
The International Newsletter for Smalltalk Programmers

July/August 1992 Volume I Number 9

G
IMPLEMENTIN

PEER CODE

REVEVVSIN

SMALLTALK

By S. Sridhar
Contents:

Features/Articles
I Implementing Peer Code

Reviews in Smalltalk
by S. Sridhar

3 Quality assurance issues for
Smalltalk-based applications
by Ed Klimas

Columns
I 4 The13estof Chp.Lang.Srna/hallc

What’s wrong with 00P?
by A/an Knight

18 Smalltalk Idioms Abstract
control idioms
by Kent Oeck

2 I Getting Real:Creating subclasses
byjuanita Ew”ng

Departments
24 LabReportSmalltalk research at

the University of Florida
by@tin O. Graver

25 ProductAnnouncemenfi

26 Highlights
Elmalltalk programmers routinely read more code than they write. One of the

more difficult things in mastering Smalltalk is mastering the underlying

class libraries. The act of programming consists of “hunting” for the appro-
priate protocols in the appropriate classes. The hallmark of a good

Smalltalker is the ability to efficiently navigate the increasingly vast landscape of the class

libraries. It is very likely that a well-written class will be read many times over. Typicidly,

these classes serve as role models for people who aspire to be good Smalltalkers. In the

same vein, badly written classes that have to be used all the time serve as poor role mcxlels

and tend to propagate poor programming practices.

Code reviews are a critical software engineering activity. Research studies have shown

that code inspection alone can catch 75–%)% of the errors. Code reviews serve as a cri-

tique of a software component by someone other than the author of the component. Typi-

cally, reviewers are peers in the same organization who may or may not be on the deveh]P-

ment team. Different organizations employ different practices for implementing code

reviews. In traditional software organizations, rhe author prints out a listing of the modules

m be reviewed and circulates it to the review team. The reviewers mark it up using guide-

lines. They meet with the author in a face-to-face meeting a few days later where they pre-

sent and discuss the review comments page by page, The author is then left with the

daunting task of collating and integrating the comments of all the reviewers. h is quite

possible that more than one person has caught the same programming infraction; that

means multiple reviewers have spem time documenting the same problem and possibly

suggesting the same fixes. This is an unnecessary duplication of effort,

This article describes a code review process that is specifically geared to reviewing small
or large chunks of Smalltalk code. I’ll discuss extensive guidelines for effective code cri-

tique and review, and describe a rigorous process that we have adopted in our organization

to execute a comprehensive review,

THE PROCESS
My work group, like most Smalltalk work groups, uses a team software engineering tool to

manage the software development process. The tool we use is the ENVY/Developer envi-

ronment (hereinafter referred to as ENVY). This tool provides the facilities required for

the development and maintenance of large software systems. It provides sophisticated ver-

sioning, configuration and release management capabilities as well as mechanisms for co-

ordinating and integrating the software development activities of multiple developers. All

of the program development information including source code, compiled methods, mod-

ule dependency gtaphs, component ownership, versioning and configuration details are

stored in a shared repository. This repository is accessible to all members of the techniral

team. We use ENVY as a practical tool to aid in our code review process. It would be feasi-

ble to adapt this approach to code reviews in the context of other team development envi-

ronments as well.

At the outset of a project, we typically partition the tasks among the developers along
functional lines. For example, one developer may be working on specific domain abstrac-

cuminudm NC 8

meSnlamamRepofi
Editon
J.hnPughand hd Whiu5
Cuban Lhlverdq& ThQOb@t W@.

SIGS Punuamoiw
EDITORS’
CORNER

John Pugh Paul white
~-
Torn Anvood, ObIacrDaaiso
Grady M, sadond

George Boawoti, oigkdk
mad co%1~ Aga Comuidng
chuckDuff,Syn’Unw
Adele Gold- l?idace Systetm
Tom bvq o@vwa, InC

BarcmndMeyer, ISE

Mallir %gt+~ W@aod _

Shesl PrW+, Cc~ne SOftmra

P. Mkhael Sesshols, Vamam
El@me-avup, AThT Ball @

Dave Thamas, x Tech- karnadotul

~ SMAUTALK ~

Editorial Board
J. Andarwn, _
Adala GoHbew hrwaea sprain,
need Phlni-pa,KnOwrer&spwntrCorp.
Mike Taylor, OI@I
hW~Talw+ykmmdand

Columnists
JuanItsEwlrig,OIglnlk

Greg tlendiey, KnOwi+ SystUmcarp
EdKHnlas,LlnaaEr@mari~Inc
SmarmeSkubHc&oqecr Tachmlq lnd.

Eric Smii, hwiedga SFWJUcorp.
RebeccavvHa-ElrOck Olghanl

SiGS Publhtions Group, lraG
RichardP. Friedman
Fwndar& GmuPFWlsher

A#Productlon
KrisdnaJwkhadar, MamgiIIsE&or
PilgrimRd. Lzd. CreatheDIracdon

Karen Te+rgiah,WOdwdOnE&Or
JennifarEngbndw, ~. -hamr

Ciawhtion
Km Mercadq ~-
oiana Bs&vay,ctwhdmlaudn8ssr-lma@r
VW Mo* CbUdmwlAsskRna
JohnSehreibaf, ClrcuhrhnAsbmnt

M~n~AdvewWng

Diana MOrMde, Aawm EuaCLKw
HollyMeii, kam Ex6adva
Gerakheschafm, kdrraaxszks
SamhHamsron,Pnsnmbm-r
Carwl Pmhler.RwmdarBGr@eti

Adminlatmtion
David Chterp4, timw
cbh’eJOha@Ul,caOi%maf%rU&
Cindy ROppeJ.Cahwr.a Cadlnamr
Amysv PlqSSlal’4aqar
JwllfarFkher,PUblkMatlOnS
Helen NevriIng,wkninkmmwhkrmt

Narghelim n Melnck
GananlMwm@r
1
euse is the name of the game. Headlines shout. Marketing literature trumpets. Salesmen
ooze. Objects will solve your reuse problems. Not true, of course. Programmers solve
reuse problems.” So says Kent Beck in the prelude to his Smalltalk Idioms column in this
issue. Kent knows, as do most experienced Smalltalk programmers, only too well that
reuse does not come for free and is far from easy to attain. Developing truly reusable
components adds an extra dimension to the design and programming process, and addi-
tional time and skill is required.

What if we had access to a quality set of reusable components for objects for some ap-
plication domain? Would it now be easy to “assemble” new applications from these com-
ponents? Unless a great deal of thought has gone into the design and implementation of
the components (probably not), we will still need a Smalltalk guru to wire the pieces to-
gether. Here is a sample list of questions for which we would need affirmative answers.
Do we have the right components? Do the components have the required functionality?
Have they been fully tested? Do we have prefabricated components that model common
processes within the domain, or do we simply have a collection of low-level building
blocks? Have the components been designed with standard interfaces? Have they been
designed to work together?

Clearly, a number of things have to be in place before we can use a software-by-
assembly approach to application development. However, there are low of analogous
real-world examples where the benefits of this approach can be clearly seen such as the
assembly of personal computers or the manufacture of automobiles.

It’s this software-by-assembly approach to application development that Parts (formerly
LAFKit-Look and Feel Kit), a product currently under development at Digitalk, is at-
tempting to address. In his keynote address at Object Expo in New York City, Digimlk CEO
Jim Anderson teased the audience with a preview of the notions of software construction
from parts. Watch for more information on Parts in future issues of The Sma!hdk Report,

This issue features two significant contributions from recognized members of the
Smalltalk community that deal with the delivery of quality software. First, S. Sridhar re-
turns to The Snudhzd.kRe@rt with a description of a mechanism for carrying out peer
code reviews on Smallralk projects. As is the case with all software development,
whether done using Smalltalk or any other language and environment, code reviews are
a vital to ensuring the quality of deliverables. As Sridhar points out, “code reviews
should be viewed as a rigorous software enginering activity.” His discussion focuses on
two aspects of code reviews, namely the process by which they should be carried out and
a set of guidelines to be followed by reviewers, Second, Ed Klimas’ article discusses many
issues that make testing Smalltalk systems unique and puts forward a number of guide-
lines and strategies for planning for and documenting the development of test suites.

Also in this issue, Juanita Ewing addresses many of the problems involved in carrying
out proper subclassing within Smalltalk applications. Always a confusing issue for people
new to Smalltalk, she describes the differing goals subclassing is used to satisfy and pro-
poses hueristics for making decisions concerning subclassing decisions. Alan Knight
brings us up to date on a thread of discussion on USENET dealing with the hype sur-
rounding object technology. And finally, Justin Graver describes the activities of the
Smalltalk research group at the University of Florida.
The ShndhslkRqnm (15SN* 1056-7976) is published9 rimes. rem, cvmymonth cxcepIfor the Mar/Apr, J.ly/Aus, and NmdDec cmnbinedissues.
Publishmiby SIGS PublicmionsOIUIp, 588 BrmchvHy,New YndI, NY IKI12 (212)274-0640 Q @right 1992by SIGS Publications,II-C All righs
rewved. &Iim of this materialbyelemrcmictrmmnisicm,Xerox or my othermethcdwill k tremrd us. wdlhl .ml.riom 04rhe LX Copyrght
LEWand isSEdypmhibirml.M.rcrid IMY k reprducd with expres Ferrnissionhorn the phlishers. M.iled FirsI Clam.%b=riwion rumsI ye.., (!J
iwm) .dmneSiq$65, Fmcign md Gnmch, $$+3,%@ cqy price, $8.00. POSTMASTER: Sad w2dre. +w.ges .nd ,.b=riptio. mdem t,. THE
SMAUTALKREMRT, Subsmik Srrvim, !&p[.SML, PO, Sm. K@ Lknvillc, NJ 07S34. Submit mticl= to the Editorsa! 91 SecondAvw..,,
Otmwa,Onti KIS 1H4,Ciinak

❑SIGS
PUBLICATICSNS

PJblmnm Orfuwmd Ofotjtd-orkmd FnQnm
mhE~M~Htdham~
redmda#,lb?c++~rhcsnaia7ksqk@
7’balnmmMWd00PWeUcq, and17m X@wnd

THE SMALLTALK REPORT

V

QUALITY

ASSURANCE

ISSUES FOR

SMALLTALK-BASED

APPLICATIONS

Ed Klirnas

It is absurd to dividesoftwate into goodand bad.

Software is either charming or tedious.

—loosely based upm Oscar Wilde
❑
malltalk-based object-oriented programming has

several technical advantages for improved pro-

grammer productivity and code quality over other

programming environments. These include:

● Reuse of existing pretested robust libraries

. Inherent encapsulation against “runaway code”

● The absence of error prone pointer manipulations

● Automatic memory management capabilities

These inherent technical features do not, however, auto-
matically result in higher quality software. It is necessary to

take explicit steps to design in quality from the start. One of

the most important of these steps is testing.

This article will cover a number of issues associated with

commercial Smalkalk application testing and propose a stan-

dardized, yet flexible, platform independent protocol so class

libraries and frameworks from multiple sources can be easily

integrated and tested.

Testing is only part of the quality assurance process. Software

quality assmrnce begins with design and code reviews and pro-

gresses through a life cycle that is standard irrespective of the

programming tools. Whether a waterfall or iterative develop

ment model is employed, the purpose of each step in the soft-
wate quality life cycle can be summarized by the following stages:

Pre-implementation phase

● Preliminary design reviews

. Detailed design reviews

● Code reviews, inspections and walk throughs
OL. 1, No. 9: JJLYIAUGUST1992
Code development phase

_ Unit testing

● Integration testing

. Validation testing

The benefits of pre-implementation code reviews and in-

spections should not be underestimated. In terms of impacting

overall finished product quality, inspections and design re-

views are much less costly than computer-based regression

testing to isolate the same errors. Many existing review and

inspection techniques are quite appropriate to the preimple-

mentation phase of the O-O software quality assurance life cy-

cle. Still, one significant contribution to a commercial prod-

uct’s final quality is the testability of the code.

The object-oriented development paradigm differs from

conventional structured development in several ways, and so

one should not assume that all O-O testing is necessarily the

same. Testing commercial OQP/Smalltalk-based applications

still follows the software quality life cycle model. Likewise,

%nalltalk does not pose any greater burden than conventional

languages in this regard and may in fact offer some advantages
under some circumstances, For example, procedural languages

such as Fortran usually require several functions to be imple-

mented before testing can begin. Smalltalk programs permit

classes to be used and tested as soon as they are designed and

the initial underlying methods are defined. This permits mean-

ingful testing to occur earlier in the development cycle and of-

fers the cost saving opportunity to diagnose and correct prob-

lems earlier. Therefore, it is important to design Smalltalk

programs for easy testability of the code from the start.

REGRESSION TESTING

Unit and integration testing are intended to uncover latent
software errors, while validation test ing demonstrates trace-

ability to the requirements. Each of these steps typically re-

lies upon some sort of regression testing. Regression testing is

an important part of testing the impact of changes on the to-
tal body of code. Just as Smalltalk is encapsulated in an envi-

ronment for development, commercial developers should

wrap their products into an environment that will easily suP-

port full testability of their work, If a few simple testing

guidelines are followed from system conception, significant

time can be saved later during the subsequent refinements of

the system.

Commercial software requires the development of ancillary

test code to verify the proper initial functioning of the soft-
ware, and to verifi that the properly working functions of the

software system are not inadvertently altered during subse-

quent code additions or modifications. Unfortunately, in

many organizations, the test suites are usually developed after

the software is well underway and often by groups that are not

necessarily part of the original software design team, This does
not take advantage of the specific knowledge the original pro-
3.

■ QUALITY ASSURANCE

4.
duction code developer may have had of the system’s intended

functionality. Another shortcoming of many test smategies is

not testing for defects as soon as possible. The longer in the

development cycle a defect has to go to be detected, the
higher the cost of fixing that defect.

STRATEGIESAND GUIDELINES FOR MAKINGCODE TESTABLE

Testing is an extremely challenging task requiring software de-
sign skills significantly exceeding those of ordinary developers. 1

Testing strategies change for different aspects of the develop-

ment process. For example, an issue rarely addressed during

rapid prototyping is testing strategies and the amount of effort

required to develop meaningful test suites. To reduce the effort

associated with producing test suites and as a means for im -

proving the quality of the test suites, software should be de-

signed with testing in mind from the start. Most Smalltalk de-

velopment involves the creation of “test harnesses” to exercise

code during development, Following a few simple guidelines

can help to evolve the normally throw-away test harnesses into

valuable permanent tools for improving overall product qual-

ity. The following is a synopsis of test strategies and guidelines

to be followed during the various phases of Smalltalk-based

product development.

Guideline: In object-oriented programming, the class is a nat-

ural unit of unit testability. Test suites should be based on ver-

ifying the proper functionality of each method (both instance

and class methods) associated in with a class.

Guideline: In object-oriented programming, the application

or project is the natural unit of integration testability. The in-

tegration tests should focus on testing the proper functionality

of collections of classes,

Rationale: Integration testing is important because many

sources of bugs can be between pieces of code where one

mekod makes assumptions that another doesn’t fulfill.

Guideline: Take advantage of the higher productivity of ob-

ject-oriented development environment, and push more of

the unit and integration testing up frrrnt into the developers’

domain as soon as possible.

Rationale: This approach will permit the developer, who has

detailed knowledge of the expected functionality, to develop

test strategies more effectively and to begin using them in

conjunction with the code development.

Guideline: Validation testing should be performed by an in-

dependent testing group in conjunction with the code devel-

opers), to verify the conformance of the software to the re-

quirements specifications. The validation testing should not

only verify proper functionality, but acceptable timing perfor-

mance also.

Rationale: This approach permits a fresh opportunity to un-

cover quality problems the original developer may have to-

tally overlooked as well as an independent, and unbiased veri-

fication of the actual quality level of the system,

Guideline: Each developer should prepare a formal unit and in-
tegration test strategy plan and appropriate test suites for all of
the production code and possibly even prototype code. A test

plan should be composed of at least two basic components*:

● a brief description of the scope, applicable documents, test

strategy

wthe actual test procedures, their purposes, test data, and ex-

pected results

Guideline: Create a test plan that covers every method in a

class and every path within a method.

Rationale: Complete coverage is the objective of the test

process, In conventional programming languages, wirh

many lines of code in a module or subroutine, this task can

be quite daunting. Fortunately, good 00P style promotes

the idea that methods should be short, typically less than

ten lines of code. This significantly reduces the complexity

of possible paths to be tested within a given method. An-

other benefit of short methods is that it is much easier to

look for bugs in small pieces of code rather than in large

program segments.

Guideline: Test cases should be written to uncover general

classes of problems rather than one discrete error,

Guideline: Results of testing should typically be logged to a

file in a standard format that contains a record of the success-

ful/unsuccessful test of classes and methods that have been

performed.

Guideline: If the system permits, the status of the tests should

also be displayed directly on the screen using standardized for-

mats. If direct writing on the screen is not possible, then a file

should be used.

Rationale: Displaying status to a window during testing is typ-

ically problematic as it may cause unwanted cycling of win-

dows, that can complicate testing.

Guideline: Print general messages (i.e., Testing class XYZ) di-

rectly on the screen not in windows.

Ratiomle: The transcript window shouldn’t be cluttered with

routine and unnecessary status information. If the application

has created a bug in the windows there is a possibility that the
test routines themselves may be affected.

Guideline: Display ertors and log messages along with the

date and time in the transcript window.

Rationale: The transcript window provides a window that al-

ways exists to record error log messages for later retrieval.

Guideline: Application windows should beat least momen-

tarily displayed for testing.

Rationale: Testing windows in a specific environment can be

performed using various third party packages to record

keystrokes and mouse movements and then play the sequence

back testing for the appropriate response or display in a win-

* The overall high level plan, scope and test strategy are most conve-
niently documented using a code management system to associate
them with an application or projecr, while the actual test procedures
can be associated wirh the related classes.
THESMALLTALKREPORT

AM/STm The original and still premier
application munager for

SmalltalklYTM

AM /ST, developedby the SoftPert ChangeBrowser. As an additional

Sys~ms Division of Coopers & tool availablefor SmalMk/V PM

Lybrand, enables the developerto andSmalltalk/V Windows, Change-

manage large, complex, object-orient- Browset supportsbrowsing of the

ed applications.The AM/STAppli- Smalltalk/V change log file or any

cation Browser providesmultiple file in SmaUtalk/Vchunk format.

views of a developer’sapplication.
AM/STdefines Smalhalk/V applica-

The additionof AM/STto the

tions as logical groupingsof classes and
ImageSoft Family of softwaredevelop-

metbods which can be managedin source
,, ment tools enhances and solidifies

files independentof the Smrdltalk/V
,;, ItnageSolt’s position as —

image. An applicationcan be locked and
l!!!!

“The World’s Leading publisher ‘

modifiedby one developer,enabling other
of Object-Oriented Software ‘

developersto browse the source code. The
DevelopmentTools.”

source code control system managesmulti-
ple revisions easily. ~~ 1-800/245-8840-

mFtff‘+*$
~:, lmageScl.@j#$@j# .;,:,. .-,

: ‘::~i-.wwe’+? ;“,’,:
lkwtd6’sb6iq Flblisberti~elopncm Tm4s

.431n-ahmk m he pmply of tkii respive owners, lmwSoft, inc., 2 Haven Avenwe, Port Wasb@mI, NY 11050 5 16/767-2233; F.IX 5 16/767-9067; UUCP address: mcdhup!image!info
dow segment. Unfortunately, this strategy cannot be easily

implemented when testing the application for multiple plat-

forms. If the application is to be executed on multiple plat-

fotrns, a pragmatic strategy for testing the windows is to dis-

play all of the windows in sequence. Although this may not be

as rigorous as some commercial quality testing criteria, the ap-

proach usually has a very high probability of identifying prob-

lems that were caused by inadvertent changes to the code

somewhere in the system.

Guideline: A library of standard routines should be evolved to

assist developers in more easily testing their code functional.

ity. Candidate functions for this libra~ can include routines

to force standard keyboard inputs, mouse movements, and

possibly even to compare screen displays against previously

stored and tested pixel displays. Interactive applications

should test themselves (i.e., Dispatchers test models). Some
dialects of Smalltalk support an event or an eventxvith:message

that can be used to easily simulate mouse and keyboard func-

tions for regression testing purposes.

Guideline: During incremental development, unit and inte-
gration test suites should be simultaneously developed and

exercised,

Rationale: Problems with the code will most likely occur with

the new functionality added to the system. The developer can

efficiently focus debugging efforts on the small subset of new

code rather than a labor intensive debugging of a much larger,
more complicated piece of code.

Guideline: Testing strategies need to incorporate mechanisms
VOL. 1, No. 9: JULYIAUGUST1992
for testing a system’s ability to properly function even when

there are significant interrupts to the normal processing flow.

Rationale: Stress testing is one strategy that is intended to

capture subtle bugs such as memory leaks or deadlock condi-

tions that may not be evident under o[her types of testing.

Stress testing should include testing over a wide range of volu-

minous inputs for a long period of time.

Guideline: Testing strategies should include timing as an im-

portant characteristic in determining if functionally correct,

but nonetheless detrimental, changes have been inadvertently

introduced into the system.

Guideline: Do not assume that only the changed class and its

subclasses need to be retested. All superclasses as well as sub-

classes of a new class need to be retested whenever a change is

made to a class.2

Rationale: One might argue that, theoretically, no testing of

superclasses is required if the changes to the class do not ac-

cess any superclass variables or superclass methods. However,

it is impossible to automatically guarantee that such an inter-

action can not occur. Object-oriented programs must test all

of the methods in a hierarchy both above and below the cur-

rent class position in the hierarchy (subclasses inherit all of

the changes in their superclasses, while superclasses can have

their apparent functionality ovettidden by subclasses). There

are a number of examples one can conceive where subclasses

can change data in their superclasses via global variables or by

accesses of superclass instance variables. This situation is fur-
ther complicated by the possibility that a subclass might inad-
5.

■ QUALITY ASSURANCE

6.
vertently call superclass methods in an incorrect sequence and

thereby create an invalid state for other potential classes that

need to interact with the superclass. For example, consider a

subclass that erroneously instructs a superclass to clear a dis-

play window rather than put up a grid whenever a display

command is received. Other subsequent operations might be

expecting a grid to already be on the screen. Hence, there is

no silver bullet in avoiding complete regression testing of class

hierarchies whenever a change is made.

Guideline: Do not assume that a superclass test method is ad-

equate for testing a method that overrides it in a subclass.2 Ev-

ery method in a class needs to be tested even if it overtides su-

perclass methods that are tested in the superclass.
I
I

I

I
I
I
~

Rationale: Overriding methods can have significantly differ-

ent functionality than their superclasses and they need to be

tested accordingly. For example, a class may have a method to

update a display window and there maybe an optimized sub-

class that has the same overriding method to only update the

corrupted part of a display window. Both of these cases need

separate test strategies to confirm proper functionality.

Guideline: Every class should have a class method called self-

Test that will execute all of the class and instance methods and

return a Boolean true if all of the test cases pass or else return a

Boolean fahe if any test fails.

Ratiomle: The test routines should have standard protocols

to leverage off the object-oriented polymorphism and inheri-
EXAMFLE i:
.***************** ●************”*

Prt@et : RqresrdMest
Date : May.26,1992
Time : 12:01:25

Introduction
.—

Regressiontesting tiamework
parbaUycomplete example.

Thisapplicationwillpermita userto
kclude a class method called aelfTest
in each class to test the various
instance and cfaasmethods t%rproper
functiomli~. If the tests pass, selPkst
is expected to retusn a Booleantrue, othtie
a Booleanfalse.

Thetetig is Misted with

ObjecttesMU.

The result of this testis a coUerlion
of all of the faiied classes.

Dependenaes: none

Invoked By
.—— ———---—————

Objecttestall

Description
.==-==-

Puuyowned classes● :

Object
.RegTest●

..NotOkTest●

..OkTeat*

Methodsof Par&Uy Owned-: #
#testAUde6ned in Objectclass,

●****************************”*****●*”,

SmaUtaUrak #Objert ifAbsenk [
Nl subclass: #Object

instancaVariableNames: “

classVariableNsrnes
‘RecuraionInErrorDependentsRecuniveSet’

poolDictiontiex”] !
Objectaubclas: #RegTest
inslaztceVsriabb41ames:“
elaasVariableNames:”
poolDictionaries:“!

RegTestsubclass: #NotOkTest
instancehiablel!ames:”
rlas.sVaiableNames:“
poolDicbosraries:”!

RegTestsubclass: #OkTest
instanceVariableNames:“
classVariableNames:“
poolDiciionaries:”!

!NotOkTestclass methods !
selfkst

“Public-”
‘false! !

!RegTestclass methods !
se~eat

‘public-”
%ue! !

!Objectclass methods !
testAU

“Public-Pindall of the classes which implementthe class
method selffest and exerute the method for those classes
returning an ordered coUectionof all of the failed classes. To
test, execute

ObjecttestAU

with a showit.”

I aUObjectSubclassestes’flasses okClassesfailedClasses]
testtlasses := OrderedCoUeciionnew. 30.
okClasses:= OrderedCollectionnew: 30.
tikdClasses := OrderedCoUefionnew 30.

self withAUSubclasses
do: [:eachClass I

(eachClassclass includesSelector: #selfTest)
iflkue: [testClassesadd: eachClass]].

te~Classes
do: ~each I

each selffest
ifhre: [okClassesadd: each]
ifPalse:[failedClassesadd: each]].

‘failedClasses! !
THESMALLTALKREPOIST

tance that promote increased productivity and reusability. It

is important that this protocol is followed as a standard so
that testing can be automatically accomplished even when

applications, projects, or frameworks from different develop-

ers are combined into larger systems. By following this guide-

line’s standard protocol, any or all of the code in the system

can be regression tested for any unexpected side effects using

a simple method such as

Objecttetill.

where the method selflest would be included in each class to

be tested (see Example 1).

Guideline: Every class should have an example or set of ex-
amples showing its use as shown in Example 1.

Guideline: Every example should have an executable test case

in a comment as shown in Example 1.

AN ERROR CHECKLIST

A number of common errors can be the basis for testing rou-

tines.l These tests ** can include checks for:

1.

2.

3.

4.

5.

6.

7.

8.

9.

Input and output validity

Missing inputs

Range violations

Proper handling of incorrect inputs

Unwanted interactions with other methods and classes

via global or class variables or pool dictionaries

Integrity of data structures (e.g., do persistent objects

match the current classes’ instance variables?)

Proper error handling (e.g., can a recursive error cause

the system to abort?)

Ncsnexecutable code

Infinite loops

10. Testing at the limits of data structures or around mini-

mum and maximum values

CAVEATS

Guideline: Immediately seek help if an impasse is reached

during testing and debugging.
Rationale: Days and even weeks of effort can be wasted on glar-

ing errors invisible to one person but readily apparent to another.

Guideline: Don’t get too caught up with regression testing

of code!
Rationale: The downside of depending too much upon regres-

sion testing of code for quality assurance is that the developers

can place disproportionate effort in regression testing while

** since unexpected inputs are a major source of software failures, the

importance of these tests can not be overemphasized.
VOL. 1, AJo. 9: JULYIAUGUST1992
abandoning common-sense practices in their code develop-

ment and design review practices.

Guideline: Budget at least one-third of the total development

effort for testing.

Rationale: Irrespective of whether O-O or conventional

languages are used, test code is a significant percentage of

the total product effort and in some cases can contain more

code than the actual run time functionality. 3 The test suites
are typically of the same magnitude of source lines of code

as the product development effort. On the basis of conven-

tional practices, this activity can be expected to account

for at least one third of the programmers’ total effort. Fur-

thermore, testing of mission critical applications where hu-

man life is at risk can consume over 80% of the total devel-

opment effort.

CONCLUSION

Smalltalk offers significant potential for overcoming many

reliability shortcomings of other programming systems, but

extensive reuse of Smalltalk-based libraries requires some

consistent standardized protocols and testing approaches.

Unfortunately, software testing and quality assurance issues

are often unnecessarily overlooked in the normal rapid pro-

totyping developments that are so well suited to Smalhalk.

This article has highlighted testing guidelines and proposed

an initial standard framework for testing of reusable code

modules. The guidelines, if followed from the initial phases

of development, can result in more robust, testable, and

hence reusable frameworks with a minimum of additional

effort. ❑

ACKNOWLEDGMENTS

The insightfulreviewsof thk documentbyProfessor RaIphlohn-

son, University of Illinois at Urbana and Ms. Kate Funkner of the

AL!en-BradleySoftware Qtudity Assurance GroufI are gratefully

acknowledged.

FiEFEllENCES

1. Myers, G. THEART OF SOWWARE TESTING, Wiley InterScience,
New York, 1979.

2. Perry, D.E. , and G.E. Kaiser. Adequate testing and object-ori-
ented programming. JOURNALOFOBJECT-OFUENTEDPROG~AM-
MING,January/February, 1990.

3. Rettig, M. Testing made palatable, aMMUNICATIONS OF THE

ACM, 34(5): 25-29,1991.

Ed Klirrras is Managing Director of Linea Engineering Inc.r a supplier

of custom object-miented based solutions for automation and indus-

m“a[applications. Ed, along with Dave Thomas and Suzanne Skublics

of Object Technology Intes-ruatiorrai,are coauthors of an upcoming

Addison-Wesleybook tided SMALLTALKWITHSTYLEtkt covers

H PEEFtCODE REVIEWS

a.
...cmuindjbnp age 1

tions, a second maybe working on database aspects, a third

may be working on the user interface, and yet another person

may be working on error management and exception han-

dling. In programming terms, we then create separate compo-

nents in our development environment. In ENVY, the term

used is application. An application represents a collection of

classes that together setve some useful purpose. A complete
system would then be constructed from a number of such ap-

plications, each of which represents a standalone piece of

functionality. We use the term com@nent as an umbrella con-

cept that covers classes, sets of related classes (applications),

and sets of related applications (configurations).

66
The critiquing process is very

similar to the original coding process; it

has the same look and feel.
99

THE MECHANICS

The mechanics of the review process consists of at least

three steps:

1. Preparing the components for review

2. Actually reviewing the code

3. Integrating the review results into the next version of

the component

The review process begins when 1, as the author of a com-

ponent, assess it fit for a peer review. This happens when I

have implemented many of the classes corresponding to the

objects that I have discovered through the initial analysis and

design phases. At this point, all the details may not have been

completely fleshed out. I version all of the classes in each of

my applications with a distinguishing vetsion label: [For Re.

view, Mar 22]. During development, we have adopted the

convention that we version all our components using a styl-

ized date stamp: [Mar 22], Nay 02, 7 PM], etc. This is intu-

itively more meaningfirl than version labels such as 0.99,

0.995 etc. Of course, when we make our external release for

customers, the labeling follows more conventional guidelines.

Having labeled all of the classes with the [For Review]
timestamp, I then label the version of the applications con-

taining the classes with the same label as that of the classes. It

is important to note that under ENVY, even methods added

to classes that are defined outside of my component (e.g.,

stream, String, CoUefion) are maintained in the context of the
application. Thus, these class extensions also are susceptible

to the same versioning rituals and are also subject to peer re-

view. I now collect all the [For Review] applications and build

a configuration consisting of these applications. ENVY em-

ploys the notion of a configuration map to group related sets

of compatible applications. You must specify the particular

versions of the applications that are released into the configu-

ration map. Accordingly, I now construct a configuration

map, called Credentialing System, for example, that consists

of the [For Review] versions of the associated applications. I

now version the configuration map itself with the same [For

Review] label.

At this point, I inform a technical peer, say Joe, that he

should review all the software contained in the Credentialing

System configuration map. The specific version of the

configuration that he should review is the one labeled [For

Review, Mar 22]. Depending upon the bulk of the code to be

reviewed, it may take Joe anywhere from two days to a week

to review it. The amount of code to be reviewed should be of

manageable size; the reviewer should be able to do the job in

two or three days.

After I have submitted all my code for review, I can con-

tinue developing my components without waiting for the re-

view results. Basically, I start a branch from the [For Review]

version, and continue on a stream of development. Joe starts

from the same version and opens up a parallel stream of devel-

opment where he’ll carry out the review activities. What are
these review activities? This is the topic of the next section.

THE CRITIQUE AND REVIEW PROCESS

Following our example, the reviewer loads the Credentialing

System [For Review, Mar 22] configuration into his
Smalltalk image. He creates a new edition or working COPY

of all the applications in the configuration. For the reviewer

to do an adequate job, there need to be some commonly ac-

cepted guidelines for critique and review. We will discuss

guidelines in a subsequent section. The critiquing process is

very similar to the original coding process; it has the same

look and feel. You are adding comments to and changing,

improving, deleting, reformatting code, etc. in the classes us-

ing the same browsers and tools the original authors use. The

significant thing to note here is that the reviewer is in place

adding review comments in the body of the method or even

fixing the algorithm or the control structures within a

method. The reviewer can factor code bettev he can add

new methods that may serve as code factors. He can delete

methods that he considers obsolete or otherwise unneces-

sary, He may add review comments in the body of the

method, just like he would add a regular method comment.

He can reformat the method or introduce better indentation

to make the code appear more perspicuous.

All these give rise to a nice asynchronous review process

that doesn’t impact the stream of onward development by

the original author, The reviewing activity seems very much
THESMALLTALKREPORT

like coding, except that you are now largely reading someone

else’s body of code and applying your critiquing skills to it.

The desired result is for the technical team as a whole to

produce deluxe, sterling code. It is incumbent on the re-
viewer to bring to bear on someone else’s code all the good

programming practices he has learned over the years. The id.

66
When instituting a code review process,

the organization must a priori agree upon

the guidelines with respect to which the

review is to be conducted.
99

irrms he has learned to express a certain piece of computa-

tion may be far more elegant and efficient than ad hoc

“hammer and tongs” spaghetti code. This is particularly a

problem with new Smalltalkers schooled in procedural

thinking and those unfamiliar with the highways and byways

of the class libraries. The reviewer is able to transfer

Smalltalk programming nuances hitherto unknown to the

author of the code.

When the reviewer finishes going through all the classes in

each of the submitted applications, he versions all the classes

he has touched with a new distinguishing version label: [Re-
viewed, Apr 10]. In turn, he versions all the affected applica-

tions with the same version label. Finally, he versions the sub-

mitted configuration map (Credentialing System, in our

example) with the [Reviewed] label. The original author is in-

formed that his code has been reviewed and the results of the

review are in Credentialing System [Reviewed, Apt 10].

THE INTEGRATION PROCESS

When the reviews come back (in the form of newly ver.

sioned components), the author uses a variety of differencing
tools to quickly pinpoint the areas of code that have been

critiqued. If he agrees with the proposed changes, he can

fold them into the next version of the component. This is

easily done with environments such as ENVY that provide a

rich set of tools that can be used to quickly browse through
the differences between any two versions of a given compo-

nent. The author, for example, would do a Browse Differ-

ences between the [For Review, Mar 22] version of his appli-

cation and the [Reviewed, Apr 10] version. The differencing
tools pinpoint the precise differences between the original

method and the annotated method.

To start off the integration process, he opens a new edi-

tion or working copy of his application that was originally
VOL. 1, lVo. 9: JULYIAUGUST1992
versioned [For Review, Mar 22]. He then goes about system-

atically incorporating the changes suggested by the reviewer.

In some cases, this may involve a merging of the two ver-
sions of a method, If the reviewer has produced a new ver-

sion of a method that the author deems superior to his origi-

nal version, he folds the new version wholesale into his
working copy of the class. In many cases, the reviewer may

simply have made some suggestions or requested the author

to clean up the code in some way. h is then up to the author

to respond to these suggestions appropriately. Quite often,

the reviewer may have misunderstood the intent of the par-

ticular technique the author has employed. In such cases,

the author may choose to ignore the reviewer’s suggestions.

It is also possible that the fix the reviewer suggested would

have an adverse impact on a lot of the client code that the
reviewer is not aware of.

To close the loop, the author, after systematically going
through the reviewer’s feedback using differencing browsers,

produces a new version of the component. It is quite possible

that the author has added new code to the [For Review] ver-

sions of the components since he submitted the code and re-

ceived the reviewer’s versions. Now that he has finished inte-

grating the reviewer’s comments, it is an opportune time to
integrate the code developed since the time of submission. So-

phisticated programmers may choose ever so slightly different

ways to integrate the new code, Thus proceeds the evolution

of the software components—an evolution enriched by the

collective insights of the author’s peers.

9.

■ PEER CODE REVIEWS

\

10.
Ultimately, the author can submit his increasingly pol-

ished software to a different set of reviewers. The new review-

ers will have the benefit of the first reviewer’s insights and do

not have to hoe the same row. They may shed completely dif-

ferent perspectives on the submitted software. This can only

improve the quality and maintainability of the software. In

addition, the code repository now contains a complete audit

trail of the evolution of a software component, including all

its review versions.

REVIEW GUIDELINES

When instituting a code review process, the organization

must a priori agree upon the guidelines with respect to which

the review is to be conducted. Failure to do so causes tension

and misunderstanding among team members. A big part of

the code review pertains to coding style. This has been amply

covered in the Smalltalk with Style columns in previous is-

sues of THE SMALLTALKREPORT.1c2 The Smalltalk style issues

include proper code indentation, choosing proper variable

names, good method comments, and so on. We enumerate

some of the empirical guidelines that we employ in the re-

view process below.

BASIC GUIDELINES

What to watch out for in a code review:

● Poor indentation. This is the culprit in a lot of sloppy

code. Proper indentation makes the code clearer and a

pleasure to read. Indentation also gives rise to heated dis-

agreements among team members. “Hey, that is my per-

sonal writing style. Don’t mess with it.” Good, reusable

classes have lots of readers. Think about the users who

will have to read your code long after you have left the

scene. A little uniformity and consistency in style goes a

long way. The Smalltalk with Style guidelines are cer-

tainly a good place to start. Writers and editors often ad-

here to the guidelines in THE CHICAGO MANUAL OF

STYLE or THE ELEMENTS OF STYLE by Strunk and White

for similar reasons.

● No class comments. Standard Smalltalk/V does not have

tool support to embed class comments. Several commer-

cially available development environments, however, do

have explicit tool support to add class commerm. Use

them. A good class comment should pithily describe its

purpose and how it is intended to be used. Additionally, it

can also include some global implementation notes, a de-

scription of irs instance variables, and any special algo-

rithm used in implementing the class.

● No method comments. It is frustrating to figure out the

intent of a long rambling method if it doesn’t have accu-

rate comments. Even well-written methods can use com-

ments to explain operating conditions, and pre- and post-
assertions. Implementation notes on why a particular data

structure has been chosen can also be helpful.

● Gratuitous comments. This is the other extreme. Code

thar is extremely clear and self-documenting doesn’t need

comments that add no value:

foa anlnteger
“Setfooto anIrrteger.”
foo := anInteger

iesrlitile
“Returntilse.m
“false

. Misleading commerws. Code doesn’t reflect comment or

vice versa. Often, comments refer to method parameters

that have long since been replaced by something else, but

the comments themselves haven’t been updated. The other

common infraction is that the comment claims to do one

thing, while the code does something else:

ati anAaaoc
“AnsweranObject.Add anObjectto the receiver
if the receiver does not already contain it.”
“Savein the hades table”
Iokl
Cu.rsor14anagerexecute change.
hader quey: (self update:arulasoc).
ok:= hader FetchResults.
CursorManagernormal change.
“savelocally”
(rtievedAUPlag I cachel%g)

WI’rue:[super add:anAssoc].
‘ok

Bad comment-it refers to an olxolete argument and claims
to return one thing, but actually returns something else.

● Cryptic comments:

M al,inlceok ColNbr
“Returncolumn dab”

● Annoyingly informal comments. “Can you believe XYZ

Co. did this? Sheesh!” “Joe really messed this up,” “If the

poor sap gets to this method, he’s really asking for it.”

Such comments may be okay and may even promote cam-

radarie if the software is going to be used only within your

limited workgroup, but for production quality software

that will be used by anonymous customers, it represents

poor taste.

● Bad argument names. Beginning Smalltalkers, particularly

C programmers of the argc-argvschool, commit this viola-

tion frequently. Using nonintuitive argument and variable

names like erg, apamr,parml, pannz, trnpl, ~p2, or even

anObject doesn’t serve anyone. h is a nightmare to figure out

the classes of the objects that are participating in the com-

putation. Likewise, method selector names shouldn’t be

misleading; they should be intention revealing.
THE SMALLTALKREPORT

WINDOWBUILDER
The Interface Builderfor SmalltalklV

Inm!===j
H-id - oh,

E21iliiw&---- --
“... this i. a potent rapid application development tad which

mhozdd be included h any SmaUtalkN developer’s environment.”
- Jim .%bFwm, The %rdltalk Report, September 1991

t!)

The key to a good application is its user interfnce, and
the key to good interfaces is a powerful user interface
development tool.

For Smelltalk, that tool is WindowBuilder.

Instead of tediously hand coding window definitions and
rummaging through manuals, you’ll simply “draw” your
windows, and WindowBuilder will generate the code for
you, Don’ t worry — you won’t be locked into that first,
inevitably less-than-perfect design; WindowBuilder
allows you to revise your windows incrementaUy. Nor will
you be forced to learn a new paradigm; WindowBuilder

generates standard Smelltalk code, and fits au seamlessly
into the Smalltalk environment as the class hierarchy
browser or the debugger.

Our new WindowBrrilder/V Windows 2.0 is now available
for $149.95, and WindowBnilderN PM i, $295. Both
products include Cooper & Peters’ unconditional 60 day
guarantee.

For a free brochure, callus at (415) 855-9036, or send m a

fax at (415) 855-9856. You’ll be glad you did!

COOFEI h Pmems,INC. [FOWEUV ACUMENSOFIWAREI 2600 EL CAMINU REAL, SUITE409 Pun ALTO, CALIFORNIA 94304 PHONE415 B55 9036 FAI 415 855 9856 COMWJSEWE71571,407
● Coding anachronisms. This is a case of old habits dying

hard. New Smalltalk releases and development environ-

ments often introduce new programming idioms. Always

accessing classes through symbols—e-g., (Smalltalk at:

#HeatingUnit) raiseTempetature-is no longer necessary

if the development environment allows you to explicitly

specify class prerequisites. Furthermore, cross-referencing

facilities such as browse methods that reference the class
HeabngUnit will not show up this method since the class ob-

ject is buried inside a defensive expression. If I were to re-

name the class HeatingUnit,I might miss making a change
to the method, and that will cause a nmtime error in the

future. Referting to classes indirectly through class names

goes against the grain of classes as fitst-class objecu. Of

course, there may be exceptional conditions under which

this may be warranted.

● Using needless temporaries. Beginning Smalltalkers tend
to gratituously use temporary variables to do iteration.

There are a phalanx of iteration idioms like co~~eti, select,

injectinto: that do the job more efficiently and make the in-

tent of the code clearer.

. Needless multiple exits from a method. Another defensive

programming malady that could be remedied by proper use

of the conditional control constructs and good indentation.

● Poor distribution of responsibilities. This is really poor

design that percolates into the coding process. This mani-

fests itself in heavyweight classes with 100 methods that
VOL, 1, IVo. 9: JULYIAUGUST] 992
do a lot of things. Often, you expect a certain responsibil-

ity to be discharged by a certain object; instead, in code it

manifests itself as a complicated multi-keyword method

that requires a lot of hand assembly to use. Reviewers can

suggest, in such cases, how these methods can be rewrit-

ten, refactored, etc.

. Defensively lodging “global” behavior in Object. If a cer-

tain behavior is expected to be global within your partic-

ular domain, find an appropriate class in your domain to

lodge this behavior. If every class in your domain must

have this behavior, create an abstract superclass that con-
tains this method and have every one of your classes in-

herit it. Alternately, you can lodge this behavior in a

class method of an appropriate class in your domain.

Blindly putting the behavior in Object causes all classes in

the system to be susceptible to any side effects that it may
cause. Reviewers may suggest alternatives appropriate to

the context in which the code is meant to be used.

● Put global class methods in Behavior,not Object. I have

come across several Smalltalkers who put catch-all class
behavior in Object.This is too defensive. Behavior is the

root superclass in which you should lodge behavior that is

expected to be inherited by every class in the system.

● Unnecessarily using isKindOfi, isMemberOfi. This is not con-

sidered good programming style. You are referring to a class

directly via a hard constant. This is not only inefficient,

but also less reusable. Instead, use polymorphic test mes -
11.

■ PEEFi CODE REVIEWS

12.
sages: isstig, isNurseetc. In this case, you’d implement is-

Wing methods in Objectand string, returning faLseand hue,

respectively. If you are sure that the receiver of the isKindOfi

method is going to be an object of a class that is directly or

indirectly inherited by a particular superclass, then put the

false test method in that superclass. For example, if you are

sure the receiver is always going to be some kind of a sub-

pane, put the fake test in SubPane, not Object.

66
As far as possible, code should be

optimized for the environments that it is

supposed to work on; platform differences

should be dealt with by partitioning code

into platform independent and platform

specific portions.
99

. Archaic, old, effete code should be weeded out. Code

should keep step with emerging idioms, and newer and

better features in the underlying class libraries. For exam-

ple, if a new version of your base environment provides

richer protocol to insert an association in a dictionary use

that. It would make your code more compact. For exam-

ple, ENVY has a Dictionary method atifAbsentPuti, so code

that is originally written as:

myconstants:= SmaUtaUr
ah #MyConstants
ifAbserrk[Smalltalkat: #MyConstants

puti #(a b c)]

can have a more modem rendition

myconstants:= .%ndkah
at ?MyconstantsifAbsentPub [#(a b c)].

A common counter argument to this guideline is, “Hey, I

have to make my code work under multiple environ-

ments.” This means programming to the least common de-

nominator of available idioms. As far as possible, code

should be optimized for the environments that it is sup-

posed to work on; platform differences should be dealt with

by partitioning code into platform independent and plat-

form specific portions. ENVY, for example, provides ex-

plicit tool support for cross-platform development.

● Writing “to be implemented by subclass” in the comment
and then not expressing that intent in code. If a method

must be implemented in each and every subclass, then that
intention must be expressed via appropriate programming

idioms. Smalltalk/V has irnplementedBySubclassand Object-

works for Small talk has subclassResponsibilitymethods for

such purposes. Putting self halt is not acceptable. Similarly

for subtractive inheritance, Objecworks provides a should-

Notlroplementidiom.

● Putting self halts to trap exception condition is not accept-

able. While this condition may not manifest in the course

of normal developer work, the moment it hits the cus-

tomer’s hands, it is sure to trigger the exceprion and cause

an unpleasant walkback window to pop up.

● Using inappropriate data structures. Programmers often use

familiar data structures because it gets the job done. A very

common example of this is the use of the class OrderedCoUec-

tion. OrderedCoUecbonis very malleable and very flexible. It

responds to a wide variety of protocol and is a friend of the

defensive programmer. However, all this comes at a price:

space and time overhead. In cases where it is clear that a

fixed size collection can do the job, Arraysshould be used. In

cases where elements in the collection are retrieved in

batches, a I.inlredListis perhaps a more appropriate data

structure. Reviewers should be on the lookout for this.

● Defensive parentheses that do not contribute to code clarity:

(aValueisNuUValue)
Wrue:[”aValue],

(aValueisNuUValueor [(aValueisKndOfi DateTime)])
ifTnre:[AaVahre].

A hopefully better rendition is:

‘(aValueisNuUValueoc [aValueisDateTime])
ifhue: [aValue]

● Use CharacterConstantsor messages instead of literals to

represent characters. This makes it more readable. $ is

less readable than space or Characterspace.

● Use stream protocols instead of lengthy concatenation

of strings.

. Use nonevaluating conjunctions or disj unctions for some

ifl’nre:fiake: blocks that return booleans:

Badcode
aBoolifl’rue:[“5] ifPalse:[“false].

Goodcode:
‘aBool and [5]

ADVANCED GUIDELINES

● Inefficient algorithms. Reviewers should watch out for non-

polynornial time algorithms and should suggest faster algo-

rithms if one exists as opposed to, say, 0(n3) algorithms.

● Poor factoring of code.

● Poor construction of inheritance hierarchies.
THESMALLTALKREPORT

Universal Database
OBJECT BRIDGE “

This developer’s tool allows Smalltalk to read and write to
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIII, Lotus, and Excel.

ntelligent Systems, Inc.

H S4MN.310te Street,Ann Arbor. M14SlC14(913) WS-423S(313)W6441 fmt
● Poor separation between platform-specific and platform-

independent code. It is poor practice to partitioning plat-

form-specific code across classes (a programming language

concept) as opposed to across applications (a program-

ming environment concept).

● (Im)proper partitioning of methods into public and private

methods. For example, initialize and release methods

should be private.

. Proper initialization and destruction of data structures (ini-

tialize and release).

66
Just as a good general makes the soldiers

around him better, so, too, should the

benefits of having a good programmer

accrue to other less experienced

programmers on the team.
99

● Messages sent but not received (implemented). This is a

potential nmtime error.

● Messages implemented but not sent. This is quite possible,

if the component is intended to be used as an extensible

framework. However, if you are delivering a standalone ap-
plication, these methods are candidates for elimination.

You should make sure they are not called via perform:.

SOCIOLOGICAL EFFECTS

T’he impact of the code review process as described in this ar-
ticle is most effective in organizations that actively encourage

programmers to critique each other’s work. On the other
hand, in workgroups that have a “cream puffs, marshmallow”

culture, there is probably a fine line, the crossing of which

may yield undesirable sociological results that counter the
benefits of a stringent code review. Recently, while drawing

up a blueprint of Smalltalk software development for his

company, an MIS manager commented, “Of course, we are

going to write good code. Peer fear will ensure that nobody
writes sloppy code.” Organizations and workgroups that can

distinguish between an honest critique and a personal barb
are most likely to benefit horn a rigorous review process. It is

also likely that some developers will be more reluctant than

others to submit their code for review. This happens for a va-

riety of reasons, not the least of which is a fear of being unfa-

vorably critiqued, Just as a good general makes the soldiers

around him better, so, too, should the benefits of having a

13,

VOL. 1, No. 9: JULY/ALIGUST1992
good programmer accrue to other less experienced program-

mers on the team.

Code reviews should be viewed as a rigorous software en-

gineering activity, not a mindless chore undertaken half-

heartedly to adhere to some “feel good” corporate software

development guidelines. Good Smalltalk programmers tend

to read a lot more than they write. They tend to adopt the

idioms of other good programmers while inventing a few of

their own. Ward Cunningham once observed, “Good class

libraries whisper the design in your ear.” While browsing

through other people’s code, I often say to myself, “That’s a

great idea! why didn’t I think of that?” Kent Beck has

termed these voyages of discovery the “Aha ! experience. ” 3

Well-written code is a pleasure to read, and it becomes
quickly apparent if a class is reusable or not. People try to

imitate and emulate well-written code. Well-organized code

reviews have the benefit of bringing to bear every team

member’s perspectives and experiences to the total quality of

the software being shipped. Even with a cohesive review pro-

cess, there are plenty of ways in which team members can

express their own unique styles in the delivered code. Good

software engineering practices as expressed in Smalltalk code

can only propagate the positive effects and thus result in

more gratifying Aha! experiences for everyone. ❑

REFERENCES

1. Klimas, E., and S. Skublics, A matter of style, THESMALLTALK
REPORT1(2):1-5, 1991

2. Klimas, E., and S. Skublics. Tips for improved Smalltalk reuse and
reliability, THESMALLTALK REPORT1(6):11-14, 1992.

3. Beck, K. Essays and A-Has, HOOPLA! January, 1988.

S. Sridhar is a senior member of technical smff at Knowledge Systems

Corporation in Cmy, NC, where he is actively applying Smdtak m a

variety of softwareengineering problems. He came to KSC from Men-

tcrrGraphics Corp. where he was the Project lead for Mentor’s second

generation designrrumagement environment developed in C++. Prior

to that he worked at Tektronix, hrc. for four years on Common Lisp

and SmaUAU/80 product&ue@mvznt. He can be reached at

9J9.48f.4ooo.

14,
HE BEST OF comp.lang.smalltalk

What’s wrong with 00P?

Alan Knight
T hings object oriented have been receiving a lot of at-

tention lately. Some is justified interest in an impor.

tant emerging technology, but a lot of it is just hype. It

is apparent that in some circles, “object-oriented” has become
the buzzwordof choice.

Everywhere you turn things are described as object oriented.

Operating systems, windowing environments, and programs of

every description are now labeled O-O. There’s more restraint

with programming languages, perhaps because there’s a clear

definition of what an object-oriented language is. For pro-

grams, it’s only necessary that the designers think about the

problem in an object-oriented way, or that something in the

program be called an object.

At the same time, object-oriented programming, design,

analysis, databases, graphics, and other functions are pre-

scribed for all problems. There is a silver bullet, we’ve got it,

and for only a few dollars you can have your own compiler!

Triple your productivity overnight ! Plus, if you act now,

we’ll turn software into a rigorous engineering discipline at

no extra charge! Even the editors of BYTE magazine, who re-

ally should know better, write about how 0-0 promises to

make computer programming accessible to the right-hemi-

sphere, creative people who have traditionally been ex-

cluded. I could go on about that one for quite a while, but

1’11restrain myself.

This much hype inevitably provokes a backlash, Those
who have already embraced some other method of saving the

world resent 00P’s popularity and look for flaws. Others

without detailed criticisms nevertheless remain skeptical of

the inflated claims and suspect hidden drawbacks. The rest of

this column may remind you of a few arguments you’ve been

in, as I’ll be going through some representative questions and

criticisms, with comments and some of the replies. If you

haven’t yet had to deal with these, perhaps you’ll be better
prepared when the time comes.

WHAT’S THE CATCH?

Devon T. Caines (caines@andrews.edu) writes:

Just one quickie question.

What are the real disadvantages of 00P? There must

be a down side. True, the learning curve is one, but I

don’t consider that serious enough.
This is a typical “OOP novice” question. Surely people

wouldn’t devote so much effort to selling you something that

didn’t have drawbacks. Is the learning curve too steep? I’ve

heard it’s inefficient. Are the claims of easier maintenance

and reuse borne out in practice? If 00P encourages reuse,

how come there isn’t more of a software components industry?

Are there real companies doing major projects with 00P?

What kind of success stories or disasters have there been?

Let’s start with the disasters. One well-publicized failure

occurred at Cognos, an Ottawa company that makes 4GL

tools. A few years ago they tried to switch from C to Eiffel as

the implementation language for their main product. The

project ran into severe difficulties and was eventually aban-

doned. Burton Leathers is a Cognos representative who has

spoken and written about the project in several places, in-

cluding an article in the July 1990 HOOT (HOTLINEON
OBIECT-ORIETNTEDTECHNOLOGY).The problems with the

project are said to include immaturity of the Eiffel tools at

the time it was undertaken, the attempt to move wholesale

into 00P without adequate preparation, and general bad

management. The order of importance of these factors de-

pends on who you talk to.

On the other side, there area lot of 00P success stories. A

particularly impressive one involving Smalltalk was recently de-

scribed on the net by Bruce Samuelson (bruce@utafll.uta. edu),

who credited the May 11th COMPUTERWORLDmagazine as the

source. A company named EDS (Electronic Data Systems) re-

cently did a test project, rewriting a system using PL/1 and a re-

lational database into Smalltalk with an O-O database. The

PL/1 system was quite new, so specifimtion, design, and test
documents were still available, as were the original implemen-

tors. Using a team experienced with Srnalltalk, they achieved

incredible productivity gains on the order of 14:1. I haven’t

seen this confirmed, so if you want to use it as an example, it

would be best to check the details.

MAINTENANCE AND REUSE

One of the principal claims of 00P is that it allows easier

maintenance and code reuse. These are not easy things to

measure, and 00P detractors often argue that these gains are

imaginary.

For example, Ravi Kalakota (kalakota@ut-emx. uucp)
wrote:
THESMALLTALKREPORT

The oft-cited advantages of the O-O approach have been

code (and design) reuse, easy extensibility and

modifiability. O-O has brought about subshntial reduc-

tion in the size of new code that has to be generated and

also the size of the overall system. As the code size be-

comes mote “concentrated,” the complexity of the sys-

tem increases dramatically (at least in my opinion). Does

this complexity affect maintenance?

Probably not in a simple project. But in a large

system

Perhaps because these things are so hard to measure, they
attract a lot of interest on both sides. There were a lot of anec-

dotal stories posted, as well as references to several studies pur-

porting to prove either that O-O improved maintenance or

that it made,it more difficult. Many disagreed with the basic
idea of this post that complexity necessarily increases as code

size is reduced. The general perception is that in normal cases

reduced code size reduces complexity. In APL, for example,

part of the reduction in code size is due to the use of one-

character identifiers, which certainly reduces readability. Even

there, though, most of the reduction is due to the language

providing very powerful operations.
There was a strong consensus among all parties on the idea

that maintainability is not an inherent property of

any programming language or paradigm. There have been bad

programs written in 0-0 languages, and will undoubtedly be

many more in the future. Designing for maintainability is the
essential part of building a maintainable system. Whether O-

0 methods really assist in this or not remains in dispute, and

likely will until many more studies have been done.

As Ralph Johnson (johnson@cs.uiuc. edu) writes:

You can build poorly stmctured systems in any lan-
guage. The question is whether you are able to build

well-structured systems.

I build well-stmctured systems in Smalltalk that are rel.

atively easy to understand. My feeling is that 00P makes

it easier to build well-stmctured systems. It is easier to see

the design, so there is more motivation to do it right.

00P 1S UNNECESSARY

Then there are those who actively try to find fault with partic-

ular aspects of 00P. Some claim that most of 00P is not re-
ally new, and that the new parts are not important. In this

view, the productivity gains claimed for 00P are primarily a
result of its use of standard ideas on abstract data types and in-

formation hiding. Inheritance and dynamic binding are con-

sidered to be either insignificant or actively harmful.

This type of argument often occurs in a discussion of the
relative merits of Ada and C++. This is one argument where

I don’t have a strong opinion. I’d hate to have to work in a

language without the O-O features I’m accustomed to, even

if it did embody good software engineering principles. On
VOL. 1, No. 9: IULYIAUGL’ST1992
the other hand, a language based on C, with all of its “fea-

tures,” doesn’t appeal to me either. Call me spoiled, but I

like arrays that know their own size, and I like languages

that at least allow for the possibility of runtime checks. I

know that in C++ it’s possible to write or get hold of array

classes that work properly, but the default is still C, and a lot

of code uses the default.

66
Call me spoiled, but 1 like arrays that

know their own size, and I like languages

that at least allow for the possibility of

runtime checks
99

Of course, there are people who like C, and many of them

really like it and don’t see why you would ever want another

language, even one as close as C++, Martin A Leisner (leis-

ner.henr801 c@xerox.tom) writes:

00P is a buzzword for “good design practices” I’ve

been doing OOP in C for years (C++ just enforces more

a disciplined programmer doesn’t need). If 00P helps

make good designs, great. But good designers make good

designs, not the language/system.

I have to agree that good designers are important, per-

haps even more important than good languages. However,
from my own experiences in having to do some work in C

for the past couple of months, I (speaking as a good de-

signer) am getting extremely frustrated with the lack of

both 00P and software engineering facilities. One way to

make C++ look good is by writing in plain C. The inability

to generalize operations to work on different types, the

need for function pointers everywhere, and the lack of en-

forcement on information hiding all make it very difficult.

Ralph Johnson (johnson@cs.uiuc. edu) had a particularly
good line for this:

Information hiding can be implemented by self-restraint.

You can tell yourself that clients should never use a par-

ticular fact about a component and then believe yourself

when you design the components. Self-restraint works

almost as well for implementing information hiding as it

does for birth control.

C is a pretty easy target, so it’s not really fair to take that as

our representative non-O-O language. Suppose we use Ada

instead, which does have support for information hiding,

genericity, and many other nice features. Does the full power
of O-O really gain us much over this?
15.

■ THE BEST OF COMP.LANG.SMALLTALK

16.
Peter Hermann (ph@rus.uni-stuttgart.dbp.de), who appar-

ently doesn’t think so, writes:

In an exceUent paper “Object Oriented Extensions to

Ada: A Position Paper for O-O Ada Panel” TRI-Ada ’90

p.92-94 ISBN 0-89791 -409-0 Schwartz, Jack H. wrote:

Conclusion: The current definition of the Ada language
already includes the best features of object-oriented lan-

guages, namely:

● modularity

● encapsulation

● separate compilation

● genericity

wdynamic instantiation

● lexical overloading

wexception handling

66
Certainly inheritance can be badly

misused by the inexperienced or by the

experienced in a hurry. Does that mean it

should be left out of a language?
99

and deliberately excludes many questiomble and danger-

ous features such as

● inheritance

● dynamic binding

for the very reason that they compromise the require-

ments of large scale software engineering. It is, therefore,

inadvisable to attempt to extend the Ada language to in-

clude features that conflict with Ada’s primary goals:

maintenance, reuse, and progmmming-in-the-large.

This paper, oddly enough, seems to consider things like

separate compilation and exception handling to be features of

object-oriented languages. I’m not sure if that was an attempt

to minimize the importance of inheritance and dynamic bind-

ing by placing them amid a long list of features or if it’s due to

just listing all the features in C+ + and attributing them to

00P, That aside, this post does raise the interesting question

of how important inheritance and dynamic binding are to

00P, and to good software engineering in general.

INHERITANCE AND DYNAMIC BINDING CONSIDEREDH~

Inheritance is a very powerful and useful feature, especially in

a prototyping environment. Is it really “questionable and dan-
gerous” as well? This has been discussed in the O-O commu-

nity for some time, and there seem to be two main issues. The

first is inheritance for subtyping vs. inheritance for code reuse.

On this, Ralph Johnson (who I keep quoting because he keeps

writing good stuff) writes:

I see the use of inheritance as one of the differences be-

tween people interested in developing reusable software
and those interested in getting applications out the door.

People who are good at developing reusable software

want to develop elegant software and dislike using inher-
itance just for code reuse. However, people who want to

deliver applications as soon as possible think that over-

riding arbitrary methods is the greatest thing since text

editors. Both are right. They have different goals, and

thus different criteria for evaluating programs.

Inheriting for code reuse is fine in a prototyping environ-

ment, but those sorts of relationships shouldn’t normally make

it into production code. The standard Smalltalk example of

this sort of inheritance is Dictionay being a subclass of set,

even though the interfaces are quite different. This relation is

now enshrined in tradition, but to my mind it would be much

more sensible for both to be subclasses of collection, imple-

mented in terms of a third class HashTable. This would achieve

roughly the same level of code reuse, make the operations of

Set and t)itionary trivial, and make it much easier to write sets

or dictionaries with alternative implementations.

One reason this sort of thing doesn’t get done is simply
laziness on the part of the programmers. It’s easier to inherit

and change the interface than to write a new class, and there’s

a reluctance to write classes that do little more than translate

their operations directly into an underlying representation.

Programmers will use an OrderedCollefionto implement a stack

rather than writing a Stack class, even though OrderedCollecbons

have many operations inapplicable to stacks. One of these op-

erations applied anywhere in the code could lead to a very

hard-to-find error.

The second issue is that of composition vs. inheritance,

which is closely related. If you shouldn’t inherit for code

reuse, then to reuse code you have to build new classes that

encapsulate the code you are trying to reuse. This can be done

by writing a class around an ADT as in a stack implemented

by an OrderedColletion.h can be done by writing a class that

includes instances of several other classes and manages the re-

lationship between them (I’d say this was the normal case in

00P development). Or it can be done by writing classes that

manage somewhat arbitrary collections of components (such

as a windowing class that manages a group of sub-windows).

Richard Thomas (thomas@qut.edu. au) writes:

Inheritance is the biggest problem and danger of

00PMost students have problems deciding when to
inherit and when to import. Often they will inherit too
THESMALLTALKREPORT

ODBMS

ODBMS
The Objectoriented Database
for W* and 0S/2.

ODBMS
‘Ib make your SMALLTMK even better.

ODBIUS
Objcctoriented Technology by
Vc SOhareCon!muctiona

ORDER NOW !

0 ODBMS - Programmer’sVersion
o ODBMS - Graphical User Intake
o ODBMS - Interfkce to SQL

Cl DSSDe - Distributed Pro~
based on ODBMS

ODBMS and more ...
much and generate a messy fettuccine (a la spaghetti)

class structure. Unfortunately this isn’t limited to stu-

dent efforts. Many examples of OOP in the literature

and in class libraries use inheritance just about every

time they want to access a feature. This is wrong!

Overuse of inheritance leads to a very complex, nonin-

tuitive class hierarchy that takes a considerable
amount of effort to understandInheritance for code

reuse (not subt yping) allows you to defeat the princi-

ples of information hiding. Either I view a subclass on

its own and have important features that this class de-
pends on hidden from me in superclasses. Or I look at

the expansion of a subclass to include its superclasses

and have to interpret the entire mess and figure out all

the dependencies.

So it appears there is a valid point in the idea that inheri-
tance is “dangerous,” Certainly inheritance can be badly mis-

used by the inexperienced, or by the experienced in a hurry.

Does that mean it should be left out of a language? I don’t

think so, but perhaps a language (like Ada) not aimed at pro-

totyping situations could provide compiler support for restrict-

ing inheritance to subtype relationships. Also, I suspect that

Smalltalk is not quite so badly off in this regard as those lan-

guages with multiple inheritance, where misuse is that much

easier and can get that much worse.

We haven’t even begun to talk about dynamic binding,

which could easily fill another whole column. In the context

of these kind of discussions, full dynamic binding in the style

of Smalltalk is generally considered too dangerous, because it

is passible to have errors which will not be detected until run-

time. I find it odd that people do not seem to have the same

problem with current computer arithmetic systems, which

have the potential to cause very serious runtime errors, but I

guess they have different priorities. Even limited dynamic

binding such that is found in C++ and Eiffel is considered

dangerous. In a hnure column 1 may go into these issues, but I
suspect most of the readers have already made up their minds

on this and would be more interested in something else.

TO BE CONTINUED

This column is already running long and late, and I haven’t

even considered some of the more interesting criticisms and

misperceptions. Among these are the idea that O-O implies

that only local knowledge can be used, or that strict O-O does

not permit classes representing relationships or processes.

Those issues will have to wait for the next installment. ❑

Alan Knight is a researcher in the Departmentof Mechanical and

Aerospace Engineering at Carleton University, Otuwa, Canada, KI S

5B6. He currentlyworkson probkru relad to finite ekment analysis

in ParcPlace .snudhdk, and has worked in.most Snud.ltalk dkdects at

oru time or another. He can be reachedat 613.788.2600 x5783, or
by end as knighttlmrco.carleton.ca.
17.

VOL. i, No. 9: WLYIAUGUST1992

18.
MALLTALK IDIOMS

Abstract control idioms

Kent Beck
Istarted writing about the new ValueModel style used in

ParcPlace’s ObjectWorks \Smalltalk release 4 as promised,

but soon discovered that I need to cover some preliminary

material about the “traditional” style first. I split the column

into two parts. This one talks about how abstract control has

been used to date. Next issue’s will cover the new possibilities

available with the advent of ValueModels.

MESSAGES LIMIT REUSE
Reuse is the name of the game. Headlines shout. Marketing

literature trumpets. Salesmen ooze. Objects will solve your

reuse problems. Not true, of course. Programmers solve reuse

problems. It is possible to reuse procedural code, and it can
be impossible to reuse objects. If the mere presence of ob-

jects doesn’t enable reuse, what is it that makes reuse hap-

pen, technically?

Whenever I am able to reuse a piece of code, either by de-
sign or through serendipity, it is because the code makes few

assumptions about what the rest of the world looks like. A

graphics model that assumes all coordinates are integers is

significantly harder to use than one that is prepared to take

any kind of number. What does this have to do with messages

limiting reuse?

Every time you send a message you build into your code the

assumption that one and only one action will be invoked.

What happens when you later decide you need two things to

happen? Or sometimes none and sometimes many? You have
to change the original code.

I can think of three levels of code reuse. By far the simplest

is reuse by instantiation. You create an object, send it some

messages, and good things happen. Far more complicated is

reuse by refinement. To subclass you have to understand the

imer workings of the superclass to know what messages to in-

tercept and how to compatibly extend the representation. By

far the most expensive reuse in terms of downstream costi is

reuse by tweaking. Somehow the original author never factors

the methods enough, but by a little judicious editing you can

create an object you can subclaas for your purposes.

Tweaking is becoming infeasible as a production program-

ming strategy. As Smalltalk programs gTow, it becomes in-

creasingly desirable to treat code from outside sources as im-

mutable. I have enough trouble keeping up with changes to

my own objecu, much less trying to track what several ven-
dots have done with code I have modified. If we had a mecha-

nism that was like message sending, but was extensible with-

out modifying the original code, we could gain reusability for

our libraries of objects.

THE SMALLTALK SOLUTION: UPDATE/CHANGED

Update/changed,also known as change propagation or depen-

dency, is the Smalltalk solution to a “more abstract message

send.” It is more abstract in the sense that zero or more re-

ceivers can be activated by one action in the sendeq the num-

ber and identity of the receivers is determined at nrntime and

can easily be changed by code which is otherwise unrelated to

the sendeq and the receiver has much more choice in re-

sponding to the a changed message than an ordinary message

send. On the other hand, because it is not implemented by

the Smalltalk virtual machine it is not as efficient as ordinary

message sending.

I talked to Diana Merry-Shapiro (one of the long-time

members of the original Smalltalk team) about the evolution

of rhe dependency mechanism. The early Smalltalkers took as

their benchmark problem a model consisting of a collection of

numbers and two views, one a pie chart and the other a bar

chart. The problem was to keep both charts consistent with
the model while leaving the model as ignorant of the fact that

it was being viewed as possible. According to Diana, it was

Dan Ingalls who finally implemented the dependency mecha-

nism as we know it.

Here is a quick review of the fundamentals of dependency.

The system associates with each object a collection of depen-

dents, other objecn to be notified when it changes. Here is a

simplified implementation:

ObjeO>addDependentianObject
Dependertts“aclassvariablein Obje&’isliil

ifl’ruw[Dependents:=Identi&Dictionarynew].
(DependentsinchrdesKey seH)

itFalse: [Dependentsati seti puk Set new].
(Dependents ak sew add: anObject

Object>>removeDependenkanObject
Dependents isNiliflhra [Aselfj.
(Dependents ak self ifslbsenti [%e~)

remove: anObject
ifhenk [Aselfl.

(Dependents ak selfJ isEmpty
il’1’me:[DependentsremoveKey sew
‘THESMALLTALKREPORT

Most objects don’t have any dependents, and there is no

space cost for nonpafiicipan~, so the memo~ overhead of de-
pendency is not high.

When an object changes its state in a way that it thinks

dependents might be intere.wed in it sends itself the message

changed, which causu all of the dependents to be sent the

message update. Each dependent then takes whatever action

is necessary to reconcile it with the new state.

Obje@>dependents
Dependents isNilWrue: [“#()].
“(Dependents ati sew ifAbsent: [#()]

Objeb>changed
self dependents do: [:each I each update]

Obj-wpdate
“self “Donothing by dei%mlt”

The smlution to the benchmark problem mentioned above

is to make the pie chart and the bar chart dependent on the

list of numbers. Every time the list changes, adds, or deletes a

value, it sends itself a changed message. Both of the views in

their update methods simply redisplay and the consistency

problem is solved. The solution has the additional attraction

that new kinds of views can be added, and as long as they are

registered to the model they will operate without any changes

to the model. Finally, the model works in the absence of a user

interface just as well as it does interactively. Because all com-

munication with the user interface is through dependency, its

presence or absence makes no difference to the model.

The first problem that becomes apparent with this simple

dependency mechanism is that not every dependent is inter-

ested in every change. The most common form of changed

message adds a parameter, a symbol by convention, which sug

gests the kind of change taking place. The parameter is passed

along to the dependent. Notice that the generic update gets

sent if update is not overridden.

Obje*>changed a$snbol
self dependents do: [each I each update: asymbol]

Obje*>update: asyrnbol
self update

Most applications that need dependency can be coded with

no more complexity than this.

DEPENDENCY IDIOMS

For consumem of update messages, the primary idiom is to

override update: and swirch on the parameter. Here is

ListVi->update:

update: asymbol
a$nnbol = #list

ifl’rue: [“seLfsetliewhst].
a$mbol ==#listTndex

WI’rue:[“self setliewseleclion]
19.

VOL. 1, No. 9: JULY/AUGUS~1992
I have found it good practice to have only a single send

to self for each case. When I am tempted to put several

statements in the block I invariably end up creating a

method later which is exactly those lines. Also, the code is

simpler to read if each implementation of update: has the

same form.

What if you want several views on the same model, but you
want each to respond to different updates? The old license

version 2 image introduced pluggable views to solve this prob-

lem. Rather than create a subclass for each slight variant, each

of which would override update:, a pluggable view stores the

pattern againat which update messages are matched in an in-

stance variable. Here is SelefiotdtiVkw, the pluggable vari-

ant of ListView.

updatx a.$mbol
a$mbol ==partMsg

WI’rue:[“self setNewList].
asymbol ==initialSelectionMsg

WI’rue:[“self setNewSelefion] ,

The instance variables are set when a list is created with

the SelefiofltitWl*>onqetibtibti message. Each list

also needs to send a different message to the model to get the

contents and set the selection. The symbols used for checking

updates double as messages that are sent to the model via per-

form:. I have always thought this was kind of sleazy, but in

practice it works quite well.

The other commonly used pluggable view is TextView.

SelehonInL.istView uses one symbol to check to see whether

to update the list contents and another as the message to

send to the model to get the list. TextView uses the same

symbol for both (the aspect: parameter of the instance

creation message).

A final note about implementing update: –remember to

send “super update: asyrnbol” if the current method hasn’t con-

sumed the updatemessage. That way your classes will fit more

neatly into hierarchies.

I looked through all senders of changed to see if I could find

any pattern to the symbols that are used as the parameter, and

I wasn’t able to discover anything profound. The parameter

should, of course, have some relation to the change taking
place in the model. Other than that there doesn’t seem to be

much of a pattern to how the symbols are selected.

DECIDING TO USE DEPENDENCY

If dependency is so cool why not use it all the time? Play-

ground, a language I worked on at Alan Kay’s Vivarium
project, was an attempt to do just that. It used dependency

as its only control abstraction. Because Playground was a

pure abstract control language, it threw the two biggest

drawbacks of dependency into high relief: debugging and
performance.

There are two problems with debugging update messages.

The first is in the debugger. It takes a long time to single-step

■ SMALLTALK IDIOMS

m
AU.
through code which does an update. You have to go through

all the intermediate steps of the implementation for each de-

pendent. (The real implementation is considerably more com-

plicated than the one outlined above. See the section called

Gory Details for the, well, you know.) If you have lots of de-

pendents and only one of them is interesting this can be te-

dious and frustrating.
The browseralso does little to help debug dependency. If

you have symbols built in to your implementations of update:

you can at least use senders (from the Iauncher window) to

find out where they are used as parameters to changed. If you
are implementing a pluggable view, however, the symbol will

only show up in the user interface code which creates the
view. From this it is often hard to see how an update will

be triggered. A trick I use is to add “fianscsipt cr; show aSyrn-

bol” as the first line of the update: method I am interested

in. I can then see all the update messages and the order in

which rhey arrive.

A less compelling, but occasionally fatal, drawback of de-

pendency is performance. Unlike a message send, which every

part of the Smalltalk implementation is tuned to make

efficient, changed messages have to go through several layers

of invocation to get to their recipient. If you have lots of de-

pendents, most of whom aren’t interested in most updates, you

can spend enormous amounts of effort creating a little activ-

ity. A related minor annoyance is that all those layers of invo-

cation tend to clutter performance profiles, especially if you

have several layers of updates happening.

Since dependency has significant costs associated with it,

when is it worth using? The one clear case is when you are im-

plementing new views or models. You need dependency so

your code fits well with the rest of the system. Also, depen-

dency makes your models more reusable by insulating them

from the precise details of the interface or interfaces that are
viewing them.

Other than models and views in the traditional sense, you
should use dependency anywhere you want art object to be

thoroughly insulated from the environment in which it oper-

ates. Any object that you know will be used in a variety of ways

and that you want to keep clean is a candidate for dependency.

When is dependency being abused? Here are some signals
that you have gone too far:

● An action spawns several updates and their order matters

● You forget which symbols mean what

. Your update messages create an infinite loop

c You find update messages that aren’t handled by anyone

When your code begins exhibiting any of these symptoms,

it is time to revisit the decision to use dependency. You may

discover that one of the connections you are making always

works out to use exactly one object, in which case you can re-

place the dependency with a direct reference and message
sends. Or you may have a collection of rsbjects that all re-

spond to the same messages, so YOUcan store a collection and
use direct messages.

THE 00RY DETAILS

The dependency implementation in Objectworks\ Smalltalk

release 4 is more complicated than the one outlined above.

There is a varianr of the update method that takes three pa-

rameters: an aspect, an oprional parameter, and the changing

object. Changed sends changed:with:, which sends

update:with:frorrr: which by default sends update:with: which

sends update:. All of these intermediate steps add greatly to

the functionality and complexity of dependency. However, in

my opinion, if you use all the available generality of the three-
parameter version rsfupdate you are stressing what was in-

tended to be a very simple mechanism, and you are likely to

run into trouble.

The implementations of addDependent:and removeDepen-

denk in Objectare much like the ones above. They have a seri-

ous flaw. If an object has been registered as a dependent and it

fails to remove itself, or if an object gains dependents that are

not removed, it cannot be garbage collected because it is re-

ferred to from a global variable. To deal with this problem,

there is a subclass of Objectcalled Modelwhich adds an instance

variable, dependents, and overrides addDependenband re-

moveDependenti.Since the model is not referred to globally, it

is easier to get it garbage collected; once it has been collected,

it no longer refers to its dependents, so they become candi-

dates for collection.

A final nuance of the implementation of dependency is the

use of DependentsCollection,a subclass of array. If a Modelhas

only a single dependent the value of its instance variable de-

pendents is that dependent. Object>>changed:witi sends

update:with:from:and off ro that dependent and everything

works. If there is more than one dependent then dependents is
a DependentsColleclion,which overrides update:withxlom:to for-

ward the message to each of its elements. This little trick saves

an additional object when rhere is only one dependent.

CONCLUSION
We have seen how abstract control structures, implemented

by Smalltalk dependency mechanism, can reduce the strength

of the connection between two objects. This can lead to en-

hanced reusability. Because it is outside the language and is

not directly supported by the programming environment, ex-

cessive use of dependents can make programs hard to read and

debug, and can lead to performance problems. ❑

Kent Beck b been discovering Smalkalk idiomsfor eight years at

Tektronix, Apple Computer, and MasPars Computer. He is ah the

founder of First Class Software, whichdevelopsand dism”butesre-

engineeringproducts for Srmdhdk. He can be reachedat P.O. Box

226, Boukkr Creek, CA 95006 or kentb@maspar.com.
THE SMALLTALKREPORT

Creating subclasses

,Jzanita Ewing
Class hierarchies are a way to capture variations and

specializations. A subclass is generally a more special-

ized kind of entity than its superclass. For example,

the class Sphere is a subclass of the class Solid. If we needed a

representation for pyramids, we would create a new subclass,

Pyramid,whose superchsss is Solid.

In this example it is easy to decide how Pyramidfits into the

hierarchy because there is an abstract superclass, This abstract

superclass is a generalization representing different kinds of

solids. Often the decision about where to insert a new class in

the hierarchy is not straightforward. This column explores

strategies for placing subclasses in a hierarchy and conse-

quences of the placement.

BENEFITS

Well-formed class hierarchies are those in which functionality

is factored into a number of classes. Subclasses are specializa-

tions, and superclasses are generalizations. When functionality

is factored into hierarchies, classes are more reusable and main-

tainable. Highly factored hierarchies are also easier to extend.

HEURISTICS

A significant part of creating subclasses is choosing the most

appropriate superclass. It is almost always better to inherit be-

havior rather than reimplement behavior, though not at the

cost of inheriting inappropriate behavior. In order to inherit

the greatest amount of appropriate behavior, we use two

heuristics to select candidate superclasses.

HEURISTIC ONE

Look for a class that fits the “is a kind of” or “is a type of” rela-

tionship with your new subclass. Often it helps to make this

heuristic into an English question. For example, we can ask
the question, “IS a pyramid a kind of solid?”

Documentation describing a class often helps you under-

stand exactly what the class represents. Because of your un-

derstanding of classes that you implemented, it is much easier

to insert new classes into hierarchies that you have devel-

oped, Personal knowledge of the class hierarchy can substi-

tute for class documentation.

HEURISTICTWO

Look for a class with behavior that is similar to the desired be-
VOL. 1, No. 9: JULYIAUGUST1992
havior of the new subclass. In this heuristic you must look at

the methods or good documentation for the methods. Often,

just the message selectors will give you enough information to

reject many inappropriate classes.

BEHAVIORAL INHERITANCE VS.

IMPLEMENTATION INHERITANCE

The two heuristics we have presented are oriented toward

class hierarchies based on behavior. This kind of inheritance

is known as bekiorcd inhet-itunce.In these hierarchies a sub-

class and its superclass have a subtype relationship. That is,

the subclass supports all the behavior that the superclass sup-

ports, and the subclass can add new behavior. Any use of an

instance of the superclass can be replaced by the use of an in-

stance of the subclass. Some examples from Smalltalk class li-

braries are: RecordingPen is a subclass of pen, l’ime is a subclass of

Magnitude, Integer is a subclass of Number, and WlldPattem is a

subclass of pattern.

Inheritance can also be used in a more pragmatic fashion,

in which a class is placed in a hierarchy because of the desire

to inherit code and implementation rather than behavior, In-

heritance used in this fashion is called implementation inbi-

tance. Most class libraries also have examples of this kind of

inheritance: Processis a subclass of OrderedColleciion,and Debug-

ger is a subclass of ~spector.

BUSROUTE EXAMPLE

An example involving bus routes will illustrate the different

kinds of inheritance. In this example, we need to create a

class to represent a bus route, which is used to inform the
bus driver and passengers of the bus’ path through the city.

A bus route is a collection of bus stops, in a particular order.

A bus route needs the ability to compose the route out of

bus stops, to supply a summary report on the route’s stops, to

determine how many intermediate stops there are between

two stops, and the fare from one stop to another. The fare

computation may vary depending on which zones the stops

are located in.

People who are familiar with Smalltalk class libraries will

immediately start to think of the class OrderedCollefion when

they read the description of a bus route. OrderedCollection is a

concrete collection class that holds elements in order, similar

to a stack or queue. The elements can be of any type.

21.

■ GEUING REAL

22.
‘7
Ordered

Collection

nBusRoute

Figure l. BusRouk asasubclsss or OrderedCoUection,

IMPLEMENTATION INHERITANCE ALTERNATIVE

We need to make a new class, which we will call BusRoute.

Should BusRoutebe a subclass of OrderedCollecbon?As a subclass

of OrderedColletion,it would inherit the implementation that

maintains elements in order. It would also inherit the code for

adding and removing elements which can be used to compose

the bus route, This relationship is shown in Figure 1.

It is useful to determine whether this placement of Bus-

Routeuses behavioral inheritance or implementation inheri-

tance. Is a bus route a kind of ordered collection? No. In-

stances of OrderedCollectionhave an implicit responsibility to

hold objects of arbitrary type, and a bus route holds only bus

stops. A BusRouteis not a generic data structure class.

Is all the behavior of OrderedCollectionappropriate for Bus-

Route?No. According to the description, bus routes shouldn’t

respond to the do:, seleti or reject messages, or many of the

other generic collection messages. Therefore, BusRouteis not a

subtype of OrderedCollection.Placing BusRouteas a subclass of Or-

deredColletion is an example of implementation inheritance, in

which code and implementation are usefully inherited.

Object

BusRoute

Figure 2. BusRoute as a subclsss of ObjecL
BEHAVIORAL INHERITANCE ALTERNATIVE

Another alternative is to make BusRoutea subclass of some

other class. A bus route is a kind of route. Are there any route

classes in the Smalltalk library? If the answer is no, then make

BusRoutea subclass of Object.The behavior csfObjectis appropri-

ate for all objects, so Objectis selected when there isn’t any

other appropriate superclass. This alternative is an example of

behavioral inheritance because all the behavior in Objectis ap-

propriate for BusRoute.The inheritance relationship is shown

in Figure 2.

In this akernative, BusRoutewould collaborate with Ordered-

Collefion to store bus stops in order. Figure 3 illustrates the

collaboration between the two objects. An instance variable,

busStops, references an instance of OrderedColleclionthat stores

bus stops. Instances of BusRoute can relay messages to the in-

stance of OrderedCollection referenced by the busStops instance

variable.

OVERRIDE INAPPROPRIATE METHODS

In the first alternative, in which BusRoutewas a subclass of Or-

deredCollection,we proposed using inherited public methods

such as add: and remove: to compose the bus route. But this is

not a very good way to compose bus routes because bus

mutes would be subject to accidental and inappmpriwe

modifications. Further, if a bus stop is added to a route, then

what results is a new and different route. h should not be the

same object.

Many methods must be overridden to disallow in-place

modifications. For example, the add: method is public and

should be overridden to prevent changes.

BusRoutesubchss of OrderedColleti”on

instancemethods

add tiusstop
“OverrideinheritedpubLicmethod to produce sn error.
Bus stops cannot be added to a route.”

‘self error ‘Busroutes cannotbe modified.’

In the second alternative, in which BusRoute is a subclass of

Object,we don’t need extra methods to override inappropriate

behavior.

CREATE NEW BUSROUTES

A more appropriate way to compose bus routes disallows in.

place modifications. We need to make an instance creation

FH=l
Figure 3. BusRoutecollaborates with OrderedCoUeciinn.
THE SMALLTALKREPORT

ziPPY OLject Oriented Database

Obiect
Management System

Tk ONLY ODBMS for Smalldls
for under $10(M dsd dnlivem Pereidenf

O&ITLd ob-~sf.rq..nDbkfi.Zppy
B+T- DAsase Rebieml Es@ne!

M emery -

~ D
~ierarchiod ~mM

k SmdlfJWV
Applications

andsIMlldk-ao ~isnited (6U) s37-2117
~ PLtformn $199.95 12407- ~~ N., Suih #lCSM66
So- Crde Lcludrd kin, TX 7S76S

-)2
method that creates an initialized bus route. To support the

instance creation method, a private instance method is

needed to set the collection of bus stops.

BusRoutesrsbcfassof Object

classmethods

wfthAlk colleeliOnOfSusStops
“Createa new in.stnce of the receiver initialized
from <colledionOfBusStops>,”

‘self new busStops: colleclionOfBuaStops

instance methods

busstop~ collecUonOfSueStops
“Private- Set the collefion of bus stops.”

buaStops := colledionOfSusStops

Classes that collaborate with BusRouteneed to accas the
bus stops to select stops based on some criteria. The class Bus-

Routeneeds to provide access to the bus stops and protect the

private collection of bus stops from modification. The in-

stance method busStopsreturns a copy of the collection refer-

enced by the instance variable. This way collaborators can
modify the returned collection of bus stops without any side

effec~ on the bus route.

Brssitautesubclassof Object

instancemethods

bssestops
“Return a copyof the collection of bus stops.”

*busStops COPY

New bus routes can be created using these methods. The
following code illustrates the creation of a new route based on
the bus stops from another route:

shoppingStops := downtownRoutebusStops.
shoppingStops removeFirst.
derivedRoute :=BusRoutewithAILshoppingstops

REUSE LMPACTS

One of the benefits of the behavioral inheritance alterna-

tive is that it is easy to change the collection characteris-

tics. It is easier to modify the initialization code that allo-

cates an object for an instance variable than to rearrange

the hierarchy in order to get different collection character-

istics. If you are forced to rearrange the hierarchy, then col-

laborators of BusRoutemust change also. This is because dif-

ferent collection classes respond to different messages, and

the inherited messages are directly accessed by the collabo-

rators of BusRoute,

Also, new subclasses of BusRoutecan be created based on

collection characters tics. One subclass could support set se-
VOL. 1, No. 9: JJLYIAUGUST1992
mantics, in which no duplicates are allowed. Another could

support sorted collection semantics, Each subclass can be

implemented by simply overriding the initialization

method. This is much more awkward with implementation

inheritance.

In the behavioral inheritance alternative, the exact col-

laboration between BusRoute and OrderedCollection is clear be-

cause messages are relayed to the instance of OrderedCollec-

tion from BusRoute. In the implementation inheritance

alternative, there is no collaboration. An examination of

BusRoute does not determine which methods from OrderedCol-

[efion are used by BusRoute. Instead, collaborators of Bus-

Route must be examined. Furthermore, because not all in-

herited messages are appropriate, other developers will not

know which messages they can send to BusRoute. This makes

it much more difficult to extend and maintain the applica-

tion containing BusRoute, and to reuse BusRoute in related

applications,

SUMMARY

Use behavioral inheritrmce whenever possible, because the re-
sulting subclasses will be more reusable and easier to maintain.

In locating subclasses in a hierarchy, use the is-kind-of criteria

and similar behaviors to guide your selection. Only after locat-

ing a subclass based on behavior should you examine imple-

mentation details.

It is okay to change the superclass. After some implemen-

tation and testing, it is quite common to revisit class place-

ment in the hierarchy, Reexamining placement can occur in

conjunction with reorganizing the entire hierarchy and with
the addition of new classes, ❑

]uanita Ewing is a setior staffmember of Dig-itdk Professional Services

(fonnm[y Insuntiatiom Inc.). She has been a project leader for several

commercial object-orientedsoftware projects, and is an expert in the

design and irnpkrz.entation of object-oriented applications, frmnewmks,

and systems. h a previous position at Tektronix Inc., she was respon-

sible for the deuel.oprnentof theelms librariesfor thejirst commercial-

qzudity Smakd.k-80 system. Her professionalactivitiesinclude Work-

shop and Panel Chairs for theannual ACM 00PSLA conference.

LJ .

?.4
/4.
AB REPORT

Smalltalk researchat the
University of Florida

JustinO. Graver
Reports of current work in Smalltalk

taking place in leading university and

research laboratories.

T he main focus of Smalltalk research at the University

of Florida is to demonstrate the viability of evolution-

ary prototyping as an alternative to the traditional wa-

terfall model of software development, Specifically, we are

working on a variety of enhancements to the Smalltalk pro-

gram development environment (PDE). These include new

change management tools and techniques, application mod-

ules, and a string-to-object translator generator. We are also

working on the more abstract tasks of understanding, formaliz-

ing, and validating evolutionary prototyping as a new software

development methodology.

Smalltalk was originally designed as a programming envi-

ronment for a single user. As Smalltrdk moves slowly into the

arena of large-scale industrial software applications produced

by tens (or hundreds) of programmers, the need for more pow-

erful change management and versioning capabilities is appar-

ent. The change management tools project is addressing this

need in a variety of ways. As a prelude to using a commercial

database for source code management, we have broken up

Smalltalk’s monolithic source code file into several smaller

module files. We’ve built tools for creating, loading, version-

ing, and maintaining large code libraries of module files.

These tools automatically determine the complex dependen-

cies that exist between library modules so that modules get

loaded in the correct sequence. We have also chosen to exper-

iment with the class as the smallest unit of versioned granular-

ity (all change management tools available for Smalltalk

PDEs that we know of use individual methods as the lowest

level of granularity). Since large Smalltalk applications easily

grow to include hundreds of classes with tens of thousands of

methods, we felt that classes might provide a more convenient

and manageable level of granularity.

Closely coupled with the change management improve-
ments is the notion of application modules. There is a widely
recognized need for separate name spaces within a single

Smalltalk image. Our application modules provide user-

defined statically scoped name spaces. This permits enforce-

able private classes and the specification of well-defined

module interfaces. We also plan to implement statically en-

forceable private methods. The ultimate goal of the module

system is to support modules with statically typed public in-

terfaces. These typed interfaces would allow each module to

be independently compiled and optimized, using the TS

(Typed Smalltalk) compiler. We have designed and proto-
type a typed module compiler. Given type declarations for

only public interface messages and primitives, the module

compiler statically determines all intermediate type informa-

tion necessary to compile and partially optimize the module

(further optimization can be performed when different mod-

ules are linked together). The module compiler uses a tech-

nique called abstract interpretation to trace the effects and

requirements of each public interface message. This tech-

nique also handles arbitrarily recursive methods. To provide

better support for both TS and the module compiler, and to

fuel additional research into object-oriented compiler re-

search, we have designed and implemented a string-to-object

translator generator tool called T-gen. T-gen provides a

comprehensive set of translator generator options including

EBNF grammar specification, fully automatic keyword detec-

tion, tracing and consistency checking, LL and LR parser

generation, support for automatic generation of parse trees,

and automatic generation of T–gen- independent scanner

and parser classes.

A Smalltalk parser (to be used as the new TS front end)

is just one of the projects that has been successfully built us-

ing T-gen. We have also used T-gen to implement a com-

piler for an instructional language called Tiny. Tiny has

been used for over five years in the graduate and undergradu-

ate compiler courses at the University of Florida. We hope

to use the new Smalltalk implementation of Tiny to further

instill object-oriented principles into the CIS curriculum.

These research projects have been primarily funded by the

Software Engineering Research Center (SERC). SERC is an

NSF sponsored Industry/University Cooperative Research

Center. Researchers from Arizona State University, Purdue
University, and the University of Florida are working jointly
THESMALLTALKREPORT

fii. ;o’lltaIk/Vuseed~ke;o&.l?.t . .
p

0Put related classes and methods into a single task-
orientedobjectcalled application.

“ Bnzwse what the application sees, yet easily move code
Mxveen it and external environment.

0Automatically document code via moditlable templates.
0 Keep a historyof previous versions; restore them with

a few keystrokes.
e View class hiemrchy as graph or list.
0 Print applications, classes, and methods in a formatted

report, aginated and commented.
0 File cOSfe into applications and merge them together.
0Applications are unaffected by compress log change

and tni3tly0th121 features..

class
‘ Deleted classes !

Browsers..

<f

<“”---”””””---”--”-””””””””””-”-”-”’
rAppficatiq ~....................................—...
Yarn : Deleted methods :......................................

[mager History — ICode recovery)
..

Utilities.. —; Applicationprirsting~and more.

CodeIMAGERm V286, VMac $129.95
VWWV;~~~o~~17;’20 !&249.95

Diakettti ❑ 31n ‘ ~ 5;/4wapy

IEl

SixGraphm Computing Ltd.
formerly ZUNIQ DATA Corp.
2035 C6te de Liessq suite 201
with over a dozen major companies to solve current prob-

lems in software engineering. For more information about

SERC contact Tammera Reedy by phone at 904.392.1520,

or by e.mail at tct+%fl.edu. Much of this research is an out-

growth of the ongoing Typed Smalltalk project at the Uni-

versity of Illinois at Urbana-Champaign. We maintain ac-

tive collaboration with that team, which is lead by Ralph

Johnson. This successful interaction has been greatly facili-
tated by the sharing of tools developed at both institutions.

T-gen runs under ParcPlace’s Objectworks/Smalltalk Release
4 and is available via anonymous ftp from the University of

Illinois Smalltalk Archives (st.cs.uiuc.edu) in the directory
/pub/st80_r4/T-gen2,0. ❑

Justin Graver, Ph.D., is currently a staff engineer at Motorola’s Soft-
wareTechnology Cente~ where he is workingon next-generation

CASE techrudogyusing .srmd[ttd.k.Prior to that, he was an assistant

professor attheUniversityOJFlorida. He can be reachedat Motorola

SoftwareTechnology Center, 1301 E. Algonquin Rd, Schaumburg,

IL 60196, byphone at 708.576.1916, or by ermri[at

graver@comm.mot. corn.

$- K’%W%%’H%%556-1032

~’-’ ‘“s”ti-”fs”*&iL.c-*mSIMIMWvmaq. na&IWkdDiimlk,
L

Product Announcements are not reviews. They m-ealmrac~d from press releasesprovided by vendors, and no endorsement is implied.
Vendors interested in being inc[uded in thisfeature shouldsend press releases to our editorial ojjices, Product Announcements Dept., 91

Second Ave. ,Otmwa, Ontario K] S 2H4, Canada.
-

SynergisticSolutionsInc. has announced additional platform support

for SmallteltdSQ~ the porrable database interface for Smalltalk. The

product works in conjunction wirh the latest releases of ParcPlace Sys-

tems’ ObjeccworksKmalltalk and Digftalk SmalkalkfV. The product enables

development of graphical user interthce (GUI) applications which access

information stored in relational databases.

SmalltalklSQL provides direct Sybase connectivity for Windows 3.0,

Macintosh, Sun, RS/6000 and other UNIX platforms. Direct Omcle sup-

port is currently available for Windows 3.0 and Sun SPARCsrations. Gupta

and NetwareSQL support is available for the Windows 3.0 and 0S/2.

For mom hs~rnsaflon, contact SyssergfstlcSokrrhrs Inc. 63]opsw’ Dr.

Lawrencevllle,NJOM4#, 60W#&O025.

Logic Arta announces VOSS/Personal,two low-cost versions of the Vir-

tual Object Stotage System for Smalkalk/V 2S6 and Smalkalk/V Windows.

VOSS/Personal is tidly compatible with the equivalent main producr

line, and can read and write the same virutsl object spaces, providing

transparent access to persistent Smalltalk objects of any class on disk,

without rhe need for a separate DBMS programming language. k has the

=me mansaction management of updates, the variable-size cache of virtual

objects in the image, and most of the same VirtualDictionary and Virtual

Collection classes for managing collections larger than the image.

For mm-e Information, contact Logic Arts Ltd, 75 Hemh@wd Rd, Cambridge,

England. CBI 3BY, +44 223212392, fax +44 223245171.
VOL. 1, No. 9:]ULYIAUGUST1992
Servio Corp. and Hewleti-Packard Co. announced that Servio has

been named an HP Value-Added Business Partner and that Servio’s

GemStone object database and GeODE object development en
vironment will be made available for the HP Apollo 9000 Series 700

PA-RISC-baaed workstation family in the third quqrter of 1992.

GemStone is the only ODBMS to SUppOK applications writren in C,
C++, and Smalltalk GemStone’s Object Development Environment,

GeODE, is zhe first code-free development environment for visually and

w@cdb designingand building ODBMS applications.

For more brfarmatlors, contact Servio Corp., 950 Marina Village Parkway,

Suite 110, Alameda, CA 94501, 510.#14,6200.

VC Software Construction has announced enhancements to their ob-

ject-oriented darsbase management system, ODBMS. The package sup-

ports most Smallralk languages. ILSsrorage ticilicies of objects can be used

during the development of Smalldk applications as well as by a standalone

database application. ODBMS stores items in opposition co relational

databases’ arbitrary complex data sypes. There is almost no Iimization to

the structure and length of these items.

ODBMS/SQL uses the optimized query algorithms of SQL to retrieve

objects faster. The intention of the access to relational databases into

ODBMS avoids redundancy in stored items and enhances the use of

Smalltcdk in rhe commercial environment.

For more hsformathr, contact: VC Software Corrrtruction, Petritorwd 28,
3300 f2rounschwel& Gwnsany, +49 S3 I 242400, fax +4953 12424024.
25.

-.
,46.
Excerpts from industry publications
WORDS OF WISDOM
...Can you say objem-oriented ?.. .How about real-time systems, graphi-

cal environment=, multimedia, or CASE technology? If you want to get

laid off, don’t mention or learn these topics. Even better, tell anyone

who will listen shat object-oriented development is only a t%d...

Eleven ways to get laid OK Karen Hooten, COMPUTER LANGUAGE 3/92

SMALLTALK
., ,You must realize that I use a variety of languages in my work
C++, Smallmlk, and Adar in particular. I use Smallsalk for prototyp-

ing, and here, ics dynamic binding allows me to throw together pro-

totypes quickly, with blatint disregard for any kind of type of safety

or robustness. For the kind of experimental development I do, this

is precisely the kind of flexibili~ I need . . .

Interview with Grady Beach, THE C++ JOURNAL vd2/no. /, 1992

STRATEGIES
...00P-basedsoftware will presem courts with challenging questions

concerning, among other things, infringement and risk allocation. As

the courts wrestle with these issues, suppliers, developers, and users

must be careful that agreements with one another address, to the ex-

tent possible, their specific rights and duties in this changing area.

Making sure that 00P doesn’t become oops, Rabert V. l-lawn, BUSINESS

JOURNAL SERVING SANJOSE AND THE SILICON VALLEY, 31i6192

MULTIMEDIA
SimGraphics Engineering Corp, is changing the face of animation. Us-

ing a powerful graphics workstation, a face armature, an object-

oriented toolkit, and one of the world’s most famous software game

characters, the company is ushering in the day when r=l-time anima-

tion will largely replace frame-by-frame animation. “Obviously, you al-

ways will be able WI get higher resolution from frame-by-ftame anima-

tion, but there will be a point when both software and hardware will

permit most of the animation that now is being done frame by frame

to be done in real time,” says Steve Glenn, vice president of New

Business Development for SimGraphics of South Pasadena, CA...

The many (ices afMaria, Margaret Seabom, WORKSTATION NEWS, 5/92

. . .Object-oriented progtams already exisr for imaging, though they

aren’t well publicized. This is unfortunate, as object-oriented pre

gtamming will affect the growth of digital photography more than

anything else,..

Digital photography:changingfor the better, john Larish,

PHOTO ELECTRONIC IMAGING, 4192

. . .For multimedia computing, all the Dataquest survey respondents

felt there was still a lot to be done in providing application soft-

ware, increasing network data rates, providing wideband telecom-

munication networks, and finalizing standards. But despite these

unresolved problems, the multimedia juggernaut rolls on. “To

many, this looks like a tidal wave starting to swell,” says AT&T’s

[Arnold] Englander. Certain elements are in place, he says: the

readiness of the telecommunications infrastructure; the emer-

gence of critical video-compression and telecom standards; ad-

vances in image compression, VLSI technology, and object-oriented

programming; and the high costs of travel in a business environ-

ment that’s ever more global in scope. More rapidly than expected
or imagined, the elements that must combine to make multimedia

a reality are coming together. And “the ambitions of diverse busi-

nesses competing and cooperating in the convergence of telecom-

munications, computing and TV,” as Englander puts it, guarantee

that the ride will be an interesting one.

En mute to cdabamtk camputing, Samuel Weber, ELECTRONICS, 4/92

CREATIVE IMPLEMENTATION
...If no one knows what is going on inside an object’s functions,

and no one can romper with its dam without authorization, rhen an

object is highly secure. k polices its own borders, responding only to

authorized messages.. .Since an object has boundaries, you can own it

You can reward or punish the persons who designed it. You can rent

out the use of the object without telling how it works. You can see a

certain appeal here to the corpomte mind . . .

Object-orientedpmgrammin~ wisat’sthe big deal?, Birrell Walsh,

MICROTIMES, 3192

. . .I’ve discovered that the single grexest challenge of mckling a new

object-oriented program is keeping a vision of the program that’s

accomplishable. As I was writing this progtam, I have to admit that at

times I was thinking of an interactive CD-ROM-based multi-media ex-

travaganza. Luckily, common sense and deadlines prevailed . . .

Expert’s toolbox templates of doom, Larry OBrien,

THE CHICAGO PURCHASER, 5192

TOOLS AND LIBRARIES
., ,There’s much more to realizing the benefit of a class Iibm-y than

simply buying one at random and throwing it at a development prob

Iem (or team). There are three geneml problems that can make it

difficult to make good use of cles libraries. First, since you’re ex-

pected to derive new classes, what’s to prevent you from creating a

mess?.. .A second problem occurs when you try to incorporate a class

Iibtary into an existing application. You may have an optimal applica-

tion, but the library designer had a unique purpose in mind co create

the optimal library design. Are the two designs compatible?.. .Finally,

diflerent vendors may have d“fiering ideas about optimal library de-

sign.There isn’t really any such thing as a standard for class

libraries.. .All these problems have one ttait in common: inconsistency.

None of the problems are really the fault of class libraries per se; it’s

really the way we create and use them along with our own under-

standing of the proper approach to object-oriented progtam develop-

ment that determines whether class Iibtaries are a major benefit...

Development tools,Mike Stewa~ COMPUTER SHOPPER, 3192

. . . In the tlkure, access to object Iibtaries may determine which devel-

oper (or company) is able to serve clients most adequately. k is

hoped that the elegance of one’s code, long a measure of the quality

of one’s produ~ will remain the determinant of success in our indus-

try. However, this may be the case only if no one company or class of

companies is able to dominate the source of sofware objects. In a

perfect world, there will be a plentiful supply of public domain objecrs

accessible to everyone, via the same channels from which we are all

now accustomed to getting our sources.

Concerningyaur career, Jimjohnsan,

UNIFORUM MONTHLY, 3192
THESMALLTALKREPORT

Voss
Virtual Object Storage System for

Srnalltalk/V
.%2mless persistent object management

for aU Smalltalk/V applications
. Transpa~nt ace-s to all Kindsof Smalltalkcrb~s on disk,

● Transaction mmmit/roUback of changes to virtual objects.

● Access to individualelementsof virtual mllections for ODBMSup
to 4 billionob@ts per virtual space; objectscached for speed.

● Multi-key and multi-value virtual dictionaries for query-building
by key nuqgeselection and set interaction. (rip)

● Works directly with third party user intesface & SQL classes etc.

● Cfass Restructure Editor for renaming clas~s and adding or
removing inrtance variables allows appficatiom to evolve. (rip)

● Shared access to named virtual object spaces on disk; object
portability between irna~. Virtual objects are fuf2yfunctional,

● Source code supplied,

Somecommentsw hue reu-ivedaboutVOSS:

“,, ,clean elegant. Works likea charm.”
-Hal Ffildebnrnd,Anmvd Ldwatories

“Works absolutely beautifully; excellent performance and
applicabilityy.” -Rind Durm, MicrogersicsInstrunsrnts

VDS5/2E6$595(Persanal$199), VOSS/ Windows S75U(Personal 5299)

[~fl~~ ~&ydismunkkomW% firlwoormo~mpi-(Askfordetails)

(Persmnal w’siom exclude item nuarked (rip)).

asterCardandEuroCardaccepted.Pleaseadd$15forshipping.
~R T S h“~cAfis Ltd 75 HerningfordRoad,Cambridge,England,CB13BY

TEL +44223212352 FAX +44 223245171
ANALYSIS AND DESIGN
...[Rob Dickerson, VP and Genetal Manager of The Daiabase Busi-

ness Unit at Borland International]: 1think you’ve got to learn to do

a class hierarchy. The first time you do your class hierarchy, you

write out what looks obvious, and you fiddle with it, and you realize

it’s not the best one. So you redesign it, and by the time you’re

done, the class hierarchy you end up with w not what you initially

thought. And there’s a bunch of tricks to it—how to identify a

meta-class, factoring, the notion of collection classes, how to design

a class hierarchy, but that’s the main design effoti At leas~ that’s

what I’ve seen our R&D guys have to get their hands around. [Jacob

Stein, Chief Technologist for Servio Corp]: And there’s lots of

trade-offs, trade-offs between reusabili~, and a natural fit to the sys-

tem you’re modeling, They might not always be exactly the same.

There may be a trade-off between designing for reuse and designing

for this particular application, and you have to take that broader

scope. It’s said that people don’t get classes right until they’ve been

implemented about three times, which might mean that some of the

interfaces will change during that course of time . . .

Rourrdtabk: experrs speok on object-orienteddevelopment!,JohnLHawkins and

Dion Sch@hauser, DATA BASED ADVISOR, 4192

DISTRIBUTED ENVIRONMENTS
,.,“Object technology offers a second-generation model for

client/server, with a clear role for a powerful client as well as a

powerful server,” said David Gilmour, executive vice-president of

sales and marketing for Versant Object Technology, Menlo Park,

Calif. By raising the power of an individual object to suppom trans-

parent peer-to-peer communication via messages, the idea of

clientlsetwer extends to a more robust notion of objects. Under

this notion, objects could at one point make requests as clients to

semers, then at other points act as server to other clients. This al-

lows a modular distributed system that maybe more responsive to

change. Using objects as the unit to be distributed may allow devel -

opers to save implementation issues-such as distribution-until

after the design is complete. “This is because object technology is

an inherently parallel technology that naturally thrives in a dis-

tributed multiprocessing environment,” said Dr. David Taylor, prin-

cipal of Taylor Consulting, San Mateo, Calif...

ObjecIS can set the stage, Etic Aranow and Tom Kehler,

SOFTWAREMAGAZINE 5192

., ,Object-oriented DBMSS combine database technologies and object-

oriented progmmming to provide greater modeling power and flexibiL

ity to programmers of data intensive applications. Over the last five

years, 00 DBMSS have been the subject of intensive research and ex-

perimentation, which led to an impressive number of prototypes and

commercial products. But the theory and ptactice of developing dis-

tributed 00 DBMSS have yet to be My developed. Distributed envi-

ronments will make the problems even more d-ficult In addition, the

issues of data dictionary management and distributed object manag=

ment have yet to be dealt with. However, distribution is an essential

requiremen~ since applications that require 00DBMS technology typ

ically arise in nemvorked workstation environments.. .However, dis-

tributing an object-oriented datsbase within a network of worksrations

(and servers) is becoming very attractive. In f%cL some 00DBMSS al-

ready support some form of data distribution transparency...

Diw”buted dototrosesystems where were we?, M. Tamer Ozsu and Patrick

Vakiuriez, DATA BASE PROGRAMMING& DESIGN, 4192

As if the jump to a client/server information system patadigm were

not tough enough, many companies are looking at moving to o~ect-

oriented programming (OOP) as well. By my measure, the 00 mar-
ket today is about where the clientk.ewer market was three to four

years ago, and the two are even stinting to merge in some areas.

VOL. 1, No. 9: JULY/AUGUST1992
They are complementary technologies chat when combined, can give

a company a formidable competitive advantage . . .

On tfsefrontendReport card on Enfin/2, Robert C BoftjDBMS, 4192

DATABASES
...In the world of textual data, relational databases worked fine.

Text gives you structure and form in the way of character strings

and numbers. This is something an RDBMS can handle quite well.

Unfortunately, when you scam dealing with multimedia data types—

where you have to deal with massive amounts of this data, many of

them being object-bssed-an RDBMS falls flat. By contrast, object-

oriented databases come out way ahead of RDBMSS when dealing

with heterogeneous, complex data involved in complex relation-

ships. More importantly, when you start getting applications de-

signed to integrate these multimedia data types into their programs,

it will be important for them to include, as a part of the applica-

tions, an object-oriented database to help them handle these new

types of object based data. At first, you will see these object-based

databases added to authoring products, then to presentation, draw-

ing and desktop-publishing products. They will also become impor-

tant to any word-processing and next generation on-screen docu-

ment communications. Ironically, it will not be the traditional

database suppliers that will help these independent software ven-

dors use a database effectively in this multimedia-driven world.

Even though they all have object-based databases in the works, un-

less they are able to perfect them soon and make them work har-

moniously with their RDBMS programs of today, rhey could be left

out in the cold. In the future, the database will be embedded in ma-

jor applications so they can manipulate these stored images, video

and sound and integrate them into the heart of the app. Whether

anyone likes it or not, multimedia computing is going to revolution-

ize the way we use computers.

The sofl view: multimedia simply spells a new digital data type, Tim Bojorin,

COMPUTER RESELLER NEWS, 4120192

27,

WNDOWSAND0s/2:
PRm EN)DELIVERY

NowmGo
h Windows and 0S/2, you need prototypes. you have to get a sense

for what an application is going to look like, and feel like, before you can write

it. And you can’t afford to throw the prototype away when you’re done.

With Smalltalk/V you don’t.

Start with the prototype. There’s no development system you can buy

that lets you get a working model working faster than SmalltalkN

Then, incrementally, grow the prototype into a finished applica-

tion. Tky out new ideas, Get input from your U.WE.,Make morr changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It’s

made for trial, And error. You make changes, and test them, one at a time.

Safely. You get immediate feedback when you make a change. And you can’t

make changes that bnmk the system. It’s that safe.
And when you’re done, whether you’re writing applications for

Windows or 0S/2, you’ll have a standalone application that runs on both.

Smalhalk/V code is portable between the Windows and the 0S/2 versions.

And the resulting application carries no runtime charges. All for just

$499.95.

So take a look at

SmaUtalk/V today. It’s time to make Smalltalklv
that prototyping time productive.

Smalltalk/V is a registered trademark ofDigiAk,Inc.Other product names a-s trademark or registered
trademarks of their respective holders.
D~italk, Inc., 9841 AirpJrt Blvd., L.nsAngeles, CA 90045
(S00) 922-8255; (213) 64>-1OEI2; Fax (213) 645-1306

LOOK WHO’S TALKING

HEWLETT-PACKARD NCR
HP bm devslopedanetwork troubl.- NCR baJ an integrated iest program deueiop-

sbooiing tool cal.lsdh Network Advisoz men.t environment for digikzljLVZUIOFand

The Network Advixor offer~ a compreben- mtied mode pn”nted circuit board ts~ting

five wt of tooh including an sxpert ~yxtem,
skziirtics, and firotocol decodes to xpeed MIDLAND BANK
pvoblem i.rohtion. The NA user inf-srface i.r Midksnd Bank buiit a Windowed Xscbnicd

buitt on a windowing xyxtem which .Iiows Tmding En.irvnment jor curmnq futum~

multiple application to be sxecuted and stock tmders using Snza[ltiIk Y

~imuIt4ms0usIy.

KEYmms
■ W6rld’s leading, awadwinning object-

oriented programming system

1 Complete protoqpe-to-deliie~ system

■ Zero-cost runtime

■ Simplified application delivery for
creating standalone executable (.EXE)
applications

■ Code portabili~ between SmalItalk/V
Windows and Smalltalk/V PM

■ Wrappers for all Windows and 0S/2
controls

W Support for new CUA ~1 controls for
0S/2, including drag rinddrop, booktab,
conrainti, value set, slider and more

H Tmspamnt support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

■ Fully integrated programming environ-
ment, including interactive debuggeq
source code browsem (all source code
included), world’s most extensive Win-
dows and 0S/2 class libraries, tutorial

(printd and on disk), extensive samples

H Extensive dmeloper support, including
techniml support, training, electronic
developer forums, free user newsletter

■ Bread base of tlird-party support,
including add-on Small@ products,
consulting services, books, user groups

This SmalltsW Windowsapplication
~@u~d the PC WeekShootout ad —md
It wascompletedin 6 hours.

SmafItslk/V PM applications am used to
develop state-of-theart CUA-compliant
applimtions — and they’re ~rtsbk to
Smalldk/V Windows.

	By Article Title
	Abstract control idioms
	Creating subclasses
	Implementing Peer Code Reviews in Smalltalk
	Lab Report: Smalltalk research at the University of Florida
	Quality assurance issues for Smalltalk-based applications
	What's wrong with OOP?

	By Author Name
	Beck, Kent
	Ewing, Juanita
	Graver, Justin O.
	Klimas, Ed
	Knight, Alan
	Sridhar, S

	By Topic
	Getting Real
	comp.lang.smalltalk: What's wrong with OOP?
	Smalltalk Idioms

