse is reached
during testing and debugging.

Rationale: Days and even weeks of effort can be wasted on glat-
ing errors invisible to one person but readily apparent to another.
Guideline: Don't get too caught up with regression testing
of code!

Rationale: The downside of depending too much upon regres-
sion testing of code for quality assurance is that the developers
can place disproportionate effort in regression testing while

** Since unexpected inputs are a major source of software failures, the
importance of these tests can not be overemphasized.

abandoning common-sense practices in their code develop-
ment and design review practices.

Guideline: Budget at least one-third of the total development
effort for testing.

Rationale: Irrespective of whether O-O or conventional
languages are used, test code is a significant percentage of
the total product effort and in some cases can contain more
code than the actual runtime functionality.? The test suites
are typically of the same magnitude of source lines of code
as the product development effort. On the basis of conven-
tional practices, this activity can be expected to account
for at least one third of the programmers’ total effort. Fur-
thermore, testing of mission critical applications where hu-
man life is at risk can consume over 80% of the total devel-
opment effort.

CONCLUSION

Smallcalk offets significant potential for overcoming many
reliability shortcomings of other programming systems, but
extensive reuse of Smalltalk-based libraries requires some
consistent standardized protocols and testing approaches.
Unfortunately, software testing and quality assurance issues
are often unnecessarily overlooked in the normal rapid pro-
totyping developments that are so well suited to Smallcalk.
This article has highlighted testing guidelines and proposed
an initial standard framework for testing of reusable code
modules. The guidelines, if followed from the initial phases
of development, can result in more robust, testable, and
hence reusable frameworks with a minimum of additional

effort. B

ACKNOWLEDGMENTS

The insightful reviews of this document by Professor Ralph John-
son, University of Illinois at Urbana and Ms. Kate Funkner of the
Allen-Bradley Software Quality Assurance Group are gratefully
acknowledged.

REFERENCES

1. Myers, G. THE ART OF SOFTWARE TESTING, Wiley Interscience,
New York, 1979.

2. Perry, D.E., and G.E. Kaiser. Adequate testing and object-ori-
ented programming. JOURNAL OF OBJECT-ORIENTED PROGRAM-
MING, January/February, 1990.

3. Rettig, M. Testing made palatable, COMMUNICATIONS OF THE
ACM, 34(5): 25-29, 1991.

Ed Klimas is Managing Director of Linea Engineering Inc., a supplier
of custom object-oriented based solutions for automation and indus-
trial applications. Ed, along with Dave Thomas and Suzanne Skublics
of Object Technology Intemational, are coauthors of an upcoming
Addison-Wesley book titled SMALLTALK WITH STYLE that covers

Vou. I, No. 9: JuLy/AuGusT 1992

B Peer CoDE REVIEWS

...continued from page 1

tions, a second may be working on database aspects, a third
may be working on the user interface, and yet another person
may be working on error management and exception han-
dling. In programming terms, we then create separate compo-
nents in our development environment. In ENVY, the term
used is application. An application represents a collection of
classes that together serve some useful purpose. A complete
system would then be constructed from a number of such ap-
plications, each of which represents a standalone piece of
functionaliry. We use the term component as an umbrella con-
cept that covers classes, sets of related classes (applications),
and sets of related applications (configurations).

66

The critiquing process is very
similar to the original coding process; it
has the same look and feel. o

THE MECHANICS
The mechanics of the review process consists of at least
three steps:

1. Preparing the components for review
2. Actually reviewing the code

3. Integrating the review results into the next version of
the component

The review process begins when I, as the author of a com-
ponent, assess it fit for a peer review. This happens when I
have implemented many of the classes corresponding to the
objects that I have discovered through the initial analysis and
design phases. At this point, all the details may not have been
completely fleshed out. I version all of the classes in each of
my applications with a distinguishing version label: [For Re-
view, Mar 22]. During development, we have adopted the
convention that we version all our components using a styl-
ized date stamp: [Mar 22], [May 02, 7 PM], etc. This is intu-
itively more meaningful than version labels such as 0.99,
0.995 etc. Of course, when we make our external release for
customets, the labeling follows more conventional guidelines.

Having labeled all of the classes with the [For Review]
timestamp, I then label the version of the applications con-
taining the classes with the same label as that of the classes. It
is important to note that under ENVY, even methods added
to classes that are defined outside of my component (e.g.,
Stream, String, Collection) are maintained in the context of the

application. Thus, these class extensions also are susceptible
to the same versioning rituals and are also subject to peer re-
view. [now collect all the [For Review] applications and build
a configuration consisting of these applications. ENVY em-
ploys the notion of a configuration map to group related sets
of compatible applications. You must specify the particular
vetsions of the applications that are released into the configu-
ration map. Accordingly, | now construct a configuration
map, called Credentialing System, for example, that consists
of the [For Review] versions of the associated applications. I
now version the configuration map itself with the same [For
Review] label.

At this point, | inform a technical peer, say Joe, that he
should review all the software contained in the Credentialing
System configurarion map. The specific version of the
configuration that he should review is the one labeled [For
Review, Mar 22]. Depending upon the bulk of the code to be
reviewed, it may take Joe anywhere from two days to a week
to review it. The amount of code to be reviewed should be of
manageable size; the reviewer should be able to do the job in
two or three days.

After I have submitted all my code for review, I can con-
tinue developing my components without waiting for the re-
view results. Basically, I start a branch from the [For Review]
version, and continue on a stream of development. Joe starts
from the same version and opens up a parallel stream of devel-
opment where he’ll carry out the review activities. What are
these review activities? This is the topic of the next section.

THE CRITIQUE AND REVIEW PROCESS
Following our example, the reviewer loads the Credentialing
System [For Review, Mar 22] configuration into his
Smalltalk image. He creates a new edition or working copy
of all the applications in the configuration. For the reviewer
to do an adequate job, there need to be some commonly ac-
cepted guidelines for critique and review. We will discuss
guidelines in a subsequent section. The critiquing process is
very similar to the original coding process; it has the same
look and feel. You are adding comments to and changing,
improving, deleting, reformatting code, etc. in the classes us-
ing the same browsers and tools the original authors use. The
significant thing to note here is that the reviewer is in place
adding review comments in the body of the method or even
fixing the algorithm or the control structures within a
method. The reviewer can factor code better; he can add
new methods that may serve as code factors. He can delete
methods that he considers obsolete or otherwise unneces-
sary. He may add review comments in the body of the
method, just like he would add a regular method comment.
He can reformat the method or introduce better indentation
to make the code appear more perspicuous.

All these give rise to a nice asynchronous review process
that doesn’t impact the stream of onward development by
the original author. The reviewing activity seems very much

THE SMALLTALK REPORT

like coding, except that you are now largely reading someone
else’s body of code and applying your critiquing skills to it.
The desired result is for the technical team as a whole to
produce deluxe, sterling code. It is incumbent on the re-
viewer to bring to bear on someone else's code all the good
programming practices he has learned over the years. The id-

66

When instituting a code review process,

the organization must a priori agree upon

the guidelines with respect to which the
review is to be conducted. o

ioms he has learned to express a certain piece of computa-
tion may be far more elegant and efficient than ad hoc
“hammer and tongs” spaghetti code. This is patticularly a
problem with new Smalltalkers schooled in procedural
thinking and those unfamiliar with the highways and byways
of the class libraries. The reviewer is able to transfer
Smalltalk programming nuances hitherto unknown to the
author of the code.

When the reviewer finishes going through all the classes in
each of the submitted applications, he versions all the classes
he has touched with a new distinguishing version label: [Re-
viewed, Apr 10]. In turn, he versions all the affected applica-
tions with the same version label. Finally, he versions the sub-
mitted configuration map (Credentialing System, in our
example) with the [Reviewed] label. The original author is in-
formed that his code has been reviewed and the results of the
review are in Credentialing System [Reviewed, Apr 10].

THE INTEGRATION PROCESS
When the reviews come back (in the form of newly vet-
sioned components), the author uses a variety of differencing
tools to quickly pinpoint the areas of code that have been
critiqued. If he agrees with the proposed changes, he can
fold them into the next version of the component. This is
easily done with environments such as ENVY that provide a
rich set of tools that can be used to quickly browse through
the differences between any two versions of a given compo-
nent. The author, for example, would do a Browse Differ-
ences between the [For Review, Mar 22] version of his appli-
cation and the [Reviewed, Apr 10] version. The differencing
tools pinpoint the precise differences between the original
method and the annotated method.

To start off the integration process, he opens a new edi-
tion or working copy of his application that was originally

| Gruphic oOmmm HL-* y- o ibmcaffwlremer
== _ e [T

e
T et e
W |Vt e Papuar @

[iyes gy

‘ale imnger Yorsing 1.8 :7

Ih Papammem Dynecs elods nhem oy
Pepmner [isame | Sawy. [egame-ian11T) 18
g i] =

0 et O clrsn

=
[Praject

versioned [For Review, Mar 22]. He then goes about system-
atically incorporating the changes suggested by the reviewer.
In some cases, this may involve a merging of the two ver-
sions of a method. If the reviewer has produced a new ver-
sion of a method that the author deems superior to his origi-
nal version, he folds the new version wholesale into his
working copy of the class. In many cases, the reviewer may
simply have made some suggestions or requested the author
to clean up the code in some way. It is then up to the author
to respond to these suggestions appropriately. Quite often,
the reviewer may have misunderstood the intent of the par-
ticular technique the author has employed. In such cases,
the author may choose to ignore the reviewer’s suggestions.
It is also possible that the fix the reviewer suggested would
have an adverse impact on a lot of the client code that the
reviewer is not aware of.

To close the loop, the author, after systematically going
through the reviewer’s feedback using differencing browsers,
produces a new version of the component. It is quite possible
that the author has added new code to the [For Review] ver-
sions of the components since he submitted the code and re-
ceived the reviewer’s versions. Now that he has finished inte-
grating the reviewer’s comments, it is an opportune time to
integrate the code developed since the time of submission. So-
phisticated programmers may choose ever so slightly different
ways to integrate the new code. Thus proceeds the evolution
of the software components—an evolution enriched by the
collective insights of the author’s peers.

VoL. 1, No. 9: Jury/AuGusT 1992

10.

® Peer CoDE REVIEWS

Ultimately, the author can submit his increasingly pol-
ished software to a different set of reviewers. The new review-
ets will have the benefit of the first reviewer's insights and do
not have to hoe the same row. They may shed completely dif-
ferent perspectives on the submitted software. This can only
improve the quality and maintainability of the software. In
addition, the code repository now contains a complete audit
trail of the evolution of a software component, including all
its review versions.

REVIEW GUIDELINES

When instituting a code review process, the organization
must a priori agree upon the guidelines with respect to which
the review is to be conducted. Failure to do so causes tension
and misunderstanding among team members. A big part of
the code review pertains to coding style. This has been amply
covered in the Smalltalk with Style columns in previous is-
sues of THE SMALLTALK REPORT.!' 2 The Smalltalk style issues
include proper code indentation, choosing proper variable
names, good method comments, and so on. We enumerate
some of the empirical guidelines that we employ in the re-
view process below.

BASIC GUIDELINES

What to watch out for in a code review:

®Poor indentation. This is the culprit in a lot of sloppy
code. Proper indentation makes the code clearer and a
pleasure to read. Indentation also gives rise to heated dis-
agreements among team members. “"Hey, that is my pet-
sonal writing style. Don’t mess with it.” Good, reusable
classes have lots of readers. Think about the users who
will have to read your code long after you have left the
scene. A little uniformity and consistency in style goes a
long way. The Smalltalk with Style guidelines are cer-
tainly a good place to start. Writers and editors often ad-
here to the guidelines in THE CHICAGO MANUAL OF
STYLE or THE ELEMENTS OF STYLE by Strunk and White
for similar reasons.

*No class comments. Standard Smalltalk/V does not have
tool suppott to embed class comments. Several commet-
cially available development environments, however, do
have explicit tool support to add class comments. Use
them. A good class comment should pithily describe its

purpose and how it is intended to be used. Additionally, it
can also include some global implementation notes, a de-
scription of its instance variables, and any special algo-
rithm used in implementing the class.

*No method comments. It is frustrating to figure out the
intent of a long rambling method if it doesn't have accu-
rate comments. Even well-written methods can use com-
ments to explain operating conditions, and pre- and post-

assertions. Implementation notes on why a particular data
structure has been chosen can also be helpful.

o Gratuitous comments. This is the other extreme. Code
that is extremely clear and self-documenting doesn’t need
comments that add no value:

foo: anInteger
"Set foo to anInteger."
foo := anInteger

isEditable
"Return false."
“Malse

®Misleading comments. Code doesn’t reflect comment or
vice versa. Often, comments refer to method parameters
that have long since been replaced by something else, but
the comments themselves haven’t been updated. The other
common infraction is that the comment claims to do one
thing, while the code does something else:

add: anAssoc
"Answer anObject. Add anObject to the receiver
if the receiver does not already contain it."
"Save in the trades table"
| ok |
CursorManager execute change.
trader query: (self update:anAssoc).
ok := trader fetchResults.
CursorManager normal change.
"save locally"
(retrievedAllFlag | cacheFlag)
ifTrue: [super add:anAssoc].
~ok

Bad comment—it refers to an obsolete argument and claims
to return one thing, but actually returns something else.

¢ Cryptic comments:

link: aLink col: colNbr
"Return column data"

® Annoyingly informal comments. “Can you believe XYZ
Co. did this? Sheesh!” “Joe really messed this up,” “If the
poor sap gets to this method, he's really asking for ic.”
Such comments may be okay and may even promote cam-
radarie if the software is going to be used only within your
limited workgroup, but for production quality software
that will be used by anonymous customers, it represents
poor taste.

®Bad argument names. Beginning Smalltalkers, particularly
C programmers of the argc-argv school, commit this viola-
tion frequently. Using nonintuitive argument and variable
names like arg, aParm, parm1, parm2, tmp1, tmp2, or even
anObject doesn’t serve anyone. It is a nightmare to figure out
the classes of the objects that are participating in the com-
putation. Likewise, method selector names shouldn’t be
misleading; they should be intention revealing.

THE SMALLTALK REPORT

PETERS

WINDOWBUILDER 42

The Interface Builder for Smalltalk/V &)

The key to a good application is its user interface, and
the key to good interfaces is a powerful user interface
development tool.

For Smalltalk, that tool is WindowBuilder.

Instead of tediously hand coding window definitions and
rummaging through manuals, you’ll simply “draw” your
windows, and WindowBuilder will generate the code for
you. Don’t worry — you won’t be locked into that first,
inevitably less-than-perfect design; WindowBuilder
allows you to revise your windows incrementally. Nor will
you be forced to learn a new paradigm; WindowBuilder

generates standard Smalltalk code, and fits as seamlessly
into the Smalltalk environment as the class hierarchy
0 wiaur e browser or the debugger.
. E;: :';E Our new WindowBuilder/V Windows 2.0 is now available
for $149.95, and WindowBuilder/V PM is $295. Both
products include Cooper & Peters’ unconditional 60 day

guarantee.

For a free brochure, call us at (415) 855-9036, or send us a
fax at (415) 855-9856. You'll be glad you did!

%... this is a potent rapid application development tool which
should be included in any Smalltalk/V developer’s environment.”
- Jim Salmons, The Smalltalk Report, September 1991

Cooren & Perers, INC. (FORMERLY ACUMEN SOFTWARE] 2600 E. Camino Real, Sute 60% Paio Airo, Caurornia 94304 PHone 415 B55 9036 Faxr 415 B55 9856 Cowmpuseave 71571,407

¢ Coding anachronisms. This is a case of old habits dying
hard. New Smalltalk releases and development environ-
ments often introduce new programming idioms. Always
accessing classes through symbols—e.g., (Smalltalk at:
#HeatingUnit) raiseTemperature—is no longer necessary
if the development environment allows you to explicitly
specify class prerequisites. Furthermore, cross-referencing
facilities such as browse methods that reference the class
HeatingUnit will not show up this method since the class ob-
ject is buried inside a defensive expression. If I were to re-
name the class HeatingUnit, I might miss making a change
to the method, and that will cause a runtime error in the
future. Referring to classes indirectly through class names
goes against the grain of classes as first-class objects. Of
course, there may be exceptional conditions under which
this may be warranted.

* Using needless temporaries. Beginning Smalltalkers tend
to gratituously use temporary variables to do iteration.
There are a phalanx of iteration idioms like collect:, select:,
inject:into: that do the job more efficiently and make the in-
tent of the code clearer.

®Needless multiple exits from a method. Another defensive
programming malady that could be remedied by proper use
of the conditional control constructs and good indentation.

» Poor distribution of responsibilities. This is really poor
design that percolates into the coding process. This mani-
fests itself in heavyweight classes with 100 methods that

do a lot of things. Often, you expect a certain responsibil-
ity to be discharged by a certain object; instead, in code it
manifests itself as a complicated multi-keyword method
that requires a lot of hand assembly to use. Reviewers can
suggest, in such cases, how these methods can be rewrit-
ten, refactored, etc.

e Defensively lodging “global” behavior in Object. If a cer-
tain behavior is expected to be global within your partic-
ular domain, find an appropriate class in your domain to
lodge this behavior. If every class in your domain must
have this behavior, create an abstract superclass that con-
tains this method and have every one of your classes in-
herit it. Alternately, you can lodge this behavior in a
class method of an appropriate class in your domain.
Blindly purting the behavior in Object causes all classes in
the system to be susceptible to any side effects that it may
cause. Reviewers may suggest alternatives appropriate to
the context in which the code is meant to be used.

» Put global class methods in Behavior, not Object. [have
come across several Smalltalkers who put catch-all class
behavior in Object. This is too defensive. Behavior is the
root superclass in which you should lodge behavior that is
expected to be inherited by every class in the system.

» Unnecessarily using isKindOf:, isMemberOf:. This is not con-
sidered good programming style. You are refetring to a class
directly via a hard constant. This is not only inefficient,
but also less reusable. Instead, use polymorphic test mes-

VoL. 1, No. 9: JuLy/AuGusT 1992

11.

H PEer CoDE REVIEWS

sages: isString, isNurse etc. In this case, you'd implement is-
String methods in Object and String, returning false and true,
respectively. If you are sure that the receiver of the isKind0f:
method is going to be an object of a class that is directly or
indirectly inherited by a particular superclass, then put the
false test method in that superclass. For example, if you are
sure the receiver is always going to be some kind of a sub-
pane, put the false test in SubPane, not Object.

66

As far as possible, code should be
optimized for the environments that it is
supposed to work on; platform differences
should be dealt with by partitioning code

into platform independent and platform
specific portions. o

® Archaic, old, effete code should be weeded out. Code
should keep step with emerging idioms, and newer and
better features in the undetlying class libraries. For exam-
ple, if a new version of your base environment provides
richer protocol to insert an association in a dictionary use
that. It would make your code more compact. For exam-
ple, ENVY has a Dictionary method at:ifAbsentPut:, so code
that is originally written as:

myConstants ;= Smalltalk
at: #MyConstants
ifAbsent: [Smalltalk at: #MyConstants
put: #(a b c)]

can have a more modern rendition

myConstants := Smalltalk
at: #MyConstants ifAbsentPut: [#(a b c)].

A common counter argument to this guideline is, “Hey, I
have to make my code work under multiple environ-
ments.” This means programming to the least common de-
nominator of available idioms. As far as possible, code
should be optimized for the environments that it is sup-
posed to work on; platform differences should be dealt with
by partitioning code into platform independent and plat-
form specific portions. ENVY, for example, provides ex-
plicit tool support for cross-platform development.

o Writing “to be implemented by subclass” in the comment
and then not expressing that intent in code. If a method
must be implemented in each and every subclass, then that

intention must be expressed via appropriate programming
idioms. Smalltall/V has implementedBySubclass and Object-
works for Smalltalk has subclassResponsibility methods for
such purposes. Putting self halt is not acceptable. Similarly
for subtractive inheritance, Objectworks provides a should-
NotImplement idiom.

e Putting self halts to trap exception condition is not accept-
able. While this condition may not manifest in the course
of normal developer work, the moment it hits the cus-
tomer’s hands, it is sure to trigger the exception and cause
an unpleasant walkback window to pap up.

e Using inappropriate data structures. Programmers often use
familiar data structures because it gets the job done. A very
common example of this is the use of the class OrderedCollec-
tion. OrderedCollection is very malleable and very flexible. It
responds to a wide variety of protocol and is a friend of the
defensive programmer. However, all this comes at a price:
space and time overhead. In cases where it is clear that a
fixed size collection can do the job, Arrays should be used. In
cases whete elements in the collection are retrieved in
batches, a LinkedList is perhaps a more approptiate data
structure. Reviewers should be on the lookout for this.

¢ Defensive parentheses that do not contribute to code clarity:

(aValue isNullValue)
ifTrue: [~aValue].

(aValue isNullValue or: [(aValue isKindOf: DateTime)])
ifTrue:[~aValue].

A hopefully better rendition is:

~(aValue isNullValue or: [aValue isDateTime])
ifTrue: [aValue]

® Use CharacterConstants or messages instead of literals to
represent characters. This makes it more readable. $ is
less readable than Space or Character space.

Use Stream protocols instead of lengthy concatenation
of strings.

¢ Use nonevaluating conjunctions or disjunctions for some
ifTrue:ifFalse: blocks that return booleans:

Bad code:

aBool ifTrue: [5] ifFalse: [*false].
Good code:

~aBool and: [5]

ADVANCED GUIDELINES

¢ Inefficient algorithms. Reviewers should watch out for non-
polynomial time algorithms and should suggest faster algo-
rithms if one exists as opposed to, say, O(n?) algorithms.

Poor factoring of code.

® Poor construction of inheritance hierarchies.

THE SMALLTALK REPORT

¢ Poor separation between platform-specific and platform-
independent code. It is poot practice to partitioning plat-
form-specific code across classes (a programming language
concept) as opposed to across applications (a program-
ming environment concept).

o (Im)proper partitioning of methods into public and private
methods. For example, initialize and release methods
should be private.

o Proper initialization and destruction of data structures (ini-
tialize and release).

66

Just as a good general makes the soldiers
around him better, so, too, should the
benefits of having a good programmer

accrue to other less experienced
programmers on the team.

9

® Messages sent but not received (implemented). This is a
potential runtime error.

® Messages implemented but not sent. This is quite possible,
if the component is intended to be used as an extensible
framewotk. However, if you are delivering a standalone ap-
plication, these methods are candidates for elimination.
You should make sure they are not called via perform:.

SOCIOLOGICAL EFFECTS

The impact of the code review pracess as described in this ar-
ticle is most effective in organizations that actively encourage
programmets to critique each other’s work. On the other
hand, in workgroups that have a “cream puffs, marshmallow”
culture, there is probably a fine line, the crossing of which
may yield undesirable sociological results that counter the
benefits of a stringent code review. Recently, while drawing
up a blueprint of Smalltalk software development for his
company, an MIS manager commented, “Of course, we are
going to write good code. Peer fear will ensure that nobody
writes sloppy code.” Organizations and workgroups that can
distinguish between an honest critique and a personal batb
are most likely to benefit from a rigorous review process. It is
also likely that some developers will be more reluctant than
others to submit their code for review. This happens for a va-
riety of reasons, not the least of which is a fear of being unfa-
vorably critiqued. Just as a good general makes the soldiers
around him better, so, too, should the benefits of having a

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,
dBASEIII, Lotus, and Excel.

Intelligent Systems, Inc.

{ 504 N. State Street, Ann Arbor, Ml 48104 (313) 99564238 (313) 996-4241 fax

good programmer accrue to other less experienced program-
mers on the team.

Code reviews should be viewed as a rigorous software en-
gineering activity, not a mindless chote undertaken half-
heartedly to adhere to some “feel good” corporate software
development guidelines. Good Smalltalk programmers tend
to read a lot more than they write. They tend to adopt the
idioms of other good programmers while inventing a few of
their own. Ward Cunningham once observed, “Good class
libraries whisper the design in your ear.” While browsing
through other people's code, I often say to myself, “That’s a
great idea! why didn't I think of that?” Kent Beck has
termed these voyages of discovery the “Aha! experience.”

Well-written code is a pleasure to read, and it becomes
quickly apparent if a class is reusable or not. People try to
imitate and emulate well-written code. Well-organized code
reviews have the benefit of bringing to bear every team
member’s perspectives and experiences to the total quality of
the software being shipped. Even with a cohesive review pro-
cess, there are plenty of ways in which team membets can
express their own unique styles in the delivered code. Good
software engineering practices as expressed in Smalltalk code

3

can only propagate the positive effects and thus result in
more gratifying Aha! experiences for everyone. B

REFERENCES

1. Klimas, E., and S. Skublics. A matter of style, THE SMALLTALK
REPORT 1(2):1-5, 1991

2. Klimas, E., and S. Skublics. Tips for improved Smalltalk reuse and
reliability, THE SMALLTALK REPORT 1(6):11-14, 1992.

3. Beck, K. Essays and A-Has, HOOPLA! January, 1988.

S. Sridhar is a senior member of technical staff at Knowledge Systems
Corporation in Cary, NC, where he is actively applying Smalltalk to a
variety of software engineering problems. He came to KSC from Men-
tor Graphics Corp. where he was the project lead for Mentor’s second
generation design management environment developed in C++. Prior
to that he worked at Tektronix, Inc. for four years on Common Lisp
and Smalltalk/80 product development. He can be reached at
919.481.4000.

VoL. 1, No. 9: JuLy/AuGusT 1992

13.

14.

HE BEST OF comp.lang.smalltalk

Alan Knight

What’s wrong with OOP?

hings object oriented have been receiving a lot of at-
I tention lately. Some is justified interest in an impor-
tant emerging technology, but a lot of it is just hype. It
is apparent that in some circles, “object-oriented” has become
the buzzword of choice.

Everywhere you turn things are desctibed as object oriented.
Operating systems, windowing environments, and programs of
every description are now labeled O-O. There’s more restraint
with programming languages, perhaps because there’s a clear
definition of what an object-oriented language is. For pro-
grams, it’s only necessary that the designets think about the
problem in an object-oriented way, or that something in the
program be called an object.

At the same time, object-oriented programming, design,
analysis, databases, graphics, and other functions are pre-
scribed for all problems. There is a silver bullet, we've got it,
and for only a few dollars you can have your own compiler!
Triple your productivity overnight! Plus, if you act now,
we’ll turn software into a rigorous engineering discipline at
no extra charge! Even the editors of BYTE magazine, who re-
ally should know better, write about how O-O promises to
make computer programming accessible to the right-hemi-
sphere, creative people who have traditionally been ex-
cluded. I could go on about that one for quite a while, but
I'll restrain myself.

This much hype inevitably provokes a backlash. Those
who have already embraced some other method of saving the
world resent OOP’s popularity and look for flaws. Others
without detailed criticisms nevertheless remain skeptical of
the inflated claims and suspect hidden drawbacks. The rest of
this column may remind you of a few arguments you've been
in, as I’ll be going through some representative questions and
criticisms, with comments and some of the replies. If you
haven’t yet had to deal with these, perhaps you'll be better
prepared when the time comes.

WHAT’S THE CATCH?
Devon T. Caines (caines@andrews.edu) writes:

Just one quickie question.

What are the real disadvantages of OOP? There must
be a down side. True, the learning curve is one, but I
don’t consider that serious enough.

This is a typical “OOP novice” question. Surely people
wouldn’t devote so much effort to selling you something that
didn’t have drawbacks. Is the learning curve too steep? I've
heard it’s inefficient. Are the claims of easier maintenance
and reuse borne out in practice? If OOP encourages reuse,
how come there isn’t more of a software components industry?
Atre there real companies doing major projects with OOP?
What kind of success stories or disastets have there been?

Let’s start with the disasters. One well-publicized failure
occurred at Cognos, an Ottawa company that makes 4GL
tools. A few years ago they tried to switch from C to Eiffel as
the implementation language for their main product. The
project ran into severe difficulties and was eventually aban-
doned. Burton Leathers is a Cognos representative who has
spoken and written about the project in several places, in-
cluding an article in the July 1990 HOOT (HOTLINE ON
OBJECT-ORIENTED TECHNOLOGY). The problems with the
project ate said to include immaturity of the Eiffel tools at
the time it was undertaken, the attempt to move wholesale
into OOP without adequate preparation, and general bad
management. The order of importance of these factors de-
pends on who you talk to.

On the other side, there are a lot of OOP success stories. A
particularly impressive one involving Smalltalk was recently de-
scribed on the net by Bruce Samuelson (bruce@utafll.uta.edu),
who credited the May 11th COMPUTERWORLD magazine as the
source. A company named EDS (Electronic Data Systems) re-
cently did a test project, rewriting a system using PL/1 and a re-
lational database into Smalltalk with an O-O database. The
PL/1 system was quite new, so specification, design, and test
documents were still available, as were the original implemen-
tots. Using a team experienced with Smalltalk, they achieved
incredible productivity gains on the order of 14:1. [haven’t
seen this confirmed, so if you want to use it as an example, it
would be best to check the details.

MAINTENANCE AND REUSE
One of the principal claims of OOP is that it allows easier
maintenance and code reuse. These are not easy things to
measute, and OOP detractors often argue that these gains are
imaginary.

For example, Ravi Kalakota (kalakota@ut-emx.uucp)
wrote:

THE SMALLTALK REPORT

The oft-cited advantages of the O-O approach have been
code (and design) reuse, easy extensibility and
modifiability. O-O has brought about substantial reduc-
tion in the size of new code that has to be generated and
also the size of the overall system. As the code size be-
comes more “concentrated,” the complexity of the sys-
tem increases dramatically (at least in my opinion). Does
this complexity affect maintenance?

Probably not in a simple project. But in a large
system....

Perhaps because these things are so hard to measure, they
attract a lot of interest on both sides. There were a lot of anec-
dotal stories posted, as well as references to several studies put-
porting to prove either that O-O improved maintenance or
that it made it more difficult. Many disagreed with the basic
idea of this post that complexity necessarily increases as code
size is reduced. The general perception is that in normal cases
reduced code size reduces complexity. In APL, for example,
part of the reduction in code size is due to the use of one-
character identifiers, which certainly reduces readability. Even
there, though, most of the reduction is due to the language
providing very powerful operations.

There was a strong consensus among all parties on the idea
that maintainability is not an inherent property of
any programming language or paradigm. There have been bad
programs written in O-O languages, and will undoubtedly be
many more in the future. Designing for maintainability is the
essential part of building a maintainable system. Whether O-
O methods really assist in this or not remains in dispute, and
likely will until many more studies have been done.

As Ralph Johnson (johnson@cs.uiuc.edu) writes:

You can build poorly structured systems in any lan-
guage. The question is whether you are able to build
well-structured systems.

I build well-structured systems in Smalltalk that are rel-
atively easy to understand. My feeling is that OOP makes
it easier to build well-structured systems. It is easier to see
the design, so there is more motivation to do it right.

OOP IS UNNECESSARY

Then there are those who actively try to find fault with partic-
ular aspects of OOP. Some claim that most of OOP is not re-
ally new, and that the new parts are not important. In this
view, the productivity gains claimed for OOP are primarily a
result of its use of standard ideas on abstract data types and in-
formation hiding. Inheritance and dynamic binding are con-
sidered to be either insignificant or actively harmful.

This type of argument often occurs in a discussion of the
relative merits of Ada and C++. This is one argument where
I don't have a strong opinion. I'd hate to have to wotk in a
language without the O-O features I'm accustomed to, even
if it did embody good software engineering principles. On

the other hand, a language based on C, with all of its “fea-
tures,” doesn’t appeal to me either. Call me spoiled, but I
like arrays that know their own size, and I like languages
that at least allow for the possibility of runtime checks. I
know that in C++ it’s possible to write or get hold of array
classes that work properly, but the default is still C, and a lot
of code uses the default.

66

Call me spoiled, but I like arrays that
know their own size, and | like languages
that at least allow for the possibliity of
runtime checks

*

Of coutse, there are people who like C, and many of them
really like it and don't see why you would ever want another
language, even one as close as C++. Martin A Leisner (leis-
net.henr801c@xerox.com) writes:

OOP is a buzzword for “good design practices”.... I've
been doing OOP in C for years (C++ just enforces more
a disciplined programmer doesn’t need). If OOP helps
make good designs, great. But good designers make good
designs, not the language/system.

I have to agree that good designers are important, per-
haps even more important than good languages. However,
from my own experiences in having to do some work in C
for the past couple of months, I (speaking as a good de-
signer) am getting extremely frustrated with the lack of
both OOP and software engineering facilities. One way to
make C++ look good is by writing in plain C. The inability
to generalize operations to work on different types, the
need for function pointers everywhere, and the lack of en-
forcement on information hiding all make it very difficult.
Ralph Johnson (johnson@cs.uiuc.edu) had a particularly
good line for this:

Information hiding can be implemented by self-restraint.
You can tell yourself that clients should never use a par-
ticular fact about a component and then believe yourself
when you design the components. Self-restraint works
almost as well for implementing information hiding as it
does for birth control.

C is a pretty easy target, so it's not really fair to take that as
our representative non-O-0O language. Suppose we use Ada
instead, which does have support for information hiding,
genericity, and many other nice features. Does the full power
of O-O really gain us much over this?

15.

VoL. 1, No. 9: JuLy/AugusT 1992

16.

B THE BEST OF COMP.LANG.SMALLTALK

Peter Hermann (ph@rus.uni-stuttgart.dbp.de), who appar-
ently doesn’t think so, writes:

In an excellent paper “Object Oriented Extensions to
Ada: A Position Paper for O-O Ada Panel” TRI-Ada ’90
p.92-94 ISBN 0-89791-409-0 Schwartz, Jack H. wrote:
Conclusion: The current definition of the Ada language
already includes the best features of object-oriented lan-
guages, namely:

® modularity

® encapsulation

e separate compilation

® genericity

® dynamic instantiation

* lexical overloading

® exception handling

66

Certainly inheritance can be badly
misused by the inexperienced or by the
experienced in a hurry. Does that mean it

should be left out of a language? o

and deliberately excludes many questionable and danger-
ous features such as

¢ inheritance
® dynamic binding

for the very reason that they compromise the require-
ments of large scale software engineering. It is, therefore,
inadvisable to attempt to extend the Ada language to in-
clude features that conflict with Ada’s primary goals:
maintenance, reuse, and programming-in-the-large.

This paper, oddly enough, seems to consider things like
separate compilation and exception handling to be features of
object-oriented languages. 'm not sure if that was an attempt
to minimize the importance of inheritance and dynamic bind-
ing by placing them amid a long list of features or if it’s due to
just listing all the features in C++ and attributing them to
OOQOP. That aside, this post does raise the interesting question
of how important inheritance and dynamic binding are to
OOQP, and to good software engineering in general.

INHERITANCE AND DYNAMIC BINDING CONSIDERED HARMFUL
Inheritance is a very powerful and useful feature, especially in
a prototyping environment. Is it really “questionable and dan-

gerous” as well? This has been discussed in the O-O commu-
nity for some time, and there seem to be two main issues. The
first is inheritance for subtyping vs. inheritance for code reuse.
On this, Ralph Johnson (who I keep quoting because he keeps
writing good stuff) writes:

I see the use of inheritance as one of the differences be-
tween people interested in developing reusable software
and those interested in getting applications out the door.

People who are good at developing reusable software
want to develop elegant software and dislike using inher-
itance just for code reuse. However, people who want to
deliver applications as soon as possible think that over-
riding arbitrary methods is the greatest thing since text
editors. Both are right. They have different goals, and

thus different criteria for evaluating programs.

Inheriting for code reuse is fine in a prototyping environ-
ment, but those sorts of relationships shouldn’t normally make
it into production code. The standard Smalltalk example of
this sort of inheritance is Dictionary being a subclass of Set,
even though the interfaces are quite different. This relation is
now enshrined in tradition, but to my mind it would be much
more sensible for both to be subclasses of collection, imple-
mented in terms of a third class HashTable. This would achieve
roughly the same level of code reuse, make the operations of
Set and Dictionary trivial, and make it much easier to write sets
or dictionaries with alternative implementations.

One reason this sort of thing doesn’t get done is simply
laziness on the part of the programmers. It's easier to inherit
and change the interface than to write a new class, and there’s
a reluctance to write classes that do little more than translate
their operations directly into an undetlying representation.
Programmers will use an OrderedCollection to implement a stack
rather than writing a Stack class, even though OrderedCollections
have many operations inapplicable to stacks. One of these op-
erations applied anywhere in the code could lead to a very
hard-to-find etror.

The second issue is that of composition vs. inheritance,
which is closely related. If you shouldn’t inherit for code
reuse, then to reuse code you have to build new classes that
encapsulate the code you are trying to reuse. This can be done
by writing a class around an ADT as in a stack implemented
by an OrderedCollection. It can be done by writing a class that
includes instances of several other classes and manages the re-
lationship between them (I'd say this was the normal case in
OOP development). Or it can be done by writing classes that
manage somewhat arbitrary collections of components (such
as a windowing class that manages a group of sub-windows).

Richard Thomas (thomas@qut.edu.au) writes:

Inheritance is the biggest problem and danger of
OOP....Most students have problems deciding when to
inherit and when to import. Often they will inherit too

THE SMALLTALK REPORT

much and generate a messy fettuccine (a la spaghetti)
class structure. Unfortunately this isn’t limited to stu-
dent efforts. Many examples of OOP in the literature
and in class libraries use inheritance just about every
time they want to access a feature. This is wrong!
Overuse of inheritance leads to a very complex, nonin-
tuitive class hierarchy that takes a considerable
amount of effort to understand....Inheritance for code
reuse (not subtyping) allows you to defeat the princi-
ples of information hiding. Either I view a subclass on
its own and have important features that this class de-
pends on hidden from me in superclasses. Or I look at
the expansion of a subclass to include its superclasses
and have to interpret the entire mess and figure out all
the dependencies.

So it appears there is a valid point in the idea that inheri-
tance is “dangerous.” Certainly inheritance can be badly mis-
used by the inexperienced, or by the experienced in a hurry.
Does that mean it should be left out of a language? I don't
think so, but perhaps a language (like Ada) not aimed at pro-
totyping situations could provide compiler support for restrict-
ing inheritance to subtype relationships. Also, I suspect that
Smalltalk is not quite so badly off in this regard as those lan-
guages with multiple inheritance, where misuse is that much
easier and can get that much worse.

We haven’t even begun to talk about dynamic binding,
which could easily fill another whole column. In the context
of these kind of discussions, full dynamic binding in the style
of Smalltalk is generally considered too dangerous, because it
is possible to have errors which will not be detected until run-
time. [find it odd that people do not seem to have the same
problem with current computer arithmetic systems, which
have the potential to cause very serious runtime errors, but [
guess they have different priorities. Even limited dynamic
binding such that is found in C++ and Eiffel is considered
dangerous. In a future column I may go into these issues, but |
suspect most of the readers have already made up their minds
on this and would be more interested in something else.

TO BE CONTINUED

This column is already running long and late, and I haven’t
even considered some of the more interesting criticisms and
misperceptions. Among these are the idea that O-O implies
thar only local knowledge can be used, or that strict O-O does
not permit classes representing relationships or processes.
Those issues will have to wait for the next installment. B

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada, K15
5B6. He currently works on problems related to finite element analysis
in ParcPlace Smalltalk, and has worked in most Smalltalk dialects at
one time or another. He can be reached at 613.788.2600 x5783, or
by email as knight@mrco.carleton.ca.

ODBMS

ODBMS
The Objectoriented Database
for Windows and OS/2.

ODBMS
"To make your SMALLTALK even better.

ODBMS

Objectoriented Technology by

VG Software Construction.

ORDER NOW |
(J ODBMS - Programmer’s Version
() ODBMS - Graphical User Interface
[ODBMS - Interface to SQL

(1 DSSDe - Distributed Programming
based on ODBMS

ODBMS and more ..

USA: Power %mlolsla%mmmmmm Tel:
508-456-9302, Fix: & Drury Software Led.,
180 Tottenham Court Road, London WIP 9LE. Tel: 071-436-9481, Fax
071-436-0524 < VG Construction Petritorwall 28, 3300

Soﬁwue GmbH,
Germany, Tel: +49-531-24 24 00, Fax: +49-531-24 24 0-24

VoL. I, No. 9: JULY/AUGUST 1992

17.

18.

MALLTALK IDIOMS

Kent Beck

Abstract control idioms

ParcPlace’s Objectworks \ Smalltalk release 4 as promised,

but soon discovered that I need to cover some preliminary
material about the “traditional” style first. I split the column
into two patts. This one talks about how abstract control has
been used to date. Next issue’s will cover the new possibilities

available with the advent of ValueModels.

Istarted writing about the new ValueMadel style used in

MESSAGES LIMIT REUSE

Reuse is the name of the game. Headlines shout. Marketing
literature trumpets. Salesmen ooze. Objects will solve your
reuse problems. Not true, of course. Programmers solve reuse
problems. It is possible to reuse procedural code, and it can
be impossible to reuse objects. If the mere presence of ab-
jects doesn’t enable reuse, what is it that makes reuse hap-
pen, technically?

Whenever I am able to reuse a piece of code, either by de-
sign or through serendipity, it is because the code makes few
assumptions about what the rest of the world looks like. A
graphics model that assumes all coordinates are integers is
significantly harder to use than one that is prepared to take
any kind of number. What does this have to do with messages
limiting reuse?

Every time you send a message you build into your code the
assumption that one and only one action will be invoked.
What happens when you later decide you need two things to
happen? Or sometimes none and sometimes many? You have
to change the original code.

I can think of three levels of code reuse. By far the simplest
is reuse by instantiation. You create an object, send it some
messages, and good things happen. Far more complicated is
reuse by refinement. To subclass you have to understand the
inner workings of the superclass to know what messages to in-
tercept and how to compatibly extend the representation. By
far the most expensive reuse in terms of downstream costs is
reuse by tweaking. Somehow the original author never factors
the methods enough, but by a little judicious editing you can
create an object you can subclass for your purposes.

Tweaking is becoming infeasible as a production program-
ming strategy. As Smalltalk programs grow, it becomes in-
creasingly desirable to treat code from outside sources as im-
mutable. I have enough trouble keeping up with changes to
my own objects, much less trying to track what several ven-

dors have done with code I have modified. If we had a mecha-
nism that was like message sending, but was extensible with-
out modifying the original code, we could gain reusability for
our libraries of objects.

THE SMALLTALK SOLUTION: UPDATE/CHANGED
Update/changed, also known as change propagation or depen-
dency, is the Smalltalk solution to a “more abstract message
send.” It is more abstract in the sense that zero or more re-
ceivers can be activated by one action in the sender; the num-
ber and identity of the receivers is determined at runtime and
can easily be changed by code which is otherwise unrelated to
the sender; and the receiver has much more choice in re-
sponding to the a changed message than an ordinary message
send. On the other hand, because it is not implemented by
the Smalltalk vitrtual machine it is not as efficient as ordinary
message sending.

I talked to Diana Merry-Shapiro (one of the long-time
members of the original Smalltalk team) about the evolution
of the dependency mechanism. The early Smalltalkers took as
their benchmark problem a model consisting of a collection of
numbers and two views, one a pie chart and the other a bar
chart. The problem was to keep both charts consistent with
the model while leaving the model as ignorant of the fact that
it was being viewed as possible. According to Diana, it was
Dan Ingalls who finally implemented the dependency mecha-
nism as we know it.

Here is a quick review of the fundamentals of dependency.
The system associates with each object a collection of depen-
dents, other objects to be notified when it changes. Here is a
simplified implementation:

Object>>addDependent: anObject
Dependerits “a class variable in Ohject” isNil
ifTrue: [Dependents := IdentityDictionary new}].
(Dependents includesKey: self)
ifFalse; [Dependents at: self put: Set new].
(Dependents at: self) add: anObject

Object>>removeDependent: anOhject
Dependents isNil ifTrue: [*self].
(Dependents at: self ifAbsent: [*self])
remove: anObject
ifAbsent: [“self].
(Dependents at: self) isEmpty
ifTrue: [Dependents removeKey: self]

THE SMALLTALK REPORT

Most objects don’t have any dependents, and there is no
space cost for nonparticipants, so the memory ovethead of de-
pendency is not high.

When an object changes its state in a way that it thinks
dependents might be interested in it sends itself the message
changed, which causes all of the dependents to be sent the
message update. Each dependent then takes whatever action
is necessary to reconcile it with the new state.

Object>>dependents

Dependents isNil ifTrue: [*#()].

~(Dependents at: self) ifAbsent: [#()]
Object>>changed

self dependents do: [:each | each update]
Object>>update

~self “Do nothing by default”

The solution to the benchmark problem mentioned above
is to make the pie chart and the bar chart dependent on the
list of numbers. Every time the list changes, adds, or deletes a
value, it sends itself a changed message. Both of the views in
their update methods simply redisplay and the consistency
problem is solved. The solution has the additional attraction
that new kinds of views can be added, and as long as they are
registered to the model they will operate without any changes
to the model. Finally, the model works in the absence of a user
interface just as well as it does interactively. Because all com-
munication with the user interface is through dependency, its
presence or absence makes no difference to the model.

The first problem that becomes apparent with this simple
dependency mechanism is that not every dependent is inter-
ested in every change. The most common form of changed
message adds a parameter, a symbol by convention, which sug-
gests the kind of change taking place. The parameter is passed
along to the dependent. Notice that the generic update gets
sent if update: is not overridden.

Object>>changed: aSymbol

self dependents do: [-each | each update: aSymbol]
Object>>update: aSymbol

self update

Most applications that need dependency can be coded with
no more complexity than this.

DEPENDENCY IDIOMS

For consumers of update messages, the primary idiom is to
override update: and switch on the parameter. Here is
ListView>>update:

update: aSymbol
aSymbol == #list
ifTrue: ["self setNewList].
aSymbol == #listIndex
ifTrue: [*self setNewSelection]

I have found it good practice to have only a single send
to self for each case. When I am tempted to put several
statements in the block I invariably end up creating a
method later which is exactly those lines. Also, the code is
simpler to read if each implementation of update: has the
same form.

What if you want several views on the same model, but you
want each to respond to different updates? The old license
version 2 image introduced pluggable views to solve this prob-
lem. Rather than create a subclass for each slight variant, each
of which would override update:, a pluggable view stores the
pattern against which update messages are matched in an in-
stance variable. Here is SelectionInListView, the pluggable vari-
ant of ListView.

update: aSymbol
aSymbol == partMsg
ifTrue: ["self setNewList].
aSymbol == initialSelectionMsg
ifTrue: [*self setNewSelection]

The instance variables are set when a list is created with
the SelectionInListView>>on:aspect:blah:blah: message. Each list
also needs to send a different message to the model to get the
contents and set the selection. The symbols used for checking
updates double as messages that are sent to the model via per-
form:. | have always thought this was kind of sleazy, but in
practice it works quite well.

The other commonly used pluggable view is TextView.
SelectionInListView uses one symbol to check to see whether
to update the list contents and another as the message to
send to the model to get the list. TextView uses the same
symbol for both (the aspect: parameter of the instance
creation message).

A final note about implementing update:—remember to
send "super update: aSymbol” if the current method hasn't con-
sumed the update message. That way your classes will fit more
neatly into hierarchies.

I looked through all senders of changed: to see if | could find
any pattern to the symbols that are used as the parameter, and
[wasn't able to discover anything profound. The parameter
should, of course, have some relation to the change taking
place in the model. Other than that there doesn’t seem to be
much of a pattern to how the symbols are selected.

DECIDING TO USE DEPENDENCY
If dependency is so cool why not use it all the time? Play-
ground, a language [worked on at Alan Kay's Vivarium
project, was an attempt to do just that. It used dependency
as its only control abstraction. Because Playground was a
pure abstract control language, it threw the two biggest
drawbacks of dependency into high relief: debugging and
performance.

There are two problems with debugging update messages.
The first is in the debugger. It takes a long time to single-step

19.

VoL. I, No. 9: JuLy/AuGusT 1992

20.

B SMALLTALK IDIOMS

through code which does an update. You have to go through
all the intermediate steps of the implementation for each de-
pendent. (The real implementation is considerably more com-
plicated than the one outlined above. See the section called
Gory Details for the, well, you know.) If you have lots of de-
pendents and only one of them is intetesting this can be te-
dious and frustrating.

The browser also does little to help debug dependency. If
you have symbols built in to your implementations of update:
you can at least use senders (from the Launcher window) to
find out where they are used as parameters to changed:. If you
are implementing a pluggable view, however, the symbol will
only show up in the user interface code which creates the
view. From this it is often hard to see how an update will
be triggered. A trick I use is to add "Transcript er; show: aSym-
bol” as the first line of the update: method I am interested
in. I can then see all the update messages and the order in
which they arrive.

A less compelling, but occasionally fatal, drawback of de-
pendency is performance. Unlike a message send, which every
part of the Smalltalk implementation is tuned to make
efficient, changed messages have to go through several layers
of invocation to get to their recipient. If you have lots of de-
pendents, most of whom aren’t interested in most updates, you
can spend enormous amounts of effort creating a little activ-
ity. A related minor annoyance is that all those layers of invo-
cation tend to clutter performance profiles, especially if you
have several layers of updates happening.

Since dependency has significant costs associated with it,
when is it worth using? The one clear case is when you are im-
plementing new views or models. You need dependency so
your code fits well with the rest of the system. Also, depen-
dency makes your models more reusable by insulating them
from the precise details of the intetface or interfaces that are
viewing them.

Other than models and views in the traditional sense, you
should use dependency anywhere you want an object to be
thoroughly insulated from the environment in which it oper-
ates. Any object that you know will be used in a variety of ways
and that you want to keep clean is a candidate for dependency.

When is dependency being abused? Here are some signals
that you have gone too far:

® An action spawns several updates and their order matters
* You forget which symbols mean what
® Your update messages create an infinite loop
® You find update messages that aren’t handled by anyone
When your code begins exhibiting any of these symptoms,
it is time to revisit the decision to use dependency. You may
discover that one of the connections you are making always

works out to use exactly one object, in which case you can re-
place the dependency with a direct reference and message

sends. Or you may have a collection of objects that all re-
spond to the same messages, so you can store a collection and
use direct messages.

THE GORY DETAILS

The dependency implementation in Objectworks \ Smalltalk
release 4 is more complicated than the one outlined above.
There is a variant of the update method that takes three pa-
rameters: an aspect, an optional parameter, and the changing
object. Changed: sends changed:with:, which sends
update:with:from: which by default sends update:with: which
sends update:. All of these intermediate steps add greatly to
the functionality and complexity of dependency. However, in
my opinion, if you use all the available generality of the three-
parameter version of update: you are stressing what was in-
tended to be a very simple mechanism, and you are likely to
run into trouble.

The implementations of addDependent: and removeDepen-
dent: in Object are much like the ones above. They have a seri-
ous flaw. If an object has been registered as a dependent and it
fails to remove itself, or if an object gains dependents that are
not removed, it cannot be garbage collected because it is re-
ferred to from a global variable. To deal with this problem,
there is a subclass of Object called Model which adds an instance
variable, dependents, and overrides addDependent: and re-
moveDependent:. Since the model is not referred to globally, it
is easier to get it garbage collected; once it has been collected,
it no longer refers to its dependents, so they become candi-
dates for collection.

A final nuance of the implementation of dependency is the
use of DependentsCollection, a subclass of array. If a Model has
only a single dependent the value of its instance variable de-
pendents is that dependent. Dbject>>changed:with: sends
update:with:from: and off to that dependent and everything
works. If there is more than one dependent then dependents is
a DependentsCollection, which overrides update:with:from: to for-
ward the message to each of its elements. This little trick saves
an additional object when there is only one dependent.

CONCLUSION

We have seen how abstract control structures, implemented
by Smalltalk dependency mechanism, can reduce the strength
of the connection between two objects. This can lead to en-
hanced reusability. Because it is outside the language and is
not directly supported by the programming environment, ex-
cessive use of dependents can make programs hard to read and
debug, and can lead to performance problems. &

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPars Computer. He is also the
founder of First Class Software, which develops and distributes re-
engineering products for Smalltalk. He can be reached at P.O. Box
226, Boulder Creek, CA 95006 or kentb@maspar.com.

THE SMALLTALK REPORT

ETTING REAL

Creating subclasses

lass hierarchies are a way to capture variations and

specializations. A subclass is generally a more special-

ized kind of entity than its superclass. For example,
the class Sphere is a subclass of the class Solid. If we needed a
representation for pyramids, we would create a new subclass,
Pyramid, whose superclass is Solid.

In this example it is easy to decide how Pyramid fits into the
hierarchy because there is an abstract superclass. This abstract
superclass is a generalization representing different kinds of
solids. Often the decision about whete to insett a new class in
the hierarchy is not straightforward. This column explores
strategies for placing subclasses in a hierarchy and conse-
quences of the placement.

BENEFITS

Well-formed class hierarchies are those in which functionality
is factored into a number of classes. Subclasses are specializa-
tions, and superclasses are generalizations. When functionality
is factored into hierarchies, classes are more reusable and main-
tainable. Highly factored hierarchies are also easier to extend.

HEURISTICS

A significant part of creating subclasses is choosing the most
appropriate superclass. It is almost always better to inherit be-
havior rather than reimplement behavior, though not at the
cost of inheriting inappropriate behavior. In order to inherit
the greatest amount of appropriate behavior, we use two
heuristics to select candidate superclasses.

HEURISTIC ONE

Look for a class that fits the “is a kind of” or “is a type of” rela-
tionship with your new subclass. Often it helps to make this
heuristic into an English question. For example, we can ask
the question, “Is a pyramid a kind of solid?”

Documentation describing a class often helps you undet-
stand exactly what the class represents. Because of your un-
derstanding of classes that you implemented, it is much easier
to insert new classes into hierarchies that you have devel-
oped. Personal knowledge of the class hierarchy can substi-
tute for class documentation.

HEURISTIC TWO
Look for a class with behavior that is similar to the desired be-

Juanita Ewing

havior of the new subclass. In this heuristic you must look at
the methods or good documentation for the methods. Often,
just the message selectors will give you enough information to
reject many inappropriate classes.

BEHAVIORAL INHERITANCE VS.
IMPLEMENTATION INHERITANCE

The two heuristics we have presented are oriented toward
class hierarchies based on behavior. This kind of inheritance
is known as behavioral inheritance. In these hierarchies a sub-
class and its superclass have a subtype relationship. That is,
the subclass supports all the behavior that the superclass sup-
ports, and the subclass can add new behavior. Any use of an
instance of the superclass can be replaced by the use of an in-
stance of the subclass. Some examples from Smalltalk class li-
braries are: RecordingPen is a subclass of Pen, Time is a subclass of
Magnitude, Integer is a subclass of Number, and WildPattemn is a
subclass of Pattern.

Inheritance can also be used in a more pragmatic fashion,
in which a class is placed in a hierarchy because of the desire
to inherit code and implementation rather than behavior. In-
heritance used in this fashion is called implementation inheri-
tance. Most class libraries also have examples of this kind of
inheritance: Process is a subclass of OrderedCollection, and Debug-
ger is a subclass of Inspector.

BUSROUTE EXAMPLE

An example involving bus routes will illustrate the different
kinds of inheritance. In this example, we need to create a
class to represent a bus route, which is used to inform the
bus driver and passengers of the bus’ path through the city.
A bus route is a collection of bus stops, in a particular order.
A bus route needs the ability to compose the route out of
bus stops, to supply a summary report on the route's stops, to
determine how many intermediate stops there are between
two stops, and the fare from one stop to another. The fare
computation may vary depending on which zones the stops
are located in.

People who are familiar with Smalltalk class libraries will
immediately start to think of the class OrderedCollection when
they read the description of a bus route. OrderedCollection is a
concrete collection class that holds elements in order, similar
to a stack or queue. The elements can be of any type.

VoL. 1, No. 9: Jury/AucusTt 1992

21.

B GETTING REAL

Ordered
Collection

BusRoute

Figure |. BusRoute as a subclass of OrderedCollection.

IMPLEMENTATION INHERITANCE ALTERNATIVE
We need to make a new class, which we will call BusRoute.
Should BusRoute be a subclass of OrderedCollection? As a subclass
of OrderedCollection, it would inherit the implementation that
maintains elements in order. It would also inherit the code for
adding and removing elements which can be used to compose
the bus route. This relationship is shown in Figure 1.

It is useful to determine whether this placement of Bus-
Route uses behavioral inheritance or implementation inheri-
tance. Is a bus route a kind of ordered collection? No. In-
stances of OrderedCollection have an implicit responsibility to
hold objects of arbitrary type, and a bus route holds only bus
stops. A BusRoute is not a generic data structure class.

[s all the behavior of OrderedCollection appropriate for Bus-
Route? No. According to the description, bus routes shouldn’t
respond to the do:, select: or reject: messages, or many of the
other generic collection messages. Therefore, BusRoute is not a
subtype of OrderedCollection. Placing BusRoute as a subclass of 0r-
deredCollection is an example of implementation inheritance, in
which code and implementation are usefully inherited.

Object

BusRoute

Figure 2. BusRoute as a subclass of Object

BEHAVIORAL INHERITANCE ALTERNATIVE

Another alternative is to make BusRoute a subclass of some
other class. A bus route is a kind of route. Are there any route
classes in the Smalltalk library? If the answer is no, then make
BusRoute a subclass of Object. The behavior of Object is appropri-
ate for all objects, so Object is selected when there isn’t any
other appropriate superclass. This alternative is an example of
behavioral inheritance because all the behavior in Object is ap-
propriate for BusRoute. The inheritance relationship is shown
in Figure 2.

In this alternative, BusRoute would collaborate with Ordered-
Collection to store bus stops in order. Figure 3 illustrates the
collaboration between the two objects. An instance variable,
busStops, references an instance of OrderedCollecHon thar stores
bus stops. [nstances of BusRoute can relay messages to the in-
stance of OrderedCollection referenced by the busStaps instance
variable.

OVERRIDE INAPPROPRIATE METHODS
In the first alternative, in which BusRoute was a subclass of 0r-
deredCollection, we proposed using inherited public methods
such as add: and remove: to compose the bus route. But this is
not a very good way to compose bus routes because bus
routes would be subject to accidental and inappropriate
modifications. Further, if a bus stop is added to a route, then
what tesults is a new and different route. It should not be the
same object.

Many methods must be overridden to disallow in-place
modifications. For example, the add: method is public and
should be overridden to prevent changes.

BusRoute subclass of OrderedCollection
instance methods

add: aBusStop
“Override inherited public method to produce an error.
Bus stops cannot be added to a route.”

Aself error: ‘Bus routes cannot be modified.’

In the second alternative, in which BusRoute is a subclass of
Object, we don’t need extra methods to ovetride inappropriate
behavior.

CREATE NEW BUSROUTES
A more appropriate way to compose bus routes disallows in-
place modifications. We need to make an instance creation

Ordered
BusRoute }|—————p

Collection

Figure 3. BusRoute collaborates with OrderedCollection.

THE SMALLTALK REPORT

method that creates an initialized bus route. To support the
instance creation method, a private instance method is
needed to set the collection of bus stops.

BusRoute subclass of Object
class methods

withAll: collection0fBusStops
“Create a new instance of the receiver initalized
from <collectionOfBusStops>.”

~self new busStops: collectionOfBusStops
instance methods

busStops: collectionOfBusStops
“Private - Set the collection of bus stops.”

busStops := collection0fBusStops

Classes that collaborate with BusRoute need to access the
bus stops to select stops based on some criteria. The class Bus-
Route needs to provide access to the bus stops and protect the
private collection of bus stops from modification. The in-
stance method busStops retums a copy of the collection refer-
enced by the instance variable. This way collaborators can
modify the returned collection of bus stops without any side
effects on the bus route.

BusRoute subclass of Object
instance methods

busStops
“Return a copy of the collection of bus stops.”

~busStops capy

New bus routes can be created using these methods. The
following code illustrates the creation of a new route based on
the bus stops from another route:

shoppingStops := downtownRoute busStops.
shoppingStops removeFirst.
derivedRoute := BusRoute withAll: shoppingStops

REUSE IMPACTS
One of the benefits of the behavioral inheritance alterna-
tive is that it is easy to change the collection characteris-
tics. It is easier to modify the initialization code that allo-
cates an object for an instance variable than to rearrange
the hierarchy in order to get different collection character-
istics. If you are forced to rearrange the hierarchy, then col-
laborators of BusRoute must change also. This is because dif-
ferent collection classes respond to different messages, and
the inherited messages are directly accessed by the collabo-
rators of BusRoute.

Also, new subclasses of BusRoute can be created based on
collection characteristics. One subclass could support set se-

Object Oriented Database
Management System

Zi]pw
OI)iect

The ONLY ODBMS for Smalltalk
0 & f(t:l)ll'” u.ntlosr $1000 f,llﬁt nil:liverl;erlintent
- ject Dtorage on Disk via a Zi
riented B e o Rtrioer] Enp!
Memory“' Hiierarchical
for Smmalléall/V l Applicn(:ions
and Semalltalk-80 Limited 12)837.2117

All Pla¢forms $199.95 12407 Mopao E.,., N., Suite #100-266
Source Code Included Amstin, TX 78758

mantics, in which no duplicates are allowed. Another could
support sorted collection semantics. Each subclass can be
implemented by simply overriding the initialization
method. This is much more awkward with implementation
inheritance.

In the behavioral inheritance alternative, the exact col-
laboration between BusRoute and OrderedCollection is clear be-
cause messages ate relayed to the instance of OrderedCollec-
tion from BusRoute. In the implementation inheritance
alternative, there is no collaboration. An examination of
BusRoute does not determine which methods from OrderedCol-
lection are used by BusRoute. Instead, collaborators of Bus-
Route must be examined. Furthermore, because not all in-
herited messages are appropriate, other developers will not
know which messages they can send to BusRoute, This makes
it much more difficult to extend and maintain the applica-
tion containing BusRoute, and to reuse BusRoute in related
applications.

SUMMARY

Use behavioral inheritance whenever possible, because the re-
sulting subclasses will be more reusable and easier to maintain.
In locating subclasses in a hierarchy, use the is-kind-of criteria
and similar behaviors to guide your selection. Only after locat-
ing a subclass based on behavior should you examine imple-
mentation details.

It is okay to change the superclass. After some implemen-
tation and testing, it is quite common to revisit class place-
ment in the hierarchy. Reexamining placement can occur in
conjunction with reorganizing the entire hierarchy and with
the addition of new classes. B

Juanita Ewing is a senior staff member of Digitalk Professional Services
(formerly Instandations Inc.). She has been a project leader for several
commercial object-oriented software projects, and is an expert in the
design and implementation of object-oriented applications, frameworks,
and systems. In a previous position at Tektronix Inc., she was respon-
sible for the development of the class libraries for the first commercial-
quality Smalltalk-80 system. Her professional activities include Work-
shop and Panel Chairs for the annual ACM OOPSLA conference.

VoL. 1, No. 9: Jury/AuGusTt 1992

23.

24.

AB REPORT

Justin O. Graver

Smalltalk research at the

University of Florida

Reports of current work in Smalltalk
taking place in leading university and
research laboratories.

he main focus of Smallralk research at the University
I of Florida is to demonstrate the viability of evolution-

ary prototyping as an alternative to the traditional wa-
terfall madel of software development. Specifically, we are
working on a variety of enhancements to the Smalltalk pro-
gram development environment (PDE). These include new
change management tools and techniques, application mod-
ules, and a string-to-object translator generator. We are also
working on the more abstract tasks of understanding, formaliz-
ing, and validating evolutionary prototyping as a new software
development methodology.

Smalltalk was originally designed as a programming envi-
ronment for a single user. As Smalltalk moves slowly into the
arena of large-scale industrial software applications produced
by tens (or hundreds) of programmers, the need for more pow-
erful change management and versioning capabilities is appar-
ent. The change management tools project is addressing this
need in a variety of ways. As a prelude to using a commercial
database for source code management, we have broken up
Smalltalk’s monolithic source code file into several smaller
module files. We've built tools for creating, loading, version-
ing, and maintaining large code libraries of module files.
These tools automatically determine the complex dependen-
cies thar exist between library modules so that modules get
loaded in the correct sequence. We have also chosen to exper-
iment with the class as the smallest unit of versioned granular-
ity (all change management tools available for Smalltalk
PDEs that we know of use individual methods as the lowest
level of granularity). Since large Smalltalk applications easily
grow to include hundreds of classes with tens of thousands of
methods, we felt that classes might provide a more convenient
and manageable level of granularity.

Closely coupled with the change management improve-
ments is the notion of application modules. There is a widely

recognized need for separate name spaces within a single
Smalltalk image. Our application modules provide user-
defined statically scoped name spaces. This permits enforce-
ably private classes and the specification of well-defined
module interfaces. We also plan to implement statically en-
forceable private methods. The ultimate goal of the module
system is to support modules with statically typed public in-
terfaces. These typed interfaces would allow each module to
be independently compiled and optimized, using the TS
(Typed Smalltalk) compiler. We have designed and proto-
typed a typed module compiler. Given type declarations for
only public intetface messages and primitives, the module
compiler statically determines all intermediate type informa-
tion necessary to compile and partially optimize the module
(further optimization can be performed when different mod-
ules are linked together). The module compiler uses a tech-
nique called abstract interpretation to trace the effects and
requirements of each public interface message. This tech-
nique also handles arbitrarily recursive methods. To provide
better support for both TS and the module compiler, and to
fuel additional research into object-oriented compiler re-
search, we have designed and implemented a string-to-object
translator generator tool called T-gen. T-gen provides a
comprehensive set of translator generator options including
EBNF grammar specification, fully automatic keyword detec-
tion, tracing and consistency checking, LL and LR parser
generation, support for automatic generation of parse trees,
and automatic generation of T—gen-independent scanner
and parser classes.

A Smalltalk parser (to be used as the new TS front end)
is just one of the projects that has been successfully built us-
ing T-gen. We have also used T-gen to implement a com-
piler for an instructional language called Tiny. Tiny has
been used for over five years in the graduate and undergradu-
ate compiler courses at the University of Florida. We hope
to use the new Smalltalk implementation of Tiny to further
instill object-oriented principles into the CIS curriculum.
These research projects have been primarily funded by the
Software Engineering Research Center (SERC). SERC is an
NSF sponsored Industry/University Cooperative Research
Center. Researchers from Arizona State University, Purdue
University, and the University of Florida are working jointly

THE SMALLTALK REPORT

with over a dozen major companies to solve current prob-
lems in software engineering. For more information about
SERC contact Tammera Reedy by phone at 904.392.1520,
or by e-mail at ter@ufl.edu. Much of this research is an out-
growth of the ongoing Typed Smalltalk project at the Uni-
versity of Illinois at Urbana-Champaign. We maintain ac-
tive collaboration with that team, which is lead by Ralph
Johnson. This successful interaction has been greatly facili-
tated by the sharing of tools developed at both institutions.
T-gen tuns under ParcPlace's Objectwarks/Smalltalk Release
4 and is available via anonymous ftp from the University of
Illinois Smalltalk Archives (st.cs.uiuc.edu) in the directory
/pub/st80_r4/T-genl.0.

xSRAPL. Smalitalk/V users: the tool W
ﬁA for maximum productivity ,

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.

° Keep a history of previous versions; restore them with
a few keystrokes.

° View class hierarchy as graph or list.

° Print applications, classes, and methods in a formatted
report, paginated and commented.

° File code into applications and merge them together.

° Applications are unaffected by compress log change
and many other features..

Imager History

Justin Graver, Ph.D., is currently a staff engineer at Motorola's Soft-
ware Technology Center where he is working on next-generation
CASE technology using Smalltalk. Prior to that, he was an assistant
professor at the University of Florida. He can be reached at Motorola
Software Technology Center, 1301 E. Algonquin Rd, Schaumburg,
IL 60196, by phone at 708.576.1916, or by email at
graver@comm.mot.com.

Utilities.. Application printing | and more..

CodeIMAGER™ V286, VMac $129.95

VWindow & VPM l,§5249.95

Shipping & handling: $13 mail, §20 , per copy
Diskette: []32 [] s

SixGraph™ Computing Ltd.
formerly ZUNIQ DATA Corp.
2035 Cdte de Liesse, suite 201
Montreal, Que. Canada H4AN 2M5

514) 332-1331, Fax: (514) 956-1032

Tel: (
CadeIMAGER is & reg. trademark of SinGraph Computing Ltd.
Smallealk/V is a reg. trademark of Digitalk, Inc.

| |

PRODUCT
ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested in being included in this feature should send press releases to our editorial offices, Product Announcements Dept., 91
Second Ave.,Ottawa, Ontario K1S 2H4, Canada.

Synergistic Solutions Inc. has announced additional platform support
for SmalltalldSQL, the poruable database interface for Smallalk. The
product works in conjunction with the latest releases of ParcPlace Sys-
tems’ Objectworks\Smalltalk and Digitalk Smalltall/V. The product enables
development of graphical user interface (GUI) applications which access
information stored in relational databases.

Smallall\SQL provides direct Sybase connectivity for Windows 3.0,
Macintosh, Sun, RS/6000 and other UNIX platforms. Direct Oracle sup-
port is currently available for Windows 3.0 and Sun SPARCstations. Gupta
and NetwareSQL support is available for the Windows 3.0 and O5/2.

For more information, contact Synergistic Solutions Inc., 63 Joyner Dr,
Lawrenceville, Nj 00648, 609.586.0025.

Logic Arts announces VOSS/Personal, two low-cost versions of the Vir-
tual Object Storage System for Smallall/V 286 and Smalltalk/V Windows.
VOSS/Personal is fully compatible with the equivalent main product
line, and can read and write the same virutal object spaces, providing
transparent access to persistent Smalltalk objects of any class on disk,
without the need for a separate DBMS programming language. It has the
same transaction management of updates, the variable-size cache of virtual
objects in the image, and most of the same VirtualDictionary and Virtual
Collection classes for managing collections larger than the image.

For more Information, contact Logic Arts Ltd, 75 Hemingford Rd, Cambridge,
England, CBI 3BY, +44 223 212392, fax +44 223 245171.

Servio Corp. and Hewlett-Packard Co. announced that Servio has
been named an HP Value-Added Business Partner and that Servio's
GemStone object database and GeODE object development en-
vironment will be made available for the HP Apollo 9000 Series 700
PA-RISC-based workstation family in the third quqrter of 1992
GemStone is the only ODBMS to support applications written in C,
C++, and Smalkalk. GemStone’s Object Development Environment,
GeODE, is the first code-free development environment for visually and
graphically designing and building ODBMS applications.
For more information, contact Servio Corp., 950 Marina Village Parkway,
Suite 110, Alameda, CA 94501, 510.814.6200.

VC Software Construction has announced enhancements to their ob-
ject-oriented damabase management system, ODBMS. The package sup-
ports most Smallalk languages. Its storage facilities of objects can be used
during the development of Smallwalk applications as well as by a standalone
database application. ODBMS stores items in opposition to relational
databases’ arbitrary complex data types. There is almost no limitation to
the structure and length of these items.

ODBMS/SQL uses the optimized query algorithms of SQL to retrieve
objects faster. The integration of the access to relational databases into
ODBMS avoids redundancy in stored items and enhances the use of
Smalltalk in the commercial environment.

For more Information, contact: VC Software Construction, Petritorwall 28,
3300 Braunschweig, Germany, +49 531 24 24 00, fax +49 531 24 24 0 24.

25.

VoL. 1, No. 9: JULY/AUGUST 1992

26.

Highlights

Excerpts from industry publications

WORDS OF WISDOM

...Can you say object-oriented?...How about real-time systems, graphi-
cal environments, multimedia, or CASE technology! If you want to get
laid off, don’t mention or learn these topics. Even better, tell anyone
who will listen that object-oriented development is only a fad...

Eleven ways to get laid off, Karen Hooten, COMPUTER LANGUAGE, 3/92
SMALLTALK

...You must realize that | use a variety of languages in my work:
C++, Smalltalk, and Ada, in particular. | use Smalltalk for prototyp-
ing, and here, its dynamic binding allows me to throw together pro-
totypes quickly, with blatant disregard for any kind of type of safety
or robustness. For the kind of experimental development | do, this
is precisely the kind of flexibility | need...

Interview with Grady Booch, THE C++ JOURNAL, vol.2/no.1, 1992
STRATEGIES

...OOP-based software will present courts with challenging questions
concerning, among other things, infringement and risk allocation. As
the courts wrestle with these issues, suppliers, developers, and users
must be careful that agreements with one another address, to the ex-
tent possible, their specific rights and duties in this changing area.

Making sure that OOP doesn’t become oaps, Robert V. Hawn, BUSINESS
JOURNAL SERVING SAN JOSE AND THE SILICON VALLEY, 3/16/92

MULTIMEDIA

SimGraphics Engineering Corp. is changing the face of animation. Us-
ing a powerful graphics workstation, a face armature, an object-
oriented toolkit, and one of the world’s most famous software game
characters, the company is ushering in the day when real-time anima-
tion will largely replace frame-by-frame animation. “Obviously, you al-
ways will be able to get higher resolution from frame-by-frame anima-
tion, but there will be a point when both software and hardware will
permit most of the animation that now is being done frame by frame
to be done in real time,” says Steve Glenn, vice president of New
Business Development for SimGraphics of South Pasadena, CA...

The many faces of Mario, Margaret Seaborn, WORKSTATION NEWS, 5/92

-..Object-oriented programs already exist for imaging, though they
aren't well publicized. This is unfortunate, as object-oriented pro-
gramming will affect the growth of digital photography more than
anything else,..

Digital photography: changing for the better, fohn Larish,
PHOTO ELECTRONIC IMAGING, 4/92

...For multimedia computing, all the Dataquest survey respondents
felt there was still a lot to be done in providing application soft-
ware, increasing network data rates, providing wideband telecom-
munication networks, and finalizing standards. But despite these
unresolved problems, the multimedia juggernaut rolls on. “To
many, this looks like a tidal wave starting to swell,” says AT&T's
[Arnold] Englander. Certain elements are in place, he says: the
readiness of the telecommunications infrastructure; the emer-
gence of critical video-compression and telecom standards; ad-
vances in image compression, VLS| technology, and object-oriented
programming; and the high costs of travel in a business environ-
ment that's ever more global in scope. More rapidly than expected

or imagined, the elements that must combine to make multimedia
a reality are coming together. And “the ambitions of diverse busi-
nesses competing and cooperating in the convergence of telecom-
munications, computing and TV,” as Englander puts it, guarantee
that the ride will be an interesting one.

En route to collaborative comnputing, Samuel Weber, ELECTRONICS, 4/92

CREATIVE IMPLEMENTATION

...If no one knows what is going on inside an object’s functions,

and no one can tamper with its data without authorization, then an
object is highly secure. It polices its own borders, responding only to
authorized messages...Since an object has boundaries, you can own it
You can reward or punish the persons who designed it. You can rent
out the use of the object without telling how it works. You can see a
certain appeal here to the corporate mind...

Object-oriented programming: what's the big deal?, Birrell Walsh,
MICROTIMES, 3/92

...I've discovered that the single greatest challenge of tackling a new
object-oriented program is keeping a vision of the program that's
accomplishable. As | was writing this program, | have to admit that at
times | was thinking of an interactive CD-ROM-based multi-media ex-
travaganza. Luckily, common sense and deadlines prevailed...

Expert’s toolbox: templates of doom, Larry O’Brien,
THE CHICAGO PURCHASER, 5/92

TOOLS AND LIBRARIES

...There’s much more to realizing the benefit of a class library than
simply buying one at random and throwing it at a development prob-
lem (or team). There are three general problems that can make it
difficult to make good use of class libraries. First, since you're ex-
pected to derive new classes, what’s to prevent you from creating a
mess!.. A second problem occurs when you try to incorporate a class
library into an existing application. You may have an optimal applica-
tion, but the library designer had a unique purpose in mind: to create
the optimal library design. Are the two designs compatible?...Finally,
different vendors may have differing ideas about optimal library de-
sign.There isn’t really any such thing as a standard for class
libraries...All these problems have one trait in common: inconsistency.
None of the problems are really the fault of class libraries per se; it's
really the way we create and use them along with our own under-
standing of the proper approach to object-oriented program develop-
ment that determines whether class libraries are a major benefit...

Development tools, Mike Stewart, COMPUTER SHOPPER, 3/92

...In the future, access to object libraries may determine which devel-
oper (or company) is able to serve clients most adequately. It is
hoped that the elegance of one’s code, long a measure of the quality
of one’s product, will remain the determinant of success in our indus-
try. However, this may be the case only if no one company or class of
companies is able to dominate the source of software objects. Ina
perfect world, there will be a plentiful supply of public domain objects
accessible to everyone, via the same channels from which we are all
now accustomed to getting our sources.

Concerning your career, fim Johnson,
UNIFORUM MONTHLY, 3/92

THE SMALLTALK REPORT

ANALYSIS AND DESIGN

...[Rob Dickerson, VP and General Manager of The Database Busi-
ness Unit at Borland International]: | think you've got to learn to do
a class hierarchy. The first time you do your class hierarchy, you
write out what looks obvious, and you fiddle with it, and you realize
it's not the best one. So you redesign it, and by the time you're
done, the class hierarchy you end up with was not what you initially
thought. And there’s a bunch of tricks to it—how to identify a
meta-class, factoring, the notion of collection classes, how to design
a class hierarchy, but that's the main design effort. At least, that's
what 've seen our R&D guys have to get their hands around. [Jacob
Stein, Chief Technologist for Servio Corp]: And there’s lots of
trade-offs, trade-offs between reusability, and a natural fic to the sys-
tem you're modeling. They might not always be exactly the same.
There may be a trade-off between designing for reuse and designing
for this particular application, and you have to take that broader
scope. It's said that people don’t get classes right until they’ve been
implemented about three times, which might mean that some of the
interfaces will change during that course of time...

Roundtable: experts speak on object-oriented development!, fohn L Hawkins and
Dian Schafthauser, DATA BASED ADVISOR, 4/92

DISTRIBUTED ENVIRONMENTS

..."Object technology offers a second-generation model for
client/server, with a clear role for a powerful client as well as a
powerful server,” said David Gilmour, executive vice-president of
sales and marketing for Versant Object Technology, Menlo Parlk,
Calif. By raising the power of an individual object to support trans-
parent peer-to-peer communication via messages, the idea of
client/server extends to a more robust notion of abjects. Under
this notion, objects could at one point make requests as clients to
servers, then at other points act as server to other clients. This al-
lows a modular distributed system that may be more responsive to
change. Using objects as the unit to be distributed may allow devel-
opers to save implementation issues—such as distribution—until
after the design is complete. “This is because object technology is
an inherently parallel technology that naturally thrives in a dis-
tributed multiprocessing environment,” said Dr. David Taylor, prin-
cipal of Taylor Consulting, San Mateo, Cali...

Objects can set the stage, Eric Aranow and Tom Kehler,
SOFTWARE MAGAZINE, 5/92

...Object-oriented DBMSs combine database technologies and object-
oriented programming to provide greater modeling power and flexibil-
ity to programmers of data intensive applications. Over the last five
years, OODBMSs have been the subject of intensive research and ex-
perimentation, which led to an impressive number of prototypes and
commercial products. But the theory and pracrice of developing dis-
tributed OODBMSs have yet to be fully developed. Distributed envi-
ronments will make the problems even more difficult In addition, the
issues of data dictionary management and distributed object manage-
ment have yet to be dealt with. However, distribution is an essential
requirement, since applications that require OODBMS technology typ-
ically arise in networked workstation environments...However, dis-
tributing an object-oriented database within a network of workstations
(and servers) is becoming very attractive. In fact, some OODBMSs al-
ready support some form of data distribution transparency...

Distributed database systems: where were we?, M. Tamer Ozsu and Patrick
Valduriez, DATA BASE PROGRAMMING & DESIGN, 4/92

As if the jump to a client/server information system paradigm were
not tough enough, many companies are looking at moving to object-
oriented programming (OOP) as well. By my measure, the OO mar-
ket today is about where the client/server market was three to four
years ago, and the two are even starting to merge in some areas.

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management
for all Smalltalk/V applications
® Transparent access to all kinds of Smalltalk objects on disk.
® Transaction commit/rollback of changes to virtual objects.
® Access to individual elements of virtual collections for ODBMS up
to 4 billion objects per virtual space; objects cached for speed.
® Multi-key and multi-value virtual dictionaries for query-building
by key range selection and set intersection. (np)
® Works directly with third party user interface & SQL classes etc.
® Class Restructure Editor for renaming classes and adding or
removing instance variables allows applications to evolve. (np)
® Shared access to named virtual object spaces on disk; object
portability between images. Virtual objects are fully functional.
® Source code supplied.

Some comments we have received about VOSS:

“...clean ...elegant. Works like a charm.”
—Hal Hildebrand, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability.” —Raul Duran, Microgenics Instruments

VOSS/286 $595 (Personal $199), VOSS/ Windows 5750 (Personal $299)
(Personal versions exclude items marked (np)).

Quantity discounts from 30% for two or more copies. (Ask for details)
Visa, MasterCard and EuroCard accepted. Please add $15 for shipping.
Logic Arts Lid 75 Hemingford Road, Cambridge, England, CB1 3BY
TEL: +44 223212392 FAX: +44 223 245171

logic

ARTS

They are complementary technologies that, when combined, can give
a company a formidable competitive advantage...

On the front end: Report card on Enfin/2, Robert C. Boft, DBMS, 4/92

DATABASES

...In the world of textual data, relational databases worked fine.
Text gives you structure and form in the way of character strings
and numbers. This is something an RDBMS can handle quite well.
Unfortunately, when you start dealing with multimedia data types—
where you have to deal with massive amounts of this data, many of
them being object-based—an RDBMS falls flat. By contrast, object-
oriented databases come out way ahead of RDBMSs when dealing
with heterogeneous, complex data involved in complex relation-
ships. More importantly, when you start getting applications de-
signed to integrate these multimedia data types into their programs,
it will be important for them to include, as a part of the applica-
tions, an object-oriented database to help them handle these new
types of object based data. At first, you will see these object-based
databases added to authoring products, then to presentation, draw-
ing and desktop-publishing products. They will also become impor-
tant to any word-processing and next generation on-screen docu-
ment communications. Ironically, it will not be the traditional
database suppliers that will help these independent software ven-
dors use a database effectively in this multimedia-driven world.
Even though they all have object-based databases in the works, un-
less they are able to perfect them soon and make them work har-
moniously with their RDBMS programs of today, they could be left
out in the cold. In the future, the database will be embedded in ma-
jor applications so they can manipulate these stored images, video
and sound and integrate them into the heart of the app. Whether
anyone likes it or not, multimedia computing is going to revolution-
ize the way we use computers.

The soft view: multimedia simply spells a new digital data type, Tim Bajarin,
COMPUTER RESELLER NEWS, 4/20/92

VoL. 1, No. 9: JuLy/AuGusT 1992

27.

SHOOT-OUT

WINDOWS AND 08/2:
PROTOTYPE TO DELIVERY
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V, you don'.

Start with the prototype. There’s no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It’s
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you cantt
make changes that break the system. It’s that safe.

And when you'e done, whether you'e writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just
$499.95.

So take a look at
Smalltalk/V today. It’s time to make

that prototyping time productive.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their respective holders.

Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO'S TALKING

HEWLETT-PACKARD NCR
HP has developed a network trouble- NCR bas an integrated test program develop-
shooting tool called the Network Advisor. ment environment for digital, analog and
The Network Advisor offers a compreben- mixed mode printed circuit board testing.
sive set of tools including an expert system,
statistics, and protocol decodes to speed MIDLAND BANK
problem isolation. The NA user interface is Midland Bank built a Windowed Technical
built on a windowing system which allows Trading Environment for currency, futures
maultiple applications to be executed and stock traders using Smalllale V,
simultaneously.

KEY FEATURES

B World’s leading, award-winning object-
oriented programming system

B Complete prototype-to-delivery system

8 Zero-cost runtime

M Simplified application delivery for
creating standalone executable (EXE)
applications

B Code portability between Smalltalk/V
Windows and Smalltalk/V PM

B Wrappers for all Windows and OS/2
controls

B Support for new CUA "91 controls for
05/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynarnic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

B Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive samples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

B Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

This Smalltalk/V Windows application
captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications —and they're portable to
Smallealk/V Windows.

	By Article Title
	Abstract control idioms
	Creating subclasses
	Implementing Peer Code Reviews in Smalltalk
	Lab Report: Smalltalk research at the University of Florida
	Quality assurance issues for Smalltalk-based applications
	What's wrong with OOP?

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Graver, Justin O.
	Klimas, Ed
	Knight, Alan
	Sridhar, S

	By Topic
	Getting Real
	comp.lang.smalltalk: What's wrong with OOP?
	Smalltalk Idioms

