June 1992

By Steve Byme

Volume | Number 8

'lt'houg'h GNU Smalitalk is in use literaily all around the world, knowledge
of its existence is limited to the fortunate few who €njoy some sort of access
to the Internet and Usenet network news. This article is an attempt to rem-
edy this unfortunate situation.

I'll provide a brief introduction to what GNU Smallealk is, where it is currently, where

it's going in the future, and how to obtain it

WHAT 1S GNU SMALLTALK?

GNU Smalltalk is an implementation of the Smalltalk-80 programming language, as de-
scribed in the hook Smallialk-80: The Language and Its Implementation! {a.k.a. “the Blue
Baok”). It includes most of the standard Smalltalk kernel class definitions, as well as a

number of extensions 1o support system-level programming. It is part of the Free Software’
Foundation’s GNU project, whose goal is to provide high quality, high functionality,
freely available implementations of standard UNIX utilities, programming languages, and
even the UNIX operating system itself. While not in the public domain, GNU programs
{including, of course, GNU Smalltalk) are freely available in source code form, and run on
a wide variety of UNIX-and non-UNIX-based platforms.

GNU Smallralk has been generally available for over twa years, and has seen many im-

. el es . . 3
emeiniis Over 168 tISIme, 1T 15 8 COT rtinually CVC!J; 17 system, as we l!

DESIGN GOALS
GNU Smalltalk is designed around several major goals:

» Compatibility support. Smalltalk is designed to support the Smallralk-80 language as

described in the Blue Book. This includes providing the same language syntax, the
same kernel classes, and even the same byte code definitions for compiled methods.

e Portahility. To allow the maximum number of people to be able to use the GNU
Smalltalk environment, it must be highly portable. This means making as few assump-
tions about the environment as possible and isolating the few remaining system depen-

dencies to particular modules.

. Ab!l!t\; ta do sys stemn-level nrggmmm__ e, To be trulv useful a softwate develoomenl:
system must be able to span a wide range of capabilities from expressing high level ab-
stractions to doing system-level programming. The Smalltalk language itself takes care
of supporting the creation of high-level abstractions. GNU Smalltalk currently has sev-
eral features, and will have more in the future, which allow developers access to lower-
level ot system-level facilities, and atlow it to operate with as much flexibility as native

~ 1
C programs have.

» Graphical user interface independence. Although providing a graphical user interface
is one of Smalltall’s traditional fortes, it does limit its usability to environments which
provide a bitmapped dispiay. Often, access to a graphical display device is impossible,

contnued on page 3.,

EDITORS’
CORNER

John Pugh Paul White

malltalk is looming larger” is the title of David Taylor’s column in the May/June issue of
our sister publicarion, Object Magazine. David is a well-respected consultant in the OOP
world, and he expresses the opinion, which we voiced in a recent editorial, that
Smalltalk is being adopted by many large companies for mainstream business applica-
tions. Certainly, our own experience as educators and consultants bears this out:
Smalltalk, while retaining its maditional scientific and engineering base, is moving
quickly into areas such as banking, insurance, and enterprise modelling. Although it
would not be accurate to say that Smalltalk is becoming the dominant choice of industry
(not yet, anyway), it is clear that more and more organizations see it as the best option
for future application development.

In our lead article this issue, Steve Byme describes the GNU Smalltalk effort. GNU
is a project of the Free Software Foundation whose stated goal is to provide high-quality,
high-functionality, freely available implementations of utilities and programming lan-
guages for the UNIX world. They have been successsful in the C world—GNU C, for
example, is widely used by universities. The price is definitely right! GNU Smallalk
does not yet pose much of a threat to the major Smallaalk vendors. At present, the effort
is entirely volunteer-driven. Perhaps Steve's article will prompt some of our readers to
become involved. If you ever wanted to write your own garbage collector or interface to
X, this may be your opportunity!

In the second of his series of three tutorial articles on Objectworks/Smalltalk, Dan
Benson from the University of Washington continues his discussion of the development
of SmallDraw, a sauctured-graphics editor. This month, he extends the abilities of
SmallDraw to permit selection, translation, scaling, and modification of the visual at-
tributes of objects in a drawing.

Kent Beck addresses the “dreaded super” in the latest of his Smalltalk idiom columns.
We agree with Kent's assertion that super is confusing to and often misunderstood by
many beginning Smallalk programmers. Indeed, a favorite test question of ours is Where
does the search for a method begin when you send a message to super? Since super is re-
ally a pseudonym for self, beginners usually say it starts in the superclass of the reciever
(setf). The comrect answer (of course) is that the search begins in the superclass of the
class in which the executing method was found. Kent describes a variety of idioms in-
volving super and demonstrates how he extended the Smalltalk system to provide sup-
port for searching the image for uses of super.

Also in this issue, Greg Hendley and Eric Smith describe the use of the Drag and
Drop facility in Smnallalk/V PM. In his bulletin board round-up, Alan Knight describes
an interesting dialog on USENET concemning the relationship between information hid-
ing and encapsulation, and explains how Smalltalk programmers can contribute code to
the Smalltalk archives. Finally, Wayne Beaton reviews the VOSS/Windows product
from Logic Arts. VOSS (Virtual Object Storage System) is a persistent object storage
system for Smallalk V/Windows.

—The Editors

The Smalhalk Repon (ISSN= 1056-7976) is published 9 1imes a year. every month except kor the MasfApe, Juli?Aug, and NoviDec combined issues.

Published by SIGS Publications Grop, 558 Beoadway, New York, NY 10012 (212)274-0640. © Copyright 1992 by SIGS Publications, Inc. All rights
d Reprochction of this il by el N rssion, Xerax or any vther method will be meared as & willful vielation of the US Copyright
Larwr and is Barly prohibived. Maverial may be reprochaced with express perms from the publishers. Mailed Firn Clask. Subscription mates 1 year, (9

wars) domestic, 365, Fureign and Canada, 390, Single copy price, $8.00. POSTMASTER: Send address changes and subscription onders w: THe
Suan Talk REFORT, Subscriber Services, Depr. SML, P.O. Bax 3000, Denville, NJ 07834, Submit articks 1o the Edirars a1 91 Second Avenue,
Oxtawa, Ontario K1S 2H4, Canada.

THE SMALLTALK REPORT

continued from page 1...
due to lack of physical proximity (i.e., dialing up using a
terminal or terminal emulator), or other reasons. GNU
Smalltalk explicitly does not require the presence of a
graphical display device; rather, it provides a full-featured
development environment layered on top of the GNU
Emacs editor.

¢ Central algorithm repository. Although this last goal is
not so much of a design goal, it was always intended that as
GNU Smalltalk progressed, support for more and more ob-
jects which provide reusable implementations of standard

algorithms 2 la Sedgewick? would be provided.

CURRENT FEATURES

The current version of GNU Smalltalk has implementations
of all the kernel classes and almost all the methods described
in the Blue Book. It also provides a number of highly useful
extensions for interacting with C subroutines, editing
Smalltalk method definitions, and creating X Window—based
graphical user interfaces. The highlights are detailed in the
next few paragraphs.

To assist with interfacing Smalltalk to C code, GNU
Smalltalk provides a simple mechanism for Smalltalk to in-
voke C functions and receive retumned results. This simple ca-
pability allows most operations available in typical C runtime
libraries to be available to the Smalltalk programmer as
Smalltalk methods. The mechanism takes care of converting
between Smalltalk datatypes and C datatypes, so the effort in-
volved in using this facility is minimal.

GNU Smallealk comes with extensions to the GNU
Emacs editor to support the editing of Smalltalk programs.
It includes program formatting assistance and provides
many of the operations that are found in commercial
Smalltalk operations, such as evaluate the current region
as a Smalltalk expression, compile this method, etc. It also
provides a mode where Smalltalk may be interactively in-
voked within an editor window, with the full range of text
editing capabilities available.

GNU Smalltalk also comes with a simple interface to the
X Window System, by providing direct access to the X client
protocol. It provides an object-oriented encapsulation of most
of the X protocol operations, and comes with some simple ex-
amples of usage. This facility is greatly enhanced in the next
release, as outlined below.

GNU Smalltalk currently runs on most 32-bit UNIX plat-
forms. Thanks to its focus on portability, it typically ports to
new platforms in a matter of hours or less. It has also been
ported to VMS, and to some 16-bit machines, such as Atari.

FUTURE DIRECTIONS

The plans for GNU Smallealk’s future fall into two categories:
those scheduled for the next minor release, and those for the
next major release. We'll first describe the new features the

next minor release will have, and then describe the major im-
provements for the next major release.

NEAR-TERM FEATURES

The next release of GNU Smalltalk (which will be version
1.2), will have numerous significant features added to it. The
most significant ones are described briefly here.

GNU Smallealk Version 1.2 will have several new capabil-
ities for doing more system-level programming and general in-
terfacing to existing C libraries. It will allow Smalltalk pro-
grams to directly access and manipulate C variables and
structures. An interface for C programs to directly invoke
Smalltalk methods is provided. Smalltalk isn’t even required
to be the main program: the C programmer can request that
initialization of Smalltalk be performed with certain com-
mand-line parameters at a particular point in the execution of
the program, or can choose to accept the standard defaults
and just begin invoking Smalltalk methods at will and let
Smalltalk auto-initialize itself. To better support the needs of
system-level programming, GNU Smalltalk Version 1.2 will
also provide direct support for the handling of interrupts, both
system and user generated.

Version 1.2 will give developers more direct control over
memory usage. The amount of memory GNU Smalltalk re-
quires as a comfortable minimum for object storage has been
significantly reduced. Should a particular application require
more memory as it runs, GNU Smalltalk will automatically
increase the amount of space dedicated to object memory, at a
programmer-definable rate when memory usage exceeds a pro-
grammer-defined memory usage threshold.

The existing interface to the X Window System has been
completely rewritten and provides complete access to the X
Window protocol. It also includes support for the X authoriza-
tion mechanism, so developers need not take any special ac-
tion (such as using the xhost command) to use this facility. It
will feature a simple, extensible set of graphical user interface
components, similar to those provided by the OPEN LOOK
or Motif toolkits, as well as support for the more traditional
Smalltalk rendering model. And finally, support for the major-
ity of Inter-Client Communication Conventions Manual (IC-
CCM) standard window properties will be provided.

As the GNU Smalltalk graphical user interface support be-
comes more full-featured and mature, it becomes ever more
critical that the petformance of the system be as high as possi-
ble to support the demands of interactive user interfaces. Ver-
sion 1.2 incorporates substantial performance improvements.
The garbage collector has been streamlined. The system cre-
ates only real method contexts when necessary and uses a
cache of pseudo method contexts to dramatically decrease
method invocation time. A number of the busiest method se-
lectors have had their invocation overhead decreased. The de-
crease in overall system memory requirements also helps to
improve performance on virtual memory systems with limited
physical memory.

VoL. 1, No. 8: JuNE 1992

H GNU SMALLTALK

One of the features which helps make software develop-
ment in Smalltalk more efficient and productive is the class
browser. The next release will provide support for an Emacs-
based class browser, and possibly a graphical user interface
based class browser as well. The Emacs Smalltalk editing
mode also includes support for method tracing and debugging,
as well as things like locating all the methods present in the
system that have a particular selector and allowing the user to
quickly browse the method definitions for each.

Other new features in Version 1.2 include the ability to dy-
namically load and access C functions and variables while
GNU Smalltalk is running. This is facilitated by using the
GNU dynamic loading library (a separate GNU project utility
library). Although it may sound simple, this is an extremely
powerful capability to have in an interactive system.

Also new with Version 1.2, Smalltalk method definitions
may be conditionally compiled based upon boolean expres-
sions, which can include tests on the presence of the exact
same set of preprocessor symbols that C programs enjoy,
through the new Features facility. This allows for machine-
architecrure and operating-system—-specific versions of meth-
ods to be created and to have the appropriate definitions se-
lected based upon the execution environment.

Finally, Version 1.2 will include support for operations on
large integers. It is also likely that an Emacs-based hypertext
Smalltalk method reference manual will be available in the
1.2 timeframe.

THE NEXT MAJOR RELEASE

The goal of producing a highly portable system means that the
number of operating-system and machine-architecture depen-
dencies must be minimized. The direct implication of this is,
of course, no machine specific code generator: the current im-
plementation uses a simple byte code compiler and interpreter
to handle the execution of Smalltalk code. While this has ma-
jor portability advantages, it also means that the code exe-
cutes much more slowly than optimized machine code.

The next major release of GNU Smalltalk will address
the performance issue in a number of different ways. The
first will be through the implementation of a generational
garbage collector. Smalltalk memory use tends to be rela-
tively bimodal. There is a relatively unchanging component
in the form of method definitions, and kernel method defini-
tions, in particular, and there is a much more dynamic and
short-lived component in the form of transitory objects such
as method and block contexts and intermediate computa-
tional results. A generational garbage collector is ideally
suited to this environment, as it provides support for several
different memory areas with different object longevity char-
acteristics and a tenuring policy that can move newly cre-
ated objects into less dynamic memory areas as they survive
successive garbage collection passes.

The second approach to improving performance of the sys-
tem involves switching from interpreting byte codes to com-

piling to machine code. The techniques for compiling
Smallealk to efficiently executing machine code are becom-
ing relatively well understood. To achieve compilation in a
portable way, the approach that’s being taken is to use the
GNU C compiler (GCC) back end to perform the actual ma-
chine specific code generation and optimization. The ability
to have this kind of code sharing and code reuse is one of the
major benefits of the Free Software Foundation's approach of
building high quality tools that are freely available.

The GNU Smalltalk project is an all-volunteer effort. The
rate at which GNU Smalltalk changes and improves is di-
rectly relared to the number of people who contribute their
time and talents to making GNU Smalltalk a world-class soft-
ware development environment. The GNU Smalltalk project
is open to anyone with an interest in Smalltalk who would
like to contribute their time and energies to extending and
improving the system. People from around the world have al-
ready contributed substantial work to the project, but we can
always use more help.

FOR MORE INFORMATION

For more information, please write to me at the address below.
GNU Smalltalk may be anonymously FTP’ed from a variety of
Internet hosts, but its primary location is on prep.ai.mit.edu.

It can also be obtained from the mail server at the University
of Illinois at Urbana-Champaign. To have the mail server
send you GNU smalltalk, send it a message like the following:

To: archive-server@st.cs.uiuc.edu

Subject:

path yourname@your.internet.email. address
archiver shar

encoder uuencode

help

encodedsend gnu_st/smalltalk-1.1.1.tar.Z

For more information about the GNU project and the Free
Software Foundation in general, please send email to
gnu@prep.ai.mit.edu or write to Free Software Foundation,
675 Massachusetts Avenue, Cambridge, MA 02139;
617.876.7739. @

REFERENCES

1. Goldberg, A. and D. Robson. Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, Reading, MA, 1983.

2. Sedgewick, R. Algorithms, Addison-Wesley, Reading, MA, 1983.

Steve Byme is a Staff Engineer at SunSoft, a Sun Microsystems Inc.
company. His interests include programming language design and im-
plementation, operating systems, software development environments,
freely sharable software, and object-oriented programming in general.
He can be reached at sbb@eng.sun.com or 5269 Carter Ave., San
Jose, CA95118.

THE SMALLTALK REPORT

SMALLDRAW—

RELEASE 4

GRAPHICS AND
MVC, PART 2

Dan Benson

n Part 1 of this series, we outlined the basic con-
cepts of Release 4 graphics and MVC application
construction and described the development of a
structured-graphics editor called SmallDraw. The
application consists of the three MVC components and a set
of graphic objects that are able to display themselves on a
graphics context. The editor is minimal in its abilities—new
objects can be created interactively, colors and line widths
can be specified, and the view can be scaled, but objects could
not be modified once they were drawn. In part 2 of this series,
SmallDraw will be enhanced to include object selection,
translation, and scaling. With more changes taking place in
the view, we'll also add improved updating techniques.

SELECTING OBJECTS

An editor is not very useful unless changes can be made to the
drawing. A structured-graphics editor should provide facilities
for moving and resizing objects as well as changing objects’
visual attributes of inside color, border color, and line width.
This requires a means of identifying and distinguishing objects
in the drawing, which will be referred to as object selection.
Several issues need to be addressed in selecting objects that af-
fect each of the three MVC components and involve user in-
terface conventions. The following sections will look at each
of these issues: making a selection, keeping track of selected
objects, distinguishing selected objects visually, and modifying
selected objects.

MAKING A SELECTION

Following modem interface conventions, the most direct way

of selecting a single object in a drawing is by clicking once on

it with the cursor. One can think of “clicking ” on an object as
trying to touch it with a finger. To the user, the objects in the

drawing appear to be hollow (no inside color) or solid. To se-
lect a hollow object one would have to touch an edge,
whereas a solid object can be selected by touching it anywhere
in its interior (or on its edge). Objects also appear to be
stacked on one another, so if the user clicked on a stack of ob-
jects, the first one touched would be selected.

Selecting more than one object is done by rubber banding
a rectangle around them so they are completely contained in
the rectangle. The set of selected objects can be extended by
selecting other objects while holding down the shift key. In
other words, specific objects may be added or removed from
the set of currently selected objects.

How is it determined whether or not an object has been
touched by a mouse click or surrounded by a rectangle? The
objects themselves can decide these two situations. The three
possible tests are: an abject is contained in a rectangle, an ob-
ject’s intetior contains a point, and an object’s edge is touched
by a point. Since these tests should be performed as quickly as
possible, it would be convenient for each object to retain a
boundingBox instance variable. All objects must be able to per-
form these tests, so the following SDGraphicObject instance
methods are defined:

isHollow
~self insideColor isNil

insideRectangle: aRectangle
~aRectangle contains: self boundingBox

containsPoint: aPoint
~(self boundingBox containsPoint: aPoint)
ifTrue: [self isHollow
ifTrue: [self edgeContainsPoint: aPoint]
iffalse: [(self interiorContainsPoint: aPoint)
or: [self edgeContainsPoint: aPoint]]]
ifFalse: [false]

edgeContainsPoint: aPoint
self subclassResponsibility

interlorContainsPoint: aPoint
self subclassResponsibility

Note that the last two methods are left up to the subclasses
to implement, since SDGraphicObjects only know about bounding-
Boxes. To check for containment of a point, the object’s bound-
ingBox is first checked to eliminate the trivial cases. If the object
is hollow, a check is made to see if the point is on or near one of
its edges. For a solid object its interior and edges are checked.

The tests for rectangles and line segments are trivial, but
are much more involved for polygons and ellipses. There are
several well-known methods for determining whether a poly-
gon contains a point. From my experience, the best overall
performance is obtained using what is known as the “winding”
method. The basic idea is to sum the angles from the point in
question to each vertex in the polygon. If the point is inside
the polygon, the sum of the angles will be 2x, otherwise the
point is outside the polygon. However, rather than work with
angles, the calculations can be simplified by assigning a num-

VoL. I, No. 8: JUNE 1992

N SMALLDRAW—RELEASE 4 GRAPHICS AND MVC, PART 2

ber to each of the four quadrants. A point can then be asked
for the quadrant number, relative to itself, that contains an-
other given point. This then becomes aPoint instance method:

quadrantContaining: aPoint
"Answer the number of the quadrant containing aPoint relative to
the receiver, where the quadrants are numbered as follows:

1|0

2|3
This convention is used for determining whether a point is in a polygon."

AaPoint x > x
ifTrue: [aPointy >=y
ifTrue: [3]
ifFalse: [0]]
ifFalse: [aPointy >=y
ifTrue: [2]
ifFalse: [1]]

Numbering the quadrants in this manner means that the
quadrant numbers can simply be added as the list of vertices is
traversed. Numbers are added when moving in a clockwise di-
rection and subtracted moving counter-clockwise. Jumping di-
agonally adds or subtracts 2 from the running total. If the final
winding number is not 0, the point is inside:

interiorContainsPoint: aPoint
"Answer whether the receiver contains aPoint on its boundary or in its
interior. Uses the winding technique. See the method
Point | quadrantContaining:."
| wind lastPoint oldQuad newQuad |
wind = 0.
lastPoint := self vertices last.
oldQuad := lastPoint quadrantContaining: aPoint.
self vertices do: [:each |
aPoint = each ifTrue: [“tTue].
new(Quad := each quadrantContaining: aPoint.
oldQuad = newQuad
ifFalse: [oldQuad+1\\4 = newQuad
ifTrue: [wind == wind + 1]
iffalse: [new(uad+1\\4 = oldQuad
ifTrue: [wind := wind - 1]
ifFalse: [| ab |
a := lastPoint y - each y.
a:=a* (aPoint x - lastPoint x).
b :=lastPoint x - each x.
a:-=a+ (b * lastPoint y).
b:=b * aPoint y.
a>b
ifTrue: [wind := wind - 2]
ifFalse: [a = b ifTrue;[~true] ifFalse: [wind := wind + 2]]]]]-
oldQuad := newQuad.
lastPoint := each].
*wind isZero not

The other check is whether a point is on or near the edge
of a polygon. Clicking exactly on a line is often difficult so a
tolerance can be specified for all SDGraphicObjects so that the
user doesn’t have to be too precise with the mouse:

tolerance
"Answer the minimum distance that a point can be from an edge of
the receiver to constitute a ‘hit'."

,/(x+cz+y2 hﬁ(x_c +y

(-a,0) (-c,0) (a,0) Major axis

2 2
Ellipse %5 + %, =(a>b)
a

©,-b)

Figure 1. An ellipse centered at the origin with x as its major axis.

~(self lineWidth/2) truncated + 2

edgeContainsPoint: aPoint
"Answer whether any one of the receiver's edges contains aPoint. This
is true if aPoint is within a certain distance from an edge - see
message: tolerance."
| from delta |
delta := self tolerance.
from := self outline first.
self outline do: [:pt |
((aPoint nearestIntegerPointOnLineFrom: from to: pt)
dist; aPoint) <= delta
ifTrue: [*true]-
from := pt].
~alse

Performing the same tests for an ellipse requires a closer
look at its definition (see Figure 1). If the ellipse happens to
be a circle (its width is the same as its height), the tests are
trivial. The focus points of an ellipse are determined using the
major and minor axis radii (a and b, respectively) in the fol-
lowing equation:

The sum of the distances between the two focus points and
any point on the edge of the ellipse is constant, namely 2a.
Therefore, the sum of the distances between the two focus
points and any point inside the ellipse will be less than or
equal to 2a:

interlorContainsPoint: aPoint
~self isCircle
ifTrue: [(self center dist: aPoint) <= self xRadius]
ifFalse: [| offset constantLength |
"Determine focus points on major axis."
self width >= self height
ifTrue: [offset := (self xRadius squared - self yRadius
squared) sqrt@0.
constantLength := self width]
iffalse: [offset := 0@ (self yRadius squared - self xRadius
squared) sqrt.
constantLength := self height].
"Now, answer whether the sum of the distances between aPoint and the
two focus points is less than the constantLength.”
(((self center - offset) dist: aPoint) + ((self center + offset)
dist: aPoint)) <= constantLength]

Checking the edge of an ellipse is similar, with a slight
variation to check whether the sum of the distances between
the focus points and the point in question is close to 2a:

THE SMALLTALK REPORT

ImageSeft

AM/ST

AM/ST, developed by the SoftPert
Systems Division of Coopers &

The original and still premier
application manager for
Smalltalk/V.™

ChangeBrowser. As an additional
tool available for Smalltalk / V PM

and Smalltalk/V Windows, Change-

Lybrand, enables the developer to

Remwe apphcation

Browser supports browsing of the

manage large, complex, object-orient-
ed applications. The AM/ST Appli-
cation Browser provides multiple

Smalltalk/V change log file or any
file in Smalltalk / V chunk format.

views of a developer's application. i

AM/ST defines Smalltalk / V applica-
tions as logical groupings of classes and
methods which can be managed in source
files independent of the Smalltalk/V
image. An application can be locked and
modified by one developer, enabling other
developers to browse the source code. The
source code control systern manages multi-
ple revisions easily.

|@ Coopers

&Lybrand

The addition of AM/ST to the
ImageSoft Family of software develop-
ment tools enhances and solidifies
ImageSoft’s position as —

*“The World’s Leading Publisher
of Object-Oriented Software
Development Tools.”

1-800/245-8840

ImageSeit

World’s Leading Publisher of Developmeni Taols

All rademarks are the property of their respective owners. ImageSoft, Inc., 2 Haven Avenue, Port Washington, NY 11050 516/767-2233; Fax 516/767-9067; UUCP address: mcdhup!image!info

edgeContainsPoint: aPoint
~self isCircle
ifTrue: [(self center dist: aPoint) <= (self xRadius + self tolerance)]
ifFalse: [| offset constantLength |
*Determine focus points on major axis."
self width >= self height
ifTrue: [offset := (self xRadius squared - self yRadius
squared) sqrt@0.
constantLength := self width]
ifFalse: [offset := 0@(self yRadius squared - self xRadius
squared) sqrt.
constantLength := self height].
"Now, answer whether the sum of the distances between aPoint and the
two focus points is close enough to the constantLength.”
((((self center - offset) dist: aPoint) + ((self center + offset)
dist: aPoint)) - constantLength) abs < self tolerance]

KEEPING TRACK

Now that objects are able to determine whether they contain a
point or are inside a rectangle, the application must keep track
of which objects are selected. Since the SmallDraw model
keeps track of all the objects in the drawing, it's reasonable to
have it also keep track of which objects are selected. A simple
way to do this is to associate a Boolean flag with each graphic
object identifying it as selected or not. The SmallDraw model
uses an OrderedCollection to store the graphic objects. The order
is important because it determines the layering of objects. The
ordered list can be retained, but instead of a list of graphic ob-
jects it will be a list of Associations where each graphic object
is the key and the Boolean flag is the value. Selected objects
would then be those Association keys whose values were true,
as answered in the following SmallDraw instance method:

selectedObjects
"Answer all currently selected objects."
~(self objects select: [:p | p value]) collect: [:a | a key]

The SmallDraw instance method to answer its display ob-
jects is now modified to be:

displayObjects
"Answer the receiver's objects in order for display purposes.”
~self objects reverse collect: [:a | a key]

Adding a new object is modified to add a new Association,
selecting the newly added object at the same time:

self objects addFirst: (anObject -> true).

Finally, deselecting an object is done by setting its corre-
sponding Association value to false. The following method
deselects all currently selected objects:

deselectAll
self objects do: [:p | p value: false]

IDENTIFYING SELECTED OBJECTS

In sticking with modern interface conventions, selected ob-
jects will be identified through the metaphor of “handles” that
appear as small solid squares at an object’s extremities. For the
set of SmallDraw objects, the comers of the bounding box can
serve as handle points. Whenever an SDGraphicObject changes
its shape it should recalculate its boundingBox, and whenever
its boundingBox changes so will its handles. Since handles are
expected to be accessed often it will be best to store them as

VoL. I, No. 8: JUNE 1992

B SMALLDRAW—RELEASE 4 GRAPHICS AND MVC, PART 2

an instance variable and be automatically updated, as in the
following SDGraphicObject instance methods:

computeBoundingBox

"Subclasses should set their own boundingBox using
setBoundingBox:"

self subclassResponsibility

setBoundingBox: aRectangle
"Set the receiver's boundingBox and update its handles.”
boundingBox := aRectangle.
self setHandles

setHandles
"For consistency, handles should be set in a clockwise direction."
handles := (Array
with: self boundingBox origin
with: self boundingBox topRight
with: self boundingBox corner
with: self boundingBox bottomLeft)

There are cases where it is appropriate to display only two
of the four handles, for instance, when an object is “squished,”
so that it is completely horizontal or vertical. Also, an SDLine-
Segment will always display two handles, one at each end
point. The view and controller will want to access the handle
points used for display purposes, so each object will be respon-
sible for supplying appropriate display handles:

isSquished

"Answer whether the receiver is either totally horizontal or totally
vertical."
~(self boundingBox width isZero or: [self boundingBox height is Zero])
displayHandles

"Answer the handles to use for displaying the receiver.”
~self isSquished

ifTrue: [Array with: self boundingBox origin

with: self boundingBox corner]
ifFalse: [self handles]

SDLineSegments will always return their end points for dis-
playing their handles:

displayHandles
~Array with: self start with: self end

With this convention, handles for SmallDraw objects will
appear as illustrated in Figure 2. Handles serve not only as a
feedback mechanism to identify a selected object, but also as
visual indicators for control points used in stretching or
shrinking an object as if grabbing and pulling an actual han-
dle. The view must be able to turn on and off handles very
quickly and the controller must be aware of handles in order

Figure 2. Graphic object handles.

to determine when one has been hit by the cursor and when
modifying an object. The only components concerned with
the size and shape of handles are the SmallDrawView and Small-
DrawController. For this reason, a generic handle is defined as a
SmallDrawView class variable, initialized as a rectangle with ex-
tent (6@6) centered at the origin:

initalize
"Initialize the size of the handles with a Rectangle centered at
the origin."
DrawHandle := (3@3) negated comer: (3@3).

As a class variable, DrawHandle is accessible by all instances
of SmallDrawView and can be easily resized for users who prefer a
smaller or larger handle. Centering it at the origin allows it to
be translated to an object’s handle locations for rendering on
screen. All the view has to do is to ask each object for its han-
dle points, translate the generic handle to each location and
display the handles.

Handles need to be displayed and erased quickly. This can
be accomplished by taking advantage of Image methods that
combine bits using RasterOp rules. Many thanks to Patrick Mc-
Claughry for the following technique that was borrowed from
his version of HotDraw, written for Release 4 and available via
ftp over the internet. The basic idea is to grab from the screen
the small rectangular region where a handle will be displayed.
The bits in the rectangle are reversed by copying the image
onto itself using the RasterOp reverse rule (actually, RasterOp re-
verse does not work correctly on all platforms but apparently us-
ing the rule with integer value 10 does work). The resulting im-
age is then displayed in the view. Repeating this bit operation
again results in the original bits as if nothing had changed. In
this way, handles can be tumed on and off without having to
redisplay any of the objects in the view. The following Small-
DrawView method can be used to turn handles both on and off:

toggleHandlesFor: aCollection0fObjects on: aGC
aCollectionOfObjects do: [:0 | o handles do: [:h | | rect image |
rect := DrawHandle translateBy: h * self displayScale.
(aGC clippingBounds intersects: rect)
ifTrue: [rect := ((rect intersect: aGC clippingBounds)
translateBy: aGC translation) rounded.
(image := (aGC medium contentsOfArea: rect) first)

copy: (0 @ 0 extent: rect extent)
from:0@ 0

in: image

rule: 10;

displayOn: aGC

at: rect origin - aGC translation]]]

Note that it is necessary to clip each handle to the graphic
context’s clippingBounds because an etror occurs when ac-
cessing bits outside of the clippingBounds.

MAKING SELECTIONS

From the discussion of MVC components in Part 1, it should
be obvious that the SmallDrawController plays a role in selecting
objects since it handles all user input. When the select button

THE SMALLTALK REPORT

(The select button has been pressed)

Is yh'Ect hit?
N
/ N
Is the object :lyysel\octed?
N

P
Is the sﬁt’.&key pressed?
Y N

Select range in rectangle

Select the object

Wait momentarily

Is the mouse still pressed?
Select the object Is cm}{l a handle?

Y N

Scale the object Translate the object

Figure 3. The controller's decision tree.

is pressed, the controller has to somehow determine whether
the user wants to click on an object or make a range selection
by drawing a rectangle around a group of abjects. These two
possibilities are easily distinguished since a rectangle can only
be started if the cursor is not on an object. If the shift key is
pressed while making a selection the current selection should
be extended to either include or exclude the newly identified
objects. Of the several possibilities that can occur when the
mouse button is pressed there are four possible outcomes: a
single object is selected, a range of objects is selected in a rect-
angle, an object is scaled, and an object is translated. The
controller’s decision tree is shown in Figure 3.

The first test is to see whether an object has been hit by
the cursor. Selected objects take precedence if one of their
handles is touched, so these are tested first. Otherwise, all of
the model's objects are tested. In either case, the first object
hit is immediately answered:

objectHitBy: aPoint
"Answer the first objecthit, or nil."
self model selectedObjects do: [:each |
each displayHandles do: [:pt |
(self view handle containsPoint: aPoint - pt)
ifTrue: [*each]]]-
self model allObjects do: [:each |
(each containsPoint: aPoint)
ifTrue: [“each]].
~nil

Determining a range of objects inside a given rectangle is
straightforward:

objectsInRectangle: aRectangle
~self model allObjects select: [0 | o insideRectangle: aRectangle]

The controller notifies its model of the selection, and
whether or not it is an extended selection. If the selection is not
to be extended, all objects are first deselected. Boolean flags
identify selected objects, so the model simply negates the flags of
those objects to be selected (or deselected, as the case may be):

gelectRange:aCollection0fObjects extend: aBoolean
aBoolean ifFalse: [selfdeselectAll].
aCollection0fObjects do: [:obj | | oa |
(0a := self objects detect: [:0 | o key == obj] ifNone:[nil]) notNil
ifTrue: [oa value: oa value not]].

MODIFYING SELECTIONS

Once a selection is made, the selected objects can be modified
in a number of ways. The previous version of SmallDraw pro-
vided a means for changing the three default visual attributes
(inside color, border color, line width) through the model’s
menu options. These three menu selector methods must be
modified to account for selected objects. If any objects are cur-
rently selected, the changes should apply only to them. If
there are no cutrently selected objects, the changes should ap-
ply only to the model’s default actribuces.

The other modifications that can take place are translation
and scaling. Whenever the selected objects are translated or
scaled, immediate feedback should be provided indicating the
effects of the change. For instance, when moving an object, it
should appear as if the object is actually being picked up and
moved. The visual feedback will be an outline of the object as it
follows the cursor to its final destination. Once the mouse but-
ton is released, the actual object will then be asked to move to
the new location. If more than one object is selected, the
bounding box of the entite selection will also be displayed so
that it will be easy to see where the group of objects will end up.

In order for this to happen, every SDGraphicObject will have to
supply an array of points describing its outline. This is a simple
matter for the set of SmallDraw objects with the exception of
SDElipse. The points outlining an ellipse can be calculated based
on its width and height. This time-consuming calculation can
be improved by doing some of the work in advance. An array of
points describing a unit circle centered at the origin will be pre-
computed and stored as an SDEllipse class variable:

initialize
"Construct an array of points that describe a unit circle.”
UnitCircle := OrderedCollection new: 37.
0 to: 2*Float pi by: Float pi / 18 do: [:a |
UnitCircle add: (a cos @ a sin)].
UnitCircle addLast: UnitCircle first.
UnitCircle ;= UnitCircle asArray

An array of 37 points gives a reasonable approximation of a
smooth outline for an ellipse. When asked for its outline, an
ellipse merely has to translate and multiply the points con-
tained in the class variable as follows:

outline

"Answer an array of points that represent the receiver as an outline."

~UnitCircle collect: [:pt |
self center + (pt * (self xRadius@self yRadius))]

The visual feedback for scaling an object will be a rectan-
gular outline using its handles or, in the case of an SDLineSeg-

e
o

»
Stretching the All objects scaled
ellipse proportionally
Figure 4. Modifying selectlons in SmallDraw.

VoL. 1, No. 8: JunNe 1992

10.

B SMALLDRAW—RELEASE 4 GRAPHICS AND MVC, PART 2

ment, its end points. During scaling, as the handle under the
cursor is moved, the opposite handle remains stationary. The
SmallDrawController knows which handle is under the cursor and
asks the object for the opposite handle point (to be anchored
down). Finally, the scaling factor is calculated and the model
is asked to scale its set of selected objects. Each object scales
itself uniformly about its own handle in the same position as
the anchored handle point. In this way, all selected objects
are scaled proportionally (Figure 4).

scaleObject: anObject usingHandle: aHandlePoint
"The cursor is over the handle at aHandlePoint. The opposite handle
point should remain stationary (anchorHandle) as the cursor is moved."
| scale anchorHandle newPoint |
scale := self view displayScale.
anchorHandle := anObject handleOpposite: aHandlePoint.
newPoint := (anObject animateUsingRectangle
ifTrue: [self comerOfRectangleFromScreenWithOrigin:
anchorHandle * scale]
ifFalse: [self endOfLineFromScreenWithOrigin: anchorHandle *
scale]) / scale.

"NOTE: If the object being scaled is Squished (either vertical or
horizontal), it will have a zero in its original vector diagonal so scaling
should be done in absolute terms and the percentage is calculated from
the resulting unitVector multiplied by the ratio of the
newDiagonalDistance over the oldDiagonalDistance. Absolute scaling
should only performed by other 'squished’ objects.

If the object being scaled is not squished there is no danger of
division by zero so the percentage is calculated from the ratio of the
newDiagonalVector divided by the oldDiagonalVector."

self model

scaleBy: (anObject isSquished
ifTrue: [(newPoint - anchorHandle) unitVector *
((newPoint dist: anchorHandle) /
(aHandlePoint dist: anchorHandle))]
ifFalse: [(newPoint - anchorHandle) /
(aHandlePoint - anchorHandle)])
aboutHandleAt: (anObject indexOfHandle: anchorHandle)
absolute: anObject isSquished

RESPONDING TO CHANGE

In response to the update-with: message, the SmallDrawView was
designed to invalidate itself whenever the changed aspect was
#add, which would eventually lead to redisplaying its entire
contents. However, in general, most changes that occur only
affect small portions of the view. Redisplaying the entire pic-
ture in response to each change leads to overkill and as the
number of objects in the scene increases, so does the time it
takes to refresh the view.

From all the different types of changes that can occur in
the SmallDraw application, there are only three distinct possi-
bilities: (1) new objects are added to the drawing, in which
case only the new objects and their handles need to be dis-
played, (2) the selection of objects changes, in which case
only their handles need to be turned on or off, and (3)
changes are made to selected objects such that a specific re-
gion of the view needs to be redisplayed, which means invali-
dating and tedisplaying only that region.

One thing that can be done is add a little “smarts” to Small-
DrawView that will speed things up considerably. ScheduledWin-

dows have a refresh mechanism built-in such that they automat-
ically redisplay themselves (which includes their components)
whenever they are reexposed. This can happen whenever a
window has been buried under other windows and is brought to
the front, when a menu appearing on top of a window is closed,
or when a window is resized exposing more portions of windows
behind. In most cases, only subareas of the view need to be re-
freshed, the worst case being the entire view. In all cases, the
areas needing “repair” are rectangular regions.

Views can also specify rectangular regions to be repaired.
This ability will be useful in the third case described above.
The following SmallDrawView instance method accepts a rectan-
gle (in the model's scale), scales it, and expands it to compen-
sate for handles that extend beyond an object’s bounding box:

repairRectangle: aRectangle

self invalidateRectangle: ((aRectangle scaleBy: self displayScale)
expandBy: (DrawHandle extent / 2) rounded)
repairNow: true

Of the three possible types of changes that can occur, the
third situation describes the cases where selected objects have
been translated, scaled, or one of their visual attributes has
been changed (inside color, border color, line width). For
translation and scaling, the region needing repait can be found
by merging the object’s bounding box before the change with
the object’s bounding box after the change (see Figure 5).

Of course, modifications to the selection apply to all se-
lected objects so the total repair region would be the com-
bined areas of all of the selected objects’ bounding boxes.
However, as it tutns out, an object displayed in a view is not
always guaranteed to be completely contained by its bounding
box. An object can stretch beyond its bounding box if it has a
thick line width or if its line segments are joined using the de-
fault join style (GraphicsContext joinMiter) as shown in Figure 6.

Thick lines can be compensated for by defining a displayBox
method for SDGraphicObjects that simply answers the boundingBox
expanded by at least one or half the receiver's line width:

repair rectangle

\\ repair rectangle
4 AN
- 2
A
Translation Scaling

Figure 5. Repair rectangles for translation and scaling.

Figure 6. Thick lines and default join style extend beyond houndingBox.

THE SMALLTALK REPORT

displayBox
~self boundingBox expandBy:
(1 max: (self lineWidth/2) truncated) asPoint

This displayBox can then be used for repairing regions in the
view. However, it won't always enclose polygons and polylines
drawn with the default join style. This can be remedied by
specifying a join style that will keep lines within bounds with
the following SDGraphicObject method and modification of the
SDPolyline display method (see Figure 7).

joinStyle
"Answer the appropriate join style for displaying the receiver."
~GraphicsContext joinBevel

displayOn: aGC scale: aScalePoint
| displayPoints |
aGC joinStyle: self joinStyle.

Now the SmallDrawView can be made to respond to each of
the three change situations as follows:

update: anAspectSymbol with: anObject
#add = anAspectSymbol
ifTrue: [self displayObjects: anObject on: self graphicsContext.
self toggleHandlesFor: anObject on: self graphicsContext].
#selection = anAspectSymbol
ifTrue: [self toggleHandlesFor: anObject
on: self graphicsContext].

fitectangle = anAspectSymbol
ifTrue: [self repairRectangle: anObject].

Note that in some cases the argument, anObject, will be a
collection of objects and in other cases it will be a rectangle.
Corresponding changed:with: messages must also be inserted in
SmallDraw at the appropriate places, for example:

addFirst: anObject
self changed: #add with: (Array with: anObject)
selectRange: aCollection0fObjects extend: aBoolean
self changed: #selection with: aCollection0fObjects
Finally, it will be necessaty for the SmallDraw model to

calculate the total display box of all the selected objects for
the changes that require repairs to rectangular regions (see

Figure 7. GraphicsContext join styles: joinMiter and joinBevel.

also the methods: changeInsideColor, changeBorderColor,
changeLineWidth):

selectedObjectsDisplayBox
"Answer the display box that contains all currently selected objects."
| atlObjects |
~(allObjects := self selectedObjects)
inject: allObjects first displayBox
into: [:bb :0 | bb merge: o displayBox]

translateBy: aPoint
"Translate the selected objects by aPoint, notify dependents of clean
up region."
| cleanUp |
cleanUp := self selectedObjectsDisplayBox.
self selectedObjects do: [:0 | o translateBy: aPoint].
self changed: #rectangle with: (cleanUp merge: (cleanUp
translateBy: aPoint))

scaleBy: aPercentagePoint aboutHandleAt: anindex absolute: aBoolean
"Scale all currently selected objects by aPercentagePoint from each
respective handle at anIndex, notify dependents of clean up region."
| cleanUp |
cleanUp := self selectedObjectsDisplayBox.
self selectedObjects do: [:o0 | o scaleBy: aPercentagePoint

aboutHandleAt: anIndex absolute: aBoolean].
self changed: #rectangle with: (cleanUp merge: self
selectedObjectsDisplayBox)

SUMMARY

In this article, we added the abilities to select, translate, scale,
and modify the visual attributes of objects in a drawing to
SmallDraw. This has been accomplished by modifying the
definition of SDGraphicObjects to include two more instance
variables (boundingBox and handles), and additional behavior
such as the ability to determine whether an object contains a
point or is contained in a rectangle. The SmallDraw model
has the responsibility of keeping track of selected objects, the
SmallDrawController determines which objects to select or mod-
ify, and the SmallDrawView can now display handles and has im-
proved update capabilities.

SmallDraw is beginning to look more like an editor now
that objects can be manipulated. The next article in this series
will present additional functionality to SmallDraw such as ob-
ject alignment (using a DialogView), grouping of objects, verti-
cal and horizontal scrolling of the view, a cut/copy/paste clip-
board, and support for command keys. B

Dan Benson is a Ph.D. candidate in the Department of Electrical En-
gineering at the University of Washington where he is developing a 3-D
spatial database for human anatomy using Smalltalk and the Gem-
Stone OODBMS. Its unique features are the ability to formulate sym-
bolic and spatial queries specifying volumes-of-interest and the incorpo-
ration of object-oriented spatial indexing structures in the database.
Besides Smalltalk, he enjoys playing jazz bass and classical piano. He
may be contacted at: Department of Electrical Engineering, FT-10,
University of Washington, Seattle, WA 98195, by phone at 206/

685.7567, or email: benson@ee.washington.edu. 1

VoL. I, No. 8: JUNE 1992

B SMALLDRAW—RELEASE 4 GRAPHICS AND MVC, PART 2

Errata

The following figures were omitted from Part 1 of this series, featured in last month's issue (Smallralk Volume 1
Number 7, May 1992). We regret the error.

The source code for both the first and second parts of Dan Benson's SmallDraw application have been posted to both
the Illinois and Manchester Smalltalk archives. For more information regarding these archives, see the “Best of
comp.lang.smalltalk” column in Volume 1 Number 6—Eds.

EO&=== smallDraw ==CECH

initial mtiuse

U/

moving cursor

model
controller

Figure 1. MVC reladonships. Figure 4. Rubber banding a rectangle in four direcdons.

[ECO==== smallDrew ==[O=ME|

b
SmallDraw SmallDrawView SmallDrawController \} ‘i(
displayObjects |eg— | displayScale | |
menu |egg | Menu | |
localMenultem: | |
L update:
lineWidth |eg_
Figure 2 SmallDraw MVC interface selectors. Figure 5. A SmallDraw Drawing.

polygon new P new >
change | polyline inside color change >
display d| line display D| border color m
rectangle ine width 25 ®
ellipse 50%
SmallDraw menu 200 %
SmallDraw Controller menu 400 x
800 ¥
1600 ¥
3200 8

SmallDraw View menu

Figure 3. SmaliDraw menus.

THE SMALLTALK REPORT

The dreaded super

hat is it with this super thing, anyway?

The pseudo-variable super is a curious wart on

the otherwise unblemished Smalltalk language
design. Ordinary messages are sufficient to capture composi-
tion, conditionals, and looping. The three components of
structured programming thus become unified in Smalltalk.
Yes, but....

The exception is super. It means the same object as self, but
when you send it a message the difference is revealed. When
you send an ordinary message the class of the receiver of the
message is examined for an implementation of that message. If
one is not found the superclass is searched, then its superclass,
and so on until a method is found. Super circumvents normal
message lookup. When you send a message to super the search
begins in the superclass of the class in which the executing
method was found.

Super is pretty benign as warts go. It makes no reference to
explicit class names, so methods still contain no assumptions
about what other classes are called. You cannot affect method
lookup in other objects by using super, only the one currently
executing. The only assumption introduced by using super is
that some superclass of the cutrent class contains an imple-
mentation of a method.

A variety of idioms, some useful and necessary, some
gratuitous, have grown up around super. For example, I found
that about 7% (28 out of 381) of the methods which use super
in the Objectworks \ Smalltalk Release 4 image could use sends
to self without changing their meaning. In this article, we'll ex-
amine the uses and abuses of super. Where is super appropriate?
What does it cost? What should you avoid when using it?

The code quoted in this article was taken from ParcPlace
Systems Objectworks \ Smalltalk Release 4. ParcPlace owns all
the copyrights. In places, I have simplified the code for pur-
poses of presentation.

ORTHODOX USE
The usual use of super is to invoke a superclass’ implementation
of the currently executing method. One example from Object-
works\Smalltalk is the initialization of subclasses of ValueModel.
ValueModel>>initialize sets its instance variable accepted to false.
initialize
accepted := false

MALLTALK IDIOMS

Kent Beck

The subclass ValueHolder first invokes super initialize, then
sets its instance variable active to true.

initialize
super initialize.
active := true

This use of super segments behavior across several classes.
The subclass’ method depends on nothing that the superclass
does. The subclass only assumes that the superclass has some-
thing useful to say about the message and makes sure it gets
invoked. The “meaning” of the message in the context of the
receiver is spread disjointedly across several classes.

Initialization is a common situation in which several meth-
ods which have nothing to do with one another except that
they are all executing on behalf of the same object may be in-
voked by means of super. PostCopy, the message which cleans
up a copy of an object, is another case where instance vari-
ables are manipulated without many messages, and which fits
the description of segmented behavior. Using super to segment
behavior across classes does not create much risk of cross-class
dependencies. Even if the superclass changes, the subclass
should not have to change.

A use of super which involves slightly more risk is the
modification of a superclass’ behavior. ChangeListView>>dis-
playOn: is a good example.

displayOn: aGraphicsContext

super displayOn: aGraphicsContext.
self displayRemovedOn: aGraphicsContext

It operates by first invoking super displayOn: (which is imple-
mented in ListView) to draw the list elements, and then drawing
a line through all the list elements which have been removed.
The dependency is that should ListView dramatically change its
presentation of items (such as by displaying them as file folder
tabs), ChangeListView displayOn: would also have to change.

Another kind of modification of superclass behavior is in-
voking general-purpose algorithms only when special purpose
one fail For example, ByteEncodedString>>at: is implemented by
grabbing the raw byte at an index and then encoding it.

at: index
~self stringEncoding decode: (self byteAt: index)

ByteString, the optimized subclass, implements at: primitively.

Vor. 1, No. 8: JUNE 1992

13.

14.

ANALYZING USES OF SUPER

The standard image does not contain much support for
searching the image for uses of super. During the prepara-
tion of this column [had to extend the system to let me
flexibly search for uses of super. Here is the code I created,
working from the bottom up.

InstructionStream, the object which simulates execution of
Smalltalk bytecodes, has support for decoding message
sends, but not sends to super in particular. | added peekForSu-
per, which returns nil if the method being interpreted is not
about to send to super and the selector which is to be sent if
it is. It is modeled after InstructionStream>>peekForSelector.

peekForSuper
“If this instruction is a send to super, answer its selector,
otherwise answer nil.”
| bytex1x2 |
byte := method byteAt: pc.
byte = OpXSuper
ifTrue:
[%1 := method byteAt: pc + 1.
~method literalAt: (x1 bitAnd: 31) + 1]
byte = OpXXSend
ifTrue:
[x2 := method byteAt: pc + 2.
~method literalAt: x2 + 1].
~pil

Next, I implemented a CompiledCode method to test
whether the code sends a message to super by using
InstructionStream>>peekForSuper. It is similar to Compiled-
Code>>sendsSpecialSelector:.

sendsSuper
“Answer whether the receiver sends to super.”
| scanner |
self withAllBlockMethodsDo:
[:meth |
“Make a quick check”
((meth bytesIncludes: OpXSuper)
or: [meth bytesIncludes: OpXXSuper])
ifTrue:
[scanner := InstructionStream on: meth.
(scanner scanFor: [:byte |
scanner peekForSuper notNil])
ifTrue: [“true]]].
~alse

SystemDictionary>>allSelect: iterates through all the Com-
piledMethods in the system. Now I could find out how many
methods in the system send super by executing:

(Smalltalk allSelect: [:each | each sendsSuper]) size

or open a browser on all of the methods by executing:

Smalltalk browseAllSelect: [:each | each sendsSuper]

To do more sophisticated analysis of sends to super 1
needed more objects than just the CompiledMethod. I in-
vented a protocol similar to SystemDictionary>>allSelect: which
I called allMethods:. The Block argument to allMethods: takes
three parameters instead of one: the class of the methad,
the selector of the method, and the method itself.

allMetheds: aBlock
“Answer a SortedCollection of each method that, when used
with its class and selector as the arguments to aBlock, gives a true
result.” |
aCollection |
aCollection := OrderedCollection new.
Cursor execute showWhile:
[self allBehaviorsDo:
[:eachClass |
each(lass selectors do:
[eachSelector |
(aBlock
value: eachClass
value: eachSelector
value: (eachClass compiledMethodAt:
eachSelector))
ifTrue: [aCollection add:
eachClass name,'', eachSelector]]]].
~aCollection asSortedCollection

To complete the analysis I also needed the selector sent
to super, not just a Boolean telling me whether a send took
place or not. | implemented CompiledCode>>selectorSentToSu-
per to provide the selector.

selectorSentToSuper
“Answer the selector the receiver sends to super or nil.”
| scanner |
self withAllBlackMethodsDo:
[:meth |
“Make a quick check”
((meth bytesIncludes: OpXSuper) or:
[meth bytesIncludes: OpXXSuper])
ifTrue:
[scanner := InstructionStream on: meth.
scanner scanFor:
[:byte || selector |
selector := scanner peekForSuper.
selector notNil ifTrue: [*selector].
false]]].
~nil

Now I could find all of the methods which sent super

. with a different selector by executing:

Smalltalk allMethods:
[:class :selector :method || superSelector |
superSelector := method selectorSentToSuper.
superSelector notNil & (superSelector ~= selectar)]

Or the methods in which sends to super could be changed to
sends to self by executing:

Smalltalk allMethods:
[:class :selector :method | | superSelector |
superSelector := method selectorSentToSuper.
superSelector notNil and: [class includesSelector:
superSelector)

not]]

[find the creation of this kind of quick analysis tools one
of the most fun things about Objectworks \ Smalltalk. When
I program in Smalltalk/V, with its limitations on access to
system internals, | always miss the ability to quickly answer

* complex questions about the system.

THE SMALLTALK REPORT

B SMALLTALK IDIOMS

at: index
<primitive: 63>
~super at: index
Should anything occur which the primitive is not prepared
to handle (for example an unknown character or an index out
of range) it will fail. The Smalltalk implementarion of
ByteString>>at: returns the result of super at:. Thus, the special
case gains a speedup most of the time, but under normal cir-
cumstances it is prepared to invoke the full available generality.
Array>>storeOn: is another example of using super to imple-
ment a specialized algorithm that is prepared to devolve into a
more general one.

storeOn: aStream
self isLiteral
ifTrue: [self storeLiteralOn: aStream]
ifFalse; [super storeOn: aStream]

Arrays of literals are treated specially by the compiler and
can thus be printed more compactly than atrays of general ob-
jects. If the receiver is not literal (meaning some of its ele-
ments are not literals), Array>>storeOn: invokes super storeOn: so
as to use the general collection storing method.

Otherwise, the receiver is printed so that the compiler can
recreate the array while parsing the printed string.

DISINHERITANCE IN THE FACE OF SUPER

Using super involves a more direct reference to a superclass
than a regular message send. You can get into situations where
you will feel trapped by the use of super. One common pitfall
is the need for disinheritance. For example, suppose we create
an abstract communication object, Communicator, which sets
up important state in its initialize method.

injtialize

“Set up important state...”

We then create a concrete subclass, SocketCommunicator,
which uses a socket for communication. Its initialize merhod
will send super initialize and then create the socket.

initialize

super initialize,
socket := Socket new

Finally we create a subclass of SocketCommunicator, TestCom-
municator, which is used for testing. It reads its input from a
file. Its initialize method needs the behavior in Communica-
tor>>initialize, but it can’t just send super initialize without ac-
cidentally creating a socket.

The solution is to factor the initialization of the communi-
cation channel of SocketCommunicator out of the initialize
method into its own method, initializeChannel.

initialize

super initialize.
self initializeChannel

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management with update transaction
control directly in the Smalltalk language

® Transparent access to Smalltalk objects on disk

Transaction commit/rollback

® Access to individual elements of virtual collections and
dictionaries

® Multi-key and multi-value virtual dictionaries with query by
key range and set intersection

® (Class restructure editor for renaming classes and adding or
removing instance variables allows incremental application
development

® Shared access to named virtual object spaces

® Source code supplied

Some comments we have received about VOSS:
“...clean ...elegant. Works like a charm.”

—Hal Hildebrand, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability.”

—Raul Duran, Microgenics Instruments

VOSS/286 $595 ($375 to end of February 1992) + $15 shipping,
VOSS/Windows $750 ($475 to end of February 1992) +515 shipping.
Quantity di ilable. Visa, MasterCard and EuroCard accepted.
Logic Arts Lid. 75 Hemingford Road, Cambridge, England, CB1 3BY
TEL: +44 223212392 FAX: +44 223 245171

logic

ARTS

initializeChannel
socket ;= Socket new

Then TestCommunicator can override initializeChannel directly.

initializeChannel
socket := Filename fromUser

TestCommunicator may not even need to override initialize at all.

In general, the need for disinheritance points out opportu-
nities for you to factor your code better. Remember that as you
break a class down into smaller methods you make it easier to
subclass later. If each method does one and only one thing,
when you want your subclass to do one thing differently you
will find exactly the right method to override.

EXCEPTIONS

So far the uses of super have been limited to invoking a
method in a superclass which has the same name as the one
currently executing. Because the names are the same, any vio-
lation of encapsulation between the subclass and superclass is
limited. After all, if a message makes sense to the subclass it
probably should make sense to the superclass as well. How-
ever, there are legitimate reasons to use super with a different
selector than the currently executing method.

One reason to invoke super with other than the current
method's selector is to avoid looping in mutually recursive
methods. One example is ControllerWithMenu. In controlActivity it
checks to see if the red mouse button is pressed, and if so
sends itself redButtonActivity.

VoL. 1, No. 8: JuNE 1992

15.

H SMALLTALK IDIOMS

®
© Scl-fI-e-N-C-e
u collection of teols Tor project management und code delivery

o —— ——r
[gy -

= full multi-user project managemenl
= sourte code version conlrol

= automalic change documenling

« release packaging

« ship compiled code without source
« reconligurable installation lool

= change log browser and reslorer

$149.95

NEW! UFO persistent object toolkil
File unlr jed in ar oul, flatten any objedt 1o o null termincted siring

« code performance profiling

Avnilab e mllududnvly pricz ol $49.95

Indluded free wilth every silence purchose!

‘dlgcmmo solutions

Unit 6, 387 5 udmu Avenue, Toronlo, Ontario, Conoda, M5T 266
I Phone: [”bl 8833 Fox: (416) 408-285C

controlActvity
self sensor redButtonPressed & self viewHasCursor
ifTrue; [*self redButtonActivity].
super controlActivity

ControllerWithMenu>>redButtonActivity wants to invoke the su-

perclass’ controlActivity as its default behavior.

redButtonActivity
super controlActivity

If the send were to self an infinite loop would result. In-

stead, redButtonActivity sends controlActivity to super, thus avoid-

ing the loop.

Another reason for this kind of send to super is to avoid du-
plicating effort. For instance, ComposedText class>>new initial-

izes the new instance with a new Text.

new
~self withText: “ asText

ComposedText also has an instance creation method which
takes a Text as an argument, withText:style:. If it sent new to self
the new instance would be initialized twice, once with a new
Text and once with the Text passed in as an argument. To avoid
this duplication ComposedText>>withText:style: sends new to super.

withText: aText style: aTextStyle
“~super new
text: aText
16 style: aTextStyle

A final reason for invoking super with a different selector is
if the subclass has different external protocol than the super-
class but is implemented using the superclass’ behavior. An
example of this is Dictionary, which is a subclass of Set although
its external protocol is much more like SequenceableCollection.
DicHonary>>includesAssociation: wants to use includes: except
that Dictionary overrides includes: to look only at the values, not
the whole Association. IncludesAssociation: sends includes: to su-
per to invoke the correct method.

includesAssociation: anAssociation
~super includes: anAssociation

This last exception is probably the least defensible of the
three listed here, as subclassing solely for implementation
sharing where there is little commonality in external protocol
is generally a bad idea.

All of these sends to super where the selector is different
than that of the cutrent method are suspect, as they intro-
duce the possibility of unnecessarily using super. If a message
is sent to super and the class does not implement that
method the message could just as well be sent to self. If at a
later date you decide to override the message you can spend
many frustrating hours trying to find out why the new
method is not being invoked. If you find an unnecessary su-
per don't worry. As I noted at the beginning of the article, 28
out of the 381 uses of super in the Objectworks\ Smalltalk
Release 4 image are unnecessary (see the sidebar for the code
I used to find these numbers).

Joel Spiegel came up with the only plausible reason for
using super where self would do. You might use super if you
were absolutely certain that a superclass’ implementation of
a method had to be invoked and you didn't want to give fu-
ture subclasses any opporttunity to interfere. I would be inter-
ested in any legitimate examples of this kind of "prophylac-
tic” use of super.

CONCLUSION

Super must be used carefully. It introduces a dependency be-
tween the subclass and superclass. Also, as an exception to the
otherwise remarkably consistent control flow of Smalltalk, it
will make your code harder to read. Correct use can
significantly enhance your ability to partition behavior be-
tween classes. It can also make it easier to incrementally mod-

ify the behavior of subclasses. @

Kent Beck has been discovering Smalltalk idioms for eight years at Tek-
tronix, Apple Computer, and MasPars Computer. He is also the
founder of First Class Software, which develops and distributes reengi-
neering products for Smalltalk. He can be reached at P.O. Box 226,
Boulder Creele, CA 95006 or via email kentb@maspar.com.

THE SMALLTALK REPORT

Uls

Greg Hendley and Eric Smith

Drag/Drop in Smalitalk/V PM

Manager chances are your clients would like the latest in

“normal” user interfaces. They may not be ready for some-
thing as interesting as full direct manipulation as in the Alter-
nate Reality Kit (now a six-year-old technology). Still, they
would like something snappier than a copy/paste buffer be-
tween applications. What they want is Drag/Drop!

Drag/Drap is a protocol supported in software by a dynamic
link library (DLL). As you may already know, one of the best
ways to use a PM feature is to wrapper it in Smalltalk then use
the wrapper. Fortunately Smalltalk/V PM has done this for
drag/drop. Two example applications are even provided. One
application, FileBin, uses drag/drop with list panes. The other,
ContainerTester, uses drag/drop with containers.

Even with the examples, it is not necessarily clear how to
use it in your own applications. Rather than give you a third
example, we will discuss how to learn drag/drop and some of
the issues you will need to address in using it.

If you are writing applications that run under Presentation

LEARNING FROM THE EXAMPLES
If you just want to learn drag/drop, look at FileBin.

If you want to learn to use drag/drop with containers, look
at FileBin first. Then leamn to use the icon views of containers.
Next, learn to use the details view of containers. Finally, learn
to use drag/drop with containers. Trying everything at once
can be a bit frustrating.

The mechanics of drag/drop that we need to know can be
found in the classes FileBin and DragFile. In FileBin, look at start-
Drag:, dragComplete:, and dropComplete:. Also look at the last
part of the method addFilePane. In DragFile the interesting
methods, in sending sequence, are transfer:, targetTransfer:, and
transfer:to:. The example does not use the method
DragFile>>sourceTransfer:. For the example, it does not seem to
matter what string is returned by DragFile>>renderingMechanism.

STEPPING THROUGH A DRAG/DROP

Now that you know which classes and methods we care about,
let’s look at how they are used. We will take a chronological tour
through the dragging of an item between two instances of FileBin.

OPENING A FILEBIN

When an instance of FileBin is opened, its list pane is regis-
tered with an instance of DragDrop. The instance of DragDrop is
told of its mechanisms. In this case, the dragDrop has one
mechanism, an instance of DragFile.

STARTING A DRAG

The drag begins when the user holds down mouse button 2
and moves the mouse. The list pane gets a startDrag event. In
the startDrag: method, drag items are created, one for each se-
lected item in the list pane. The dragDrop is then given the
collection of dragltems.

STARTING THE DROP

The drop starts when the user releases the mouse button 2 over
the listPane of another instance of FileBin. At this moment, the
instance of DragFile does its wotk. The dragFile does some check-
ing in its method transfer:. It also checks to see if it should do a
source or destination transfer. In the example, it always sends
itself targetTransfer:. In targetTransfer: the dragFile sends itself the
method transfer:to:, and based on the result either declares suc-
cess of failure. The method transfer:to: does the actual transfer
work assumed in the drag/drop operation. Here two types of
transfer may be done. The file may be copied or just moved.

FINISHING THE DRAG/DROP

Given the drop was successful, the destination pane gets a
dropComplete event and the source pane gets a dragComplete
event. The methods dragComplete: and dropComplete: are essen-
tially the same. They both tell the panes to update themselves
so they reflect the change in their contents resulting from the
drag/drop operation.

ISSUES

Several issues need to be addressed before using drag/drop in
an application. What are you dragging? What do the panes
represent? What does it mean drag something from one pane
to another? These issues must be addressed sooner or later. Be-
lieve me, the sooner you address them the less aggravation you
will experience.

HIDING INSIDE SMALLTALK
If you are like many Smalltalk programmers, you will see these
as trivial issues. You are dragging an object. The panes repre-
sent collections of objects. When you drag an object from one
pane to another you want to add the object to the collection
represented by the destination pane. If you were doing a move
instead of just a copy, then you also want to remove the object
from the collection the source pane is representing. Simple.
This actually is easy to implement if the source and desti-
nation panes will always be in the same Smallealk image. The

VoL. 1, No. 8: JunE 1992

17.

18.

uGuis

other restriction is you have to decide that a drag will always
mean a move and not a copy.

The implementation involves trying to ignore DragFile, cre-
ating a global cut/paste buffer, and misusing the startDrag:, drag-
Complete:, and dropComplete: methods. Let DragCutPasteBuffer be
the cut/paste buffer. Let each application have a method collec-
tion that answers the collection the list pane represents. With
these givens the methods in the applications will be similar to:

startDrag: aPane

| aDragltem aDragList |
"Put the items being dragged from aPane into the buffer."
DragCutPasteBuffer := aPane selections collect: [:selectionIndex |
self collection at: selectionIndex].
"Give aPane's dragDrop a dummy drag list."
aDragltem := (Dragltem new)
name: 'noName';
type: #('Unknown'");
format: #('DRF_UNENOWN');
container: 'noContainer').
aDragList := OrderedCollection with: aDragItem.
aPane dragDrop draq: aDragList.
dropComplete: aPane

"Add the items dragged to aPane. Update aPane."
self collection addAll: DragCutPasteBuifer.
aPane event: #getContents.

dragComplete: aPane

"Remove the items dragged from aPane. Update aPane."
self collection removeAll: DragCutPasteBuffer.
aPane event: #getContents.

We will ignore DragFile, a subclass of DragTransfer, by making
our own dummy subclass of DragTransfer. This and the dummy
list in startDrag: are needed so the drag and drop complete
events get sent to the source and destination panes.

Create a class DummyDragTransfer as a subclass of DragTransfer.
Give it a transfer: method. Use code from targetTransfer;. The
method should look something like this:

transfer: item
"Do not do a transfer. But do claim success."
item pmltem
sendTransferMsg: DmEndconverstaion
response: DmTargetsuccessful.
owner freeTransferltem: item,

Finally, copy the method renderingMechanism from DragFile.
With this you should have a quick and dirty use of drag/drop
that does moves between panes in the same Smalltalk image.

ADDRESSING ISSUES HEAD-ON

The more difficult use of drag/drop is its intended use, that is,
to transfer items between applications. This means between
panes in applications written in completely different lan-
guages. Here the object that gets transferred is a string that
names the thing to be transferred. Objects do not get trans-
ferred because other languages do not have Smallealk objects.
(1 admit you should be able to transfer icons, bitmaps, and
other bit streams, but all the applications [have heard of
stick to strings.)

I R NN I T IR R S NI R N R Y R IR RSP E S YT ANS NI SYTERYYRLY

SMALLTALK/OBJECTWORKS 4.0

IMMEDIATE OPPORTUNITIES
ROTHWELL INTERNATIONAL seeks Smalltalk Professionals,
Min. 3 Yrs Exp. for High-Profile Positions in Houston,TX.

EXPERTISE needed in the following areas:
¢ Project Mentor ¢ Training Expertise @ Interface to DB2

¢ Objectworks Tool Development/Support

Rothwell International, RWI
(713) 541-0100 (800) 256-0541 F (713) 541-1167

e PE T s P IO eI IO IO TEROE B

T P I PP I I I IS PPN I P CAP ORI PN

1S e0ea30titesssetrutiettsondidotod

I P eI STV IR EEINNITITISPIITCITETOPEES

EEAZAAAAAZZ AR RN E R XN R X R I AR R R AR R T A RN R TR AR RN ASARETI RN EED
IR I R R R Y P R R R R I P R A R Y

s hbabbonsadsdssnsscndoniiolatdbicncasdiadasbsabioainadindnda

The panes will still represent some sort of collection. How-
ever, they will be identified by strings that name the collec-
tions. Look at FileBin, ContainerTester, and DragFile. You will see
the containers, sources, destinations, and item names are all file
and path names. They are not the files and paths themselves.

The implication in all of this is the collections and
objects to be dragged need names by which they can be
uniquely identified. They also need to be accessible by their
names. This could be done with a Smalltalk dictionary of all
collections and objects that could be involved in drag/drop.

You may have noticed another problem now. What hap-
pens if you drag an object (actually, its name) from a pane in
Smalltalk to a pane outside Smalltalk? Given a name, how
does the destination pane ask Smalltalk for the object? Even if
the outside pane got the object, what would it do with it if it
does not know objects?

One solution would be to create a cut/paste file. The ob-
jects being dragged would be written to the file in a form both
applications understand. Then the name of the file would be
passed between the panes. This is similar to the solution for
when both panes are inside Smalltalk. Another solution
would be to pass string representations of the objects being
dragged instead of their names.

A third solution is for both the Smalltalk pane and the
outside pane to be views on information that exists outside
both applications. The FileBin and ContainerTester examples do
just this. They both access the operating system’'s file system.
Files and directories are accessed by name through the file sys-
tem. They are accessed by unique path names. In this third
case it makes sense to have a subclass of DragTransfer to do the
work of moving abjects from one collection to another. The
FileBin and ContainerTester handle this very well.

Greg Hendley is a member of the technical staff at Knowledge Systems
Corporation. His OOP experience is in Smalltalk/V(DOS), Smalltalk-
80 2.5, Objectworks Smalltalk Release 4, and Smalltalk/VPM.

Eric Smith is a member of the technical staff at Knowledge Systems
Corporation. His specialty is custom graphical user interfaces using
Smalltalk (various dialects) and C. They can be contacted at Knowl-
edge Systems Corporation, 114 MacKenan Drive, Cary, NC 27511,
or by phone 919/481.4000.

THE SMALLTALK REPORT

HE BEST OF comp.lang.smalltalk

Alan Knight

Encapsulation and information hiding

ne of the more interesting discussions this month on

USENET involved the relationship between informa-

tion hiding and encapsulation. The two concepts are
often used interchangeably, but some claim they are separate,
though related, ideas. The discussion began with a question
from Vincent K. S. Oh (vincent®Ilancs.ac.uk), who wrote:

I am posting this in the hope of gathering some opinions
on the exact distinction (or is there one?) between en-
capsulation & information hiding.

As I understand it, encapsulation is the bundling of
data and its related operations into one data structure en-
closed by an imaginary boundary...Now my problem is
that some authorities, like Grady Booch, have equated the
two terms together. The external world communicates
with the object via a public interface. Through encapsula-
tion we get information hiding for free.... If encapsulation
is OFTEN used to implement information hiding, what
are the other ways to implement information hiding?

Grady Booch does seem to equate the two concepts. In his
book, Object-Oriented Design with Applications, he refers to
“encapsulation—also known as information hiding.” This is a
strong voice in favor of unifying the concepts, but people on
USENET are seldom reluctant to disagree with an authority.
If the concepts are to be separated, then the definitions need
to be clarified. Opposing definitions were offered. On the one
hand, Larry Marshall (Imarshal@pil9.pnfi.forestry.ca) writes:

Possibly this oversimplifies the issue, but it seems to me
that those wanting to make the distinction between these
two concepts emphasize that encapsulation is an abstrac-
tion process whereas information hiding is an access con-
straining process.

Earl Waldin (waldin@lcs.mit.edu) offers an apparently
contradictory definition and goes back to the origins of the
term information hiding:

The idea of “information hiding” as a principle of soft-
ware engineering goes quite a ways back...

A practical example of its use is given in: “The Mod-
ular Structure of Complex Systems” D.L. Parnas, et al.
in IEEE Trans. on Software Engineering, March 1985.
This article elucidates the principle thus:

“According to this principle, system details that are
likely to change independently should be the secrets of

separate modules; the only assumptions that should ap-
pear in the interfaces between modules are those that are
considered unlikely to change.”

In the late 70s the term encapsulation was used to re-
fer to language constructs that supported (via enforce-
ment) good software engineering practices, among them
being information hiding.

So, historically speaking, information hiding is a soft-
ware engineering principle for organizing software,
whereas encapsulation refers to language constructs. In-
formation hiding is a more general concept that is sup-
ported...by encapsulation.

So on the one hand, we have a definition in which informa-
tion hiding refers to language mechanisms that enforce access
constraints, and on the other a definition where these meanings
are reversed. Read separately, either one sounds fairly plausible.

Adding to the confusion, Eric Smith (eric@tfs.com) writes:

The difference between encapsulation and information
hiding is simple. Encapsulation means using an abstract
concept to deal with complicated ideas. You stuff all the
complicated ideas in to a capsule, give it a name, and
from then on just think about the capsule instead of the
complicated ideas it contains. The purpose of encapsula-
tion is to reduce the external complexity of the ideas.
However, all the complexity contained in the capsule is
available whenever it is needed.

Information hiding means keeping some of that infor-
mation secret to make sure no one comes to rely on it.
That allows you to make major changes to your software
without worrying about the impact on users of previous
versions, because the fact that the information is hidden
proves that no one could possibly be relying on it.

This definition seems to equate encapsulation with abstrac-
tion, but agrees with the definitions attributed to Parnas for
information hiding. The discussion then goes through a num-
ber of metaphors and examples. Piles of objects in the corner
of a room are encapsulated by throwing sheets over them, and
it is argued whether they can be considered encapsulated if
the sheets are of clear plastic. Storing files in subdirectories is
also claimed as an example of encapsulation without infor-
mation hiding.

Finally, William F. Ogden (ogden@seal.cis.ohio-state.edu)
adds the important clarification:

19.

VoL. 1, No. 8: June 1992

20.

B THE BEST OF COMP.LANG,SMALLTALK

Parnas’ point was that you can’t successfully achieve in-
formation hiding without using specifications. If you
don’t want a client to look at how you’ve implemented
something, then you have to give him a satisfactory alter-
native explanation. In two words then, information hid-
ing is about having a good cover story.

Encapsulation mechanisms are an important technical
improvement, but judging form his examples, Parnas ap-
pears to have successfully used information hiding in a
FORTRAN system. Conversely, many programmers use
encapsulation mechanisms without any apparent attempt
at information hiding.

This makes a very good point. | currently work in an engi-
neering department, and ['ve seen some good examples of in-
formation hiding in FORTRAN code. This is achieved
through clear specification and intimidation. Many of the pro-
grams perform a well-understood mathematical function using
extremely ugly code. When the spec is easy to read and the
code is incomprehensible, there’s a strong incentive to let the
implementation details remain hidden. I doubt this was quite
what Parnas had in mind and it doesn’t augur well for mainte-
nance, but it does succeed in hiding information.

I've also seen code that appears designed to citcumvent en-
capsulation mechanisms. My favorite example is the Smalltalk
goody that automatically writes get and set methods for all in-
stance variables in a class. This not only exposes the representa-
tion of the class, it is often combined with bizarre names and ab-
sence of class or method comments to produce baffling code like:

!Phlogiston methods!
north: aValue
north:=aValue

In surnmary, I see the general opinion as being that the two
concepts are closely related, but not synonymous. Encapsulation
refers to the language mechanisms enforcing information hiding,
but is also often used to describe the abstraction these mecha-
nisms encourage. Information hiding is the software engineering
principle that tries to minimize coupling between modules, and
is aided by encapsulation mechanisms such as Smalltalk’s restric-
tion access to instance variables to methods within the class.

HOW CAN I GIVE AWAY MY CODE?

As I've previously described, one of the most frequently asked
questions on the news groups is Where can 1 get free
Smalltalk code? Regrettably, the question How can I con-
tribute my code to the archives? is almost never heard.

I think most Smalltalk programmers have some favorite
goodies that they would gladly share with the community.
The stumbling blocks lie in not knowing how to contribute
code and in not ever having gotten the time to tidy it up for
release. After reading this column, you'll have lost the first
excuse. As for the second, that’s your responsibility, and
all [can do is gently remind you that there are lots of us out

there who would appreciate your efforts.

The question of contributing to the archives came up re-
cently. Naturally, it didn't start with a would-be contributor,
but with someone wondering why there is so little code for
Smalltalk/V available in the archives. Mario Wolczko
(mario@cs.man.ac.uk), the maintainer of the Manchester
archive, responded:

We *are* interested in holding Smalltalk/V code.
Although this site primarily uses Smalltalk-80, that's no
reason to restrict the archive to only ST-80 code. The
problem is that nobody sends us any ST/V code. In fact,
to be honest, hardly anybody *sends* us anything. The
code we have has come from a small number of sources:

1. Internally produced, as part of research projects

2. From another archive, such as that at UTUC or
ParcBench

3. Saved from postings to comp.lang.smalltalk

4. Individual contributions

1 have received very, very few individual contribu-
tions while the archive has been in operation.

This is curious, given that we are all supposed to be
writing reusable software. So, if you have written some
code you think should be more widely used, send it
along! It doesn’t have to big and fancy. In fact, some of
the most popular goodies in the archive are small, simple
but original ideas, expressed in just a few Kb of code.

If you want to have some code added to the archive,
and you can use Internet ftp, drop it in the “incoming”
directory and send me some email. If you use the auto-
reply server, that has its own provisions for accepting
submissions.

The ftp server referred to is the one at mushroom. -
cs.man.ac.uk. More detailed instructions on how to submit
code to the archives are available by sending email to goodies-
lib@cs.man.ac.uk with the subject line “help;submit.”

Ralph Johnson (johnson@cs.uiuc.edu), one of the people
involved with the University of Illinois archives, adds:

I would be happy for someone to try to organize the
ST/V part of the UIUC archives better. Most of the
ST/V code is in the ISA (International Smalltalk Associ-
ation) archives, and unfortunately ISA disbanded, and so
nobody is watching out after that code anymore.

If anyone with internet access would like to volunteer to
organize and upgrade the Smalltalk/V archives, contact Pro-
fessor Johnson.

AUSTRALIAN ARCHIVE SITE
In other business, this month also saw the announcement of
an archive site in Australia. This will also contain code from

continued on page 26...

THE SMALLTALK REPORT

RODUCT REVIEW

Reviewed by Wayne Beaton

VOSS—VIRTUAL OBJECT STORAGE SYSTEM

VOSS/Windows from Logic Arts is a persistent object storage system for Smalltalk V/Windows that
provides a much-needed abstract representation for secondary storage in Smalltalk.

The package I received from Logic Arts contained a
beta 0.41 version of VOSS/Windows and the manual
for VOSS/286. VOSS is shipped on a single diskette,
and includes an 82-page manual. Installation is a simple mat-
ter of copying files to the hard drive and executing some
Smalltalk code. I installed VOSS into a new image; judging
from the number of classes and methods that VOSS adds to
the system, installation into a clean image is highly recom-
mended. The tutorial chapter provided in the manual touches
on every feature offered without getting too technical.

The VOSS manual boasts, “The operation of VOSS is
transparent to the programmer, and virtual objects require
only a few special considerations.” If the operation of VOSS
was in fact transparent it would be an outstanding product. In
many cases, the “few special considerations” require consider-
able code modification and a lot of thought.

WHAT IS VOSS?

VOSS builds a series of object spaces on a disk that can be
used for persistent object storage. Any object in Smalltalk can
be placed in a space {with some exceptions, e.g., behavior,
contexts, etc.) and later retrieved. More important, the object
can be retrieved by a different image, provided the object’s
class is known. When an object is stored, it is made into a vir-
tual object. A virtual object is essentially a reference to an en-
coded and stored version. When a virtual object is retrieved,
the entire “real” object must be decoded.

The VOSS Control Panel (Figure 1) provides a direct way
of creating and manipulating virtual spaces. All currently ac-
tive spaces are listed in the control panel. At most, one space
is selected as current, indicated by an asterisk beside its name,
and is the recipient of any objects made virtual. The control
panel displays statistics about the space, including such infor-
mation as the creation date, the number of objects stored and
the amount of disk that the space occupies. The control panel
updates whenever it is activated, so the information that it
displays is always current.

Even with the control panel, I had some trouble opening
a virtual space for the tutorial. When a new space is created,
the control panel prompts for a space name and a directory
path to store the space in. No error detection is performed—
at one point VOSS thought that I had successfully created a
space even after a walk back indicating that I had entered

an illegal path name appeared. [simply “closed” the bogus
space and tried again.

VOSS implements a transaction protocol similar to one a
database might provide. Transaction information, such as the
number of changes made since the transaction started, are dis-
played in the control panel. Any modifications to a space be-
come parts of a transaction that must be explicitly committed
before changes are made permanent. As might be expected, a
transaction can also be rolled back to disregard changes made
since it started. New transactions, started while another is
open, exist within the scope of the parent transaction.

When an object is stored into a space, its reference must be
remembered, or it will be unreachable. An object may be
made virtual, and as such, occupies space. The reference to
that object is virtual, but still an object in Smalltalk. Without
explicitly remembering the object, it will be forgotten.

All spaces have a root dictionary that is directly accessible
from the representation of the space. Every object must be
linked, at least indirectly, to the root dictionary. The root dic-
tionary sorts the keys that you insert into it. Since every space
contains an entry with key stateDictionary, only keys that can
compare themselves to strings are accepted.

As mentioned previously, when an object is stored to the
space it is completely encoded. This may be a little excessive
when storing large collections of objects whose contents are
accessed sparingly. VOSS implements a large number of spe-
cialized collection subclasses which handle the virtual world
considerably better than their “real” counterparts. When a
virtual collection is accessed, it reads as much information
from the space as it needs to; as its elements are addressed,
they are read from the space. Virtual collections have a broad
range of applications. Since a virtual collection’s contents are
never completely read into the memoty, virtual collections
can potentially contain far more objects than can be held in
memory (limited of course by disk space). However, a very
large collection may still tun into memory problems if transac-
tions are not handled carefully.

VOSS also implements a new type of collection that uses
multiple dictionaries to reference the contents, a sort of multi-
key, multi-index collection. Although the database is a clever
idea, its implementation is frustrating. Look-ups into the
database can access only a single key. Further, the interfaces
are very nonstandard. In Smalltalk, a block is generally used ro

VoL. 1, No. 8: JuNE 1992

21.

22.

fm@MM Smalltalk/V users: the tool
— for maximum productivity

%

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.

° Keep a history of previous versions; restore them with
a few keystrokes.

° View class hierarchy as graph or list.

° Print applications, classes, and methods in a formatted
report, paginated and commented.

° File code into applications and merge them together.

° Applications are unaffected by compress log change
and many other features..

....................................

| Deleted classes

Browsers..

< Deleted methods |

Utilities.. ——; Application printing | and more..

CodeIMAGER™ V286, VMac $129.95

VWindow & VPM $249.95

Shipping & handling: $13 mail, $20 , per copy
Diskette: []3"2 []35%

SixGraph™ Computing Ltd.
formerly ZUNIQ DATA Corp.
2035 Cébte de Liesse, suite 201
Montreal, Que. Canada H4N 2M5
Tel: (514) 332-1331, Fax: (514) 956-1032

CadeIMAGER 1 & reg. trademark of Six Compntmg Lid.
Smalltalk/V 1s a reg. trademark of Digitalk,

Imager

Eﬁ
Fuxgrarel

select a subset of a collection. The database lookup in VOSS
implements a few primitive methods like for:between:and: where
the sender specifies the key to select on, and the range of val-
ues to accept. A more general manner of selection might be a
method named for:select: which expects the name of the key
and a block specifying the selection criteria (unfortunately, the
use of a block would require inspection of every object in the
collection which may not be a reasonable expectation).

I tried to resist examining the code for VOSS—in any
case, a full code review is beyond the scope of this review.
However, VOSS provides a large number of virtual collection
classes, and at some point in the future, there may well be
some need to create a subclass. With this in mind, I browsed
the code to see what would be involved.

Iransactions YOSpaces Global Change Cache Compaction
Commit 1 Rollback Slart SubTransaction
Virty L ces
VSp ciwasswospacest last opened: 14:00:229 Apr 26. 1992

|las| closed:

change slrategy: aulo

compaclion rate: balch

cache max size: 2000 objects

cache max size: 100 KBytes

cache size now: 9 objects, 452 byles

Figure 1. The VOSS control panel.

H PRODUCT REVIEW

VOSS has approximately twice as many classes as it should.
Each VOSS class actually has a subclass with no behavior and
a short name. The class VirtualDictionary, for example, has a sub-
class named VD. The comments indicate that this is for efficient
storage. Essentially, when objects are stored in the space, they
take their class names with them. Furthermore, these short-
ened names are used in place of the long names in all the
VOSS code. This should be enough to make any programmer
used to having non-cryptic class names explode with frustra-
tion. | have to believe there is a better way to do this.

The code itself is somewhat reminiscent of C, but func-
tional, and, for the most part, easy to follow. Creating a vir-
tual collection subclass should be a simple matter.

The "“few special considerations” the manual suggests are
required to use VOSS “transparently” are a bit more of an is-
sue than the manual suggests. VOSS spaces do not act like
any other objects in Smalltalk, but do bear a close resem-
blance to collections or streams. A space should be a subclass
of one of these with similar behavior. Perhaps the root dictio-
nary could play a more significant role.

When objects are stored into a space, the programmer must
take special care that the meaning is maintained. In one test
case that I ran, | wrote an instance of Point into the space un-
der two different names in the root dictionary. When I
restarted the image, and read the values associated with the
names, they were not identical. Clearly, they were identical
when they were inserted. To solve this identity problem, I
passed the message madeVirtual to the point before attempting
to add it. Both methods worked, but with different results.
The former did not preserve identity, the latter did.

Logic Arts requires a license be purchased for each image
using VOSS, but offers substantial discounts for large volumes.
With a purchase price of $750 US for a single copy, using
VOSS can become very expensive for systems with large dis-
tributions. Free telephone support is offered, but I found no
need to take advantage of it.

For small scale projects requiring limited, single-user
darabase functionality, VOSS is a low-cost, no-frills alterna-
tive to commercial database packages such as Sybase or Ora-
cle. However, as the size of the user base grows, so does the
cost of using VOSS.

VOSS is a good product—it certainly delivers what it ad-
vertises.] recommend it for projects with small resource pools,
coded entirely in Smalltalk. For larger projects, it may be
more economical to custom code persistent storage for the re-
quirements of the particular application.

For more information, contact Logic Arts Limited, 75
Hemingford Road, Cambridge CB1 3BY, England; tel.
+44.233.212392; fax +44.233.245171. @

Wayne Beaton is a senior member of the technical staff of The Object
People. He has specialized in the development of graphical user inter-
face systems using Smalltalk/V Windows and PM. Wayne can be
reached at 613/230.6897.

THE SMALLTALK REPORT

WHAT THEY'RE SAYING

ABOUT SMALLTALK

Excerpts from industry publications

ABOUT SMALLTALK

... [David] Taylor and other proponents of object-oriented program-
ming stressed one point as highly significant Using object-oriented
languages such as C++ and Smalltalk does not guarantee that software
is object-oriented. These languages are simply programming languages
set up to make the mechanisms of object-oriented programming easy
to execute. Procedural programs can be written in C++ and Smalltalk,
while object-oriented programming can be done in procedural lan-
guages. Indeed, even simple languages like BASIC and Pascal have been
given object-oriented extensions... .

Taking the “lego” approach to software design, Mitch Wagner,

OPEN SYSTEMS TODAY, 3/16/92

..."The simple fact is that if reusability is your goal—if you can’t find
something, you won't reuse it, and if you don't know what is does in
the system, you won't reuse I,” said [ParcPlace’s Linda] Seiner... .

The staying power of Smalltalk, OPEN SYSTEMS TODAY, 3/16/92

ABOUT OBJECT TECHNOLOGY

... Taking the object perspective during analysis, design, and program-
ming mandates special talents, skills, and genius. Data flow tech-
niques—the current rage—only require that observers act as blood-
hounds who trace the flow of paper. Where objects are the goal,
“Many are called, but few are chosen.” ...For too long, we've believed
that endless process, protocols and software packages could do our
analysis, design and programming—and we probably always will. The
OOP approach forces the industry to recognize that we have too
many people, inappropriately selected and trained, with the wrong set
of tools. Will we ever learn?

Letters: Where many are called and few chosen, Howard D. Weiner,
COMPUTERWORLD, 3/16/92

...In addition, while high-power RISC technology is being built into
PCs, video hardware such as computer-based multimedia machines
are expected to become more sophisticated. Giant consumer-elec-
tronics companies like Sony Corp. are threatening to dominate the
home market at the expense of multimedia PCs. Some observers be-
lieve that the motivation behind recent technology agreements be-
tween erstwhile rivals IBM and Apple has less to do with the on-
slaught of cheap computer clones than with trying to establish a
platform to compete with the likes of Sony later in the decade... .

High Power: Next generation PCs, Michael Antonoff,
POPULAR SCIENCE, 4/92

... Typically, in the computer industry, many different vendors intro-
duce different and incompatible versions of a new technology. Propri-
etary market wars persist for years and sometimes decades, creating a
heterogeneous mess in which users fund it impossible to integrate sys-
tems. In the emerging object-oriented Enabler environments, this shake-
out has substantially occurred before there were many products... .

Advances and Research; The future of manufacturing Enablers,
James E. Heaton, ESD TECHNOLOGY, 3/92

... Thus the war over whose objects to use is likely to replace the
war over operating systems. And the lack of a common foundation on
which to build the software that enables computers to do increasingly
sophisticated tasks is likely to continue to inhibit the American com-
puter industry. “It seems almost certain now that the battle lines are
drawn,” said Andrew Singer, a computer researcher at Enginuity, a
high technology company based in Palo Alto, CA

Ideas & Trends: New weapons prolong the computer wars, John Markoff,
THE NEW YORK TIMES, 4/5/92

... The current wave of interest in virtual reality as well as in ob-
ject-oriented programming and systems opens the door to a re-
newed interest in simulation. My guess is that simulation will be
where some of the most exciting new PC tools and applications will
emerge over the next few years... Simulation is also "object ori-
ented,” at least in the sense that it involves re-creating objects ex-
isting in the real world within the representational world of the
simulated system... .

Simulation: The ultimate virtual reality, William F. Zachmann,
PC MAGAZINE, 3/31/92

... The way many people try to reuse software is not reuse at all, in
the view of Adele Goldberg, president and CEO of ParcPlace Sys-
tems... “Most people don’t employ reuse; they do cloning. They take
a copy of something and modify it in such a way chat if the original is
changed, the benefit of that change is not realized in the copy. This
happens a lot, even in supposedly object-oriented shops,” she said.
The “not-invented-here” syndrome is fairly common in the develop-
ment world. People are often unwilling to trust someone else’s code
as a component in their own application, especially when that person
is not a close associate... .

... “Less than 5% of commercial information is automated,” said Tom
Atwood, founder and chairman of Object Design, Inc. Burlington,
Mass. “This is in large part [due to the fact] that most of this informa-
tion—including conversations, pieces of mail, memos, brochures or
other image-based information—doesn't fit in record-oriented
databases. Object databases can allow you to capture and automate a
lot more of this information without having to force it into one or an-
other format,” he said... .

Object technology means object-oriented thinking, Eric Aranow,
SOFTWARE MAGAZINE, 3/92

... David Taylor, principal of Taylor Consulting of San Mareo, Califor-
nia, and author of Object-Technology: A Manager’s Guide, sees object
technology leading to completely new types of enterprises. “The tech-
nology has the capability of creating a real-time organization with fully
integrated worldlow, distributed knowledge, and decision support
systems,” says Taylor. “Entire enterprises will be modeled in fully
functional object-oriented software structures, greatly speeding inter-
nal and external communications. This will make the organization
more adaptive, more responsive to its environment, and able to out-
compete organizations still struggling with procedure-based soft-
ware,” he says... .

Obscure objects of industry desire, Lee Mantelman, INFOWORLD, 3/16/92

VoL. 1, No. 8: JuNE 1992

23.

24.

B WHAT THEY'RE SAYING

... The marketing war between object-oriented and relational
databases is just beginning, with vendors of each type of system es-
pousing different and completely opposite claims. About the only thing
that relational vendors will concede is that object-oriented databases
are more appropriate for some, very complicated CAD functions... .

Dueling databases divide vendors, OPEN SYSTEMS TODAY, 3/16/92

... But more important, with some modifications to the ORB
specification, an OODBMS can be a more efficient object adapter for
large numbers of small objects. The object adapter defined in the
ORB model uses RPCs for object-client communication and thus is
more suited to handling large objects such as whole spreadsheets of
documents. Invoking an RPC for each object in a CAD drawing can
totally obliterate the OODBMS’ native performance. Thus, the [Ob-
ject Database Management Group] proposes two additional object
adapters to work with the ORB: the Library Object Manager (LOA),
which uses an RPC the first time an object is invoked and sets up a di-
rect link thereafter, and the Object Manager Object Adaptor (OOA),
which provides a direct link from the OODBMS database to the
client. These new object adapters would allow an application to work
with small objects without incurring the overhead of RPCs and to ac-
cess objects in multiple databases using a standard interface. This is
only the first step, but | think it is critical in terms of the future viabil-
ity of OODBMSes.

Data Management, Julie Anderson, OPEN SYSTEMS TODAY, 3/16/92

A five-year, $100 million program designed to increase US competi-
tiveness in the semiconductor industry is entering the homestretch.
Joint efforts among chip maker Texas Instruments, Inc. and two US

defense agencies are expected to spawn revved-up chip plants based

on single-wafer processes, distributed computing and object orienta-
tion by late next year. The team effort to hasten production
turnaround time and gain real-time control of factory information in
order to lower costs is expected to first be adopted by silicon makers
and then spill over to other US businesses that are struggling to com-
pete globally... The project seeks to accelerate chip-making cycle
times using single-wafer processes—as opposed to traditional batch
equipment—to quickly product low volumes of specialized chips... .

Factory autornation plan nears completion, Joanie M. Wexler,
COMPUTERWORLD, 4/6/92

... The interactive engine allows programmers to execute software
one small section at a time, said [CenterLine’s president and CEO Se-
sha] Pratap. “It’s vital for effective object-oriented programming, be-
cause you want to be able to write several objects and execute them,
and build your program by constructing objects and linking them to-
gether one at a time,” he said. “This is, in fact, how most advanced
programming environments are designed. it’s one of the reasons why
LISP was able to yield such huge productivity gains”... .

Coping with the OOP challenge, OPEN SYSTEMS TODAY, 3/16/92

... The [Distributed Management Environment] breaks new ground
in software development because it utilizes advanced object-oriented
software technology. OSF argues strongly that this powerful new ap-
proach to structuring software will solve the complex distributed
systems management problems that users say are their primary chal-
lenge today... .

Bringing the DME into sharper focus, James Herman,
NETWORK WORLD, 3/30/92

e
L~

Yy Calendar
-

THE SMALLTALK CALENDAR presents conferences and meetings that focus exclusively on object-oriented
technology. To have a meeting or conference listed, please send the dates, conference name and loca-
tion, sponsor(s) and contact name and telephone number to SIGS Publications, 588 Broadway,Ste. 604,
New York, NY 10012 ph-212/274.0640, fax—-212/274.0646.

w"'
A
v

Contact: 614.588.8649 | Contact: 617.621.0060

June 8-12 June 15-19 June 16-18
USENIX Xhibition 92 SD '92
San Antonio, TX San Jose, CA London, UK

Conract: 081.742.2828

July 14-17 July 21-23
Object Expo Europe | Object World
London, UK San Francisco, CA

Contact: 212.274.0640 | Contact: 508.879.6700

THE SMALLTALK REPORT

3 books to help
you stay ahead
of the competition.

JOOP Focus
ON ASD

JOOP Focus
ONn ODBMS

Part of the continuing "Focus On..." series
from JOOP, these two idea-packed publica-
tions are each a compilation of the most stim-
ulating articles which have appeared in
JOOP, Object Magazine and the Hotline on
Object-Oriented Technology on these topics.
A "must read" for anyone using this technolo-
gy, the JOOP "Focus On..." series is the most
complete source available on current ODBMS
and A&D methods and techniques.

THE 1992 INTERNATIONAL
OOP DIRECTORY

The only comprehensive Directory available for complete
listings of O-O companies, products, services, bibliographies,
and market and technical research. With over 640 information-
packed pages, the 1992 edition is 50% larger than the previ-
ous 1990 edition. Cross-referenced product and vendor guides
by languages and category makes this guide easily accessible

and easy-to-use.
WSIGS

PUBLICATIONS

------------------ JOOP Focus On ODBMS/JOOP Focus On A&D/1992 International OOP Directory --------——----.
1 JOOP Focus On ODBMS @ $39.00 each

Name:
{1 JOOP Focus On AED @ $29.00 each
[1992 International OOP Directory @ $69.00 each Company:
» Add $4 each for U.S. shipping/handling Address:
« Add $12 each foreign airmail/handling
ToTaL: § City:
PAYMENT METHOD: State:
[check enclosed (payable to SIGS Publications). Foreign orders must be
prepaid in US dollars and drawn on a US bank. Country:
QcChargemy QOVisa OIMC Zip:
Card #
Phone:
Exp. Date: RETURN TO: SIGS Publications, 588 Broadway, Suite 604, New

Signature:

York, NY 10012 phone (212) 274-0640 or FAX (212) 274-0646

26.

...continued from page 20

CompuServe, which should help relieve the shortage of
Smalltalk/V code. Hopefully these files will also become avail-
able on the other archives. The announcement was made by
Robert Hinterding (rmh@matilda.vut.edu.au), who wrote:

We are in the process of setting up a Smalltalk archive
here. We will mirror the archives in the USA and UK.
We are interested in Smalltalk/V classes, and will make
available the classes we have from CompuServe. Any
submissions will be greatly appreciated. Anonymous ftp
to matilda.vut.edu.au is already enabled. The mirroring
of the USA and UK sites is not complete yet....

HOTDRAW FOR RELEASE 4.0

Finally, an announcement of a new piece of free software.
Ralph Johnson and Pat McClaughry have recently written a
version of HotDraw for Objectworks/Smalltalk 4.0. HotDraw
is a framework for structured graphics editors, invented by
Kent Beck and Ward Cunningham when they were at Tek-
tronix. I'm embarrassed to admit that HotDraw is another of
the many packages I've known about from some time, but
have never quite gotten around to looking into. Since I'm not
qualified to comment on it, [reprint from the announcement:

You want to use HotDraw if you are interested in build-
ing a program under 4.0 that manipulated a drawing like

PRODUCT
ANNOUNCEMENTS

B THE BEST OF COMP.LANG.SMALLTALK

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL /DS, DB2, RDB, RDBCDD,
dBASEII, Lotus, and Excel.

ﬂtelligent Systems, Inc.

{ 504 N. State Street, Ann Arbor, Ml 48104 (313) 9964238 (313) 996-4241 fax

a flow chart, a circuit diagram, etc. HotDraw works well
with animation and as part of a larger application. It is
also a very good example of 4.0 graphics.

HotDraw, including PostScript documentation, is available
from the archives at st.cs.uiuc.edu. The code is almost without
restrictions, as it can be used “for any purpose, without royal-
ties or fees of any kind, as long as credit is given to us.” l

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada, K18
5B6. He cumrently works on problems related to finite element analysis
in ParcPlace Smalltalk, and has worked in most Smalltalk dialects at
one time or another. He can be reached at 613/788.2600 or via email
as knight@mrco.carleton.ca.

Product Announcements are not reviews_ They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors|
interested in being included in this feature should send press releases to our editorial offices, Product Announcements Dept., 91 Second Ave.,
Ottawa, Ontario KIS 2H4, Canada.

Smalltalk Nexpert Object Bridge for MS Windows

Arbor Intelligent Systems now offers a Microsoft Windows verslon of
its bridge from Objectworks Smallalk to Nexpert Object, an expert sys-
tem shell from Neuron Data. The Smalitalk Nexpert Object Bridge
enables developers to ke a knowledge base created with Nexpert and
embed it along with Nexpert's Inference engine in a Smallcalk applicadon.
All objects created in Nexpert thus become available as Smalltalk objects.
Expert systems created with this bridge are instantly portable across Mac-
intosh, MS-Windows, and The X Window System without 2 single change
to the code. Existing versions have been shipping for the Macintosh and
Sun SPARCstation using Objectworks Smallaalk from ParcPlace Systems.
Future versions will support Digitalk's Smalltall/V.

For mere information, contact Arbor Intelligent Systems, 506 N. State St, Ann
Arbor, MI 48104; (313)996-4238, fax (313)996-4241.

WindowBuilder for Smalltali/V PM

Cooper & Peters Inc. released the OS/2 Presentation Manager version of
WindowBullder, their popular Smalllk/V user Interface construction kit

Smallaalk/V PM provides the ideal object-oriented language for corpo-
rate development, bur lacks tools for rapidly designing graphical user
interfaces. WindowBuilder fills this gap with a powerful point-and-click
interface editor.

Using WindowBullder, an interface is built by moving, sizing, and editing
Interface components directly on the screen. To promote rapid prototyp-
ing, WindowBuilder allows developers to instantly test examples of their
interfaces as they are created and revise them any time in the design pro-
cess. Other WindowBulilder highlights include a full-featured menu edicor, a
tab order editor, sophisticated component alignment and distributlon tools,
resource file importing/exporting, and a sizing specificatlon editor.

WindowBuilder generates standard Smalleall/V PM code and supports
all built-in Presentaton Manager graphical components. Also, Window-
Builder/V PM can import interfaces produced using WindowBuilder for
Microsoft Windows, so developers who work with both placforms will be
able to move back and forth easily.

For more information, contact Cooper & Peters Inc., Stanford Financlal
Square, 2600 El Camino Real, Suite 609, Palo Alto, CA 94306; (415)855-9036,
fax (415)855-9856.

THE SMALLTALK REPORT

Plus: -

eTeaching Smalltalkto eHard-hitting product reviews
COBOL Programmers sBook and conference reviews
sinterfacing Smalltalk to a eLab reviews
SQL Database eBest of Smalltalk Bulletin Board
*Realizing Reusability ePersonality Profile PUBLICATIONS

If you’re programming in Smalltalk, you should be reading THe SmatitaLk Report. Become a Charter Subscriber!

Q Yes, enter my Charter Subscription at the terms indicated. =~ Name

Q 1 year (9 issues) Q 2 years (18 issues) Title
Domestic $65 $120 C
Foreign $90 $170 ompany

Method of Payment Afidress .

Q Check enclosed (payable to Tre SmaLiTALk REPORT) City State Zip
foreign orders must be prepaid in US dollars drawn on a US bank Country Phone

Q Bill me Mail to: THe SmaLLTALK ReEPORT

Q Charge my Q Visa Q MasterCard Subscriber Services, Dept. SML

Card # Exp. Date PO Box 3000, Denville, N) 07834

Signature or Fax: 212-274-0646 D2GG

|JHWEEK
LABS

SHOOT-OUT

WINDOWS AND 05/2:
PROTOTYPE T0 DELIVERY
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V], you don't.

Start with the prototype. There’s no development system you can buy
that lets you get 2 working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It's
made for trial. And error. You make changes, and test themn, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.

And the resulting application carries no runtime charges. All for just
$499.95.
So take a look at
Smalltalk/V today. It's time to make
that prototyping time productive.

Smalltall/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their respective holders.

Digitalk, Inc., 9841 Airport Bivd_, Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOKWHO'S TALKING

HEWLETT-PACKARD NCR
HP bas developed a network trouble- NCR bas an integrated test program develop-
shooting tool called the Network Advisor. ment envir ¢ for digital, analog and
The Network Advisor offers a compreben- mixed mode printed circuit board testing.
sive set of tools including an expert system,
statistics, and protocol decodes to speed MIDLAND BANK
problem isolation. The NA user interface is Midland Bank built a Windowed Technical
built on a windowing system which allows Trading Environment for currency, futures
multiple applications to be executed and stock traders using Smalltalk V.
simultaneously.

KEY FEATURES

B World's leading, award-winning object-
oriented programming system

Il Complete prototype-to-delivery system

B Zero-cost runtime

M Simplified application delivery for
creating standalone executable (.EXE)
applications

Il Code portability between Smalltalk/V
Windows and Smalltalk/V PM

Il Wrappers for all Windows and OS/2
controls

M Support for new CUA *91 controls for
05/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

@ Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive samples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

I Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

This Smalltalk/V Windows application
captured the PC Week Shootout award—and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications —and they're portable to
Smalltalk/V Windows.

	By Article Title
	Drag/Drop in Smalltalk/V PM
	Encapsulation and information hiding
	GNU Smalltalk
	SmallDraw -- Release 4 graphics and MVC, Part 2
	The dreaded super
	VOSS -- Virtual Object Storage System

	By Author Name
	Beaton, Wayne
	Beck, Kent
	Benson, Dan
	Byrne, Steve
	Hendley, Greg
	Knight, Alan
	Smith, Eric

	By Topic
	comp.lang.smalltalk
	GUIs
	Product Review
	Smalltalk Idioms

