
The International Newsletter for Smalltalk Programmers

MSLY1992 Volume I Number 7

lMPLEMENTATlON

M

S

Fe

I

7

Co

13

16

19

23

De

2S

26

rn;ll lralk/V PM (htreaiter rcferreJ t[~as VPM) is an excellent c>S/2 applica-

ri(m devel~)pmel~r en~,irtmmcnt th;lt proviJcs ln~~srof the needed facilities

(especially in release 1.3). When ct]nlhineJ with a third-party winLic~wedit-

an

o

g

e

h

\’

n

a
r

>

e

L

OF 0s/2
ULTI-THREADING

SUPPORTIN

MALLTALK/VPM

Contents:

aturedArticles

c

h

in

th

w

I.

(>

(A

~
re

(I

k

lJ
Implementation of 0S/2 Multi-* reading

Support in Smalltalk/V PM

by Dwg 6orbour

SmallDmw-Release 4 G~hics and

MVC, Part I

by Dan Oenson

lumns

ting Reek Class Instance variables for

Smalltalw

byjuonito Ewing

me km of Comp.bng.Smolklk More

frequently asked questions

by Afon Knigfrt

GUIS:Sepamting the GUI from the

application

by Greg Hendley ond Eric Smiti

Smo//tolkIdioms:Why study Smallmlk

idioms?

by Kent Beek

partment

ProductAnrrouneements

W/rot They’re SayingAbout Smol/to/k

ret

[Jth

lT;

pr[

int

+o

T()

thr

r(~

Jire

to

\,lL

eas

Lll

\’f’

VP

cl: I

InC

ccs
ing pr(ld UCt, sllch as Win L]nwBui]dcr from (J(l(>}ler anLl I>etersl applicati[>ns

he created c;lsily with[)llr the c) S/2 Tuulki[. In a ml]ltitasking system such as C3S/2,

wever, com~llex applications frequently need tc) execute multiple tasks concurrently LIS-

system taci]ities. This article cxplures rhe implementation c>fVPM :~nd L~lSCLlS5eSh~~w

n(Jn-Smalltalk p:~rts t~fan applicatit~n c;tn communicate with the Sm;~lltnlk parts, even

en the nt~n-Sn]alltalk parts are running in their own threads.

: l: I{l,\L’l:\(; ‘J.”1’31 ‘!() ()”1’ljl:l< 1’1{(~1~((’ I ~

e c(mlmtln requirement is an interface between i+pplicati[m prclgramming interfaces

P1,s) pr,,\ideLl hy rhird p;~rtics ;]nd the VPM enviromenr. Typically, these APIs arc

ckil~~~l :ISone or m(~rc L]yll;]mic link]ih~{ries. The most ohvic)lls w’ay tc) pn)~,ide rhe in-

fiace is to f{)ll(lv’ the VPLM L1e~el[>~lCr’5~LliL~eilnL] create i] suhc]ass (If DynamicbnkLibrary

LL). While this works for lJLL calls that return cc]ntrt)l nqlid]y, it f:~ilswhen c(~ntr(~l is

~lr for ally len~th (lf time. The effect of this fiailurc is t(>“hang” rhe worksti~ric~n Llntil the

L call rcrurlls. T, I see rhis f(]r yt)[lrsclf, cvahlate the f[)lluwing wi rh “Dc) it”:

DosLibrarysleep: 10000

This will caLIse your enrirt w(]rkstation r,) h~lng t(]r [he 10 seconds it t:ikes D1~sSlecITto

L[m c~)ntr(~l. Clcarly, if yLILIcan’t gtlarantee the I>LL call will return c~mtrol quickly, an-

er illll>]clllcllt;]ti(~ll nlLlst be fl)Lmd. This CaLISeS par-ricLll;lr proh]enls for cc>mrnunicatil>ns

ICk;IgCS,since rhc time i[takes to rct~lrn c(mm~l depends (m the network ilnd the p:~rtner

~gram! in f,lcr, a]] of the research for this article was L]LlnCwhile LICV~loping an APP~

erface t(~r VI’M.

l. i’l:i(i ‘1I [! I\”] t:l+l,’\l’ll K(r l’1{~)1{1!.\l

iin LJS/2 C pr[]gmmnlcr, the solllti(~n to this pr(>hlern WOIIIJ he simple: Create i~nuther

ead (Ifexccuri(>n, and Ier it wair for the resp(mse from the I)LL call. In the VPM envi-

nll]enr, h(~wever, life is a little nlt~rc cnmplic;lted since it dt~es nt~t sllpp(~rt 0S/2 threads

ctly. An additional C3S/2 thread is rhe best way r(>solve this pr{]hlern. The only thing

be u(~rked ~~~ltis the means of communicating hetwccn VPM and the thread. c>S/2 pn~-

le~many w;lys r[] accomplish multi -threaJ communicati~]n, Ilsing PM messages is the

iest :IIICImost r~)hust way hec:I(Isc PM messages are already used extensively in VPM. T(>

lL]Cr5t;lllLlhl~w t{] d{) this, some hackgr(lund infl~rm:~ri(m is needeJ.

31 l\l I’1. i,\ll:.\ I J 1 1(1’\

M pr~~vides s~lpp[)rt for m(lltitasking via the Pr~)cess, Pn~cessScheJLllcr, aLIL{ Semaph(,rc

sst’s. As l[~IIg i]s all [It the sllh-tasks :)f [he ;]pplic;ation are strictl), Smalltillk c[~de, this

th(lLl works quite ~’ell. M(ls(VPM application Jevtl(]pers Jl~n’t care if this multipn).

sing is sinllJareJ and does not ilct~lally LISeOS/2’s rhread capahiliry. This fact hcct>mes
Cllll!llllt,,d,)11/M[,[.,~

John Pugh Paul Whi&
I
n the olden days, one of Smalkalk’s most notorious drawbacks was its inflexibility with respect to in-

terfacing with software developed in other languages. Application Program Interfaces (APIs) offer a

solution to this problem, allowing developers to interface easily with existing DLLs, regardless of the

language in which they were developed. However, as Doug Barbour points out in our lead article this

month, it is still not a perfecr solution. If Small talk is using a single thread processor, it in effmt

locks up while waiting for a return from an API caI1. Doug describes a technique for using existing

PM messages to let SmalkaIk/’V PM communicate with 0S/2 threads, thus providing Smalltalk pro-

grammers with more control over their applications’ behavior.

This month marks the debut of a series of articles on ObjectWorks \Smalltalk by Dan Benson

from the University rrfWashington. In Release 4, ParcPlace made many fundamental changes to

the architecture of the graphics and user interface classes. As David Liebs and Kenny Rubin, de-

scribed in last month’s issue, the changes were necessary and overdue. Unfortunately, the in-deprh

explanatirms and good examples needed for programmers to comprehend the changes were sadly

lacking. Over the coming months, Dan will develop a simple graphics application he calls Small-

Draw. His first article introduces graphics concepts and application construction with the MVC ar-

chitecture through the definition of a “minimal” SmallDraw. This simplified version demonstrates

interactive creation of geometric shapes and display of graphics. Future articles will exrend the

functionality of SmallDraw by adding selection, translation, scaling, alignment (using a

DialogView), and grouping of objecrs; vertical and horizontal scrolling of the view; a crst/copy/paste

clipboard; and support for command keys.

It is our pleasure to welcome another well-known Smalltallr guru, Kent Beck, to the ranks of

SMALLTALKREPOFITcolumnists. Kent has been involved in many successful Smalltalk projects and

is the co-inventor, with Ward Cunningham, of the popular Class-Responsibility-Collaborator

(CRC) methodology for kick-starting rhe design of object-oriented systems. Kent’s column will

identify Smalkalk idioms: the “coding patterns” or “mechanisms” used frequently by experienced

%tallta[k programmers in well-defined situations, bur seldom written down or explained anywhere.

If you have ever looked at existing Smalltalk cnde and wondered, Why is it done this way? Kent

may have the answer.

Experienced Smalltalk programmers are well aware of the virtues of separating the model from

the user interface when developing GUI applications. In this month’s GUI column Greg Hendley

and Eric Smirh propose using a three- layer approach (interface-Chtrol-Model, or ICM) that fur-

ther separates the UI component inro an interface layer and a control layer, Simplistically, you can

rhink of the interface layer as the code that would normally be generated by a window builder, and

the control layer as the code rhat would respond to user interface interactions. Why separate inrer-

face from control! As Greg and Eric point out, one compelling reason is the speed with which sys.

terns can be ported across different hosts. The interface component largely isolates the code specific

to the host GUI from the portable control component. As a result, only the interface component

need be ported. They illustrate the approach by building a simple log-on dialog.

In her last column, Juanita Ewing described the differences between class variabIes and class in-

stance variables, and lamented the fact that SmalltaIk/V does not provide class instance variables.

This month, she provides an implementation of such a facility for /’V. Finally, Alan Knighr provides

us with his monthly round-up of the Smalltalk bulletin boards.

—The Editors
l%. %nallmlkReprt (ISSN* IC!56-7976)ISpuhli.dwwl9 rirnma year,ev=rymonth exceptfor rhe Mw/Apr, July/Aug,andNLWDX combined tiues.

P.hlishedhySIGS P.hlicatinm Group, 58SBroadw+, New Ymk, NY ICOIZ [z1z)z74J6-49. O f2pyrighr 1992 hySIGS Puhhcatimns,Inc. All righrs
rc..emd Reprdxrmn O(thismaterialhyelemmmcrrmwni~iun, xermI ,w my other merh,d will h mewedasa willld vi,,lmio. drhe US Cq}~ight

Law and b Sadypmhihiud. Mmcrial mayhe rqmd.d with exyeu p-rmiuiun [mm chcpuhhshem.Mailed FusrClass S.kcriprion mms1 year,(Y
bud LImnesw,S65, FmrFiw md Cammh,$W. Singlu copypmce,WW. ITET.MASTSR: Smd addrw chrnn,gmand wlwriptmn ordemto: THE
S!.WUT.~U RENIRT,S.hcriher .%miccs i%pr, SML, I’.O. RA. S032, Oewillt, NJ 07S14. Suhrm arrick m rhc E&ms at 91 Sc-wid Avmmm,
Ottawa, Ontario KIs 2H4. Cmwda.

THE SMALLTALKREPORT

AM/STTM The originul and still premier

application manager for
SmalltalklVTM

AM /ST, developed by the SoftPert ChangeBrowser. As an additional

Systems Division of Coopers& tool available for SmaUtalk/V PM

Lybrand, embles the developer to and Smalltalk/V Windows, Chrmge-

martage large, complex, object-orient- Browser supports browsing of the

ed applications. The AM/ST Appli- Smalltalk/V change log file or arty

cation Browser provides multiple file in SmalMk/V chunk format.

views of a developer% application.

AM/ST defines Smalkalk/V applica-
The addition of AM/ST to the

tions as logical groupings of classes and
ImageSoft Family of software develop-

methods which can be managed in source ~
ment tools enhances and solidifies

files independent of the Smalhrdk/V

I

;J-”+ ImageSoft’s position as —

image. An application can be locked and y
:f$:g;$:;:

l!!!!!

“The World’s Leading Publisher ~,. . .

modified by one developer, enabling other *j&:; of Object-Oriented Software

developers to browse the source code. The
L%- Develo~ment Tools,” b%%%if.

source code control system manages multi- %.,.
ple revisions easily. $!‘.

Coo ers
&Ly~rand

1-800/245-8840
ImageSoftTheWnlm* swllislwIlroewlapenl Tovls

AllhadunaduiIEthepmperryofGwiurqw.miveownaslmagcSnfI,hc,2HavenAvenue,PmtWashingEon,NY 11050 516/767-223%Fax516/767-9067;UUCPaddress:mcdhup!image!info
mmtinuedj?mn~e I...

critical, however, when interfacing VF’M to other products

that will be called from a lower-level language such as C.

The first thing to understand is how VPM uses 0S/2

threads. In VPM 1.3, two 0S/2 threads execute when the en-

vironment is running a Presentation Manager (PM) message

processing thread and a Smalltalk code executor thread. This

design is based on a PM requirement that an application re-

turn control to it quickly after processing a message. Since a

PM message might (and usually does) cause Smalltalk code to

be executed, this PM requirement could not be guaranteed us-

ing a single 0S/2 thread.

In the two-thread implementation, a PM message is pro-

cessed by adding it to a global OrderedCo[letion named cur-

rentEvents by the PM message processing thread. This thread

immediately returns control to PM, allowing ocher applica-

tions to process their PM messages. Some (typically very

short) time later, the Smalltalk code executor thread checks

the CurrentEvents collection to see if there are any messages.

If any are pending, they are routed to their respective win-

dow objects. Class NoticalionManager performs this service

for the code executor thread. See its instance method #rum

for more details.

Since PM messages are identified by a unique message

number, VPM must have a way to translate between message
VOL. 1, No. 7: MAY 1992
numbers and method names. This translation is done by us-

ing two global objects, PMEvents and PMEventsExtra. PMEvents is

an array of symbols, indexed by PM message number. That

is, (PMEvents at: 7) contains the value #wmSize:with:. Seven is

the message number assigned to the WM_SIZEmessage by PM.

The PMEvents array is not large enough to map every possible
SMALLTALKfV PM PM NON-SAUL:
ENVIRONMENT

1

APPLICATION CLASS
WNPCGTMESSAGEQUEUE

WINGETMSG

m .
.
.

WNPC.STMSG

Nonmu
wlNbJw

F~re 1. VPfl communics~ion with PM through additional 0S/2 thread.
3.

■ 0S/2 MULTI-THREADING SUPPORT
PM message. Due to memory considerations, only about the

first 478 are mapped here. Any message numbers received

that are greater than the size of PMEvents are looked up in the

global Dictionary PMEventsExtra. The PM message number

(558, for example) is the key for this dictionary, and the

method names ymbol is its value (#hmerrorwtith:). Once

the PM message has been mapped to a method name via

either PMEvents or PMEventsExtra, the PM message processing

thread sends a Smalltalk message to the appropriate window

object using the two arguments provided by PM. For more

details look at any of the #win... instance methods in the

Window class.
EXTENSION OF THE VPM PM INTERFACE MODEL

The existing VPM message interface with PM is extended LO

support communications with the additional thread. This

communication is carried out by having the thread create a

PM message queue and passing its handle to the VF’M envi-

ronment. This handle is then used with the WinPostQueueMsg

PM call to post messages to the thread. One of the message

parameters should be the handle of the notifier window rhat

is to receive notification when the request is complete. The

thread performs whatever is requested, and posts a PM mes-

sage to the notifier window. See Figure 1 for a diagram of

this interaction.

The first issue to be addressed is the selection of message

numbers for communications with the thread. A consecutive

block of message numbers should be chosen for each applica-

tion, avoiding conflicts. Message numbers musr be unique

within one VPM image. User-defined message numbers must

be greater than 4,096 to avoid conflicts with PM messages.

For the APPC interface, message numbers range from 29,500

to 29,505. Each message number must have an entry in

PMEventsExtra that specifies the method name associated with

it. For example, message number 29,501 is associated with [he

#vpmAppcVerbDone:with: method. The message definitions used

in the APPC interface are:

PMEventsEntra
Listing 1. Creating 0S/2 threads.

#deFmeFUNCTVPEpascal h .loadds

#define VPMAPPC_THREAD_QLJHJE29503
#define VPMAPPC_STOP_THREAD29504

/’ Funtion protoypes ‘/
SHORT FUNCTTPECreateThread(BT’lZ●stack, USHORTstackSize,

HWNDhwnd);
VOID FUNCtYPEThreado;

/“ Globalvariables “/
PBY1’E.stlrbot;
SHORTrc;
TIDthreadID=O;
HWNDnotifyHwnd;
HAShab;
HMOhmq;

/’ Individual Funfions ‘/

SHORTFUNCIYPECreateThread(BYTE*shclc USHORTsbclrsize,
HWNDhwnd)

[
notifyHwnd= hwnd;
stkbot = &stack[staclr.%ze- I];

rc = DosCreateThread((PFNTHREAD)Thread,&threadID,(VOID
FAR‘)stkbot);

return(rc);

1

VOIDFUKTYPEThreado

[
QMSGqmsg;

hab = MrrInitialise(NULL); /’ Initialize PM ‘/

hmq = WinCreateMsgC!ueue(hab, O); /“ Createapplication
msg queue’/

Wi.nPostMsg(not@Hwnd, VPMAPPC_THREAI_OUEUE,
MPFROMLONG(hmq),OL);

WirrGetMsg(hab, &qmsg,(HWND)NULL,O,0);

while(qrosg.msg!=VPMAPPC_~OP_THREAD)

(

...code to process each message...

WinGetMsg(hab, &qrnsg,(HWND)NULL,0,0);

)

Wtie*oyMsgOueue(hmq);
WinTetiate(hab);
1

Listing 2. The AppcDLLclass.

DynamicNbrary variableByteSubclass:#AppcDLL
classVariableNames:“
poo!Ditionaries: “ !

!AppcDLLmethods!

createThread:stacMddress stacksize: .stackSizeno@Hwnd
no~Hwrrd

<ap~ ‘CREATEI’HREAD’ulong ushort handle ushorb
“self invalidArgument!
THE SMALLTALXREPORT

—

VOL. f, NO. 7: WY 199
Listing 3. Creating a subclass of arsxlliary window to handle PM messages.
InviaibleNrMerWindowsubclaw
#Appdht&rWiidow
inatanceVaiableNames:

‘vcbAddresstfueadQueue’
classVariableNamee:”
poolDiclionariex” !

!InviaibleNotierWrrdow methods!

threadQueueEvent
“—_-___ —_ —_ —_—_—

Descri@om
Amessage has been received. Cause

the associated event to occur.

Role:
Private

Parameters
none

Returm
adf

.

‘self eventi #threadClueue!

verbDone
“_———————————————

Descri@on:
Amessage has been received. Cause

the associated event to occur.

Role:
2

Private
Parameters:

none
Returns:

self
“

‘self eventi #verbDone!

vpmAppcThreadClueue:mpl witlv mp2
~—————_—————_——_——

Description:
A PMmessage has been received.

Rememberthe parsmeter values, add the
messageto CunentEvents, snd return to PM
as soon as possible.

Role
Private

Parameters:
mpl - PMLOng

6mt parameter horn sender
mp2 - PMLong

second psrameter from sender
Requires:

Insbnce Variables:
t3readChreue

Retoms:
self

.

threadChseue:=mpl deepcopy,
ProcessorterminateA
“self sendInputEvenk
#threadQueueEvent!

vpmAppcVerbDone:mpl witlv mp2
*——_ —_ ——___——_———_—

Descri~on:
A PMmessage has been received.

Rememberthe parameter values, add the
message to CurrentEvents,and return to PM
as soon as possible.

Role:
Private

Pemneters:
mpl - PMLong

first parameter from sender
mp2 - PMlrsng

second pemrneter horn sender
Requires:

Instance Variables:
vcbAddress

Returns:
self

“

vcbAddress:= mpl deepCopy,
“self sendInputEvenb
#verbDone!!
Usting 4. An example of application class.
tive.!
AsyncNtier subclass: #AppcConversation
inatanceVariableNamex

‘aPPcLibrarynotierwrrdow threadStsck threadQueue sem’
Classvariabkthrnw. “
poolf)itionsries:

‘AppcRetumCodesAppcConstanhChsracterconstants’ !

!AppcConversationmethods !

initilia.e

appcl.iirary:= AppcDLLopen.
ntierwindow:= (AppcNotierWrrdow new open;

whecu#threadQueue perkmn: #threadLlmuw;
where #verbDoneperform: #verbDone:;
yourself).

sem:= Semaphorenew.
threa~ck:= PMAddresscopyToNonSmallNlrMemoy

(BytsArraynew 4096).

“Createthe extermd thread”
appcLibraryaeatel’bread threadStacfcasparameter sbclrsise
4096

no@Hwnd: notifserWindowhandle asPerameter.

“Forka process to receive messages horn the thread”
[CurrentProcessmakeUserIF.No~er run] lbrk.

Wsit for the #vpmAppcThreadQueue:with:message”
sem wait.

%e-etilish the main process as the receiver of PMmessages”
CunentProceasmakeUserIF.!

threadOueue: anAppcNotierWmdow

%member the thread’s queue handle”
threadQueue:= anAppcNoiitierWmdowthreadflmue.

“Signalthe main process that the message has been received”
sem aigmL

~enninate the message receiver process”
5,

6.

E

ak 29501puti #vprnAppcVerbDone:witlr;

ah 29503puti #vprnAppcThreadOueue:wittu.

To create an additional thread from the VPM environ-

ment, a DLL must be created to issue the DosCreateThread 0S/2

call and to contain the code to be executed by the thread. In

Listing 1, the CreateThread fimction performs this action. Pa-

rameters to CreateThread are the stack area to be used by the

new thread, the size of the stack area, and the window handle

to be notified when the thread is created and ready for work.

The stack is passed to the thread from the VPM environment

to ensure that it is properly heed after thread termination.

The code in the Thread function initializes PM and creates a

message queue. It then posts the VPM_APPC_THREAD_QUEUEmes-

sage to the AppeNotietWiidow instance, passing the queue han-

dle as a message parameter. The Thread function then loops

until a VpM_ApPC_STOP_THREADis received, processing mes-

sages. After each message is processed, a VPM_APPC_VERB_DON

message is posted to the AppcNoMierW5mdowinstance. After the

VPM_APPC_STOP_THIWMlme~age is received, the ‘Iluead func-

tion stops looping and posts the VPM_APPC_THREAD_HUF’PED

message, which allows us to be absolutely sure the thread has

stopped before freeing the stack area.

A subclass of DynamicIinkLibrary must be created to allow

the CreateThread function to be called. The AppcIILLclass is

shown in Listing 2.

To communicate with the thread using PM messages, there

must be a PM window to receive them. Since this window will

not perform any other functions, it should not be visible. This

may be accomplished by making it a subclass of DDEAuxWindow.

To t%cilitate reuse, an abstract superclass named InvisibleNoti-

fierWindowhas been created as a subclass of DDEAuxWindow.No-

tifier windows for various functions are subclasses of this class.

InvisibleNotierWiidow implements the same #whenperfonm in-

terface as SubPane, allowing notifier windows to send messages

to their owners when important events occur. Listing 3 shows

some the of the methods defined for the AppcNoiit5erWindow.As

you can see, there is a method corresponding to each PM mes-

sage number defined in PMEventsExha. Companion methods

are also defined for each. The #vprnAppc... methods are exe-

cuted on behalf of the PM message processing thread. They

COPYthe message parameters to inswnce variables if necessary

and add the message event to hu-rentEvents via the #sentinput-

Evwt method. The return from a #vpznAppc... method causes

VPM to return control to PM, allowing other applications to

perform window operations.

A REAL EXAMPLE

Let’s trace through a complete interaction sequence between

VPM and the thread. The interaction of interest is the thread

notifying VPM that is has created its message queue and pass-

ing the queue handle as a message parameter. This is imple-

mented in the initialize instance method of the AppcConversa-

tion class and is shown in Listing 4. Here are the steps:
● The instance of AppcDLLis created.

. The instance of AppeNotierWindow is created and the

#threadtlueue: event is registered,

s A VPM Semaphore instance is created to allow waiting

until the thread has been created,

● The thread’s stack area is allocated as an instance of

PMAddress.

● The thread iss tarted by sending the #createThreadstack-

Size:noMyHwnd message to the AppcDLLinstance.

● A VPM process is forked to wait for the thread to respond

with the VPM_APPC_THREAD_CIUEUEmessage.

● The main VPM process waits for the semaphore to be sig-

naled, thus causing the application to wait without dis-

turbing PM operations.

. When the thread posts the VPM_APFT_THFUMl_NJEUEmes-

sage, it is processed by the forked process, which causes the

AppcNofierWindow instance to be sent a #vpmAppcThread-

Ilueue:witlt message.

s The #vpnulppeThreadQueuewith: me thod makes a copy of

the thread queue passed by the thread, adds a #thread-

QueueEvent to CurrentEvents, and returns. At this point,

VPM returns control to PM to allow other applications to

perform windowing operations.

● The forked process removes the #threadOueueEvent

from CurrentEvents and sends it to the AppeNotierlWndow

instance.

● The #threadQueueEvent sends itself the #event: message with

#threadQueue as the argument.

● The AppeNoMierWindowinstance sends the registered

method for the #LhreadQueue event (#t.hreadOueue:) to the

owner (the AppcConversation instance) with itself as the

argument.

● The #threadQueue method assigns the thread queue to an

instance variable and signals the semaphore. This allows

the waiting main process to continue.

● The forked process is terminated by the #threadQueueEvent

method.

SUMMARY

Using the concepts explored in this article, interfaces maybe

written from VPM to any long-running application without

adversely affecting other applications mnning in the system. ❑

Doug Barbour is an Information Systems Enginem at Duke Power

Company. He is also a partner at Barbour Ente@es, speciditing in

custom interfacesm SmaUdk/V PM as welJ as generalpurpose

cksses. Doug may be reached at BarbOur Enterprises, J058 D. Kelly

Circle, Clover SC 29710, or byphom at 803.222.1363.
Tt-rESMALLTALKREPORT

SMALLDRAW—

RELEASE 4

GRAPHICS AND

MVC

By Dan Benson
•l
raphics often play a big role in Smalltalk applica-

tions, but it is also one of the more difficult areas

to grasp. This is particularly true of the current

version of Objecmvorks for Smalltalk-80 Release

4. Even experienced users familiar with version 2.5 can be just

as confused as newcomers to Smalltalk because cf the major

changes in the way graphics is handled.

One reason for this confusion is the lack of adequate in-

depth explanations in the users’ manuals that come with

Objectworks. You will be pleased to know that this will soon

be remedied by new chapters scheduled for the next release

from ParcPlace. Another source of confusion is that there

are few examples from which to learn. This series will de-

scribe a simple graphics application that might be instructive

for those trying to get a better grip on Release 4 graphics and

the MVC architecture.

What better way to experiment with rendering graphics

than to build a structured graphics editor? Commercial draw-

ing programs are now commonplace, and many are quite so-

phisticated. We’ll borrow some ideas from these applications,

but will keep things simple. Since we’re using Smalltalk, let’s

call our application SmallDraw.

We’ll start off with a “minimal” version of SmallDraw.

We’ll limit its capabilities to adding new graphic objects to

the drawing and displaying them in a window. Additional fea-

tures and functionality will be developed in future articles.

The focus is primarily on rendering graphics on screen, so

SmallDraw won’t include such functions as saving drawings to

files or printing to a printer.

GRAPHIC OBJECTS

SmallDraw is a structured graphics editor as opposed to a

bitmap editor. In other words, each figure drawn in the win-
VOL. 1, NO. 7: MAY 1992
dow is treated as a separate object. Bitmap editors, on the

other hand, work at the pixel level. We can think of the

main entity of the application as a “drawing” that contains

several graphic shapes. For simplicity, we’ll limit the set of

two-dimensional objects to: LineSegment, Rectangle, Poly -

Iine, Polygon, and Ellipse.

Each graphic object will have attributes that describe its

shape. For instance, a LineSegment can be described by a start

point and an end point, and a Polyline can be described by an

ordered set of points. All objects will have an inside color (or

none, in which case it will appear to be “hollow”), a border

color, and a line width. A graphic object’s behavior should in-

clude methods for accessing and modifying its attributes and

for displaying itself at a given scale.

The following class hierarchy defines the graphic objects

used in SmallDraw. I’ve prefixed each class name with SD to

distinguish it as a SmallDraw object and to avoid any naming

conflicts when filed in to an image:

Object()
SDGraphicObject(’insideColof ‘borderColo<‘lineWidth’)

SDLirreSegment(%tarF‘end’)
SDPolyhne(’vertices’)

SDPolygon()
SDQuadrangle()

SDEUipse()

The common attributes of all graphic objects are collected

in the superclass SDGraphicObject.SDPo[ygonis identical to SD-

po@rte except its boundary is closed. Rather than use

Smalltalk’s Rectangle class, I defined a separate class with a

more general name, SD@adrangle, which inherits from SDPoly-

gon, but is constrained to four vertices and 90 degree angles,

Representing a rectangle by an origin point and a comer point

assumes it is always aligned with the x-y axis. A more general

representation allows rectangles to be oriented at any angle.

I’ve defined SDJNipse as a subclass of SDQuadrangle more for con-

venience of representation than semantics since an ellipse can

be represented by its bounding rectangle and, except for dis-

play, it acts just like a quadrangle.

DISPLAYINGGRAPHICOBJECTS

In Release 4, graphics are displayed on two-dimensional

graphic media, all of which are subclasses of DisplaySurface.

With the three types of display surfaces (Window, Pixmap,

and Mask), there are two approaches one can take: display

graphics directly on-screen using a Window, or display graph-

ics off-screen using a Pixmap or Mask before final on-screen

presentation. Off-screen rendering can result in smoother

looking updates and eliminate “flashing,” but is a bit more in-

volved, so we’ll stick with on-screen rendering for SmallDraw.

From an object-oriented point of view, it seems reasonable

to have the graphic objects display themselves since they

should know best how to do that. However, we should not ex-

pect these objects to know Bresenham’s line drawing algo-

7.

■ SMALLDRAW-RELEASE 4 GRAPHICS AND MVC

8.
rithm or how to turn on a red pixel, etc. The object that deals

with these primitive operations is an instance of GraphicsCon-

text. Each instance of a display surface has its own graphics

context that keeps track of parameters such as line width,

color, font, clipping rectangle, etc. The graphics context ob-

ject acw as the intermediary between objects to be displayed

and display surfaces. It maintains itx local origin for its display

surface and can display everything from images, to text, to ge-

ometric shapes.

The GraphicsContext instance methods for displaying geo-

metric shapes include line segments, polylines, filled polygons,

rectangular borders, filled rectangles, arcs, and wedges (filled

arcs). It is through these methods that the SmallDraw graphic

objects are able to display themselves. In SmallDraw, when an

object is asked to display itself, it is sent an instance of a

graphics context along with a Point that specifies the scale to

be used. Where applicable, each type of object draws its inte-

rior, if it has an inside color, and then its border, if it has a

border color. It will first tell the GraphiesContesrtwhat color to

use and then what shape to dr aw. SDPolygon, for instance, does

the following:

dLsplayOsuaGrapMcsContext eealm ascalepoint
]ptsl
pts:= selfvefices coil- [p I p ● aScalePoint],
self insideColorisNil

ifFalse: [aGraphicsContext
ptiti self insideColor;
displayPolygon:@s].

self bordercolor is?iil
ifFalse [aGraphicsContext

pti self bordercolor;
lineWidtluseLFlineWidth;
displayPolyline:pts]

Note that the diaplaypolygorr: method displays a filled poly-

gon defined by the set of points, whereas the diaphypolyUne:

method displays only the boundary. GraphicsContext has similar

methods for circukw shapes as seen in the display method for

SDEllipse:

diapWlm aGraphiseCorstaxtwale: asdepoint
Ibbj
bb:= self boundingBoxscaleBy aScalePoint.

self insideColorisNl
i5ak [aGraphicsContext

paint: selFinsideColor;
displayWedgeBoundedBybb starthgle: O

swaeplmgle 360 at: O@O].
self borderColorieNil

ifFalse: [aGraphicsContext
paink self bordercolor;
lineWidtlx self lineWidth;
displayArcBoundedBybb tigle: O

sweepAngle 360 at: O@O]
THE MVC ARCHITECTURE

Smalltalk applications are constructed using the Model-

View-Controller (MVC) architecture. A brief overview of

the MVC paradigm will help in putting together our applica-

tion. The process begins by dividing the application into two

parts: the information model (the part that manages data

storage and processing) and the user interface (the part that

handles input and output). The user interface is divided fur-

ther into View, which is responsible for visual output, and

Controller, which is responsible for user input such as from

the mouse or keyboard.

Separating the user interface components from the infor-

mation model makes it easier to “plug-in” other interfaces to

the same model, connect multiple interfaces to a single model,

or reuse interfaces for other models, The Small talk system is

full of examples of using the same kinds of interface compo-

nents for different sorts of models . For instance, take a look at

the SystemBrowser or the FileList utility.

A model can have any number of views, whereas views

are usually attached to a single model. Each view has only

one controller, or none if it doesn’t require user input, and

each controller has only one view. While the model is indi-

rectly connected to its view through its dependents’ instance

variable, the view and controller have instance variables

tying them directly to each other and their model as shown

in Figure 1.

The model communicates with its interface components

through a dependency mechanism. Each model maintains a

list of its dependents and notifies them whenever changes are

made to the model’s state. These dependents can be any kind

of object, but are usually one or more views. A view keeps an

eye out for certain changes in its model. When it detects any

of those changes, it will update itself by displaying certain as-

pects of its model.

Whenever the model chrmges its state (in a way that may

be of significance), it sends i~elf one of the following messages:

self dlanged

self dsange& aBymbol

self change& asysnbol with: ankgusnant

Which message is used depends on how much detail is nec-

essary. For instance, the changed message is the most general

and simply informs the dependents that the model has

changed in some way, but it doesn’t tell them which aspect of

the model has changed. Some views might only be interested

in a particular aspect of the model, so additional information

can determine whether or not they will respond to the change.

The changed methods are found in the Model instance

methods- Each changed message is eventually transformed

into an appropriate update message that is broadcast to the

list of dependents. The dependents must have a correspond-

ing update method in which they redisplay themselves or take

some other action:
THE SWTALK REPORT

The SmaUtalk Project Browser
Source Code Management system for SnzalltaWV

The hdltalk ProjectBrowser, km BmpowerSothvare,allows
developerstotsackandmanagech.mgas so the SMSlltelkimage, end
eoebleo dzrrplifiedcmia alzaring❑nd zoltwme project organization.
Designed an a logical extamion of the Smefltalk enviromncnt, this
nystem defines hierarchical projwta aa CO11OAOOSof clnssen, methods,
and globnl vmiebles, upon which varioua operstiom cao be performed.

lWo lctols are included: The Pro@ Browser is usedtn defineand
msiotakrprojects (or genesnte fmm image changes), file projeds in and
out, create object fibranen, and generate documentation (summary,
encyclopedia of classes); The Project Class Browser is an enhanced
Class Hlererchy Bmweerwhlclzsupports trscking of class and method
changes for a project,andaddaseveralproductivityenhancements.

VereionI.0

Sum*
SZnelltalklvPM
& Windows, snd
is available now
for $99.95, + $5
shipping ($20
outside Ihe U. S.;
in Ca. plenac add
8.25 % sales tax).
Includes source
code, object
libraries (PM),

Q

and user manual.
Empower software
279 S. Beverly Drive, Suite #217
Beverly HIIIs, Ca. 90212
Voice: (213) 878-2327 CIS: 71031,2640
U- asymbol wttk enkgument frezru a?hxiel
rspdataEasysnbol with: antugnment

Upllatw asymbel

U*W

Upon receiving an update message, a view will usually redis-

play all, or a portion, of its model. For instance, in our Small-

Draw application, when we add a new graphic object to a draw-

ing, the view should be notified so that it will redisplay the

drawing. Our model would do something like the following:

addObje& anObject
... code to add anObject...
self changed: #add

Our view would be setup to look for that particular aspect

(#add), invalidating itself to be refreshed when found while ig-

noring all other aspects:

updatw anAapact

#add = amispett
ifhue: [self invalidate]

Controllers come into play whenever input comes from the

mouse or keyboard. A controller usually takes control of input

events whenever the cursor is in its view. It can be set up to

check for keyboard events or mouse clicks, taking action

when appropriate. Some controllers know about menus and

how to process them for their respective views. A controller

dealing with a menu will often direct the menu selection ro it-

self, its view, or its model.

The MVC notification mechanism is automatically inher-

ited when we define our application components to be sub-

classes of Model, View, and Controller. Let’s begin our appli-

cation by describing the model where the information of

interest is stored and processed. In this case, the model will be

the SmallDraw object itself. The primary information it will

keep track of is the set of graphic objects that are drawn. Ad-

ditionally, it will maintain a current inside color, border color,

and line width that each new object will be assigned. These

values will be initialized when the application is invoked but

will be able to be modified through menu selections. The

SmallDraw model will need to provide methods for adding

new objects to the drawing and for accessing artd modifying its

other attributes.

The Smalltalk system classes do not have a ready-made

graphic view that will do everything that we want, so we’ll

define our own hna~ratiiew as a subclass of View. The SmaU-

DrawViewis responsible for displaying the graphic objects of its

model, an instance of SmallDraw. We’ll give the smal~ra~lew

the ability to change the scale of the scene so that we ’11be

able to “zoom-in” or “zoom-out.” It therefore will need to keep

track of its current scale and provide some marmer of chang-

ing the scale. When the smal~rtiew displays itself it will ob-

tain the set of objects to be displayed from its model. Then,

the view will ask each object to display itself using the view’s
VOL. 1, No. 7: MAY1992
graphics context, scaled by the view’s display scale. As an

aside, if we wanted to, we could design our application win-

dow to contain two SmallDrawViews, with one at normal size

and the other enlarged or reduced. Each would be a depen-

dent of the same model, but would provide different perspec-

tives of that model.

We’ll also need to define our own sma~rationtioller. It will

be responsible for handling all user interaction from the

mouse and keyboard. The two main functions of the con-

troller in this application are handling menus and drawing

new objects. If we make it a subclass of ContioUerWithMenu, it

will iriherit the ability to handle menus. When the operate

button is pressed, the controller usually obtains the menu

horn its view and processes it. For simplicity’s sake, we’ll

choose the type of obj ect to draw from a menu. Since the con-

troller handles the drawing of new objects, we’ll have it add

its own menu selections to its view’s menu before processing.

By contrast, most commercial applications provide a palette of

drawing-tool buttons for selecting the type of shape to draw.

So far, here is the hierarchy of SmallDraw MVC applica-

tion classes we’ve described:

object()
Model(’dependents’)

SnsNDraw (’objects’ %rdrMelef ‘berderColof ‘lineWidth’)
ViiualComponent()

VisualPart(’container’)
DependentPart (’model’)

View(’conholler’)

c).-.

■ SMALLDRAW-RELEASE 4 GRAPHICS AND Mvc

10.
SmaUfhtwViaw (%eale’)
Controller(’model’‘view’‘sensoi)

ContioUerWithMenu()
SmalUhiwContmUer ()

MVC INTERACTION

Because views and controllers are often designed to work

closely together, views often specify, and even create, their

own controllers. When the SmallDrawView needs to create

its controller, it will ask its defaultControllesClass for one. All

we need to do is provide a SmallDrawView instance method

that specifies the correct controller class:

defiuMmr~llerClaas
‘SmalLDrawController

Connecting our MVC triad together is accomplished by

specifying the model when the view is created:

aSmaUIhaviWew:=SrnaUDrawViewmodek SmallDrawnew.

From this single message the view knows its model and the

model’s dependents include the view. When the view creates

its controller, the connections are completed.

It maybe interesting to look at the message selector inter-

actions between our MVC components, We can see that the

only interaction initiated from the model is in the update

notification mechanism. Other than that, there are four meth-

ods that the view and controller rely on from their model. If

we had a completely different model, but one whose object in.

tetface included the same four selectors as SmallDraw (and

notified dependents with #add), we could use the same view

and controller with no changes.

Responsibilities in the application are distributed among

the MVC components. As such, each component has some-

thing to offer the user by means of the menu. The SmallDraw

model presents &e user with options to chmge the default

inside color, border color, and line width. The smal~ratiiew

allows the user to change the scale of the displayed objects,

and the smal~ratiorrtroller offers a choice of objects to be

dtawn. Each has its own independent menu, but we need a

way of combining them into a single menu for presentation

on screen and a way to determine who will process the result-

ing menu selection.

The operate menu is activated by pressing the operate but-

ton or by clicking in the menu bar. The sma~~rationtro[[er

senses this and asks itself for its menu. The SmalU)rationhl[er

menu method asks its view for its menu. If one is returned, a

new menu is constructed combining the controller’s menu

and its view’s menu. In a similar fashion, the SmallDrawView

menu method asks its model for a menu, and answers the re-

sulting combination of tke two menus.

Determining the responsible party of a menu selection re-

quires the controller and view to keep ttack of the selectors

each responds to. When the SmallDrawContioller obtains the
user’s menu selection, it asks itself whether the menu selec-

tion is one of its local menu items. If so, it responds to the se-

lection. If not, it asks its view the same thing. If so, the view is

asked to petforrrr the selection, otherwise the model is asked

to perform the selection.

RUBBER BANDING

A common technique for drawing shapes interactively on

screen is to use “rubber banding.” Through rubber banding,

figures appear to be stretched into shape as the cursor moves

across the screen. For this to happen effectively, the rubber

band lines must be alternately drawn and erased in rapid suc-

cession without damaging the existing contents of the screen.

There are different ways to accomplish this in Smalltalk, the

simplest is to use the following Screen instance method:

tfisplayShapC shape lineWidtls: lfneWldth ah aPoint
forMiUiaeeonda:milliseconds

where:
shape - kray of points defining the rubber band be(s)
lineWtith - width of line(s) to be drawn
aFoint - origin for shape in screen coordinates
milliseconds - length of delay before erasing

Depending on the length of delay used, the lines can ap-

pear to shimmer as they are quickly drawn and erased, indicat-

ing their temporary or dynamic status. From my experience,

this technique is very effective on a Macintosh but, depending

on the background color of the window, it can be difficult to

see on the IBM RS/6000 platform. I don’t know the quality of

its visual appearance on other platforms. I’ve found that a line

width of 1 and a 25 millisecond delay works well on a Macin-

tosh IIfx. Since several methods make use of rubber banding,

and it may be necessary to modify these parameters for differ-

ent platforms, the following SmallDtawController instance

methods are defined:

rubberBmsdLiueWti
“1

nsbbarBarsdDelay
“25

k’s take a look at a very common rubber banding shape,

the rectangle. For now, this shape will be used in drawing

SDOuadrangles and SDEllipses, but eventually we’11use it for se-

lecting groups of objects in the window. For this reason, we

define it as a separate Sma[mationtioller instance method

called reetangleFromScreen. Rectangles will be drawn on screen

by pressing the mouse button, which defines one corner of the

rectangle, dragging the mouse across the screen, and releasing

the mouse button at the opposite comer of the rectangle.

When the method is entered, it will be assumed that the

mouse button has just been pressed. The method’s job is to

tubber band a rectangular shape from that comer point to the

cursor point as it is being dragged across the screen. The
THE SWTALK REPORT

r WINDOWBUILDER
TheInterfaceBuilderfor SrnalltalW

Iml‘.—,...-.*p- M1.::- j ,,mE ,

.— ‘4

“... this ia a “@cnt rapid application development tool
which should be included in any SmaUtaWV developer’s
environment .“

- Jim Salmons, The Smdtalk Report, September 1991

The key to a good application is its umr interface, and
the key to good interfaces is a powerful user interface
development tool.

For Smalltalk, that tool is WindowBuilder.

Instead of tediously hrind coding window definitions and
rummaging through manuals, you’ll simply “draw” your
windows, and WindowBuilder will generate the code for
you. Don’t worry — you won’ t be locked into that first,
inevitably lem-than-perfect design; WindowBuilder
allows you to revise your windows incrementally. Nor
will you be forced to learn a new paradigm;
WindowBuilder generates standard Smalltsdk code, and
fits as seamlessly into the Smalltalk environment m the
clam hierarchy browser or the debugger.

Until March 31st, WindowBuildcr/V PM will be available
at an introductory price of $295, $100 off the hat price of
$395. WindowBtiderN Windows Bells for $149.95. Both
include an unconditional 60 day guarantee.

For a free brochure, callus at (415) 855-9036, or send sm a
fssxat (415) 855-9856. You’U be glad you did!

COWERd PETEES.INC. Imnuav ACUMEN SQFWUE1 2400 h CAUINOREAL,Sunf 609 Pm ALTO.CALIFmNU 94306 FHC+W415 f155 9036 Fsx 415 855 9E56 b.WUSEOVE71571,407
1

method will return the resulting rectangle scaled to the view’s

coordinate system:

reehmglePront3ereen
“Answerthe resultig rectangle obtained fromthe user in the view’s

coordinate syrtem. Assumethe mouse is akeady pressed.”
I origin rectangle polygonscreen lastPoint start ncwPoint I
screen:= Screen der%ult,
m:= la5tPoint:= self sensor cursorPoint,
origin:= self sensor globalOngin.
rectangle := Rectangle origin: start comer la.st%int.
polygon:= Arraynew 5 vMAIE start.
[self sensor anyButtorrPressed]

whllel’rue:
[screen

displaySbapapolygon
lineWidth: selFrubberBandL.ineWidti
at: origin
ftrrMlliseconds:self nrbberBandDelay.

(newPoint:= self sensor cursorPoint) = IastPoint
ifpalse:

[rectangle := Rectangleverter start vertex
(lastPoint:= newPoint).

polygon
at 1 puti rectangle topLeft;
ak 2 puti rectangle topRight;
ak 3 puk reckargle bottomRight;
ak 4 put: rectangle bottomI.eft;
ati 5 put: rectangle topkft]].

“rectangle scale~ seLfview displayScalereciprocal
VOL. 1, NO. 7: MAY 1992
The rectangle is rubber banded as long as the mouse button

is pressed, however, the shape only needs to be updated when-

ever the mouse moves. Creating the rectangle with the ver-

tmcvertex method allows the rectangle on screen to be

stretched in any direction from the initial comer point. This

is demonstrated below showing four different snapshots of nrb-

ber banded rectangles superimposed on each other:

You may Mtice that the .%xI-l irrmmm methcd d for rubber

Ixtr3dingapylies m the enti screen and isnot clipped to the ccrn-

uoller’sview,mimttbeuaefulfot~ utg objects being

“dmgged’%etweenwindcm orfordtawingobjecrs that exrendteyond

a view’s Imunda, but it can also pmsibly cause some confusion or give

an impression of inmnsistency since mcw other commercial applica-

tions donor behave that way.

PUTTING IT ALL TOGETHER

In order to get our application to appear on the screen in its

own window we use an instance of ScheduledWmdow. The

“Scheduled” part of the name indicates that its instances are

scheduled with ScheduledCantrollers, the control manager.

With Release 4, ScheduledWindows take on the “look-and-

feel”of the host windowing system of the specific platform on

which it runs. This applies to only the outer portions of the

window, such as the title bar, close, and zoom boxes. The in-

terior of the window maintains the “ObjectWorks Smalltalk”

look and will appear the same across all platforms. Creating a

ScheduledWindow and giving it a label that will appear in its ti-

tle bar is straightforward:

11.

■ SMALLDmW-FtELEASE 4 GRAPHICS AND MVC

12.

O

aWindow:=ScheduledWircdownew.
aWmdowIabek ‘SmalU.haw’.

Now that we have a window that knows how to render it-

self on the screen, we can fill it with our SrttalDrawview. How-

ever, we must first place a Wrapper around the view. Wrap-

pers add decoration to the views they contain such as color,

borders, layout, scroll bars, and menu bars. There are several

types of Wrappers, beginning with the “plain brown” Wrapper

(no frills) to the most decorative, EdgeMdgetWrapper (all the

frilh). We’11 use the EdgeWidgetWrapperso that we can have a

menu bar, but we’ll need to rum off the vertical scroll bar as

each EdgeWtigetWrapper comes with a vertical scroll bar by de-

fault:

aWrappedl%w:= (EdgeWldgetWrapperOKaSmallDrewMew)
noVeticalScrollBar.

We can now place our wrapped view in the window by

specifying it as a component of the ScheduledWindow:

aWindowcomponerr~aWrappedTlew.

Our application will be invoked by first creating an in-

stance of SmallDraw and then asking it to “open” itself using

the following SmallDraw instance method:

open
I aWindowaSmallDrawViewaWrappedViewI
aWindow:=ScheduledWindownew.

awindowIabek ‘SmaUDrati.
aSmaUDrmView:=SmalUlrawViewmodel: seLF.

aWrappedView:=(EdgeMdgatWrapperoru eSmallDrawView)

noVerlicalScroUBar.
aWindowmmponent: aWrappedWew.
aWmdowopenWithExterrkZOO@ZOO

This, of course, could be simplified co a single statemerm

open
(ScheduledWmdownew)

label: ‘SmallDrav/;
componenh (EdgeWidgetWrapperOK

(.SmallDraWViewmodel: self)) noVeticalScrollBar;
openWkhExtenh200@200
Universal Database
OBJECT BRIDGE m

This developer’s tool allows Smalltalk to -d and wzite to:
IUICLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIIL Lotus, and Excel.

Intelligent Systems, Inc.
{
! 5MN. ShteWed-AnnAbw,t44SlW (313) 9964SS(313)996441 k
Now, to start the SmallDraw application we simply do the

following:

SmallDrawnew open

Incidentally, if we wanted our application window to have

more than one subview, we would need to place our views in

an instance of Compositepart, which would then be made the

component of our window. Compositeparts can contain any

number of views or other Cornpositeparts. Relative and absolute

placement of subviews within composite parts is specified

through Layouts. The following SmallDraw instance method

opens a window containing two smal~rawviews each occupying

half of the window vertically

Openwiw’wow
I windowcomposite I
tidow:= (ScheduledWindownew) tebeb ‘SmaUDraw’.
composite:= CompositePart new.

window component composite.

composite

“he left hand view.”
add (EdgeWidgetWrapperor

(.SmallDrawViewmodel: sew) noVeticalScroUllar
in: (layoutPrame new

kfLFraclion:O;
rightpratiom 0.5;
topFratioru O;
bottornpracbon: 1);

‘The sight hand view,”
add (EdgeWidgetWrapperon:

(SmaUDrawWewmode~ self)) noVeticalScrollBar
im (Layoufframenew

Ieftl%aclion 0.5;

rightl%actiomI;
topFrafion O;
bottomprafion: 1).

windowopenWithMerrk ZOO@ZOO

CONCLUS1ON

In this article, I’ve presented a structured-graphics editor,

SmallDraw, albeit a minimal version. I admit it’s not much of

an editor yet, since the user can merely draw objects in the

window. Future articles in the series will extend the function-

ality of SmallDraw. We’ll add selection, translation, scaling,

alignment (us ing a DialogView), and grouping of objects, ver-

tical and horizontal scrolling of the view, a cut/copy/pas[e

clipboard, and support for command keys. ❑

Dan Benson is a Ph.D. candidatein theDepartment of ElectriczsJEn-

gineering at the University of Washington where he is cbelo~ing a 3-D

spatial &t&se for human anatomyusingSrnak!k and theGern-

Stone 00DBMS. He nray be contacted at: Depamnent of Ekctrico.1

Enginem”ng, F’T-f 0, University of Washington,Seattle, WA 98195,

byphorwat 206.685.7567, or mail: berrson@ee.wmhington.edu.
THE SMALLTALJCREPORT

~-

]uanita Ewing

Class instance variables for SmalltalkN
In my last column, I described the effect of class variables

and class instance variables on class reusability and con-

cluded that classes implemented with class instance vari-

ables are more reusable than classes implemented with class

variables. Smalltalk-80+lerived versions of Smalltalk have

class instance variables, but Smalltalk/V versions do not. This

column contains the code to add class instance variables to

Smalltalk/V Windows.

All objects in Smalltalk/V have instance variables, even

class objects. The code in this column just makes the facility

apparent for classes and allows users to define new class

instance variables.

HOW TO DEFINE CLASS INSTANCE VARIABLES

Ordinarily, users see a class definition in a browser like the

example in Listing 1. After the code from this column is

added to an image, users will see an extended class definition

in the browser. The extended class definition consists of two

messages, one to the class and one to the metaclass. Listing 2

is an example of an extended class definition with no class in-

stance variables. The message argument to the metaclass is an

empty string.

Adding a class instance variable is just like adding an in-

stance variable. The user modifies the argument to the mes-

sage instartceVaiablelhmes:. The argument is a string containing

names of class instance variables. Then the user saves the class

definition through the menu The system redefines the class

and recompiles as needed. Listing 3 is an extended class

definition with a class instance variable named defaultDirefion.

IMPLEMENTING CLASS INSTANCE VARIABLES

The code to add class instance variables to Smalltalk/V

Windows consists of five methods, four of which are funda-
Llsting 1. Class Definition for AnimatedObject

Objectsubclass: #AnbnatedObject
instanceVariebleNarnes:

‘position oLdPositionjumpIncrement direcbn ... goCount’
classVaiableNacnes:”
pooUSitioties:
Wirlconskmts ‘

VOL. 1, NO. 7: MAY 1992
mental and one that is a modification to the class hierarchy

browser. A complete listing of the code is included at the

end of this column.

Other versions of Smalltalk/V have different implementa-

tions, and a different version of the code is necessary to imple-

ment class instance variables.

MetaClass class subclassOfi aClass

Modtied

This is the instance creation method for MetaClass and is a

private method. It is modified so new instances of metaclass

have the sttucture of their superclass. In the original version

of this method, each metaclass was created with the structure

of the Class class.

MetaClassmethods instanceVariabkNamex shingOfInstVarNames

New

This is a new method representing the public interface for

class instance variables. This method is used to redefine the

instance variables for a class (class instance variables). The ar-

gument to this method is a string containing names of class

instance variables. The argument is the same format as for in-

stance variables and class variables.

class fileOutOn a!lream

Motied

This method has been modified to write the definition for

class instance variables. The result of this method is also used

to print the definition of a class in the browser. The string-

defining class instance variable always prints even if there are
Listing 2. Extended Class Definition for

AnimatedObject.

Objectsubclass: #AcdmatedObject
-ceVariabkNames:

‘posiSionoMPoaitionjumpIncrement dhetion ... goCount’
class%riabletiames: “
pooll)itionaries:

‘winConstants‘.
AnimatedObjectclass instanceVaiableNames:”

13.

14.

■ GEITING REAL
no class instance variables. This is necessary because the eval-

uation of a class definition in the browser must return the

same result.

Class recreate: numberOfEschaPields

New

This new private method is used to recreate the class object

when the number of class instance variables has changed. It

deals with a number of implementation details, such as storing

the new class in the Smalltalk dictionary and the global vari-

able TableOfClasses, and insetting the new class into the class

inheritance hierarchy.

ClassHierarchyBrowseracceptclass: astring from: aPane

Modified
This method has been modified to update the reference to the

selected class after saving a new definition of a class. If the

number of class instance variables has changed, then a new

class object will be created and the browser needs to be up-

dated. This is a private method.
Listing 3. Extended Claes Definition for
AnimatedObject with a Class Instance Variable.

Objectsubclass: #AnirnatedObject
instanceVasiableNames:

‘position oldPositionjmnpIncrement direfion ... goCoont’
classVariableNames:“
poolDirbonaries:

WlnConstants’.
AnimatedObjectclass instanceVariableNarnes:‘defaultDirefion’
COMPLETE LISTING

MetaClass class
subclaasti aclass

“Private- Answera new metaclass that is a subclass of the metaclass
for aclass.”

I newMeta I
newMeta:=self new.
newMeta

assignClassHash;
~eture: aClassclass structure;
superclass:

(aClass= Class
ifllue [class]
ifpalse: [acfass class]);

methodDitionaries:
(Arraywith: (MethodDicbonarynewSize:2)) ,
newMetasuperclass methodDielionaries.

‘newMti

MemCbss
insbncsVaziableNames: atsingOflnatVarNames

Tefie (or redefie) the set of class irrzbnce variablesfor the classwhich
is an instance ofthis metacfass.Thenumber of classintice variable
maybe inaeased onlyif there are no ezistig instances ofthe class.”
I theClass oldSise newSizea.stieamtheClaszNameI
thellaas:= self insta.nceClass.
theClassName:=theClasssymbol.
oldSize:= self instVatNamessise.
newSize:= stringOfInstVarNarcresasArrayOfSubstringssize.
oldSize< newsise

ifl’rue:
[“if the size of the class object needs to increase
there must be no instances”
theflass withfdlsubclazses do:

[:aCLsssI aclass allhztances notEmpty
iffrue [Asefferro~ ‘Hasinstances’]]].

self instVarNacnes:stringOffnstVarNarnes.
oldSize< newSize

ifllue
[theCfassrecreate: newSise-oldSize
“recreate the class object”],

theti:= Smallt31kak theClaszName.
a,%eam:= WriteStreamon (String new 64).
tfreClassfileOutOn:aShearn.
.srnalltdlrlogSource:aSheam contents forClass:thellass.
self compileAIL
self allsubclasses do:

[:aClazsI acl.asscompileAll].
“theClass

.

Cks
ileOntOn: aS’tream

“Appendthe extended cfass definition message for the receiverto
asbeam. Include the statement for the detition of class instance
variables.”
THE SMALLTALXREPORT

C

Voss
Virtual Object Storage System for

SmalltalklV
Seamless persistent objectmanagement with updite transaction

control directly in theSmalltalk language

. Transparent accessto ScnaUtalkobjectson disk.
● Tra~ction commit/rollback
. A-s to individual elements of virtual collections and

dictionaries
● Multi-keyand multi-valuevirtual dktionaries with query by

* rwe and * ~~on
● Clasa rmtructure editor for renaming claasea and add~ or

removing instance vmiabks allows incremental applimtion
development

● Shared acc=a to named virtual object apacea

● Source code supplied

Somecomments ruehave ra”ued about VOSS:

“...clean ...ekgrmt.Workslike a charm.”
–HidHiIdefmmd,Anamet Zdoratm’es

“Works akdutely beautifully; excellent pmformance and
applimbility”

–Raul Dumn,MicrogewicsInstruments

CO@C ~!whdoWS$~(~7StO~ OfF*Wl~2)+$,5S~*-

VOSS/2S6 $5v5 (s375 ta end of Februmy 1992)+ $15 shipping.

— htydkuwils avaiLabfeVi6a,Ikksb?rCardandEurKardaccepted.
A R T S Lc’@cAI+sLkf. 75 Hrm@ford Rmd,fhnbrfdge, England, CBI 3BV

TEli +44 223212392 FAX:4223245171

V

IaSting I
astreanr cr;

nextlutfdl: self superclassprint!lrisrg; space;
nesctputrllkself tidOfSubclass; space;
nextputsllkname storetig; cr; space; space.

self isBit3
iffalse:

[aStream nextPutAIL‘instanceVariableNames:’.
(a,%ng := self instanceVaziableString)isEmpty

ifpalse: [aStream cv nextPutAIL‘ ‘].
a%eem

nexthtsllb asting storeSting;
cr; space; space].

aStream nextPutAIL‘classVariableNames:‘.
(aString := sell classVariableSting) isEmpty

ifFaLse:[aSheam a; nextPutAIL”].
astream

neatPutAlbastring storeStrirrg;
cr; space; Spacq
nesrtPutAlk‘poolDitionaries: ‘.

(aString := self sharedVariable=g) isEmpty
ifFalsw[afieam a; neritPutAlk”].

astream nextPutAILastrirfg storeStcircg.

“Include class instance variable definition.”
aShing := seMclass irrstimceVariable.Wing.
aStreamnextpuk $.; cr.
aStieam nextput.rllkself class name.
aStieam nexWutAlk’ instanceVaciableNames:’.
a.streaznnestPcctAILa.%ing StoreString.
titresm cr; space; space

class
recreate:nusnberOfExh*kb
“private - Replacethis class object with an identical object with
additioml fields for ckcasinstance variables.”

I newInstance mysuperclassmyNameoldId I
myName:= self symbol.
newInstimce:= self class basiclkw.
oldId := self id,
1 to: self class fnstSise - mrmberOtiaFleMs

do:
[:i I
nevdnstance instVarAki pub (seLfinstVarAhi)].

mysuperclass := self superclass.
mysuperclassremoveSubclass:self.
mysuperclassaddsubclass: newInstance.
Srrdtalk ak myNamepuk newInstance.
newInstence methodDictionzoydo:

[:ml
m classpield= self

if’hue: [m classpield nevdnstance]].
newInstance subclasses copydo:

[:Sub I
sub superclass: newhstance.
sub recreate: numberOfEsrtraFields].

TableOfClassesat oldId + 1 put: newInstance.

newh.stance id: oldId.
self become: DeletedClass

lassHierczrchyBmwser
acceptClass: aSi2ing horn aPane
OL.1, NO.7: MAY1992
“Private- AcceptZ3tring as an updated

class specification and compile it. NotitjraPane if the compiler

detects errors.”

I result isClass 1
result:= Compiler

evaluate aSbing
im oil class
to: nil
no~g: apane
ithi~ [“true].

SmaUtalklogEvaluatwaShing.
isclass := result isKircdOEClms.
isClass

ifhue: [selectedClass:= result].
self changed: #instanceVars:.
“isClassnot ❑

Juanita Ewing is a seniorst.affmemberofhcstantiationsInc., a so~t-

ware engineering and consulting firm that specializes in dwelapingand

applyingobject-orientedsoftwarejwojects, and is an expert in thede-

sign and imjiementition of object-tinted applications,frameworks,

and systerrM.In her previouspositionat Tektronix Inc., she was re-

sponsiblefor the devel.o~nt of class librariesfor the j%st commercial-

quality Sma[ltalk-80 system. Her professional activities include Work-

shop and Panel Chairs Jor the 00PSLA conference.
15.—

.-
16.
HE BEST OF comp.lang.smalltalk Alan Knight

More frequently asked questions
T his month I continue describing and trying to answer

some of the frequently asked Smalltalk questions

posted on USENET. I must be off to a bad start, be-

cause much of this column is taken up with additions and

changes from last month’s information. I guess it’s the price

we pay for working in an area of rapid change. First change: I

said there was no oftlcial Iist of frequently asked questions.

One has now been established, and 1’11be incorporating infor-

mation from it. The list is maintained by Craig R. Latta

(latta@con.berkeley.edu), and is available for ftp from

xcf.berkeley.edu. Many thanks to Craig for taking on the

maintainer’s job.

MORE FREE STUFF

Last issue I listed some sources of freely available Smalltalk

code. With a few exceptions, most of that code comes in the

form of small “goodies.” These can be system enhancements,

bug fixes, or utilities, but are seldom large enough to be called

applications. This is only natural. Many people are williW to
freely contribute their own small fixes and favorite enhance-

ments to the community. h takes a much greater commitment

to contribute a large project, Generally, large projects come

from university research projects.

LARGER-SCALEAPPLICATIONS

The first of these is the T-Gen parser generator package,

written by Justin Graver (graver@ufl.edu) at the University

of Florida. The package is described as “a general-purpose

object-oriented tool for the automatic generation of string-

to-object translators” and is available by ftp from bikini.

cis, ufl.edu.

The second item is a group of packages by Stephen T.

Pope and others, related to the Smalh-nusic project. This is

“a project to discuss and develop an object-oriented system

for music.” There is an electronic mailing list for discussions

of the project, and several implementations and documents.

If you have access to Internet electronic mail, you can join

the mailing list by sending a request to smallmusic-request

@xcf.berkeley.edu. The implementations and documents are

available by ftp from ccrma-ftp.stanford. edu. The most re -

cent implementation is called MODE (not to be confused

with the MoDE user interface toolkit, available from the

University of Illinois archive at st.cs.uiuc.edu). MODE
runs under ParcPlace Smalltalk Release 4.0 and combines

the functions of several earlier applications running under

ParcPlace Smalltalk 2.X.

If you’re used to commercial software, it pays to be aware

of a few differences when dealing with “free” software. First,

there are no guarantees and no toll-free customer support

hotlines. The code may be badly written, poorly docu-

mented, or nonportable. You may be able to get someone

(possibly even the author) to help you with any problems,

but you may not. 1 haven’t personally used any of the pack-

ages described above, so don’ t take this mention as an en-

dorsement of any kind.

Second, there may be restrictions on how the code maybe

used. Many authors retain copyright on the packges. Using all

or part of the package in a commercial product may require an

arrangement with the author or may not be allowed at all.

Carefully read anything concerning copyright or licensing

agreements. Large packages are more likely to reserve rights

than goodies. The authors of T-Gen and the Smallmusic

packages retain the copyright on the software.

MANCHESTER GOODIES BY FIT

One of the archives I mentioned last issue is at the University

of Manchester in England. Recently, this archive became ac-

cessible by ftp. The machine is called mushroom, cs.man.ac.uk

(an alias for 130.88. 13.70) and the files are available in the di-

rectory pub/goodies. This machine and the archive server at

the University of Illinois should now contain exactly the same

material. Questions about the archive can be addressed to

lib.manager&s.man.ac.uk.

SMALLTALK CHAT SESSION

Internet Relay Chat, or IRC, is a real-time computer confer-

encing program. h allows people with direct access to the In-

ternet to conduct conversations without the delays of elec-

tronic mail. Anyone on the Internet can participate,

regardless of location. The drawback is the requirement for a

direct network connection, meaning that the number of peo-

ple capable of participating is much lower than in electronic

mail or USENET forums.

On March 3, Martin Brown (mjb@netcom.tom) organized

an IRC conference of Smalltalk users. Even though it started

at 8:30 p.m. Pacific Time, making it awkward for eastern
THE SMALLTALKREPORT

17
11,
North America and ridiculous for Europe, the conference at-

tracted quite a few participants.

IRC runs almost exclusively on UNIX machines, so almost

all of the participants were Smalltalk-80 users. A number of

people from ParcPlace participated, including VP Engineering

Richard Dellinger and CEO Adele Goldberg. Highlights in-

cluded a preview of features in the next ParcPlace release (in

beta test as I write) and the opportunity to give feedback on

features we’d like to see in future versions. It’s hoped that this

will be the first of many such conferences.

If you’d like to participate in these conferences, you will

need an account on a machine with a direct Internet connec-

tion and a copy of the IRC program. Contact your system ad-

ministrator for details.

LANGUAGE WARS

Like so much about computers, languages area religious issue.

I won’t say that this is especially bad for 00P languages, but

it’s certainly no better than average. Many of the people on

the net are reasonable, unprejudiced, and willing to accept

differences of opinion. Unfortunately, a lot of them aren’t,

and they seem to be the ones who enjoy long debates on the

relative merits of different languages.

Which language they are attacking or defending doesn’t

make too much difference. Each community has its own

points of snobbery and defensiveness. Smalltalk advocates like

to talk about pure 00P languages and about being one of the

origiml sources of OOP. They become very defensive when

anyone calls their language “slow” or “academic.” C++ advo-

cates like to talk about running fast and being the most popu-

lar language. They get defensive when their language is called

“impure” or “a hack.” Eiffel advocates like to talk about soft-

ware engineering principles in a pure OOPL. They get defen-

sive about being called “obscure” or “proprietary.” There is

some substance under the rhetoric, mostly concentrated in a

few basic issues.

MULTIPLEINHERITANCE

Many current OOP languages make extensive use of multi-

ple inheritance, Users of these languages tend to consider it

an important part of 00P, and naturally ask why Smalltalk

is so backward as to not support it. From the perspective of

many in the Smalltalk community, multiple inheritance

has been tried and judged more trouble than it’s worth.

Besides, if you really want it, you can always write it yourself.

For example, someone named Terry (terry@ galaxia.new-

port. ri.us) writes:

1 would like to open a discussion about multiple in-

heritance in SmaUtalk. To begin with, could someone who

knows the history explain why Srrsalltalk does not have

m.i.? Here are my suggestions for multiple inheritance

Ralph Johnson (johnson@cs.uiuc. edu) replies with a sum-

maty of the histoty
VOL. 1, NO. 7: MAY 1992
The folks at Tektronix claimed to have fixed lots of

bugs, but they still kept running into problems, and

fmlly decided that it wasn’t worth it. Implementing m.i.

this way can be done entirely in the image. You don’t

need to know anything about how the v.m. is imple-

mented. So, anybody out there who wants to implement

m.i. can just go ahead. If you are successful and can

make something that people want to use then you will be

famous, though probably not rich!

STRONG/STATIC TYPING

Another significant difference of opinion on programming

languages is the matter of static vs. dynamic typing, In fact,

66
Many of the people on the net are

reasonable, unprejudiced, and willing to

accept differences of opinion.

Unfortunately, a lot of them aren’t.
9

the existence of this argument represents one of the most re-

markable achievements of C++. Almost overnight it turned

more C programmers than I would have believed possible

into resolute defenders of strong typing. They, along with

Eiffel programmers, will argue that strong static typing is es-

sential for good software engineering. The argument asks

What if your air traffic control system pops up a “does not

understand” dialogue in the middle of a forced landing?

They also argue that strong typing enforces better design

principles. Almost as an afterthought, they add that it makes

programs run faster,

On the other hand, Smalltalk, Objective-C, and other

programmers argue that (at least with current technology)

static typing sys terns either excessively restrict what pro-

grams can be written or else don’t really eliminate the possi-

bility of run-time type errors. Further, the errors that it

catches are mostly those that would be trivially detected in

testing. Better to worry about what happens when your air-

traffic control system divides by zero. Further, they argue, the

flexibility that you lose with static typing inhibits reuse and

makes programming harder.

In a lot of languages, static typing is also intimately bound

up with multiple inheritance. In languages like C++ and Eif.

fel, variables can have values of different types, but only if all

of those types are subclasses of the declared type of that vari-

f)d~~ !ihnalltalk/Vusers: the tool
1- for maximum productivity ~

“Put related classes and methods into a single task-
oriented object called application.

0 Bnmse what the applicationsees, yet easily move co
between it andexternalenvironment.

0Automaticrdlydocument code via modillable templat
“ Keep a history of previous versions;restorethem wit

a few keystrokes.
“ View class hierarchyas graph or list.
0 Print applications,classes, and methods in a formatte

repofi, pa@ated and commented,
“File code mto applications and merge them together.
0Applications are unaffected by compress log change
and many other features..

class
...............................
! Deleted classes

({

<

...............................
Browsers.. [App-ticaa—.

Yarn ~Deleted method...............................

rnager History —~ Code recovery]

\utititie&. -~--”A-~fi&-tion-~-fik-~~ andmo

I CodeIMAGERm V286. VNlac $129.95

I VWindow & VPM’ !#49.95
ShiPPing& handling:S13md, 530 ,pacopy

a --Diskette:‘~ 31n ~#/i “-

IiEl
SixGraphm Computing Ltd.
formerly ZUNIQ DATA Corp.+ 2035C6te de Liess% suite 201

f- H’n&jj!M%$%%6.,03
&%!wn:&%&%%%$w’-’ti’

18.

■ THE BEST OF COMP.LANG.SMALLTALK

aDP
P&n abeadjbr AbeLngsst

o&ct-orktid conf~ and
exbi.bikbnon tbcEkrtCoat in 1992.

obJ?hiJ?t
o

THE NATIONAL CONFERENCE AND EXHIBITtON

JUNE 1-5, 1992

For a Aaikd hodmre cdf212*274*9135

or F= 21202740tM46
~ble. Thus multiple inheritance is essential if the system is to

.lave any flexibility at all.

GARBAGE COLLECTION

I’m sure you’ve all heard this one. What if your nuclear power

plant has to do a garbage collect in the middle of a meltdown

service routine? One side argues that garbage collection is thus

a bad thing. The other says that one would have to be careful

in using garbage collection in a hard real-time system with

stringent response-time requirement, but that this does not

describe most programming.

WHO’S RIGHT?

Ultimately, the more sensible participants will admit there are

few, if any, universally right answers. Languages are designed

to meet different goals. Criticizing them for not being some-

thing they were not intended to be is pointless.

To their credit, many of the better-known figures, includ-

ing those closely associated with a particular language, have

tried to defise this sott of partisanship, There have been many

patient explanations of the reasoning behind language fea-

tures, and calm appeals to not try to use one tool for every job.

Occasionally, though, you have to fight sarcasm with sarcasm,

and I’d like to reproduce a particularly good example which

appeared in comp.lang.eiffel.

An announcement had been posted for the Tenth Eiffel

User Conference, to be held in Dortmund, Get-many, John
Nagle (nagle@netcom.tom) commented:

This is the TENTH conference? And still nobody uses

it? Maybe there’s something wrong.

Bertrand Meyer (bertrand@eiffel.tom), who invented the

Eiffel language, responded:

A small clarification maybe useful here. As Mr. Nagle

so competently points out, almost no one uses Eiffel; in

fact until recently there were only nine users. But now

a tenth person just started, so we are holding a confer-

ence, appropriately titled the TENTH EIFFEL USER

conference, to celebrate.

The new user is in Canada, hence the word “inter-

national”; this is like “world” in “world series” for

baseball.

We hope this helps clarify the issue, and sincerely

apologize for any confusion the posting may have

caused, ❑

ALzn Knight is a researcher in theDepartment of Mechanical and

Aerospace Engineering at Carktnn University, Ottizwar Canada, K~ S

5B6. He currently works on problem related to finite element analysis

in Parcl%ce Snudktdk, and h workedin most%udkd.k dialectsat

one timeor another. He can be reackd at +1 6137882600 x5783,

or by e-w”l as knight@mrco.cark ton.ca.
THE SMALLTALKREPORT

r-- “-Greg Hertdky and Eric Smith

Separating the GUI fmm the application
Consider your garden-variety Smalltalk application

running under a GUI. Of what major parts does it

consist? In most cases, somewhere down in the

depths is the Domain Model. This is made up from classes

that represent the real things users think they are manipulat-

ing (e.g., transistors, diodes, connections, etc,). All of these

classes are commonly implemented to know as little about

the user interface as possible. Many would agree that ideally

the domain model objects don’t even know that such a thing

exists. This is all old hat, and we’ll assume that you’re famil-

iar with the concept.

The other common component of a GUI-based applic-

ation is, not surprisingly, the user interface. Here is found all

of the knowledge of what kind of widget is used to present

which information, where it goes on the display, and what

happens when the end user does something to it. Unfortu-

nately, this part of most GUI-based applications comes in a

lump. We’ll cover how and why the UI component should be

further divided.

When the user interface for a GUI-based application is ex.

amined, at least two broad categories of function can be

found. The most apparent we’ll call, for lack of a better term,

the interface. The choice of display elements to be used falls

into this category. For example, a certain set of choices may

be offered as a list box, set of radio buttons, or pull-down

menu. Other things in this category are the size and locations

of such screen elements, how they respond to user input, what

color they are, what fonts they use and so on. Anything per-

taining directly to presentation or the first (or lexical) level of

user input handling belongs in this category.

The other broad category involves control of the applica-

tion. The semantic components of an application belong in

this category. Examples include things like “list B must be re-

freshed if the user makes a new selection from list A.” Other

things that belong here are the handlers for the various com-

mands (e.g., cut, copy, and paste) available to the user, or at

least those that don’t simply affect the display.

The control category contains all of the things that define

what it means to be the application except for the last stages

of presentation and the first stages of input. If it involves

knowledge of the domain model or the relationships among

the various pieces of information presented, it belongs in

this categoq.
VOL. 1, No. 7: MAY 1992
ICM ARCHITECTURE

Most “standard” Smalltalk application architectures of the

past have had just two layers: a model and an interface.

Using the approach presented here results in a three-layer

application. We’ll call this structure the Interface Control

Model (lCM).

INTERFACE LAYER

All of the information pertaining directly to what shows up

on the end-user’s screen is part of the Interface layer. This

includes the choice of display widgets, colors, fonts, menus

vs. radio-buttons, as well as all of the first-level input han-

dlers. They should normalize the input so that the Control

layer doesn’t have to know what kind of screen widget it’s

coming from.

If you use a window builder of any kind for this compo-

nent, you’ll be done in minutes. Except for the automatically

generated methods used for setting up the various panes, but-

tons etc., nearly all of the methods given here will be one lin-

ers. They just mediate between the GUI-independent world of

the control layer and the very GUI-dependent collection of

user interface classes provided by Smalltalk.

CONTROL LAYER

This layer is where all of the work involved in producing a

high-quality user interface ends up, This is where selected

items mean something and where the smarts to translate user

commands into action on the domain model live. The

amount of thought that goes into this level will make or break

your user interface.

The Control layer receives messages ftom the Interface

layer that inform it about what the user is doing. Some of

these messages identify selection of options or objects. Others

notify the Control layer of the users request that a command

be executed. The Control layer, in turn, sends messages to the

Interface layer to tell the interface what information is out of

date (e.g., updateListA).

Though the Control layer knows that the Interface layer

exists, has a pointer to it, and even knows a few messages it can

send it, it does not by any means know everything. The Con-

trol layer should send only a very limited set of messages to the

Interface layer. The Control layer should not even be aware of

what class or classes the objects in the Interface layer are.

19-/.

■ GUIS

-snAU.
DOMAIN MODEL LAYER

As mentioned above, the good old Model layer is a well.

beaten horse. It should suffice to say that objects living down

here know little or nothing about the fact that they even have

an intetface. They may, if they’re nice, notify unknown ob-

jects above when important information has changed.

ISOLATION

An important aspect of the ICM approach to application de-

sign is that the lower layers have as little knowledge about the

layers above them as possible- They communicate only via a

carefully designed protocol. The Model layer knows virtually

nothing about the application. The Control layer knows all

about the model, but very little about the Interface layer. It

knows that it has an interface and knows a few messages it

might send it (e.g., updateti). The Interface knows nothing

at all about the Model layer and only a little about the Con-

trol layer. For example, it knows what messages to send to the

Control layer when the user has selected something or re.

quested that a command be executed.

A QUICK EXAMPLE IN SMALLTALW PM

Listing 1 provides a quick example of some of the principles

we’ve just discussed. It is an implementation of the user

name/password requestor shown in Figure 1. The first class im-

plements the Interface layer.

When the user executes a command, for example presses

the “Ok” button to execute the “log-on” command, the inter-

face does nothing more than tell the control layer that the

user has chosen that command. At this point, the Interface

layer is not even aware that the operation might result in a

failure. Though the interface will be responsible for informing

the user of such a failure (see the method for #noMyInvalid in

Listing 1), it does not know where the failure occurs.

Note that none of the application state is maintained in

the Interface layer. The current values for the user name

and password are all kept in the Control layer as shown in

Listing 2.

The class SystemLogonContil implements the control layer

for our example application. To continue the example shown

Rgurs 1.Usernarnd%rwordRequenw.
Listing 1. An implementation of the user namef
password reqrsestorc

WmdowDialogsubclaas:#SystemkrgonDialog
instanceVariableNasnes:‘conhol’
classVsriableNames:”
pooillifiomuies: ‘WBConstants’

becencah aPans

“Generatedby WlndowBuilderfor a pane callback.”

“Button Cormnand– TeUconhol that the user has
chosen the ‘cancel’command.”

seLfcontiol cmdcancel

bcOkaPane

“Generatedby WlndowBoilderfor a pane callback.”

“Button Command– TeUconbol that the user has
chosen the ‘logon’commandhas been chosen. (My
button says ‘Ok’but conbol md I have agreed that this
represents the logon’ command).”

self control cmdLogon

con-l
“Private- Answerthe object who represents the
conbol layer.”

conbol isNilit’f’rue:[contiol:= self det%ultconhol].
Acontiol

defassltcsmstrol
“Private– Amswerthe det%ultvalue for contrd.”

“ self dei%sltContiolClsssnew interfacti self

dsfaultContxolClaa6
“Private– Avwer the class of my dei%ultcontrol layer.”

“ SystemLogonContiol

@IserNarnw aPane

“Generatedby WindowBuilderfor a pane callback.”

“Askcontrol for his idea of what the user name is.”
a%ne contents: self contiol userName

Sloufytrwslfd
“Sent onlyby my conhol layer. TelIthe user that
his log on failed.”

MessageBox
now”
withText:‘LogonFailed!!’

open
‘The usuaL large method for opening all of the views. Onlythe
creation code for the important subpanes is included.”
THE SMALLTALK REPORT

);
in Listing 2, if the user requests the “log-on” command, the In-

terface will send the message #cmtigon to the control layer.

As can be seen in the method for this message above, the con-

trol layer then packages up the information necessary for the

model to validate the log-on. Should the log-on be successful,

the control layer decides that the application is at an end and

closes things up. Otherwise, it decides the user needs to be

notified of the failure. The actual notification is a presentation

detail and is, therefore, left to the interface.

Admittedly, this is a rather simple example. However, we

have used the lCM arehkecture, with very satisfying results,

to implement much larger and more complex applications.

Scalability is not a concern with this technique. In fact, as ap

placations grow in size, this sort of division becomes commen-

surately more important.

SEPARATING THE HOST GUI FROM YOUR

APPLICATION

Adding yet another layer to the all your Smallcalk applica-

tions may not sound just like what you were shopping for.
VOL. i,No. 7: h’iAY1992
However, we’re not making these suggestions just to get you

to draw another box and arrow on all your slides. There are at

least three considerable advantages to the ICM architecture.

These advantages fall in the areas of maintenance, project

management, and portability.

MAINTENANCE

In our experience with implementing highly interactive appli-

cations, each of the three layers is associated with a different

level of code volatility. Once a reasonably solid Model layer

has been implemented, it changes very little from version to

version of the application. The code in the Control layer of-

ten changes only a little more frequently. Several more trials

may be required to arrive at a solid Control layer, but once ob-

tained it also changes little between versions. It is usually ex-

tended rather d-m-s modified.

On Ae other end of the scale, the presentation aspects of

an application can change very rapidly. These are more of-

ten modified than extended. The presentation also bears the

brunt of keeping up with changes in the host GUIS. By sepa-
Ustlng 1, (cent’d)

addsubpane: (
.~~ield new

Owrrecsew
CracrdngBloek(.,.);
paneName:‘userNs.meFieM’;
StartGroup;
tabstop;
when #getContents perform #getUserNamm;
when: #textChanged perform #setUserNarne:;
yourself

);
addsubparw (

En@Field new
owner self;
framingBlock (...).
paneName:‘paswurdField’;
startGroup;
&lbStop;
when #textChanged perform: #setPassword;
yourseH

);
addsubpane: (

Button new
ownec se~
framingBlock (...);
paneNamm‘okButton’;
defaultPushButton;
startGroup;
tabStop;
when: #clicked pefircm #bcOk;
contents: ‘Ok’;
yourself
addsubpacce (
Button new

owne~ selij
framingBlock (...).
paneName:‘cancelButton’;
startGmu~
tabstop;
wherx #clicked perform #bcCancel:;
contents: ‘Cancel’;
yourself

);

openOru aliodnl
“Openme up on the given modeL”

self conhol modek aklodel.
seLfopen

aetPaatswo* aPane

%enemted by WindowBuilderfor a pane caUback.”

“’lheuser has changed the password.Tell contiol
about the change.”

self control password: a%ne contents

aetUserName:aPane

“Genemtedby WindowBuilderfor a pane caUback.”

“Theuser has changed the user name. Tellcontxol
about the change.”

self coni?oluserName:aPane contents

■ GUIS

22.
rating the Control from the Interface, the more volatile as-

pects-of the application are isolated from the more stable

pm-tions. This protects the stable code from the ravages of

constant change.

PROJECT MANAGEMENT

The design of the presentation of an application and of its

control, though related, involves different skills. In some or-

ganizations, different developers would be given responsibil-

ity for these areas. If the application is designed with a

monolithic user interface, the two developers’ work will be

hopelessly mixed and mingled. By using the ICM architec-

ture, their work would be cleanly divided. Also, the protocol

by which their two components communicated could be

easily defined.

PORTABILITY

One of the strongest reasons for using the ICM architecture is

that it leads to applications that can be ported from one di-

alect of Smalltalk to another very rapidly. All of the knowl-
edge pertaining to the local host’s GUI is kept isolated in a

small, hopefully mostly automatically generated layer. Di-

alects of Smalltalk vary most widely in how they describe

their user interface mechanisms. In applications designed us-

ing the ICM approach, the portable Control code and the

nonportable, GUI-specific code are not all run together in a

single layer. This allows applications to be moved between

Smalltalks very rapidly. ❑

Greg Hen&y isa member of the technical staff at Knowkdge SyswrrLS

Corporation. His 00P experience is in SmaJtdk/V(DOS),

SmaUtalL80 2.5, ObjectworkrSnudludkRelease4, and

StrwlkuUr/VPM.

Eric Smithis a member of thetechnicalstaffat Knowledge.sys~ms
Corporation. His specialtyiscustom~aphical user interfacesusing

$naJtak (variousdialects)and C.

Tky maybe conwcted at Knowldge Syw%msCorporation, 114

MacKenan Drive, Cary, North Carolina 27511, or by phone

9~9.481 .4000.
Listing 2. The Control layer.
Objectsubclass: #.SystemLogonControl
instanceVaziableNaraes:‘interfaceuserNamepasswordmodel’
classVariableNames:”
poolDiciionaries:“

emdCaneel
“Command– The onlyttdng that happens here is tha
the application closes up and goes away.”

self intert%ceclose

cmrbgon
“Command– Theuser wants to log on. We’llgiveit

a by. If we succeed, then the application should close
up and go away.If we fail, then the interface should
confront the user with the problem.”

(self modelvefiPassword: self passwordforUse~self userName)
iffnre: [self interface close]
iffalse: [self inten%cenotifyInvafid]

intelfaee
“Answertbe object which implementsthe interface
layer for this application.”

“ interface

intmfacet anObjact
“Setthe object which implements the interkrce
layer for this application.”

interface:= anObject
model
“Answerthe domain model (ie. the guywho larows
about accounts, passwordsand logon verification).”

Amodel

nzodek aSystemLogor@Ianager
“Recordthe object I can ask to verifylogon requests.”

model:= asystembgonl.tanager

pssswurd
“Answerthe password.If it’s nil, it should
default to an empty String.”

passwordisNiliffzue: [password:= “].
“ password

password: aStdng
“Set the passwordused to verifyuser logon,”

password:= aS&ing

uaerName
“lmswerthe userName.If it’s nil, it should
defiult to an empty String.”

userNameisNilifl’rrre:[userNarne:=”].
AuserNanre

userNaznw astring
“Set the account name of the user loggin on.”

userName:= ashiag
THE SMALLTALKREPORT

V

MALLTALK IDIOMS Kent Beck

Why study Smalltalk idioms?
-)2
My dictionary defines an idiom as “a phrase whose

meaning cannot be predicted from its words.”

While learning Smalltalk (a task that continues

daily) I have often been puzzled by a fragment of code, Only

upon reflection do I understand the author’s intent. About

a year ago I began collecting examples of idioms I en-

countered, and asked my friends to tell me about ones they

found. This article is an introduction to the material I have

collected.

Many programmers new to Smallralk spend most of their

time just reading cade. Studying idioms can accelerate this

process. Knowing what to expect, or at least having some-

where to turn when you are baffled by a piece of code, is im-

portant to new Smalltalkers.

Another meaning for idiom is “a style of speaking of a group

of people.” As with spoken language, Smalkalk has several di-

alects. The two most prominent are the Digitalk and Parc-

Place dialects. There were also two distinct Tektronix di-

alects, easily distinguished from one another. Xerox Special

Information Systems (the Analyst folks) also had their own

distinctive style. New offshoots arise anywhere Smalltalk has

taken root for several years.

Being conscious of the collective idiom of a body of code

can also help more advanced programmers. Code that ad-

heres to a shared idiom is easier to maintain, as there are

fewer gratuitous surprises for new readers. Idioms also speed

development through a kind of pattern-matching process.

Once you have identified a circumstance in which an idiom

is applicable, coding proceeds much faster than if you always

have to invent new mechanisms from scratch. Standing on

the brink of a new column, I look forward to exploring the

range of idioms available to Smalltalk programmers. From

time to time I’ll be joined by prominent Smalltalkers who

will describe the ir favorite idioms. We will also explore

the subtle differences between the Digitalk and the

ParcPlace schools.

This column will present idioms at many levels of com-

plexity and scope, Rather than present all 50 or so of the

idioms I have identified so far, I have chosen a smattering

to get things going. The first few are small in scale and

likely to trip up programmers new to Smalltalk, The con-

cluding design idioms are more likely to interest more

advanced programmers.
OL. 1, NO. 7: MAY] 992
COND1TIONALS AS EXPRESS1ONS

In most procedural languages, conditional statements do not

return values. In Smallralk, however, the result of sending

~~~alse: to the Boolean “me”, for example, is the value of

the last expression in the block which is the first argument.

Th[s fact can be used to advantage to simplify some methods

ecmsiderably. While you could write:

I result I
foo isNil

ifl’rue: [result:= 5]
iFFalse:[result:= 7].

‘result

It is shorter (and, after you get used to it, easier) to write:

j result I
result:= foo isllil

ifl’rue: [5]
ifFalse: [7].

“result

Once you’ve gone that far, you can get rid of the temporary

vatiable entirely and simply write:

‘foo isNil
ifl’rue:[5]
ifFalse [7]

and: AND or: VERSUS & AND I

There are two methods each for conjunction and disjunction

in %nzdkalk. and and &both return true only if both the re-

ceiver and the argument are true, and or and I both return

true if either the receiver or the argument are true. The differ-

ence is that the keyword versions (and: and OK) take a block as

an argument rather than a Boolean. The block is evaluated

only if the result of the message is not determined by the re-

ceiver. For instance, you should use the keyword version of

conjunction if evaluating the argument would cause an error if

the receiver was false. For instance, if you wrote:

tiay size>= 10 & (en&ray ak 10) isNil

you would get an error if amhray held less than ten elements.

In this case you would use the keyword version.

arArray size>= 10 and: [(anArray ah 10) isNil]
Ad.



H SMALLTALK IDIOMS

24.
This way the ak message is not sent if ankray is too small.

The Objectworks\ Smalltalk release 4 image uses oc to deter-

mine if operating system resources (such as pixmaps) that do

not survive over snapshots need to be reinitialized. It is com-

mon to see code like this:

(-p fil ofi ~tip isopen not]) iflhw -p:= Pizmapextent...

The other reason to use the keyword versions is for opti-

mization. If the second part of a conjunction is expensive and

the receiver is often false, using and: instead of& can result in

a considerable savings. Why would anyone ever use the binary

message versions of conjunction and disjunction? Style, baby.

The keyword versions often introduce extra parentheses (as in

the pixmap example above). They use far more characters.

And since they are a little unusual, they require a moment of

thought every time you encounter them.

DEFAULT PARAMETERS

Many programming languages provide the ability to not spec-

ify certain parameters for a procedure call and have them set

to a default value. Smallmlk provides this facility through a

programming idiom. A displayable object, for instance, might

implement a message display as follows:

display
self displaytlr Display

which in turn is implemented as:

disp@Chs:aDisplayMedium
self displayom aDisplayMediumat: O@O

and so on, until all the parameten needed to display the object

have been collected. As the user of this object, you can specify

as many or as few parameters as you need to get the job done.

The downside of implementing default parameters this way

is the combinatorial explosion in the number of methods that

can result. If you are creating default parameters for a method

that has five parameters you could potentially create 5! = 120

different methods. If you write all the possible combinations

you obscure the purpose of the original method. If you don’t

write them all, you run the risk of not providing the combina-

tion that someone needs.

A common idiom for organizing default parameters is to

choose a priority order. Create one method that defaults the

most important parameter, another which specifies that pa-

rameter but defaults the next most important, and so on until

you specify all parameters. In the example above, the destina-

tion for display is the most important parameter and the loca-

tion, the next most important. This approach limits the num-

ber of methods, but ensures that the most commonly used

combinations are available.

ABSTRACT SUPERCLASSES

Some classes are not meant to be instantiated. They exist only

as repositories for interesting related bits of behavior. The
most powerfld of these abstract superclasses reduce a set of re-

lated messages to one or two methods that each concrete sub-

class is required to implemenr. Both Smalltalks provide Coll~c-

tion as a good example. If you create a subclass of collection,

you need only implement do: You get the rest of the enumera-

tion methods without futther effort.

Identifying candidates for absmaction is not easy. I got the

following strategy for using this idiom from Ken Auer of

Knowledge Systems If reusability is ever going to be an issue

for a class divide it into two parts at the beginning an abstract

part that contains only methods, and few or no variables, and

a concrete part that holds the state necessary to actually com-

pute. The example he used had an abstract ~aau~ent

and a concrete Bond. As you go along, only allow state to move

into the superclass if you can’t reasonably put it in the sub-

class. By pushing implementation decisions (state) down to

the concrete class, you have a better chance of finding what is

truly common to the implementation of all such objects by

examining what is left in the abstract superclass.

Another strategy for finding abstract superclasses comes

from Ward Cunningham. He suggests beginning an imple-

mentation without using inheritance at all. Only when you

get tired of manually copying and pasting methods from one

class to another do you factor their commonality into a super-

class for both. This strategy has the advantage that it identi-

fies commonality from concrete examples. The best use of

inheritance for code sharing is often not apparent until far

into the design.

VALUES MASQUERADING AS OBJECTS

One of the glories of objects is the ease with which they can be

passed around. But this easy mobility can become a nightmare

if you have passed off an obj ect and it begins to change with-

out your knowledge. There is a suite of idioms for dealing with

these aliasing problems. The one described here is the simplest,

but it can have the greatest performance impact. If once you

have created an object you never change its state you cannot

possibly have aliasing. I call objects used in this way “values”

because of their similarity to numbers. In fact, numbets in

Smalltalk are implemented in just this way. If you have the ob-

ject 10 and you add 5 to it, you don’t change 10, you get a new

object, 15, instead. You don’t have to worry about giving away

your 10 artd having it turn into a 15 behind your back.

Points and Rectangles are implemented much the same way.

After you have created a Point with Numbe~>@ all other opera-

tions (+, “, tiandateBy ) return new Points. Unforrumtely, Points

can have their coordinates changed directly via x: and y and

Retigles also offer methods for directly changing their values.

The simplicity of value objects comes at a price. Their in-

discriminate use can result in excessive memory allocation. If

you must side-effect an otherwise functional object, do so only

with a freshly allocated one in a small, well-defined scope

(preferably a single method). As with all optimization, pillag-

ing a value object for speed should only be done when the
THE SWTALK REPORT



performance of the finished applications is a problem for real

users, never on mere speculation.

CONCLUS1ON

A good grasp of Smalltalk’s many idioms can speed assimila-

tion of the language and its class libraries, improve the pro-

ductivity of new development, and accelerate understanding

of legacy code. This article has only scratched the surface of

known Smalltalk idioms, all of which were present in

Smalltalk-80 as it escaped from Xerox. The dispersion of
VOL. 1,NO. 7: MAY1992
Smalltalk will fuel the growth of many new idioms.

I am still collecting idioms. If you identify one you would

like to share, contact me. H

Kent Beck hus been discovering Stnallt.dk idiomsfor eightyearsat
Tektronix, Apple Computer, and MaWars Computer. He k also the

@-&r OJFirst Clam Software, which deuelopsand distribu~s re-

engineting products for .%n&dk. He can be Teachedat P.O. Box

226, Bor.dderCreek, CA 95006 or kentb%aspm.com.
Product Announcements are not reviews. Tky are abstracted from press relaxes prouidzd by uendors, and m endorsementis implied.
Vendors interested in being inchuiedin thisfeatwe should send press releases to mr edirmiaf ofies, Product Announcements Dept.,

91 Second Awe., Ottawa, Ontmio KIS 2H4, Carwda.
Ob~ectTechnology International Inc., (OTI) hasannouncedama-
jor developmentagreementwith International Business Machines Corpo-

ration. The new agreement wish IBM’s Applications Business Systems

(ABS) will enhance the use of graphical user intert%ces and objects in ap-

plication dwelopment

AB5 will work with OTI, a leading objecr-oriented developer, co cm

ate an object-orlenced environment for dweloping coopemmive applica-

tions. OTI till combine she object-oriented ENVY/Developer technology

with AS/400 cooperawe processing support to provide a client-sewer ap-

plication development environment for Smalltalk/V progmmmers.

SmallralkfV is an object-oriented development language provided by

AD/Cycle International Alliance Member Digiralk Inc.

This new development agreement is intended to enhance the capabili-

ties or AS/400 programmers using graphical user interfaces, cooperative

programming and object-oriented progmmmirsg.

For more iqhrsa contact Object Tadmobgy Intsrnm”orsdInc, 17S5 Woodwwd Drive
Oitmva,Omario,C9mJd4 K2C 0P9; (6 /3) 2Z&3535.

ExperTelll~encehasannouncedanewversionof icsindigent interac-
tivegraphical application development syetem Actlonl for version 1.3 of

Digitalk’s’ SmalltalkfV PM.

The new veraion extends Action! VI .2. It adds new CUA 9 I objects

like the Spin Button and the Slider. It also gives more control m developers

with the powerful Pmpetias Ed~r and Coordinate windows. Finally, it al-

lows intarbce compatibility with the Macintosh Lisp versions of ActSon!

Using Action!, an interface developad in Macintosh common Lisp or

Procyon common Lisp on a Macincosh can be in.smn=naously ported to

an Intel board machine running Smalltdk/V PM.

Acdon! V 1.3 for Smalltalk/V PM is now available directly from Ex-

perTelligence.

I% morein~ukm, contact EsperTeliiience k, 5638 Hoflister Avenue, Suite 302, Go-

Ieto, C4 93/ 17; (805)967-1 797.

Digftalk Inc., the developer of the SmalltallcfV object-oriented program-

ming syxtam and a member of she IBM International Alliance for AD/Cycle,

today announced the acquisition of Irtatantlationa Inc. Instantiauons

provides a wide range of services to Fortune 500 companies that are de-

veloping applications using Smahlk object-oriented technology.

Instantiation, led by objets technology vetetan Michael Taylor, is com-
posed of some of the industry’s leading object technology experts.

Principal among these are Allen Wh%-Brock, a well-known Smalltalk

expen and Rebecca Wirfs-Bmc~ noted author and o~ect-orienred

design methodologist

For fumher in@rnti, conumDigitalkInc. 9.94 I AirporI kwlevaml, h Angel= (24

90045; (3fO) 645-10.92.

Digltalk Inc. has announced that it is developing a 32-bti version of its

SmalkalkN development environment for UNIX to be delivered by year-

end. The first platform for the company’s new UNIX technology will be

IBM’s RSkOOO RISC (Reduced Instruction Set Chip) machine which runs

AIX, IBMs veraion of UNIX.

The new UNIX vemion of Smalltalk/V is abased on Digitalk’s 32-bit

SmalltalldV technology for 0S/2 2.0. Developers can develop rheir applica-

tions on either Smalltalk/V for 0S/2 or Smalltalk/V for Windows, and

these applications wIII run unmodified on the new UNIX release.

For more infbrnmth, comad Oi@lk Inc, 984 / Airport Boulevard, lc.s Angel=, IX 90045;

(30/) 645-1002.

ObjectTechnology International Inc.hasannouncedtheimmediate
availabilityof itsobjec~-orientedproductdevelopmentenvironment
ENVY/Developer R1.30,for Smalkalk/V PM V 1.3 and Smalltalk/V

Windows V1.1,

This product provides a powerful concurrent sot%ware engineering en-

vironment for systems and applications development Team supporL ver-

sion control and configuration management are seamlessly integrated with

5malltalWV’s programming environment

Release 1.30 includes ENVY/Packager, OTI’S tool for delivering small,

standalone Srnalltalk applications. Developem are provided with fine-

grained control over the inclusion and placement of ob@ts included in

the final produ-

This new release suppotts two Smalltalk language implementations

Smallcalk/V Windows V 1.I for Windows 3.0 and SmalkalkJV PM V 1.3 for

0S/2. Supported networks include Novell NetWare, LAN Setver and

IAN Manager. Configumtions are available fmm three-usersystemsupto
siteor specialcorpmatalicenses.

For@ther inforrnm”oncontactObjed Terhno.bgy Intemm”ormlhc, 1785 Woodwwd
Drive,Otcowa,Ontario,CanadaK2COP9;(613) 228-3535.
25.



26,
Excerpts from industry publications

—

n

,. .Changingthewayyou developsoftwareisa nontrivialdecision.
You are not goingto takeseasonedR3RTIUN or C progmmmers

and turn them inro Smalltzdk winrds overnight You are likely, how-

ever, to find one or more programmersin your development group

who are highly interested in object technology. These self-motivated,

early adoptm are good candidates for a core transition team within

your development group. Buttheymustbegiventraininginobject-
orientedanalysisanddesignaswellasSmalltalkprogramming.(impor-
tant tip A Smalkalk programmer with a structured, procedumlmind-
setisnot reallya Smalltalkprogrammer)...

Techno/owSmoholk speaks to users”needs,Jim Salmons ond Tim&rr

Bobirsk~ OPEN SVSTEMSTODAY,2//7192

. . .Practical studies based on tisnction point analysis show thar a 4GL

solution to a typical problem is 50% simpler than 3GL solution, but

only 15% simpler than an 00PL solution. This is probably because

the 00PL’s user-defined types are counted, while those built into the

4GL arena The size and complexity of a 4GL solution grows incre-

mentally with the system. With an 00P~ you just add componen~

to meet each new challenge. Fourth-generation and other specialized

languages will stick around, if only for cultural r-ens (most of t-

day’s programmers cut their teeth on rhem). The world is unlikely to

rally around a single 00PL. Technical and financial developers use
C++. MIS shops prefer Smalldk or are waiting for object-oriented

Cobol. Ironically, objem-oriented 4Gf_s now accompany some 00

daiabases to help them integrate objects from multiple 00PLs.

So@ore & S@ems Fourth generotiin heydoy ot on end,

Gtsig Hubky, ComwTr~G CANALS42// 7192

. . .At press time [Sequent’s Larry] Evans didn’t want to elaborate on

Ptx/Object, but according to documents obtained by UNIX

WORLD, the product will combine a parallel version of the Parc-

Place Objectworks/Smalltalk development environment and a parsl-

Iel implementation of Versant Object Technology Corp.’s object

database management system. This will enable users to tap informa-

tion from legacy systems and convert it to objects . . .

Because the object-oriented market is in its infancy, PdObject

won’t generate any short-term income. As the object-oriented mar-

ket becomes more mature, however, Sequent’s early entrance will

help it, say analyses...

Sequent’ssoflware cure, Gmy Andrew Poofe,UNIX WOSSLO,3/92

. . . But we [Microsoft] also expected (and predicted) that “OOP”

would become a vendor buzzword long before great 00P solutions

were generally available. Our concern was to ensure thar the press

did not treat 00P m an end in itself, but merely as a means: to

make sokware easier to design and maintain for developers; to

make applications easier to use and more functional for end users. If

00P does not provide these benefi=, then it remains only an

acronym, not a solution,, ,.Our concerns about 00P being over-

sold, however, remain. Objem-oriented tools and systems are the

most sophisticated and complicated of any software products ever

built Object orientation is not something that can be tacked onto
an existing system it must be designed in. k is very difficuk to do

right, technically. And the focus must always remain on providing

real value to the consumer...

Object insider Bill Gates, OSYECT~-lN~ 34/92

. . .There is a creative tension building in the compmer industry be-

tween the Wvay we used to do it” and the “way we should do it” Ob-

ject technology is causing this rension, as the vision of the way we

should do it clashes with current reality, There is only one way co re-

solve this tension we find ourselves in either pull che vision of object

technology towards reality, or pull realisy toward the vision,,.

Object Request BmkerAe end of the beginning

his Stone, OsiIEcr ~GAZIN~ 34/92

,. .In the longer term, it will be up to content specialists to define

the basic services that classes should provide in a way that makes

them more independent of their implementation context...

,, .In addition tD warranties and certification processes, I believe

that class vendors should provide testing facilities wkh every class

shey ship. Ideally, these t%cilities would include a complece test bed for

automatically sending a till range of messages to the class and check-

ing the correctness of its responses. Providing developers with these

testing tools would allow them to double check the performance of

any class. More importantly, ir would help them assure that any modi-

fications or subclassing they performed had noc violated the ba4c

functionality of the class,..

. . .Ultimately, the solution to compensating class creators will be

determined by market forces, which ususfly have a way of defyfng the

most well-intentioned attempts at prediction . . .

Easing into objects developingthe objecscomponentsindustry,

fhvid A. Toy/or, OeIECT AIAWINC 34192

. . .The changing nature of systems, however, including a move to dis-

tributed development and deployment, the increased use of graphical

user intert%ces, improvements in language and environment technol-

ogy, and widespread availabili~ of classes and libraries, will speed the

adoption of object-oriented programming languages. kmge systems

of the future will evolve on a project or functional basis rather than

as multi-year phased systems. As the worfd migrates to reusable

components and the development of organic systems, small methods

willonceagaindominate.A methodlikeIE, based on the mainh-ame-

centric master enterprise model view of the world, will ultimately

collapse under irs own weight. When objectified versions appear,

view them with caution, and ask if the problems they are solving will

be relevant to you by the time you complete your enterprise model.

Methodology olsje@ed iflormodon engineerin~e method time bomb?,

Adrion Bowks, OIWECTMAGAZSNE 3-4192

. . .Relational vendors believe that by extending the capabilities of

their database servers, or the capabilities of some front-end tools,

many of the benefits of object technology can be achieved without
THE SMALLTALKREPORT



adopting a new database model. Sybese’s ~P of marketing, Stewart]

Schuster referred to object technology as a “natural extension”

mther than a “fundamental paradigm shift” [Mary] Loomis ~ of

technology for Versent Object Technology] noted that RDBMSes

have stored procedures and BLOBS, but claimed that was not ade-

quate, “They are beby steps: Loomis said. “Some RDBf’lSes have

stored procedures which begin to put some actions in the databases,

but they’re in a very [limited] way. They really don’t couple the data

with the action.Object datebasesare muchmore thanBLOBS.

SPARCdatabases square OR Barry D. 8owen,

OPEN SrsrEMS TOSSArj2117192

. . .According to the January/February 1992 issue of PC Al, the value

of the relational database market in 1980 was $2 million, but in 1990

it was $2,5 billion. Similarly, the value of the objeti-oriented market

today is $10 million. By 1995, PC Al estimates the value will sky-

rocket to $235 mill ion...

Quick statistics,COMPLSTOREOGIZ 217192

. . ,Now they’re scrambling to recreate their [CASEl programs to write

software for desktop machines and local area networks. Many of the

big mainftame CASE vendom, including IBM, Texes Instruments Inc.,

end Andersen Consultin& are already coming out with new products

for shese markets.. .Otherwise, there will be a reeppotioning of IS

dollam in favor of smaller CASE vendors.. .Such as object-oriented

programming environments. AT&T, for insiance, is using an objects-k

ented CASE program celled Teamwork from Cadre Technologies Inc.

of Providence, RI, to build a piece of its 9 I I service. The object-ori-

ermed technology combined with CASE progmmming cepabiliiies, says

AT&T systems engineer Michael Kmss, lets the company write code

that can be easily reused and mainrainetl+mlike traditional CASE...

The case against CASE, Robert MotarI,

INFORMATIONWEEK, 2/ 17192

. . ,[Sun Microsystems R,G.G.] Catcell made a couple of observations

on choosing among the available object datebases: “For the object

database in question, look at the power of the query languages for

associative retrieval or queries across sets of objects. Second, how

well are they integmted with a programming language?” In some ar-

eas, the differences among commercial offerings are minor. “Based

on the [Cattell] benchmarks, there is not much difference in perfor-

mance among the object databases. Fumher more, the size of the
benchmark datebase is not important There is no storege-require-

ment penalty.” He said he would choose a database largely on the

basis of the company and its stabili~. “The technical differences are

small.” What about writing your own? “1 would lean toward buying,”

Cattell said. “You can always build something faster relative to what

you can get off she shelf, but the petiormance of the commercial ob-

ject databases is quite impressive.”

Guidelinesfbr choosingthe best database technology,

Robert H. Bhssnter,ELEmONIC ENGINEEMNGTurn, 2// 7192

. ..[Gartner Group’s David Stein]’’Object technology is probably the

most significant development in software technology in 40 years. Like

all major baseline technology shifts, this one won’t be felt immediately,

but over a I o-year period. A massive amount of development has to

be done, but cl-k is so fir-reaching in its effects that it will impact lit-

erally everything that’s being done wish software. You now have the
VOL. 1, NO. 7: i%lY 1992
ability to stendardlze, end that changes the economics of software

development which is where the big bucks are spent,, .“

[Merrill Lynch & CO.% Anthony Pizi]’’...Mukimedia is the future

for ttaining. k allows people to learn at their own pace. This technol-

ogy is very good for training people in a standardized way. A firm’s

staff might be spread out among five different fices, but they can all

use the same ttaining progmm. Investment bankers might use multi-

media to give a presentation to a client and make changes on the fly.

But one of the biggest problems is portabili~. You need either

tremendous amounts of memory or a U-haul to lug all the hardware

like CD player, CPU and monitor. Live video is on its way, but any

time you incorporate video and sound, huge files are created, which

have to be compressed. More “affordable” boards are coming out so

end users don’t have to worry about losing any date.. .“

[Andersen Consulting—Financial Markets Industry Group’s

Robem Gach]”.. .Rule-based processing and object-oriented devel-

opment are technologies that firms on the Street could use to steer

clear of large applications, which have millions of lines of code and

don’t lend themselves to flexible new product development. Ob-

ject-oriented technology and maximizing code reusability-changing

something, copying it or adding a variant-as opposed to starting

from sctatch, would save the Street a lot of development costs and

time. Applications would get to ttaders faster if progmmmers could

reuse packets of logic that are two to three commands long. Appli-

cations with only 30% to 40% of the code are easier to mainciin,

document, understand and fix. In addition, by using both these

technologies, programmers stay in the end user’s world and define

systems from a business standpoint,. .“

Has technologiesfir the 1990s, Ann Goodman and

Jenna Michaels, WAU STREfi & TECHNOLOGY2192

. . .[Computer Associates” Dominique labordel’’The industry is

beginning to pay attention to objem-oriented progmmming..,

IBM does not have any products in this categoy but needs to say

something about an object-oriented DBMS. So the company pub-

lished a broad list of specifications. R@ now, those specifications

are not mature enough for us or anyone else to support.”...

Data accesssalutian now has IBM road mop,

Paul Kotzeniowski, SOFIWAnE fiGAZINE 2192

. ..The constant reftain heard among the audience [at PC Forum]

was this: We shouldn’t talk about objects because nobody agrees

what they are, users don’t see them, and nobody really has them.

The notion was that objects are sort of the industry’s dirty laundry,

so they really shouldn’t be hung out in decent company . . .We dis-

agree. Objects should not be swept under the rug. We know that

the notions of object orientation have been around the industry

since the early 1970s. But we believe that the technology infrastruc-

ture is only now becoming sufficiently powerful and sophisticated so

those notions can be implemented in everyday systems. And we

chink that development will change everything about computing for

our readers. And we mean eve~hing, including what skills you need

to be successful, what kind of producm you should invest in, the

methods you use to evaluate those products, the expectations you

have (and set for your management) about how fast you can imple-

ment new applications, and the approaches you choose 10 adopt in

designing your systems.. .A key benefit of object-based systems, for

instance, should be to move the locus of responsibility for applying

technology from the vendor.. .to the customer...

Editorial: O@c&aiented technologyneeds to be threshed aut,

Stewo~ Akop, INFOWORLO,312192
77
‘%/

—.— . . . .



wlNDowsANDos/2:
PRm En)DELIVERY
NowmGohWindows and 0S/2, you need prototypes You have to get a sense

for what an application is going to look like, and feel like, before you can write

it. And you can’t afford to throw the prototype away when you’re done.

With Smalltalldv you don’t.

Start with the prototype. There’s no development system you can buy

that lets you get a working model working faster than SmalltalWV

Then, incrementally, grow the prototype into a finished applica-

tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It’s

made for trial. And error You make changes, and test them, one at a time.

Safely. You get immediate feedback when you make a change. And you can’t

make changes that bmk the system, It’s that safe.
And when you’re done, whether you’re writing applications for

Windows or 0S/2, you’ll have a standalone application that runs on both.

Smalltal.k/V code is portable between the Windows and the 0S/2 versions.

And the resulting application carries no runtime charges. All for just

$499.95.

So take a look at

Smalltalk/V today. It’s time to make smaMdklvthatprcsto~ing time productive.

Smslltall@ is a registered tmdm-nsrk of Digitdk, IrIc.Other product names sm trsdema.rks or registered
tmdemmrlcsof their respective holders.
Digitslk, Inc., 9S41 Aiprt Blvd., k Angeles, CA 90045
(800) 92243255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO’5 TALKING

HEWLETT-PACKARD NCR

HPbas akus[opeda network tmuble- NCR baf an intigrahi tit pwgmm dsueJop-

sbooting too~ cal.kd the Network Advi.roz ment etzuitvnmzentfor digital, anubg and
The Network Advisor offs-n a comprsben- miw.d mode pn”ntad circuit board tating.

xivs set of tools including an expert Jystem,
stdfitics, andprotocol dscoh to speed MIDIJ%ND BANK

problem isokation. Tba NA us., interfaca is Midkmd Bank built a Windowed Zcbnical
built on a windowing syxtem which a[lowx Tma%g Environment for currstq futures
multiple applications to be uecuted and ~tock tmders using SmalltaIk V
simultaneously.

KEYmms
■ World’s leading, award-winnin g object-

oriented programming system

H Complete prototype-to-delivery system

■ Zero-cost runtime

■ Simplified application delivery for
creating .mm&lone executable (.EXE)
applications

■ Code portability between SmaUtalk/V
Windows and SmaUtalk/V PM

■ Wrappers for all Windows and 0S/2

controls

■ Support for new CUA 91 controls for
0S/2, including drag and tip, boolmib,
contairq value set, slider and more

■ %m.sparrnt support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) G&

■ Fully integrated programming environ-
ment, including interactive debu~,
source code browsers (all source code
included), world’s most extensive WirI-
dows and 0S/2 class libraries, tutorial
(printed and on disk), extensive samples

■ Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

■ Broad base of thinl-party support,
including add-on SmaIltalk/V products,
consulting services, books, user groups

This Snudlmlk/V Windows application
captured the PC Welt Shootout award —and
it wss completed in 6 hours.

SmslltslldV PM applimtions are used to
&elop state-of-the-srt CUA-compliant
appficstions —and they’re pm-table to
SmaUtslk/V Windows.


	By Article Title
	Class Instance variables for Smalltalk/V
	Implementation of OS/2 Multi-threading Support in Smalltalk\V PM
	More frequently asked questions
	Separating the GUI from the application
	SmallDraw--release 4 Graphics and MVC, part 1
	Why study Smalltalk Idioms?

	By Author Name
	Barbour, Doug
	Beck, Kent
	Benson, Dan
	Ewing, Juanita
	Hendley, Greg
	Knight, Alan
	Smith, Eric

	By Topic
	comp.lang.smalltalk
	Getting Real
	GUIs
	Smalltalk Idioms


