The Smalitalk Report

The International Newsletter for Smalltalk Programmers

May 1992

Volume | Number 7

IMPLEMENTATION

0F 0572

MULTIfTHREADI_NG
SUPPORTIN

SMALLTALK/V PM

By Doug Barbour

Contents:

Features/Articles

| Implementation of OS/2 Multi-threading
Support in Smalltalil/V PM
by Doug Barbour

7 SmallDraw—Release 4 Graphics and
MVC, Part |
by Dan Benson

Columns

13 Getting Real: Class Instance variables for
Smalltali/V
by Juanita Ewing
| 16 The Best of Comp.Lang.Smalktallc More
frequently asked questions
by Alan Knight
| 19 GUIs: Separating the GUI from the
| application
by Greg Hendley and Eric Smith
23 Smalftalk Idioms: Why study Smalitalk
idioms?
by Kent Beck

i Departments
25 Product Announcements
| 26 What They’re Saying About Smalltalk

mallralk/V PM (hereafter referred to as VPM) is an excellent OS/2 applica-
trion development environment that provides most of the needed facilities
(especially in release 1.3). When combined with a third-party window edit-
ing product, such as WindowBuilder from Cooper and Peters, applications
can be created easily without the OS/2 Toolkit. In a multitasking system such as QOS/2,
however, complex applicarions frequently need to execute multiple tasks concurrently us-
ing system facilities. This article explores the implementation of VPM and discusses how
the non-Smalltalk parts of an application can communicate with the Smallcalk parts, even

when the non-Smalltalk parts are running in their own threads.

INTERFACING VPM TO OTHER PRODUCTS

One common requirement is an interface between application programming interfaces
(APIs) provided by third parties and the VPM enviroment. Typically, these APlLs are
packaged as one ur more dynamic link libraries. The most obvious way to provide the in-
rerface is to follow the VPM developer's guide and create a subclass of DynamicLinkLibrary
(DLL). While this works for DLL calls that recurn control rapidly, it fails when control is
kept for any length of time. The effect of this failure is to “hang” the workstation until the
DLL call rerurns. To see this for yourself, evaluate che following with “Do it”:

DosLibrary sleep: 10000

This will cause your entire workstation ro hang for the 10 seconds it takes DosSleep to
return control. Clearly, if you can't guarantee the DLL call will retum control quickly, an-
other implementation must be found. This causes particular problems for communications
packages, since the time it takes to return conrrol depends on the network and the partner
program! In fact, all of the research for this article was done while developing an APPC
interface for VI'M,

SOLVING THE INTEREFACING PROBIHM

To an OS/2 C programmer, the solution to this problem would he simple: Create another
thread of execurtion, and ler it wair for the response from the DLL call. In the VPM envi-
ronment, however, life is a little more complicated since it does not support OS/2 threads
directly. An additional OS/2 thread is the best way to solve this problem. The only thing
to be worked out is the means of communicating berween VPM and the thread. OS/2 pro-
vides many ways to accomplish multi-thread communication, using PM messages is the
easiest and raost robust way because PM messages are already used extensively in VPM. To
understand how to do this, some background informartion is needed.

VEMOIMPLEMEN TA L ION

VPM provides support for multitasking via the Process, ProcessScheduler, and Semaphore
classes. As long as all of the sub-tasks of the application are strictly Smallealk code, this
method works quite well. Most VPM application developers don’t care if this multipro-
cessing is simulated and does not acrually use OS/2's thread capability. This fact becomes

comtiaed on page 3.

EDITORS’
CORNER

John Pugh Paul White

n the olden days, one of Smalltalk’s most notarious drawbacks was its inflexibility with respect to in-
terfacing with software developed in other languages. Application Program Interfaces (APIs) offer a
solution to this problem, allowing developers to interface easily with existing DLLs, regardless of the
language in which they were developed. However, as Doug Barbour points out in our lead article this
month, it is still not a perfect solution. If Smallralk is using a single thread processor, it in effect
locks up while waiting for a retumn from an API call. Doug describes a technique for using existing
PM messages to let Smallralk/V PM communicate with OS/2 threads, thus providing Smalltalk pro-
grammers with more control over their applicarions’ behavior.

This month marks the debut of a series of articles on Objectworks\Smalltalk by Dan Benson
from the University of Washington. In Release 4, ParcPlace made many fundamental changes to
the architecture of the graphics and user interface classes. As David Liebs and Kenny Rubin, de-
scribed in last month's issue, the changes were necessary and overdue. Unfortunately, the in-depth
explanations and good examples needed for programmers to comprehend the changes were sadly
lacking. Over the coming months, Dan will develop a simple graphics application he calls Small-
Draw. His first article introduces graphics concepts and application construction with the MVC ar-
chitecture chrough the definition of a “minimal” SmallDraw. This simplified version demonstrates
interacrive creation of geometric shapes and display of graphics. Future articles will extend the
functionality of SmallDraw by adding selection, translation, scaling, alignment (using a
DialogView), and grouping of objects; vertical and horizontal scrolling of the view; a cut/copy/paste
clipboard; and support for command keys.

It is our pleasure to welcome another well-known Smalltalk guru, Kent Beck, to the ranks of
SMALLTALK REPORT columnists. Kent has been involved in many successful Smalltalk projects and
is the co-inventor, with Ward Cunningham, of the popular Class-Responsibility-Collaborator
(CRC) methodology for kick-starting the design of object-oriented systems. Kent’s column will
identify Smalltalk idioms: the “coding pattems” or "mechanisms” used frequently by experienced
Smalltalk programmers in well-defined situations, but seldom written down or explained anywhere.
If you have ever looked at existing Smalltalk code and wondered, Why is it done this way? Kent
may have the answer-

Experienced Smallralk programmers are well aware of the virtues of separating the model from
the user interface when developing GUI applications. In this month’s GUI column Greg Hendley
and Eric Smith propose using a three-layer approach (Interface-Control-Model, or ICM) that fur-
ther separates the Ul component into an interface layer and a control layer. Simplistically, you can
think of the interface layer as the code that would normally be generated by a window builder, and
the control layer as the code that would respond to user interface interactions. Why separate inter-
face from control? As Greg and Eric point out, one compelling reason is the speed with which sys-
temns can be porred across different hosts. The interface component largely isolates the code specific
to the host GUI from the portable control component. As a result, only the interface component
need be ported. They illustrate the approach by building a simple log-on dialog.

In her last column, Juanita Ewing described the differences between class variables and class in-
stance variables, and lamented the fact that Smalltalk/V does not provide class instance variables.
This month, she provides an implementation of such a facility for /V. Finally, Alan Knight provides
us with his monthly round-up of the Smalltalk bulletin boards.

—The Editors

The Smallealk Repore (1ISSN= 1056-7976) is published 9 times a year, every month excepr for the Mar/Apr, July/Aug, and Nov/Dec combined issues.
Published by SIGS Fublications Group, 588 Broadway, New Yuork, NY 10012 (212)274-0640. © Copyright 1992 by SIGS Publications, Inc. All rights
reserved. Reproduction of this material by electronic transmission, Xerox or any other method will he mreated as a willful violation of the US Copyright
Law and is fladly prohibited. Material may be reproduced with express permission from the publishers. Mailed First Class. Subscription rates 1 year, (9
issues) Jomestic, 363, Foreign and Canada, $90. Single copy price, $8.00. POSTMASTER: Send address changes and subscription orders to: THE
SMALLTALK REPORT, Suhscriber Services, Depr. SML, I.O. Box 3000, Denville, NJ 078174. Submirt articles 1o the Editors at 91 Sccond Avenue,
Ottawa, Ontario K18 2H4, Canada.

THE SMALLTALK REPORT

ImageSeft

AM/ST defines Smalltalk /V applica-
tions as logical groupings of classes and
methods which can be managed in source
files independent of the Smalltalk /V
image. An application can be locked and
modified by one developer, enabling other
developers to browse the source code. The
source code control system manages multi-
ple revisions easily.

Coope

&LyBrand

TR e e The original and still premier
= W .
T U M— (| application manager for
;'nf_.::".'.'. * Smalltalk/V.™
AM = —

/ST, developed by the SofiPert | EaEriizts w = Rz B ChangeBrowser. As an additional
Lybrad, eabes he deveope o T § i Sl Windows, Chnge
manage large, complex, object-orient- i Jompia | P spplcoton 8 Browser supports browsing of the
ed applications. The AM/ST Appli- g [l Smalltalk/V change log file or any
cation Browser provides multiple . 4 file in Smalltalk / V chunk format.
views of a developer's application. — The addition of AM/ST o the

ImageSoft Family of software develop-
ment tools enhances and solidifies

ImageSoft’s position as — o
“The World’s Leading Publisher _'
of Object-Oriented Software kel
Development Tools.” WS

1-800/245-8840

ImageSeft

Publisher of Develapment Tools

i YL

All trademarks are the property of their ive owners, |

P

ageSoft, Inc., 2 Haven Avenue, Port Washingron, NY 11050 516/767-2233; Fax 516/767-9067, UUCP address: medhuplimagelinfo

continued from page I ...

critical, however, when interfacing VPM to other products
that will be called from a lower-level language such as C.

The first thing to undetstand is how VPM uses OS/2
threads. In VPM 1.3, two OS/2 threads execute when the en-
vironment is running: a Presentation Manager (PM) message
processing thread and a Smalltalk code executor thread. This
design is based on a PM requirement that an application re-
turn control to it quickly after processing a message. Since a
PM message might (and usually does) cause Smalltalk code to
be executed, this PM requirement could not be guaranteed us-
ing a single OS/2 thread.

In the two-thread implementation, a PM message is pro-
cessed by adding it to a global OrderedCollection named Cur-
rentEvents by the PM message processing thread. This thread
immediately returns control to PM, allowing other applica-
tions to process their PM messages. Some (typically very
short) time later, the Smalltalk code executor thread checks
the CurrentEvents collection to see if there are any messages.
If any are pending, they are routed to their respective win-
dow objects. Class NotificationManager performs this service
for the code executor thread. See its instance method #run
for more details.

Since PM messages are identified by a unique message
number, VPM must have a way to translate between message

numbers and method names. This translation is done by us-
ing two global objects, PMEvents and PMEventsExtra. PMEvents is
an array of symbols, indexed by PM message number. That
is, (PMEvents at: 7) contains the value #wmSize:with:. Seven is
the message number assigned to the WM_SIZE message by PM.
The PMEvents array is not large enough to map every possible

Swmata/V PM PM Non-Swartak
EnvinonvenT Threso
Arrucamion Cuass
WnPostMessaceQueue WnGerMsa
1
/ WnPaostMsa
NonrEr /
Winpow

Figure |. VPM communication with PM through additional OS/2 thread.

VoL. I, No. 7: MAy 1992

B O0S/2 MULTI-THREADING SUPPORT

Listing I. Creating OS/2 threads.
#define FUNCTYPE pascal far _loadds

#define VPMAPPC_THREAD_QUEUE 29503
#tdefine VPMAPPC_STOP_THREAD 29504

/* Function protoypes */

SHORT FUNCTYPE CreateThread(BYTE *stack, USHORT stackSize,
HWND hwnd);

VOID FUNCTYPE Thread();

/* Global variables */
PBYTE stkbot;

SHORT 1c;

TID threadID=0;
HWND notifyHwnd;
HAB hab;

HMQ hmg;

/* Individual Functions */

SHORT FUNCTYPE CreateThread(BYTE *stack, USHORT stackSize,
HWND hwnd)

(
notifyHwnd = hwnd;
stkbot = &stack[stackSize - 1];

rc = DosCreateThread((PFNTHREAD)Thread, &threadID, (VOID
FAR *)stkbot);

return(rc);

]

VOID FUNCTYPE Thread()

{
QMSG gmsg;
hab = WinInitialize(NULL); /* Initialize PM */

hmq = WinCreateMsgQueue(hab, 0); /* Create application
msq queue */

WinPostMsg(notifyHwnd, VPMAPPC_THREAD_QUEUE,
MPFROMLONG(hmq), OL);

WinGetMsg(hab, &qmsg, (HWND)NULL, 0, 0);
while(qmsg.msq != VPMAPPC_STOP_THREAD)
(

...code to process each message...

WinGetMsq(hab, &qmsg, (HWND)NULL, 0, 0);
}

WinDestroyMsgQueue(hmgq);
WinTerminate(hab);
)

Listing 2. The AppcDLL class.

DynamicLinkLibrary variableByteSubclass: #AppcDLL
classVariableNames: “
poolDictionaries: “ !

!AppcDLL methods !

createThread: stackAddress stackSize: stackSize notifyHwnd:
notifyHwnd
<api: ‘CREATETHREAD' ulong ushort handle ushort>
~self invalidArgument!

PM message. Due to memoty considerations, only about the
first 478 are mapped here. Any message numbers received
that are greater than the size of PMEvents are looked up in the
global Dictionary PMEventsExtra. The PM message number
(558, for example) is the key for this dictionary, and the
method name symbol is its value (#hmerror:with:). Once

the PM message has been mapped to a method name via
either PMEvents or PMEventsExtra, the PM message processing
thread sends a Smalltalk message to the appropriate window
object using the two arguments provided by PM. For more
details look at any of the #wm... instance methods in the
Window class.

EXTENSION OF THE VPM PM INTERFACE MODEL
The existing VPM message interface with PM is extended to
support communications with the additional thread. This
communication is carried out by having the thread create a
PM message queue and passing its handle to the VPM envi-
ronment. This handle is then used with the WinPostQueueMsg
PM call to post messages to the thread. One of the message
parameters should be the handle of the notifier window that
is to receive notification when the request is complete. The
thread performs whatever is requested, and posts a PM mes-
sage to the notifier window. See Figure 1 for a diagram of
this interaction.

The first issue to be addressed is the selection of message
numbets for communications with the thread. A consecutive
block of message numbers should be chosen for each applica-
tion, avoiding conflicts. Message numbers must be unique
within one VPM image. User-defined message numbers must
be greater than 4,096 to avoid conflicts with PM messages.
For the APPC interface, message numbers range from 29,500
to 29,505. Each message number must have an entry in
PMEventsExtra that specifies the method name associated with
it. For example, message number 29,501 is associated with che
#ypmAppcVerbDone:with: method. The message definitions used
in the APPC intetface are:

PMEventsExtra

THE SMALLTALK REPORT

Listing 3. Creating a subclass of auxiliary window to handle PM messages.

InvisibleNotifierWindow subclass:
#AppcNotifierWindow
instanceVariableNames:

‘vcbAddress threadQueue *
classVariableNames: “
poolDictionaries: “ !

!InvisibleNotifierWindow methods!

threadQueueEvent

Description:
A message has been received. Cause
the associated event to occur.

Role:

Private
Parameters:

none
Returns:

self

Aself event: #threadQueue!

verbDone

Description:
A message has been received. Cause
the associated event to occur.

Role:

Private
Parameters;

none
Returns:

self

~self event: #verbDone!

vpmAppcThreadGueue: mp1 with: mp2

Description:

A PM message has been received.
Remember the parameter values, add the
message to CurrentEvents, and return to PM
as soon as possible.

Role:
Private
Parameters:
mp1 - PMLong
first parameter from sender
mp2 - PMLong
second parameter from sender
Requires:
Instance Variables:
threadQueue

Returns:
self

'

threadQueue := mp1 deepCopy.

~self sendInputEvent:
#threadQueueEvent!

vpmAppcVerbDone: mp1 with: mp2

Description:

A PM message has been received.
Remember the parameter values, add the
message to CurrentEvents, and return to PM
as soon as possible.

Role:
Private
Parameters:
mp1l - PMLong
first parameter from sender
mp2 - PMLang
second parameter from sender
Requires:
Instance Variables:
vcbAddress
Returns:
self

vchAddress := mp1 deepCopy.
~self sendInputEvent:
#verbDone! !

Listing 4. An example of application class.

AsyncNotifier subclass: #AppcConversation
instanceVariableNames:

‘appclibrary notifierWindow threadStack threadQueue sem ’

classVariableNames: ”
poolDictionaries:

‘AppcReturnCodes AppcConstants CharacterConstants * !

!AppcConversation methods !
initialize

appclibrary := AppcDLL open.

4096

sem wait.

“Re-establish the main process as the receiver of PM messages

appcLibrary createThread: threadStack asParameter stackSize:
notifyHwnd: notifierWindow handle asParameter.

“Fork a process to receive messages from the thread”
[CurrentProcess makeUserIF. Notifier run] fork.

“Wait for the #vpmAppcThreadQueue:with: message”

CurrentProcess makeUserlF.!

threadQueue: anAppcNotifierWindow

notifiertWindow := (AppcNotifietWindow new open;
when: #threadQueue perform: #threadQueue: ;
when: #verbDone perform: #verbDone: ;
yourself).
sem := Semaphore new.
threadStack := PMAddress copyToNonSmalltalkMemory:
(ByteArray new: 4096).

“Remember the thread’s queue handle”
threadQuene := anAppcNotifiertWindow threadQueue.

“Signal the main process that the message has been received”
sem signal.

“Terminate the message receiver process”
Processor terminateActive.!

“Create the external thread”

VoL. 1, No. 7: May 1992

at: 29501 put: #vpmAppcVerbDone:with:;
at: 29503 put: #vpmAppcThreadQueue:with:.

To create an additional thread from the VPM environ-
ment, a DLL must be created to issue the DosCreateThread OS/2
call and to contain the code to be executed by the thread. In
Listing 1, the CreateThread function performs this action. Pa-
rameters to CreateThread are the stack area to be used by the
new thread, the size of the stack area, and the window handle
to be notified when the thread is created and ready for work.
The stack is passed to the thread from the VPM environment
to ensure that it is propetly freed after thread termination.
The code in the Thread function initializes PM and creates a
message queue. It then posts the VPM_APPC_THREAD_QUEUE mes-
sage to the AppcNotifierWindow instance, passing the queue han-
dle as a message parameter. The Thread function then loops
until a VPM_APPC_STOP_THREAD is received, processing mes-
sages. After each message is processed, a VPM_APPC_VERB_DONE
message is posted to the AppcNotifierWindow instance. After the
VPM_APPC_STOP_THREAD message is received, the Thread func-
tion stops looping and posts the VPM_APPC_THREAD_STOPPED
message, which allows us to be absolutely sure the thread has
stopped before freeing the stack area.

A subclass of DynamicLinkLibrary must be created to allow
the CreateThread function to be called. The AppeDIL class is
shown in Listing 2.

To communicate with the thread using PM messages, there
must be a PM window to receive them. Since this window will
not perform any other functions, it should not be visible. This
may be accomplished by making it a subclass of DDEAuxWindow.
To facilitate reuse, an abstract superclass named InvisibleNoti-
fierWindow has been created as a subclass of DDEAuxWindow. No-
tifier windows for various functions are subclasses of this class.
InvisibleNotifierWindow implements the same #when:perform: in-
terface as SubPane, allowing notifier windows to send messages
to their owners when important events occur. Listing 3 shows
some the of the methods defined for the AppcNotifiertWindow. As
you can see, there is a method corresponding to each PM mes-
sage number defined in PMEventsExtra. Companion methods
are also defined for each. The #vpmAppc... methods are exe-
cuted on behalf of the PM message processing thread. They
copy the message parameters to instance variables if necessary
and add the message event to CurrentEvents via the #sendInput-
Event: method. The return from a #vpmAppc... method causes
VPM to retum contrrol to PM, allowing other applications to
perform window operations.

A REAL EXAMPLE

Let's trace through a complete interaction sequence between
VPM and the thread. The interaction of interest is the thread
notifying VPM that is has created its message queue and pass-
ing the queue handle as a message parameter. This is imple-
mented in the initialize instance method of the AppcConversa-
tion class and is shown in Listing 4. Here are the steps:

® The instance of AppcDLL is created.

® The instance of AppcNotifierWindow is created and the
#threadQueue: event is registered.

e A VPM Semaphore instance is created to allow waiting
until the thread has been created.

® The thread’s stack area is allocated as an instance of
PMAddress.

® The thread is started by sending the #createThread:stack-
Size:notifyHwnd message to the AppeDLL instance.

¢ A VPM process is forked to wait for the thread to respond
with the VPM_APPC_THREAD_QUEUE message.

® The main VPM process waits for the semaphore to be sig-
naled, thus causing the application to wait without dis-
turbing PM operations.

® When the thread posts the VPM_APPC_THREAD_QUEUE mes-
sage, it is processed by the forked process, which causes the
AppcNotifierWindow instance to be sent a #vpmAppcThread-
Queue:with: message.

® The #vpmAppcThreadQuene:with: method makes a copy of
the thread queue passed by the thread, adds a #thread-
QueueEvent to CurrentEvents, and returns. At this point,
VPM returns control to PM to allow other applications to
petform windowing operations.

® The forked process removes the #threadQueueEvent
from CurrentEvents and sends it to the AppcNotifierWindow
instance.

® The #threadQueueEvent sends itself the #event: message with
#threadQueue as the argument.

® The AppcNotifierWindow instance sends the registered
method for the #threadQuene event (#threadQueue:) to the
owner (the AppcConversation instance) with itself as the
argument.

® The #threadQueue: method assigns the thread queue to an
instance variable and signals the semaphore. This allows
the waiting main process to continue.

® The forked process is terminated by the #threadQueueEvent
method.

SUMMARY

Using the concepts explored in this article, interfaces may be
written from VPM to any long-running application without
adversely affecting other applications running in the system. 3

Doug Barbour is an Information Systems Engineer at Duke Power
Company. He is also a partner at Barbour Enterprises, specializing in
custom interfaces to Smalltall/V PM as well as general purpose
classes. Doug may be reached at Barbour Enterprises, 1058 D. Kelly
Circle, Clover SC 29710, or by phone at 803.222.1363.

THE SMALLTALK REPORT

SMALLDRAW—

RELEASE 4

GRAPHICS AND
MVC

By Dan Benson

raphics often play a big role in Smalltalk applica-
tions, but it is also one of the more difficult areas
to grasp. This is particularly true of the current
version of Objectworks for Smalltalk-80 Release
4. Even experienced users familiar with version 2.5 can be just
as confused as newcomers to Smalltalk because ~f the major
changes in the way graphics is handled.

One reason for this confusion is the lack of adequate in-
depth explanations in the users’ manuals that come with
Objectworks. You will be pleased to know that this will soon
be remedied by new chapters scheduled for the next release
from ParcPlace. Another source of confusion is that there
are few examples from which to learn. This series will de-
scribe a simple graphics application that might be instructive
fot those trying to get a better grip on Release 4 graphics and
the MVC architecture.

What better way to experiment with rendering graphics
than to build a structured graphics editor? Commercial draw-
ing programs are now commonplace, and many are quite so-
phisticated. We’'ll borrow some ideas from these applications,
but will keep things simple. Since we’re using Smalltalk, let’s
call our application SmallDraw.

We'll start off with a “minimal” version of SmallDraw.
We'll limit its capabilities to adding new graphic objects to
the drawing and displaying them in a window. Additional fea-
tures and functionality will be developed in future articles.
The focus is primarily on tendering graphics on screen, so
SmallDraw won't include such functions as saving drawings to
files or printing to a printer.

GRAPHIC OBJECTS
SmallDraw is a structured graphics editor as opposed to a
bitmap editor. In other words, each figure drawn in the win-

dow is treated as a separate object. Bitmap editors, on the
other hand, work at the pixel level. We can think of the
main entity of the application as a “drawing” that contains
several graphic shapes. For simplicity, we’ll limit the set of
two-dimensional objects to: LineSegment, Rectangle, Poly-
line, Polygon, and Ellipse.

Each graphic object will have attributes that describe its
shape. For instance, a LineSegment can be described by a start
point and an end point, and a Polyline can be described by an
ordered set of points. All objects will have an inside color (or
none, in which case it will appear to be “hollow”), a border
colot, and a line width. A graphic object’s behavior should in-
clude methods for accessing and modifying its attributes and
for displaying itself at a given scale.

The following class hierarchy defines the graphic objects
used in SmallDraw. I've prefixed each class name with SD to
distinguish it as a SmallDraw object and to avoid any naming
conflicts when filed in to an image:

Object ()
SDGraphicObject (‘insideColor’ ‘borderColor’ ‘lineWidth')
SDLineSegment (‘start’ ‘end’)
SDPolyline (‘vertices’)
SDPolygon ()
SDQuadrangle ()
SDElipse ()

The common attributes of all graphic objects are collected
in the superclass SDGraphicObject. SDPolygon is identical to SD-
Polyline except its boundary is closed. Rather than use
Smalltalk’s Rectangle class, I defined a separate class with a
more general name, SDQuadrangle, which inherits from SDPoly-
gon, but is constrained to four vertices and 90 degree angles.
Representing a rectangle by an origin point and a corner point
assumes it is always aligned with the x-y axis. A more general
representation allows rectangles to be oriented at any angle.
I’ve defined SDEllipse as a subclass of SDQuadrangle more for con-
venience of representation than semantics since an ellipse can
be represented by its bounding rectangle and, except for dis-
play, it acts just like a quadrangle.

DISPLAYING GRAPHIC OBJECTS
In Release 4, graphics are displayed on two-dimensional
graphic media, all of which are subclasses of DisplaySurface.
With the three types of display surfaces (Window, Pixmap,
and Mask), there are two approaches one can take: display
graphics directly on-screen using a Window, or display graph-
ics off-screen using a Pixmap or Mask before final on-screen
presentation. Off-screen rendering can result in smoother
looking updates and eliminate “flashing,” but is a bit more in-
volved, so we'll stick with on-screen rendering for SmallDraw.
From an object-oriented point of view, it seems reasonable
to have the graphic objects display themselves since they
should know best how to do that. However, we should not ex-
pect these objects to know Bresenham’s line drawing algo-

VoL. 1, No. 7: May 1992

B SMALLDRAW—RELEASE 4 GRAPHICS AND MVC

rithm ot how to turn on a red pixel, etc. The object that deals
with these primitive operations is an instance of GraphicsCon-
text. Each instance of a display surface has its own graphics
context that keeps track of parameters such as line width,
color, font, clipping rectangle, etc. The graphics context ob-
ject acts as the intermediary between objects to be displayed
and display surfaces. It maintains its local origin for its display
surface and can display everything from images, to text, to ge-
ometric shapes.

The GraphicsContext instance methods for displaying geo-
metric shapes include line segments, polylines, filled polygons,
rectangular borders, filled rectangles, arcs, and wedges (filled
arcs). It is through these methods that the SmallDraw graphic
objects are able to display themselves. In SmallDraw, when an
object is asked to display itself, it is sent an instance of a
graphics context along with a Point that specifies the scale to
be used. Where applicable, each type of object draws its inte-
rior, if it has an inside color, and then its border, if it has a
border color. It will first tell the GraphicsContext what color to
use and then what shape to dr aw. SDPolygon, for instance, does
the following:

displayOn: aGraphicsContext scale: aScalePoint
I'pts |
pts := self vertices collect: [:p | p * aScalePoint].
self insideColor isNil
ifFalse: [aGraphicsContext
paint: self insideColor;
displayPolygon: pts].
self borderColor isNil
ifFalse; [aGraphicsContext
paint: self borderColor;
lineWidth: self lineWidth;
displayPolyline: pts]

Note that the displayPolygon: method displays a filled poly-
gon defined by the set of points, whereas the displayPolyline:
method displays only the boundary. GraphicsContext has similar
methods for circular shapes as seen in the display method for
SDEllipse:

displayOn: aGraphicsContext scale: aScalePoint
| bb |
bb := self boundingBox scaleBy: aScalePoint.

self insideColor isNil
ifFalse: [aGraphicsContext
paint: self insideColor;
displayWedgeBoundedBy: bb startAngle: 0
sweepAngle: 360 at: 0@0].
self borderColor isNil
ifFalse: [aGraphicsContext
paint: self borderColor;
lineWidth: self lineWidth;
displayArcBoundedBy: bb startAngle: 0
sweepAngle: 360 at: 0@0]

THE MVC ARCHITECTURE

Smalltalk applications are constructed using the Model-
View-Controller (MVC) architecture. A brief overview of
the MVC paradigm will help in putting together our applica-
tion. The process begins by dividing the application into two
parts: the information model (the part that manages data
storage and processing) and the uset interface (the part that
handles input and output). The user interface is divided fur-
ther into View, which is responsible for visual output, and
Controller, which is responsible for user input such as from
the mouse or keyboard.

Separating the user interface components from the infor-
mation model makes it easier to “plug-in” other interfaces to
the same model, connect multiple interfaces to a single model,
or reuse interfaces for other models. The Smalltalk system is
full of examples of using the same kinds of interface compo-
nents for different sorts of models . For instance, take a look at
the SystemBrowser or the FileList utility-

A model can have any number of views, whereas views
are usually attached to a single model. Each view has only
one controller, or none if it doesn’t require user input, and
each controller has only one view. While the model is indi-
rectly connected to its view through its dependents’ instance
variable, the view and controller have instance variables
tying them directly to each other and their model as shown
in Figure 1.

The model communicates with its interface components
through a dependency mechanism. Each model maintains a
list of its dependents and notifies them whenever changes are
made to the model's state. These dependents can be any kind
of object, but are usually one or more views. A view keeps an
eye out for certain changes in its model. When it detects any
of those changes, it will update itself by displaying certain as-
pects of its model.

Whenever the model changes its state (in a way that may
be of significance), it sends itself one of the following messages:

self changed
self changed: aSymbol
self changed: aSymbol with: anArgument

Which message is used depends on how much detail is nec-
essary- For instance, the changed message is the most general
and simply informs the dependents that the model has
changed in some way, but it doesn’t tell them which aspect of
the model has changed. Some views might only be interested
in a particular aspect of the model, so additional information
can determine whether or not they will respond to the change.

The changed methods are found in the Model instance
methods. Each changed message is eventually transformed
into an appropriate update message that is broadcast to the
list of dependents. The dependents must have a correspond-
ing update method in which they redisplay themselves or take
some other action:

THE SMALLTALK REPORT

update: aSymbol with: anArgument from: aModel
update: aSymbol with: anArgument

update: aSymbol

update

Upon receiving an update message, a view will usually redis-
play all, or a portion, of its model. For instance, in our Small-
Draw application, when we add a new graphic object to a draw-
ing, the view should be notified so that it will redisplay the
drawing. Our model would do something like the following:

addObject: anObject
... code to add anObject ...
self changed: #add

QOur view would be set up to look for that particular aspect
(#add), invalidating itself to be refreshed when found while ig-
noring all other aspects:

update: anAspect
#add = anAspect
ifTrue: [self invalidate]

Controllers come into play whenever input comes from the
mouse or keyboard. A controller usually takes control of input
events whenever the cursor is in its view. It can be set up to
check for keyboard events or mouse clicks, taking action
when appropriate. Some controllers know about menus and
how to process them for their respective views. A controller
dealing with a menu will often direct the menu selection to it-
self, its view, or its model.

The MVC natification mechanism is automatically inher-
ited when we define our application components to be sub-
classes of Madel, View, and Controller. Let's begin our appli-
cation by describing the model where the information of
interest is stored and processed. In this case, the model will be
the SmallDraw object itself. The primary information it will
keep track of is the set of graphic objects that are drawn. Ad-
ditionally, it will maintain a cutrent inside color, border color,
and line width that each new object will be assigned. These
values will be initialized when the application is invoked but
will be able to be modified through menu selections. The
SmallDraw model will need to provide methods for adding
new objects to the drawing and for accessing and modifying its
other attributes.

The Smalltalk system classes do not have a ready-made
graphic view that will do everything that we want, so we’ll
define our own SmallDrawView as a subclass of View. The Small-
DrawView is responsible for displaying the graphic objects of its
model, an instance of SmallDraw. We'll give the SmallDrawView
the ability to change the scale of the scene so that we "Il be
able to “zoom-in” or “zoom-out.” It therefore will need to keep
track of its cutrent scale and provide some manner of chang-
ing the scale. When the SmallDrawV¥iew displays itself it will ob-
tain the set of objects to be displayed from its model. Then,
the view will ask each object to display itself using the view's

The Smalltalk Project Browser
Source Code Management System for Smalltalk/V

The Smalltalk Project Browser, from Empower Software, allows
developers to track and manage changes o the Smalltalk image, and
enables simplified code sharing and software project organization.
Designed as a logical extension of the Smalltalk environment, this
system defines hierarchical projects as collections of classes, methods,
and global variables, upon which various operations can be performed.

Two tools are included: The Project Browser is used to define and
maintain projects (or generate from image changes), file projects in and
out, create object libraries, and generate documentation (summary,
encyclopedia of classes); The Praject Class Browser is an enhanced
Class Hierarchy Browser which supports tracking of class and method
changes for a project, and adds several productivity enhancements.

: St Bl Ty wTa Version 1.0
W] — supports
la Pajsse Classes jwmods Ywiabiss] Smalltaik/V PM
= - - & Windows, and
The Smalltall Prajurch Browaer N "
PBaaa Extowime is available now
Prajess Gireciea] for$99.95, + 35
= - clangey - “WETHO0E - '] shipping ($20
o — I it oulsrde the U.S;
sl C e e in Ca. please add
Gefonttior 8.25% saales tax).
] | Includes source
Ity | code, object
A . .| libraries (PM),
and user manual.
Empower Software

279 S. Beverly Drive, Suite #217
Beverly Hills, Ca. 90212
Voice: (213) 878-2327 CIS: 71031,2640

graphics context, scaled by the view’s display scale. As an
aside, if we wanted to, we could design our application win-
dow to contain two SmallDrawViews, with one at normal size
and the other enlarged or reduced. Each would be a depen-
dent of the same model, but would provide different perspec-
tives of that model.

We'll also need to define our own SmaliDrawController. It will

be responsible for handling all user interaction from the
mouse and keyboard. The two main functions of the con-
troller in this application are handling menus and drawing
new objects. If we make it a subclass of ControllerWithMenu, it
will inherit the ability to handle menus. When the operate
button is pressed, the controller usually obtains the menu
from its view and processes it. For simplicity's sake, we'll
choose the type of object to draw from a menu. Since the con-
troller handles the drawing of new objects, we'll have it add
its own menu selections to its view's menu before processing.
By contrast, most commercial applications provide a palette of
drawing-tool buttons for selecting the type of shape to draw.

So far, here is the hierarchy of SmallDraw MVC applica-

tion classes we’ve described:

Object ()
Model (‘dependents’)
SmallDraw (‘objects’ ‘insideColor’ ‘borderColor’ ‘lineWidth")
VisualComponent ()
VisualPart (‘container’)
DependentPart (‘model’)
View (‘controller’)

VoL. I, No. 7: MAy 1992

10.

N SMALLDRAW—RELEASE 4 GRAPHICS AND MVC

SmallDrawView (‘scale’)
Controller (‘model’ ‘view’ ‘sensor’)

ControllerWithMenu ()
SmallDrawController ()

MVC INTERACTION

Because views and controllers are often designed to work
closely together, views often specify, and even create, their
own controllers. When the SmallDrawView needs to create
its controller, it will ask its defaultControllerClass for one. All
we need to do is provide a SmallDrawView instance method
that specifies the correct controller class:

defaultControllerClass
~SmallDrawController

Connecting our MVC triad together is accomplished by
specifying the model when the view is created:

aSmallDrawView := SmallDrawView model: SmallDraw new.

From this single message the view knows its model and the
model’s dependents include the view. When the view creates
its controller, the connections are completed.

It may be interesting to look at the message selector inter-
actions between our MVC components. We can see that the
only interaction initiated from the model is in the update
notification mechanism. Other than that, there are four meth-
ods that the view and controller rely on from their model. If
we had a completely different model, but one whose object in-
tetface included the same four selectors as SmallDraw (and
notified dependents with #add), we could use the same view
and controller with no changes.

Responsibilities in the application are distributed among
the MVC components. As such, each component has some-
thing to offer the user by means of the menu. The SmallDraw
model presents the user with options to change the default
inside color, border color, and line width. The SmallDrawView
allows the user to change the scale of the displayed objects,
and the SmallDrawController offers a choice of objects to be
drawn. Each has its own independent menu, but we need a
way of combining them into a single menu for presentation
on screen and a way to determine who will process the result-
ing menu selection.

The operate menu is activated by pressing the operate but-
ton or by clicking in the menu bar. The SmallDrawController
senses this and asks itself for its menu. The SmallDrawController
menu method asks its view for its menu. If one is teturned, a
new menu is constructed combining the controller’s menu
and its view's menu. In a simijlar fashion, the SmallDrawView
menu method asks its model for a menu, and answers the re-
sulting combination of the two menus.

Determining the responsible party of a menu selection re-
quires the controller and view to keep track of the selectors
each responds to. When the SmallDrawController obtains the

user’s menu selection, it asks itself whether the menu selec-
tion is one of its local menu items. If so, it responds to the se-
lection. If not, it asks its view the same thing. If so, the view is
asked to perform the selection, otherwise the model is asked
to petform the selection.

RUBBER BANDING

A common technique for drawing shapes interactively on
screen is to use “rubber banding.” Through rubber banding,
figures appear to be stretched into shape as the cursor moves
across the screen. For this to happen effectively, the rubber
band lines must be alternately drawn and erased in rapid suc-
cession without damaging the existing contents of the screen.
There are different ways to accomplish this in Smalltalk, the
simplest is to use the following Screen instance method:

displayShape: shape lineWidth: lineWidth at: aPoint
forMilliseconds: milliseconds

where:
shape - Amray of points defining the rubber band line(s)
lineWidth - width of line(s) to be drawn
aPoint - origin for shape in screen coordinates
milliseconds - length of delay before erasing

Depending on the length of delay used, the lines can ap-
pear to shimmer as they are quickly drawn and erased, indicat-
ing their temporary or dynamic status. From my experience,
this technique is very effective on a Macintosh but, depending
on the background color of the window, it can be difficult to
see on the IBM RS/6000 platform. I don’t know the quality of
its visual appearance on other platforms. I've found that a line
width of 1 and a 25 millisecond delay works well on a Macin-
tosh [Ifx. Since several methods make use of rubber banding,
and it may be necessary to modify these parameters for differ-
ent platforms, the following SmallDrawController instance
methods are defined:

rubberBandLineWidth
~

rubberBandDelay
~25

Let's take a look at a very common rubber banding shape,
the rectangle. For now, this shape will be used in drawing
SDQuadrangles and SDElipses, but eventually we'll use it for se-
lecting groups of objects in the window. For this reason, we
define it as a separate SmallDrawController instance method
called rectangleFromScreen. Rectangles will be drawn on screen
by pressing the mouse button, which defines one corner of the
rectangle, dragging the mouse across the screen, and releasing
the mouse button at the opposite comer of the rectangle.
When the method is entered, it will be assumed that the
mouse button has just been pressed. The method’s job is to
rubber band a rectangular shape from that corner point to the
cursor point as it is being dragged across the screen. The

THE SMALLTALK REPORT

WINDOWBUILDER &

The Interface Builder for Smalltalk/V &

¢_.. this is a potent rapid application development tool
which should be included in any Smallialk/V developer’s
environment.”

- Jim Salmons, The Smalltalk Report, September 1991

Cooren & Perens, INC. [FORMERLY AcCumin SOFTWasE}

2600 Ei Camno Rear, Sume 609 Paio Alto, Caufornia 94306

—

4

The key to a good application is its user interface, and
the key 1o good interfaces is a powerful user interface
development tool.

el

For Smalltalk, that tool is WindowBuilder.

Instead of tediously hand coding window definitions and
rummaging through manuals, you’ll simply “draw” your
windows, and WindowBuilder will generate the code for
you. Don’t worry — you won’t be locked into that first,
inevitably less-than-perfect design; WindowBuilder
allows you to revise your windows incrementally. Nor
will you be forced to learn a new paradigm;
WindowBuilder generates standard Smalltalk code, and
fits as seamlessly into the Smalltalk environment as the
claes hierarchy browser or the debugger.

Until March 31st, WindowBuilder/V PM will be available
at an introductory price of $295, $100 off the list price of
$395. WindowBuilder/V Windows sells for $149.95. Both
include an uneconditional 60 day guarantee.

For a free brochure, call us at (415) 855-9036, or send us a
fax at (415) 855-9856. You’ll be glad you did!

Prone 415 855 9034 Fax 415 855 9856 Compusenve 7|57I,AOL

method will return the resulting rectangle scaled to the view’s
coordinate system:

rectangleFromScreen
“Answer the resulting rectangle obtained from the user in the view’s
coordinate system. Assume the mouse is already pressed.”
| origin rectangle polygon screen lastPoint start newPoint |
screen := Screen default.
start := lastPoint := self sensor cursorPoint.
origin := self sensor globalOrigin.
rectangle := Rectangle origin: start corner: lastPoint.
polygon := Array new: 5 withAlL start.
[self sensor anyButtonPressed]
whileTrue:
[screen
displayShape: polygon
lineWidth: self rubberBandLineWidth
at: origin
forMilliseconds: self rubberBandDelay.
(newPoint := self sensor cursorPoint) = lastPoint
iffalse:
[rectangle := Rectangle vertex: start vertex:
(lastPoint := newPoint).
polygon
at: 1 put: rectangle toplLeft;
at: 2 put: rectangle topRight;
at: 3 put: rectangle bottomRight;
at: 4 put: rectangle bottomLeft;
at: 5 put: rectangle topLeft]].
~rectangle scaleBy: self view displayScale recipracal

The rectangle is rubber banded as long as the mouse button
is pressed, however, the shape only needs to be updated when-
ever the mouse moves. Creating the rectangle with the ver-
tex:vertex: method allows the rectangle on screen to be
stretched in any direction from the initial corner point. This
is demonstrated below showing four different snapshots of rub-
ber banded rectangles superimposed on each other:

You may notice that the Screen instance method used for rubber
banding applies to the entire screen and is not clipped to the con-
troller's view. This can be useful for animating objects being
“dragged”between windows or for drawing objects that extend beyond
a view’s bounds, but it can also possibly cause some confusion or give
an impression of inconsistency since most other commercial applica-

tions do not behave that way.

PUTTING IT ALL TOGETHER

In order to get our application to appear on the screen in its
own window we use an instance of ScheduledWindow. The
“Scheduled” part of the name indicates that its instances are
scheduled with ScheduledControllers, the control manager.
With Release 4, ScheduledWindows take on the “look-and-
feel"of the host windowing system of the specific platform on
which it runs. This applies to only the outer portions of the
window, such as the title bar, close, and zoom boxes. The in-
terior of the window maintains the “Objectworks Smallcalk ”
look and will appear the same across all platforms. Creating a
ScheduledWindow and giving it a label that will appear in its ti-
tle bar is straightforward:

11.

Vor. I, No. 7: May 1992

12.

B SMALLDRAW—RELEASE 4 GRAPHICS AND MVC

aWindow := ScheduledWindow new.
aWindow label: ‘SmallDraw’.

Now that we have a window that knows how to render it-
self on the screen, we can fll it with our SmallDrawView. How-
ever, we must first place a Wrapper around the view. Wrap-
pers add decoration to the views they contain such as color,
borders, layout, scroll bars, and menu bars. There are several
types of Wrappers, beginning with the “plain brown ” Wrapper
(no frills) to the most decorative, EdgeWidgetWrapper (all the
frills). We’ll use the EdgeWidgetWrapper so that we can have a
menu bar, but we’ll need to turn off the vertical scroll bar as
each EdgeWidgetWrapper comes with a vertical scroll bar by de-
fault:

aWrappedView := (EdgeWidgetWrapper on: aSmallDrawView)
noVerticalScrollBar.

We can now place our wrapped view in the window by
specifying it as a component of the ScheduledWindow:

aWindow component: aWrappedView.

Our application will be invoked by fitst creating an in-
stance of SmallDraw and then asking it to “open” itself using
the following SmallDraw instance method:

open
| aWindow aSmallDrawView aWrappedView |
aWindow := ScheduledWindow new.

aWindow label; ‘SmallDraw’.
aSmallDrawView := SmallDrawView model: self.

aWrappedView := (EdgeWidgetWrapper on: aSmallDrawView)
noVerticalScrollBar.

aWindow component: aWrappedView.
aWindow openWithExtent: 200@200

This, of course, could be simplified to a single statement:

open
(ScheduledWindow new)
label: ‘SmallDraw’;
component: (EdgeWidgetWrapper on:
(SmallDrawView model: self)) noVerticalScrollBar;
openWithExtent: 200@200

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,
dBASEIII, Lotus, and Excel.

Intelligent Systems, Inc.

{ 506 N. State Shreet. Ann Arbor. Mi 48104 (313) 996-4238 (313) 996-4241 fax

Now, to start the SmallDraw application we simply do the
following:

SmallDraw new open

Incidentally, if we wanted our application window to have
mote than one subview, we would need to place our views in
an instance of CompositePart, which would then be made the
component of our window. CompositeParts can contain any
number of views or other CompositeParts. Relative and absolute
placement of subviews within composite parts is specified
through Layouts. The following SmallDraw instance method
opens a window containing two SmallDrawViews each occupying
half of the window vertically:

openWithTwoViews
| window composite |
window := (ScheduledWindow new) label: ‘SmallDraw’.
composite := CompositePart new.
window component: composite.
composite
“The left hand view.”
add: (EdgeWidgetWrapper on:
(SmallDrawView model: self)) noVerticalScrollBar
in: (LayoutFrame new
leftFraction: 0;
rightFraction: 0.5;
topFracton: 0;
bottomFraction: 1);

“The right hand view.”
add: (EdgeWidgetWrapper on:
(SmallDrawView model: self)) noVerticalScrollBar
in: (LayoutFrame new
leftFraction: 0.5;

rightFraction: 1;

topFraction: 0;

bottomFraction: 1).
window openWithExtent: 200@200

CONCLUSION

In this article, 've presented a structured-graphics editor,
SmallDraw, albeit a minimal version. I admit it's not much of
an editor yet, since the user can merely draw objects in the
window. Future atticles in the series will extend the function-
ality of SmallDraw. We'll add selection, translation, scaling,
alignment (using a DialogView), and grouping of objects, ver-
tical and horizontal scrolling of the view, a cut/copy/paste
clipboard, and support for command keys.

Dan Benson is a Ph.D. candidate in the Department of Electrical En-
gineering at the University of Washington where he is developing a 3-D
spatial database for human anatomy using Smalltalk and the Gem-
Stone OODBMS. He may be contacted at: Department of Electrical
Engineering, FT-10, University of Washington, Seattle, WA 98195,
by phone at 206.685.7567, or email: benson@ee.washington.edu.

THE SMALLTALK REPORT

ETTING REAL

Juanita Ewing

Class instance variables for Smalltalik/V

and class instance variables on class reusability and con-

cluded that classes implemented with class instance vari-
ables are more reusable than classes implemented with class
variables. Smalltalk-80—derived versions of Smalltalk have
class instance variables, but Smalltalk/V versions do not. This
column contains the code to add class instance variables to
Smalltalk/V Windows.

All objects in Smalltalk/V have instance variables, even
class objects. The code in this column just makes the facility
apparent for classes and allows users to define new class
instance variables.

| n my last column, I described the effect of class variables

HOW TO DEFINE CLASS INSTANCE VARIABLES
Ordinarily, users see a class definition in a browser like the
example in Listing 1. After the code from this column is
added to an image, users will see an extended class definition
in the browser. The extended class definition consists of two
messages, one to the class and one to the metaclass. Listing 2
is an example of an extended class definition with no class in-
stance variables. The message argument to the metaclass is an
empty string.

Adding a class instance variable is just like adding an in-
stance vatiable. The user modifies the argument to the mes-
sage instanceVariableNames:. The argument is a string containing
names of class instance variables. Then the user saves the class
definition through the menu The system redefines the class
and recompiles as needed. Listing 3 is an extended class
definition with a class instance variable named defaultDirection.

IMPLEMENTING CLASS INSTANCE VARIABLES
The code to add class instance variables to Smalltalk/V
Windows consists of five methods, four of which are funda-

mental and one that is a modification to the class hierarchy
browser. A complete listing of the code is included at the
end of this column.

Other versions of Smalltalk/V have different implementa-
tions, and a different version of the code is necessary to imple-
ment class instance variables.

MetaClass class subclassOf: aClass
Modified

This is the instance creation method for MetaClass and is a
private method. It is modified so new instances of metaclass
have the structure of their superclass. In the original version
of this method, each metaclass was created with the structure
of the Class class.

MetaClass methods instanceVariableNames: string0fInstVarNames
New

This is a new method representing the public interface for
class instance variables. This method is used to redefine the
instance variables for a class (class instance variables). The ar-
gument to this method is a string containing names of class
instance variables. The argument is the same format as for in-
stance variables and class variables.

Class fileQutOn: aStream
Modified

This method has been modified to write the definition for
class instance variables. The result of this method is also used
to print the definition of a class in the browser. The string-
defining class instance variable always prints even if there are

Listing 1. Class Definition for AnimatedObject.

Object subclass: #AnimatedObject
instanceVariableNames:
‘position oldPosition jumpIncrement direction ... goCount *
classVariableNames: “
poolDictionaries:
‘WinConstants *

Listing 2. Extended Class Definition for
AnimatedObject.

Object subclass: #AnimatedObject
instanceVariableNames:
‘position oldPosition jumpIncrement direction ... goCount *
classVariableNames:
poolDictonaries:
‘WinConstants ‘.
AnimatedObject class instanceVariableNames:

VoL. 1, No. 7: May 1992

13.

14.

B GETTING REAL

o soi-l-e-n-c-e

v colledion of 1ools for project man cat ond code deli

= [ull niglti-user project manogemen!
= source cade version control
= aulomalic change documenting

* relense paockaging

riion unlii March 3751, 1992
n unric Moy 2Tsl 1992

$99.95

,digamma solutions

‘i Unil 6, 387 Spoding Avenue, Toronla, Onlasio, Cunoda, MST 2G6

= ship compiled code without saurce
« reconligurable inslallation tool

* change log browser and resforer
= cade perlormance profiling

Phane: (416) J51-8833 Fox: (416) 408-2850

{

s !
st

no class instance variables. This is necessary because the eval-
uation of a class definition in the browser must return the
same result.

Class recreate: numberOfExtraFields
New

This new private method is used to recreate the class object
when the number of class instance variables has changed. It
deals with a number of implementation details, such as storing
the new class in the Smalltalk dictionary and the global vari-
able TableOfClasses, and inserting the new class into the class
inheritance hierarchy.

ClassHierarchyBrowser acceptClass: aString from: aPane
Modified

Listing 3. Extended Class Definition for
AnimatedObject with a Class Instance Variable.

Object subclass: #AnimatedObject
instanceVariableNames:
*position oldPosition jumpIncrement direction ... goCount ‘
classVariableNames:
poolDictionaries:
‘WinConstants ‘.
AnimatedObject class instanceVariableNames: ‘defaultDirection’

This method has been modified to update the reference to the
selected class after saving a new definition of a class. If the
number of class instance variables has changed, then a new
class object will be created and the browser needs to be up-
dated. This is a private method.

COMPLETE LISTING

MetaClass class
subclassOf: aClass
“Private - Answer a new metaclass that is a subclass of the metaclass
for aClass.”

| newMeta |
newMeta := self new.
newMeta
assignClassHash;
structure: aClass class structure;
superclass:
(aClass = Class
ifTrue: [Class]
ifFalse: [aClass class]);
methodDictionaries:
(Array with; (MethodDictionary newSize: 2)) ,
newMeta superclass methodDictionaries.
“newMeta

MetaClass
instanceVariableNames: stringOfInstVarNames
“Define (or redefine) the set of class instance variables for the class which
is an instance of this metaClass. The number of class instance variable
may be increased only if there are no existing instances of the class.”
| theClass oldSize newSize aStream theClassName |
theClass := self instanceClass.
theClassName := theClass symbol.
oldSize := self instVarNames size.
newSize := stringOfInstVarNames asArrayOfSubstrings size.
oldSize < newSize
ifTrue:
[if the size of the class object needs to increase
there must be no instances”
theClass withAllSubclasses do:
[:aClass | aClass allInstances notEmpty
ifTrue; [~self error: ‘Has instances'}]].
self instVarNames: stringOfInstVarNames.
oldSize < newSize
ifTrue:
[theClass recreate: newSize-oldSize
_ “recreate the class object”].
theClass := Smalltalk at: theClassName.
aStream := WriteStream on: (String new: 64).
theClass fileOutOn: aStream.
Smalltalk logSource: aStream contents forClass: theClass.
self compileAll.
self allSubclasses do:
[:aClass | aClass compileAll].
~theClass

Class

fileOutOn: aStream
“Append the extended class definition message for the receiver to
aStream. Include the statement for the definition of class instance
variables.”

THE SMALLTALK REPORT

| aString |
aStream cr;
nextPutAll: self superclass printString; space;
nextPutAll: self kindOfSubclass; space;
nextPutAll: name storeString; er; space; space.
self isBits
ifFalse:
[aStream nextPutAll: ‘instanceVariableNames: *.
(aString := self instanceVariableString) isEmpty
ifFalse: [aStream cr; nextPutAll: * ‘].
aStream
nextPutAll: aString storeString;
cr; space; space].
aStream nextPutAll: ‘classVariableNames: ‘.
(aString := self classVariableString) isEmpty
ifFalse: [aStream cr; nextPutAll: ‘ 1].
aStream
nextPutAll: aString storeString;
cr; space; space;
nextPutAll: ‘poolDictionaries: .
(aString := self sharedVariableString) isEmpty
ifFalse:[aStream cr; nextPutAll: * /).
aStream nextPutAll: aString storeString.

“Include class instance variable definition.”
aString := self class instanceVariableString.
aStream nextPut: §.; cr.

aStream nextPutAll: self class name.

aStream nextPutAll: ‘ instanceVariableNames: ‘.
aStream nextPutAll: aString storeString.
aStream cr; space; space

Class
recreate: numberOfExtraFields

“Private - Replace this class object with an identical object with

additional fields for class instance variables.”

| newInstance mySuperclass myName oldId |
myName := self symbol.
newlInstance := self class basicNew.
oldlId := self id,
1 to: self class instSize ~ numberOfExtraFields
do:
Efl
newlnstance instVarAt: i put: (self instVarAt: i)).
mySuperclass := self superclass.
mySuperclass removeSubclass: self.
mySuperclass addSubclass: newInstance.
Smalltalk at: myName put: newInstance.
newlInstance methodDictionary do:
[m |
m classField = self
ifTrue: [m classField: newInstance}].
newlnstance subclasses copy do:
[:sub |
sub superclass: newlnstance.
sub recreate: numberQfExtraFields].
TableOfClasses at: oldId + 1 put: newInstance.
newlnstance id: oldId.
self become: DeletedClass

ClassHierarchyBrowser
acceptClass: aString from: aPane

“Private - Accept aString as an updated
class specification and compile it. Notify aPane if the compiler
detects errors.”

| result isClass |
result := Compiler

evaluate: aString

in: nil class

to: nil

notifying: aPane

iffail: [*true).
Smalltalk logEvaluate: aString.
isClass := result isKindOf: Class.
isClass

ifTrue: [selectedClass := result].
self changed: #instanceVars:.
~isClass not B

Juanita Ewing is a senior staff member of Instantiations Inc., a soft-
ware engineering and consulting firm that specializes in developing and
applying object-oriented software projects, and is an expert in the de-
sign and implementation of object-oriented applications, frameworks,
and systems. In her previous position at Tektronix Inc., she was re-
sponsible for the development of class libraries for the first commercial-
quality Smalltalk-80 system. Her professional activities include Work-
shop and Panel Chairs for the OOPSLA conference.

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management with update transaction
control directly in the Smalltalk language

® Transparent access to Smalltalk objects on disk

Transaction commit/rollback

® Access to individual elements of virtual collections and
dictionaries

® Multi-key and multi-value virtual dictionaries with query by
key range and set intersection

® (lass restructure editor for renaming classes and adding or
removing instance variables allows incremental application
development

® Shared access to named virtual object spaces

® Source code supplied

Some comments we have received about VOSS:

“._.clean ...elegant. Works like a charm.”
—Hal Hildebrand, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability

—Raul Duran, Microgenics Instruments

» _ VOS5/286$595 (5375 ta end of February 1992) + 515 shipping.
[0 g 1C VOsS/Windows $750 (8475 to end of February 1992) +$15 shipping.

" Quantitydi ilable. Visa, MasterCard and EuroCard accepted.
A R T S Logic Arts Lid. 75 Hemingford Road, Cambridge, England, CB1 3BY
Y T YU TELH4223212392 FAX: +44223 245171

VoL. I, No. 7: May 1992

15.

16.

HE BEST OF comp.lang.smalltalk

Alan Knight

More frequently asked questions

some of the frequently asked Smalltalk questions

posted on USENET. I must be off to a bad start, be-
cause much of this column is taken up with additions and
changes from last month’s information. [guess it's the ptice
we pay for working in an area of rapid change. First change: I
said there was no official list of frequently asked questions.
One has now been established, and I'll be incorporating infor-
mation from it. The list is maintained by Craig R. Latta
(latta@con.berkeley.edu), and is available for ftp from
xcf.berkeley.edu. Many thanks to Craig for taking on the
maintainer’s job.

This month [continue describing and trying to answer

MORE FREE STUFF

Last issue I listed some sources of freely available Smalltalk
code. With a few exceptions, most of that code comes in the
form of small “goodies.” These can be system enhancements,
bug fixes, or utilities, but are seldom large enough to be called
applications. This is only natural. Many people are willing to
freely contribute their own small fixes and favorite enhance-
ments to the community. It takes a much greater commitment
to contribute a large project. Generally, large projects come
from university research projects.

LARGER-SCALE APPLICATIONS

The first of these is the T-Gen parser generator package,
written by Justin Graver (graver@ufl.edu) at the University
of Florida. The package is described as "a general-purpose
object-oriented tool for the automatic generation of string-
to-object translators” and is available by ftp from bikini.
cis.ufl.edu.

The second item is a group of packages by Stephen T.
Pope and others, related to the Smallmusic project. This is
“a project to discuss and develop an object-oriented system
for music.” There is an electronic mailing list for discussions
of the project, and several implementations and documents.
If you have access to Internet electronic mail, you can join
the mailing list by sending a request to smallmusic-request
@xcf berkeley.edu. The implementations and documents are
available by ftp from ccrma-ftp.stanford.edu. The most re-
cent implementation is called MODE (not to be confused
with the MoDE user interface toolkit, available from the
University of Illinois archive at st.cs.uiuc.edu). MODE

runs under ParcPlace Smalltalk Release 4.0 and combines
the functions of several earlier applications running undet
ParcPlace Smalltalk 2.X.

If you're used to commercial software, it pays to be aware
of a few differences when dealing with “free” software. First,
there are no guarantees and no toll-free customer support
hotlines. The code may be badly written, poorly docu-
mented, or nonportable. You may be able to get someone
(possibly even the author) to help you with any problems,
but you may not. I haven’t personally used any of the pack-
ages described above, so don’t take this mention as an en-
dorsement of any kind.

Second, there may be restrictions on how the code may be
used. Many authors retain copyright on the packges. Using all
or part of the package in a commercial product may require an
arrangement with the author or may not be allowed at all.
Carefully read anything conceming copyright or licensing
agreements. Large packages are more likely to reserve rights
than goodies. The authors of T-Gen and the Smallmusic
packages retain the copyright on the software.

MANCHESTER GOODIES BY FTP

One of the archives | mentioned last issue is at the University
of Manchester in England. Recently, this archive became ac-
cessible by ftp. The machine is called mushroom.cs.man.ac.uk
(an alias for 130.88.13.70) and the files are available in the di-
rectory pub/goodies. This machine and the archive server at
the University of Illinois should now contain exactly the same
material. Questions about the archive can be addressed to
lib.manager@cs.man.ac.uk.

SMALLTALK CHAT SESSION
Internet Relay Chat, or IRC, is a real-time computer confer-
encing program. It allows people with direct access to the In-
ternet to conduct conversations without the delays of elec-
tronic mail. Anyone on the Intemet can participate,
regardless of location. The drawback is the requitement for a
direct network connection, meaning that the number of peo-
ple capable of participating is much lower than in electronic
mail or USENET forums.

On March 3, Martin Brown (mjb@netcom.com) organized
an IRC conference of Smalltalk users. Even though it started
at 8:30 p.m. Pacific Time, making it awkward fot eastern

THE SMALLTALK REPORT

North America and ridiculous for Europe, the conference at-
tracted quite a few participants.

IRC runs almost exclusively on UNIX machines, so almost
all of the participants were Smalltalk-80 users. A number of
people from ParcPlace participated, including VP Engineering
Richard Dellinger and CEO Adele Goldberg. Highlights in-
cluded a preview of features in the next ParcPlace release (in
beta test as I write) and the opportunity to give feedback on
features we'd like to see in future versions. It's hoped that this
will be the first of many such conferences.

If you'd like to participate in these conferences, you will
need an account on a machine with a direct Internet connec-
tion and a copy of the IRC program. Contact your system ad-
ministrator for details.

LANGUAGE WARS

Like so much about computers, languages are a religious issue.
[won’t say that this is especially bad for OOP languages, but
it’s certainly no better than average. Many of the people on
the net are reasonable, unprejudiced, and willing to accept
differences of opinion. Unfortunately, a lot of them aren’,
and they seem to be the ones who enjoy long debates on the
relative merits of different languages.

Which language they are attacking or defending doesn’t
make too much difference. Each community has its own
points of snobbery and defensiveness. Smalltalk advocares like
to talk about pure OOP languages and about being one of the
original sources of OOP. They become very defensive when
anyone calls their language “slow” or “academic.” C++ advo-
cates like to talk about running fast and being the most popu-
lar language. They get defensive when their language is called
“impure” or “a hack.” Eiffel advocates like to talk about soft-
ware engineering principles in a pure OOPL. They get defen-
sive about being called “obscure” or “proprietary.” There is
some substance under the rhetoric, mostly concentrated in a
few basic issues.

MULTIPLE INHERITANCE

Many current OOP languages make extensive use of multi-
ple inheritance. Users of these languages tend to consider it
an important part of OOP, and naturally ask why Smalltalk
is so backward as to not support it. From the perspective of
many in the Smalltalk community, multiple inheritance

has been tried and judged more trouble than it’s worth.
Besides, if you really want it, you can always write it yourself.
For example, someone named Terry (terry@galaxia.new-
port.ri.us) writes:

1 would like to open a discussion about multiple in-
heritance in Smalltalk. To begin with, could someone who
knows the history explain why Smalltalk does not have

m.i.? Here are my suggestions for multiple inheritance....

Ralph Johnson (johnson@cs.uiuc.edu) replies with a sum-
mary of the history:

The folks at Tektronix claimed to have fixed lots of
bugs, but they still kept running into problems, and
finally decided that it wasn’t worth it. Implementing m.i.
this way can be done entirely in the image. You don’t
need to know anything about how the v.m. is imple-
mented. So, anybody out there who wants to implement
m.i. can just go ahead. If you are successful and can
make something that people want to use then you will be
famous, though probably not rich!

STRONG/STATIC TYPING
Another significant difference of opinion on programming
languages is the matter of static vs. dynamic typing. In fact,

66

Many of the people on the net are

reasonable, unprejudiced, and willing to
accept differences of opinion.

Unfortunately, a lot of them aren’t.

b

the existence of this argument represents one of the most re-
markable achievements of C++. Almost overnight it turned
more C programmers than 1 would have believed possible
into resolute defenders of strong typing. They, along with
Eiffel programmers, will argue that strong static typing is es-
sential for good software engineering. The argument asks
What if your air traffic control system pops up a “does not
understand” dialogue in the middle of a forced landing?
They also argue that strong typing enforces better design
principles. Almost as an afterthought, they add that it makes
programs run faster.

On the other hand, Smalltalk, Objective-C, and other
ptogrammers argue that (at least with current technology)
static typing systems either excessively restrict what pro-
grams can be written or else don't really eliminate the possi-
bility of run-time type errors. Further, the etrors that it
catches are mostly those that would be trivially detected in
testing. Better to worry about what happens when your air-
traffic control system divides by zero. Further, they argue, the
flexibility that you lose with static typing inhibits reuse and
makes programming harder.

In a lot of languages, static typing is also intimately bound
up with multiple inheritance. In languages like C++ and Eif-
fel, variables can have values of different types, but only if all
of those types are subclasses of the declared type of that vari-

VoL. 1, No. 7: May 1992

17.

18.

Smalltalk/V users: the tool
for maximum productivity

foeRAM 1
A“ !

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.

° Keep a history of previous versions; restore them with
a few keystrokes.

° View class hierarchy as graph or list.

° Print applications, classes, and methods in a formatted
report, paginated and commented.

° File code into applications and merge them together.

° Applications are unaffected by compress log change
and many other features..

; Deleted classes |
Browsers.. {Xﬁi‘a’ii&i‘ii&".i]< |
Yam Deleted methods
Imager History

Utilities.. i _Application printing | and more..

CodeIMAGER™ V286, VMac $129.95

VWindow & VPM U§s 9.95
Shipping & handling: $13 mail, $20 , per copy
Diskette: [J3'2 []35%
== SixGraph™ Computing Ltd.
1 formerly ZUNIQ DATA Corp.
B’ 2035 Cote de Liesse, suite 201

Montreal, Que. Canada H4AN 2M5

Tel: (51 E)Il332 -1331, Fax: (514) 956- 1032

is ng.tmbnmkof i Compntmg
SlmllulHV-ll:; of Digitalk,

SRAPH

able. Thus multiple inheritance is essential if the system is to
have any flexibility at all.

GARBAGE COLLECTION

I'm sure you've all heard this one. What if your nuclear power
plant has to do a garbage collect in the middle of a meltdown
service routine? One side argues that garbage collection is thus
a bad thing. The other says that one would have to be careful
in using garbage collection in a hard real-time system with
stringent response-time requirements, but that this does not
describe most programming.

WHO'’S RIGHT?

Ultimately, the more sensible participants will admit thete are
few, if any, universally right answers. Languages are desighed
to meet different goals. Criticizing them for not being some-
thing they were not intended to be is pointless.

To their credit, many of the better-known figures, includ-
ing those closely associated with a particular language, have
tried to defuse this sort of partisanship. There have been many
patient explanations of the reasoning behind language fea-
tures, and calm appeals to not try to use one tool for every job.
Occasionally, though, you have to fight sarcasm with sarcasm,
and I'd like to reproduce a particulatly good example which
appeared in comp.lang.eiffel.

An announcement had been posted for the Tenth Eiffel
User Confetence, to be held in Dortmund, Germany. John

B THE BEST OF COMP.LANG.SMALLTALK

@P

Plan ahead for the largest
object-oriented conference and
exhibition on the East Coast in 1992.

THE NATIONAL CONFERENCE AND EXHIBITION

JUNE 1-5, 1992
THE SHERATON NEW YORK

For a detasled brockure call 212427499135
or Fax: 2129274+0646

Nagle (nagle@netcom.com) commented:

This is the TENTH conference? And still nobody uses
it? Maybe there’s something wrong.

Bertrand Meyer (bertrand@eiffel.com), who invented the
Eiffel language, responded:

A small clarification may be useful here. As Mr. Nagle
so competently points out, almost no one uses Eiffel; in
fact until recently there were only nine users. But now
a tenth person just started, so we are holding a confer-
ence, appropriately titled the TENTH EIFFEL USER
conference, to celebrate.

The new user is in Canada, hence the word “inter-
national”; this is like “world” in “world series” for
baseball.

We hope this helps clarify the issue, and sincerely
apologize for any confusion the posting may have

caused, @

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada, KIS
5B6. He currently works on problems related to finite element analysis
in ParcPlace Smalltalk, and has worked in most Smalltalk dialects at
one time or another. He can be reached at +1 613 788 2600 x5783,
or by e-mail as knight@mrco_carleton.ca.

THE SMALLTALK REPORT

Uls

Greg Hendley and Eric Smith

Separating the GUI from the application

onsider your garden-variety Smalltalk application

running under a GUI. Of what major parts does it

consist! In most cases, somewhere down in the
depths is the Domain Model. This is made up from classes
that represent the real things users think they are manipulat-
ing (e.g., transistors, diodes, connections, etc.). All of these
classes are commonly implemented to know as little about
the user intetface as possible. Many would agree that ideally
the domain model objects don't even know that such a thing
exists. This is all old hat, and we’ll assume that you're famil-
iar with the concept.

The other common component of a GUI-based applic-
ation is, not surprisingly, the user interface. Here is found all
of the knowledge of what kind of widget is used to present
which information, where it goes on the display, and what
happens when the end user does something to it. Unfortu-
nately, this part of most GUI-based applications comes in a
lump. We'll cover how and why the Ul component should be
further divided.

When the user interface for a GUI-based application is ex-
amined, at least two broad categories of function can be
found. The most apparent we'll call, for lack of a better term,
the interface. The choice of display elements to be used falls
into this category. For example, a certain set of choices may
be offered as a list box, set of radio buttons, or pull-down
menu. Othet things in this category are the size and locations
of such screen elements, how they respond to user input, what
color they are, what fonts they use and so on. Anything per-
taining directly to presentation or the first (or lexical) level of
user input handling belongs in this category.

The other broad category involves control of the applica-
tion. The semantic components of an application belong in
this category. Examples include things like “list B must be re-
freshed if the user makes a new selection from list A.” Other
things that belong here are the handlers for the various com-
mands (e.g., cut, copy, and paste) available to the user, or at
least those that don’t simply affect the display.

The control category contains all of the things that define
what it means to be the application except for the last stages
of presentation and the first stages of input. If it involves
knowledge of the domain model or the relationships among
the various pieces of information presented, it belongs in
this category.

ICM ARCHITECTURE

Most “standard” Smalltalk application architectures of the
past have had just two layers: a model and an intetface.
Using the approach presented here results in a three-layer
application. We'll call this structure the Interface Control
Model (ICM).

INTERFACE LAYER

All of the information pertaining directly to what shows up
on the end-user’s screen is part of the Interface layer. This
includes the choice of display widgets, colors, fonts, menus
vs. radio-buttons, as well as all of the first-level input han-
dlers. They should normalize the input so that the Control
layer doesn't have to know what kind of screen widget it’s
coming from.

If you use a window builder of any kind for this compo-
nent, you'll be done in minutes. Except for the automatically
generated methods used for setting up the vatious panes, but-
tons etc., nearly all of the methods given here will be one lin-
ers. They just mediate between the GUI-independent wotld of
the control layer and the very GUI-dependent collection of
user interface classes provided by Smalltalk.

CONTROL LAYER

This layer is where all of the work involved in producing a
high-quality user interface ends up. This is where selected
items mean something and where the smarts to translate user
commands into action on the domain model live. The
amount of thought that goes into this level will make or break
your user interface.

The Control layer receives messages from the Interface
layer that inform it about what the user is doing. Some of
these messages identify selection of options or objects. Others
notify the Control layer of the usets request that a command
be executed. The Control layer, in tum, sends messages to the
Interface layer to tell the interface what information is out of
date (e.g., updateListA).

Though the Control layer knows that the Interface layer
exists, has a pointer to it, and even knows a few messages it can
send it, it does not by any means know everything. The Con-
trol layer should send only a very limited set of messages to the
Interface layer. The Control layer should not even be aware of
what class or classes the objects in the Interface layer are.

VoL. 1, No. 7: MAY 1992

19.

20.

m GUIs

DOMAIN MODEL LAYER

As mentioned above, the good old Model layer is a well-
beaten horse. It should suffice to say that objects living down
here know little or nothing about the fact that they even have
an interface. They may, if they’re nice, notify unknown ob-
jects above when important information has changed.

ISOLATION

An important aspect of the ICM approach to application de-
sign is that the lower layers have as little knowledge about the
layers above them as possible. They communicate only via a
carefully designed protocol. The Model layer knows virtually
nothing about the application. The Control layer knows all
about the model, but very little about the Interface layer. It
knows that it has an interface and knows a few messages it
might send it (e.g., updateListA). The Interface knows nothing
at all about the Model layer and only a little about the Con-
trol layer. For example, it knows what messages to send to the
Control layer when the user has selected something or re-
quested that a command be executed.

A QUICK EXAMPLE IN SMALLTALK/V PM

Listing 1 provides a quick example of some of the principles
we've just discussed. It is an implementation of the user
name/password requestor shown in Figure 1. The first class im-
plements the Interface layer.

When the user executes a command, for example presses
the “Ok” button to execute the “log-on” command, the inter-
face does nothing more than tell the control layer that the
user has chosen that command. At this point, the Interface
layer is not even aware that the operation might result in a
failure. Though the interface will be responsible for informing
the user of such a failure (see the method for #notifyInvalid in
Listing 1), it does not know where the failure occurs.

Note that none of the application state is maintained in
the Interface layer. The current values for the user name
and password are all kept in the Control layer as shown in
Listing 2.

The class SystemLogonControl implements the control layer
for our example application. To continue the example shown

aystem Logon

Figure |. User name/Password Requestor.

Listing 1. An implementation of the user name/
password requestor.

WindowDialog subclass: #SystemLogonDialog
instanceVariableNames: ‘control ‘
classVariableNames: “
poolDictionaries: ‘WBConstants

beCancel: aPane
“Generated by WindowBuilder for a pane callback.”

“Button Command — Tell control that the user has
chosen the ‘cancel’ command.”
self control ecmdCancel

bcOk: aPane
“Generated by WindowBuilder for a pane callback.”

“Button Command — Tell control that the user has
chosen the logon’ command has been chosen. (My
button says ‘Ok’ but control and I have agreed that this
represents the logon’ command).”

self control cmdLogon

control
“Private — Answer the object who represents the
control layer.”

control isNil ifTrue;: [control := self defaultControl].
~ control

defaultControl
“Private — Answer the default value for control.”

A self defaultControlClass new interface: self

defaultControlClass
“Private — Answer the class of my default control layer.”

~ SystemLogonControl
getUserName: aPane
“Generated by WindowBuilder for a pane callback.”

“Ask control for his idea of what the user name is.”
aPane contents: self control userName

notifyInvalid
“Sent only by my control layer. Tell the user that
his log on failed.”

MessageBox
notify: “
withText: ‘Logon Failed!!

open
“The usual, large method for opening all of the views. Only the
creation code for the important subpanes is included.”

THE SMALLTALK REPORT

Listing I. (cont'd)

addSubpane: (

.iE_ntryField new
owner: self;
framingBlock: (...);
paneName; ‘userNameField';
startGroup;
tabStop;
when: ffgetContents perform: #getUserName:;
when: #textChanged perform: #setUserName:;
yourself

):

addSubpane: (

EntryField new

owner: self;
framingBlock: (...);
paneName: ‘paswordField’;
startGroup;
tabStop;
when: #textChanged perform: #setPassword:;
yourself

B

addSubpane: (

Button new

owner: self;
framingBlock: (...);
paneName: ‘okButton’;
defaultPushButton;
startGroup;
tabStop;
when: #clicked perform: #bcOk:;
contents: ‘Ok’;
yourself

addSubpane: (
Button new

owner: self;
framingBlock: (...);
paneName: ‘cancelButton’;
startGroup;
tabStop;
when: #clicked perform: #bcCancel:;
contents: ‘Cancel’;
yourself

openOn: aModel
“Open me up on the given model.”

self control model: aModel.
self open

setPassword: aPane
“Generated by WindowBuilder for a pane callback.”
“The user has changed the password. Tell control
about the change.”
self control password: aPane contents
setUserName: aPane
“Generated by WindowBuilder for a pane callback.”
*The user has changed the user name. Tell control

about the change.”
self control userName: aPane contents

in Listing 2, if the user requests the “log-on” command, the In-
terface will send the message #cmdLogon to the control layer.
As can be seen in the method for this message above, the con-
trol layer then packages up the information necessary for the
model to validate the log-on. Should the log-on be successful,
the control layer decides that the application is at an end and
closes things up. Otherwise, it decides the user needs to be
notified of the failure. The actual notification is a presentation
detail and is, therefore, left to the interface.

Admittedly, this is a rather simple example. However, we
have used the ICM architecture, with very satisfying results,
to implement much larger and more complex applications.
Scalability is not a concern with this technique. In fact, as ap-
plications grow in size, this sort of division becomes commen-
surately more important.

SEPARATING THE HOST GUI FROM YOUR
APPLICATION

Adding yet another layer to the all your Smalltalk applica-
tions may not sound just like what you were shopping for.

However, we'te not making these suggestions just to get you
to draw another box and arrow on all your slides. There are at
least three considerable advantages to the ICM archirecture.
These advantages fall in the areas of maintenance, project
management, and portability.

MAINTENANCE

In our experience with implementing highly interactive appli-
cations, each of the three layers is associated with a different
level of code volatility. Once a reasonably solid Model layer
has been implemented, it changes very little from version to
version of the application. The code in the Control layer of-
ten changes only a little more frequently. Several more trials
may be requited to arrive at a solid Control layer, but once ob-
tained it also changes little between versions. It is usually ex-
tended rather than modified.

On the other end of the scale, the presentation aspects of
an application can change very rapidly. These are more of-
ten modified than extended. The presentation also bears the
brunt of keeping up with changes in the host GUIs. By sepa-

VoL. I, No. 7: MAy 1992

21.

22.

mGUIs

Object subclass: #SystemLagonControl
instanceVariableNames: ‘interface userName password model ‘
classVariableNames: “
poolDictionaries:

cmdCancel
“Command — The only thing that happens here is tha
the application closes up and goes away.”

self interface close

cmdLogon
“Command — The user wants to log on. We'll give it
a try. If we succeed, then the application should close
up and go away. If we fail, then the interface should
confront the user with the problem.”

(self model verifyPassword: self password forUser: self userName)
ifTrue: [self interface close]
ifFalse: [self interface notifyInvalid]

interface
“Answer the object which implements the interface
layer for this application.”
~ interface
interface: anObject
“Set the object which implements the interface
layer for this application.”

interface := anObject

Listing 2. The Control layer.

model
“Answer the domain model (ie. the guy who lmows
about acconnts, passwords and logon verification).”

~ model

model: aSystemLogonManager
“Record the object I can ask to verify logon requests.”

model := aSystemLogonManager
password
“Answer the password. If it’s nil, it should

default to an empty String.”

password isNil ifTrue: [password := “].
~ password

password: aString
“Set the password used to verify user logon,”

password := aString
userName
“Answer the userName. If it's nil, it should

defanlt to an empty String.”

userName isNil ifTrue: [userName := “].
~ userName

userName; aString
“Set the account name of the user loggin on.”

userName := aString

rating the Control from the Interface, the more volatile as-
pects of the application are isolated from the more stable
portions. This protects the stable code from the ravages of
constant change.

PROJECT MANAGEMENT

The design of the presentation of an application and of its
control, though related, involves different skills. In some or-
ganizations, different developers would be given responsibil-
ity for these areas. If the application is designed with a
monolithic user interface, the two developers’ work will be
hopelessly mixed and mingled. By using the ICM architec-
ture, their work would be cleanly divided. Also, the protocol
by which their two components communicated could be
easily defined.

PORTABILITY

One of the strongest reasons for using the ICM architecture is
that it leads to applications that can be ported from one di-
alect of Smalltalk to another very rapidly. All of the knowl-

edge pertaining to the local host’s GUI is kept isolated in a
small, hopefully mostly automatically generated layer. Di-
alects of Smalltalk vary most widely in how they describe
their user interface mechanisms. In applications designed us-
ing the ICM approach, the portable Control code and the
nonportable, GUI-specific code are not all run together in a
single layer. This allows applications to be moved between
Smalltalks very rapidly. B

Greg Hendley is a member of the techrical staff at Knowledge Systems
Corporation. His OOP experience is in Smalltalk/V(DOS),
Smalltalk-80 2.5, Objectworks Smalltalk Release 4, and
Smalltalk/VPM.

Eric Smith is a member of the technical staff at Knowledge Systems
Corporation. His specialty is custom graphical user interfaces using
Smalltalk (various dialects) and C.

They may be contacted at Knowledge Systems Corporation, 114
MacKenan Drive, Cary, North Carolina 27511, or by phone
919.481.4000.

THE SMALLTALK REPORT

MALLTALK IDIOMS

Kent Beck

Why study Smalitalk idioms?

y dictionary defines an idiom as “a phrase whose

meaning cannot be predicted from its words.”

While learning Smalltalk (a task that continues
daily) I have often been puzzled by a fragment of code. Only
upon reflection do [understand the author's intent. About
a year ago I began collecting examples of idioms I en-
countered, and asked my friends to tell me about ones they
found. This article is an introduction to the material I have
collected.

Many programmers new to Smalltalk spend most of their
time just reading code. Studying idioms can accelerate this
process. Knowing what to expect, or at least having some-
whete to tum when you are baffled by a piece of code, is im-
portant to new Smallealkers.

Another meaning for idiom is “a style of speaking of a group
of people.” As with spoken language, Smalltalk has several di-
alects. The two most prominent are the Digitalk and Parc-
Place dialects. There were also two distinct Tektronix di-
alects, easily distinguished from one another. Xerox Special
Information Systems (the Analyst folks) also had their own
distinctive style. New offshoots arise anywhere Smalltalk has
taken root for several years.

Being conscious of the collective idiom of a body of code
can also help more advanced programmers. Code that ad-
heres to a shared idiom is easier to maintain, as there are
fewer pratuitous surprises for new readers. Idioms also speed
development through a kind of pattern-matching process.
Once you have identified a circumstance in which an idiom
is applicable, coding proceeds much faster than if you always
have to invent new mechanisms from scratch. Standing on
the brink of a new column, I look forward to exploring the
range of idioms available to Smalltalk programmers. From
time to time I’ll be joined by prominent Smalltalkers who
will describe their favorite idioms. We will also explore
the subtle differences between the Digitalk and the
ParcPlace schools.

This column will present idioms at many levels of com-
plexity and scope. Rather than present all 50 or so of the
idioms I have identified so far, 1 have chosen a smattering
to get things going. The first few are small in scale and
likely to trip up programmers new to Smalltalk. The con-
cluding design idioms are more likely to interest more
advanced programmers.

CONDITIONALS AS EXPRESSIONS

In most procedural languages, conditional statements do not
return values. In Smalltalk, however, the result of sending
ifTrue:ifFalse: to the Boolean “true”, for example, is the value of
the last expression in the block which is the first argument.
This fact can be used to advantage to simplify some methods
considerably. While you could write:

| result |
foo isNil
ifTrue: [result := 5]
ifFalse: [result :=7].
~result
It is shorter (and, after you get used to it, easier) to write:

] result |
result := foo isNil
ifTrue: [5]
ifFalse: [7].
~result
Once you've gone that far, you can get rid of the temporary
variable entirely and simply write:

~foo isNil
ifTrue: [5]
ifFalse: [7]

and: AND or: VERSUS & AND |

There ate two methods each for conjunction and disjunction
in Smalltalk. and: and & both return true only if both the re-
ceiver and the argument are true, and or: and | both retum
true if either the receiver or the argument are true. The differ-
ence is that the keyword versions (and: and or:) take a block as
an argument rather than a Boolean. The block is evaluated
only if the result of the message is not determined by the re-
ceiver. For instance, you should use the keyword version of
conjunction if evaluating the argument would cause an error if
the receiver was false. For instance, if you wrote:

anArray size >= 10 & (anArray at: 10) isNil

you would get an ertor if anArray held less than ten elements.
In this case you would use the keyword version:

anAmmay size >= 10 and: [(anArray at: 10) isNil]

VoL. 1, No. 7: May 1992

24.

H SMALLTALK IDIOMS

This way the at: message is not sent if anArray is too small.
The Objectworks\ Smalltalk release 4 image uses or: to deter-
mine if operating system resources (such as pixmaps) that do
not survive over snapshots need to be reinitialized. It is com-
mon to see code like this:

(pixmap isNil or: [pixmap isOpen not]) ifTrue: [pixmap := Pixmap extent...

The other reason to use the keyword versions is for opti-
mization, If the second part of a conjunction is expensive and
the receiver is often false, using and: instead of & can result in
a considerable savings. Why would anyone ever use the binary
message versions of conjunction and disjunction? Style, baby.
The keyword versions often introduce extra parentheses (as in
the pixmap example above). They use far more characters.
And since they are a little unusual, they require a moment of
thought every time you encounter them.

DEFAULT PARAMETERS

Many programming languages provide the ability to not spec-
ify certain parameters for a procedure call and have them set
to a default value. Smalltalk provides this facility through a
programming idiom. A displayable object, for instance, might
implement a message display as follows:

display
self displayOn: Display

which in tum is implemented as:

displayOn: aDisplayMedium
self displayOn: aDisplayMedium at: 0@0

and so on, until all the parametets needed to display the object
have been collected. As the user of this object, you can specify
as many or as few parameters as you heed to get the job done.

The downside of implementing default parameters this way
is the combinatorial explosion in the number of methods that
can result. If you are creating default parameters for a method
that has five parameters you could potentially create 5! = 120
different methods. If you write all the possible combinations
you obscure the purpose of the original method. If you don’t
write them all, you run the risk of not providing the combina-
tion that someone needs.

A common idiom for organizing default parameters is to
choose a priority order. Create one method that defaults the
most important parameter, another which specifies that pa-
rameter but defaults the next most important, and so on until
you specify all parameters. In the example above, the destina-
tion for display is the most important parameter and the loca-
tion, the next most important. This approach limits the num-
ber of methods, but ensures that the most commonly used
combinations are available.

ABSTRACT SUPERCLASSES
Some classes are not meant to be instantiated. They exist only
as repositories for interesting related bits of behavior. The

most powerful of these abstract superclasses reduce a set of re-
lated messages to one or two methods that each concrete sub-
class is required to implement. Both Smalltalks provide Colléc-
tion as a good example. If you create a subclass of Collection,
you need only implement do: You get the rest of the enumera-
tion methods without further effort.

Identifying candidates for abstraction is not easy. I got the
following strategy for using this idiom from Ken Auer of
Knowledge Systems. If reusability is ever going to be an issue
for a class divide it into two parts at the beginning: an abstract
part that contains only methods, and few or no variables, and
a concrete part that holds the state necessary to actually com-
pute. The example he used had an abstract FinancialInstrument
and a concrete Bond. As you go along, only allow state to move
into the superclass if you can't reasonably put it in the sub-
class. By pushing implementation decisions (state) down to
the concrete class, you have a better chance of finding what is
truly common to the implementation of all such objects by
examining what is left in the abstract superclass.

Another strategy for finding abstract superclasses comes
from Ward Cunningham. He suggests beginning an imple-
mentation without using inheritance at all. Only when you
get tired of manually copying and pasting methods from one
class to another do you factor their commonality into a super-
class for both. This strategy has the advantage that it identi-
fies commonality from concrete examples. The best use of
inheritance for code sharing is often not apparent until far
into the design.

VALUES MASQUERADING AS OBJECTS

One of the glories of objects is the ease with which they can be
passed around. But this easy mobility can become a nightmare
if you have passed off an object and it begins to change with-
out yout knowledge. There is a suite of idioms for dealing with
these aliasing problems. The one described here is the simplest,
but it can have the greatest perfformance impact. If once you
have created an object you never change its state you cannot
possibly have aliasing. I call objects used in this way "values”
because of their similarity to numbers. In fact, numbers in
Smalltalk are implemented in just this way. If you have the ob-
ject 10 and you add 5 to it, you don't change 10, you get a new
object, 15, instead. You don’t have to worry about giving away
your 10 and having it turn into a 15 behind your back.

Points and Rectangles are implemented much the same way.
After you have created a Point with Number>>@ all other opera-
tions (+, *, translateBy:) return new Points. Unfortunately, Points
can have their coordinates changed ditectly via x: and y: and
Rectangles also offer methods for directly changing their values.

The simplicity of value objects comes at a price. Their in-
discriminate use can result in excessive memory allocation. If
you must side-effect an otherwise functional object, do so only
with a freshly allocated one in a small, well-defined scope
(preferably a single method). As with all optimizations, pillag-
ing a value object for speed should only be done when the

THE SMALLTALK REPORT

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested in being included in this feature should send press releases to our editorial offices, Product Announcements Dept. ,
91 Second Ave., Ottawa, Ontario K1S 2H4, Canada.

Object Technology International Inc., (OTI) has announced a ma-
jor development agreement with International Business Machines Corpo-
ration. The new agreement with IBM’s Applications Business Systems
(ABS) will enhance the use of graphical user interfaces and objects in ap-
plication development.

ABS will work with OT], a leading object-oriented developer, to cre-
ate an object-oriented environment for developing cooperative applica-
tions. OTI will combine the object-oriented ENVY/Developer technology
with AS/400 cooperative processing support to provide a client-server ap-
plication development environment for Smalltalk/V programmers.
Smallralk/V is an object-oriented development language provided by
AD/Cycle International Alliance Member Digialk Inc.

This new development agreement is intended to enhance the capabili-
ties of AS/400 programmers using graphical user interfaces, cooperative
programming and object-oriented programming.

For more information, contact Object Technology International inc, 1785 Woodward Drive,
Ottawa, Ontario, Canada K2C OP9; (613) 228-3535.

ExperTelligence has announced a new version of its intelligent interac-
tive graphical application development system Actiont for version 1.3 of
Digiralk’s’ SmalltallV PM.

The new version extends Action! V|.2. It adds new CUA 91 objects
like the Spin Button and the Slider. It also gives more control to developers
with the powerful Properties Editor and Coordinate Windows. Finally, it al-
lows interface compatibilicy with the Macintosh Lisp versions of Action!

Using Action!, an interface developed in Macintosh common Lisp or
Procyon common Lisp on a Macintosh can be insmntaneously ported to
an Intel board machine running Smalltali’V PM.

Acton! V 1.3 for Smalltalk/V PM is now available directly from Ex-
perTelligence.

For more information, contact ExperTelligence Inc, 5638 Hollister Avenue, Suite 302, Go-
leta, CA 93117, (805)967-1797.

Digitalk Inc., the developer of the Smalltalk/V object-oriented program-
ming system and a member of the IBM International Alliance for AD/Cycle,
today announced the acquisition of Instantlations Inc. Instantiations
provides a wide range of services to Fortune 500 companies that are de-
veloping applications using Smalltalk object-oriented technology.
Instantiations, led by abject technology veteran Michael Taylor, is com-

posed of some of the industry's leading object technology experts.
Principal among these are Allen Wirfs-Brock, a well-known Smalltalk
expert, and Rebecca Wirfs-Brock, noted author and object-oriented
design methodologist

For further information, contact Digitafic Inc, 9841 Airport Boulevard, Los Angeles, CA
90045; (310) 645-1082.

Digitalk Inc. has announced that it is developing a 32-bit version of its
Smaltall/V development environment for UNIX to be delivered by year-
end. The first platform for the company’s new UNIX technology will be
IBM’s RS/6000 RISC (Reduced Instruction Set Chip) machine which runs
AlX, IBM's version of UNIX.

The new UNIX version of Smalltall/V is abased on Digitalk’s 32-bit
Smalltalk/V technology for OS/2 2.0. Developers can develop their applica-
tions on either Smalltall/V for OS/2 or Smalltall/V for Windows, and
these applications will run unmodified on the new UNIX release.

For more information, contact Digitalk Inc, 9841 Airport Boulevard, Los Angeles, CA 90045;
(301) 645-1082.

Object Technology International Inc. has announced the immediate
availability of its object-oriented product development environment,
ENVY/Developer R1.30, for Smalltalk/V PM V1.3 and SmalltalleV
Windows VIi.I.

This preduct provides a powerful concurrent software engineering en-
vironment for systems and applications development. Team support, ver-
sion control and configuration management are seamlessly integrated with
Smalltalk/V's programming environment.

Release 1.30 includes ENVY/Packager, OTI's tool for delivering small,
standalone Smalltalk applications. Developers are provided with fine-
grained control over the inclusion and placement of objects included in
the final preduct.

This new release supports two Smalltalk language implementations:
Smalltalk/V Windows VI.| for Windows 3.0 and Smalltalk/V PM V1.3 for
OS/2. Supported networks include Novell NetWare, LAN Server and
LAN Manager. Configurations are available from three-user systems up to
site or special corporate licenses.

For further information, contact Object Technology International Inc, 1785 Woodward
Drive, Ottawa, Ontario, Canada K2C OP9; (613) 228-3535.

performance of the finished applications is a problem for real
users, never on mere speculation.

CONCLUSION

A good grasp of Smalltalk’s many idioms can speed assimila-
tion of the language and its class libraries, improve the pro-
ductivity of new development, and accelerate understanding
of legacy code. This article has only scratched the surface of
known Smalltalk idioms, all of which were present in
Smallealk-80 as it escaped from Xerox. The dispersion of

Smalltalk will fuel the growth of many new idioms.
[am still collecting idioms. If you identify one you would
like to share, conract me. H

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPars Computer. He is also the
founder of First Class Software, which develops and distributes re-
engineering products for Smalltalk. He can be reached at P.O. Box

226, Boulder Creek, CA 95006 or kentb@maspar.com. 25

VoL. 1, No. 7: MAy 1992

26.

WHAT THEY'RE SAYING

ABOUT SMALLTALK

Excerpts from industry publications

...Changing the way you develop software is a nontrivial decision.
You are not going to take seasoned FORTRAN or C programmers
and turn them into Smalltalk wizards evernight. You are likely, how-
ever, to find one or more programmers in your development group
who are highly interested in object technology. These self-motivated,
early adopters are good candidates for a core transition team within
your development group. But they must be given training in object-
oriented analysis and design as well as Smalltalk programming. (Impor-
tant tip: A Smalltalk programmer with a structured, procedural mind-
set is not really a Smalltalk programmer)...

Technology: Smalltalk speaks to users” needs, fim Salmons and Timlynn
Babitsky, OPEN SysTems Topav, 2/17/92

-.-Practical studies based on function point analysis show that a 4GL
solution to a typical problem is 50% simpler than 3GL solution, but
only 15% simpler than an OOPL solution. This is probably because
the OOPL's user-defined types are counted, while those built into the
4GL are not. The size and complexity of a 4GL solution grows incre-
mentally with the system. With an OOPL, you just add components
to meet each new challenge. Fourth-generation and other specialized
languages will stick around, if only for cultural reasons (most of to-
day’s programmers cut their teeth on them). The world is unlikely to
rally around a single OOPL. Technical and financial developers use
C++. MIS shops prefer Smalkalk or are waiting for object-oriented
Cobol. Ironically, abject-oriented 4GLs now accompany some OO
databases to help them integrate objects from multiple OOPLs.

Software & Systems: Fourth generation heyday at an end,
Craig Hubley, COMPUTING CANADA, 2117192

...At press time [Sequent's Larry] Evans didn't want to elaborate on
Pt/Object, but according to documents obtained by UNIX
WORLD, the product will combine a parallel version of the Parc-
Place Objectworks/Smalltalk development environment and a paral-
lel implementation of Versant Object Technology Corp.'s object
database management system. This will enable users to tap informa-
tion from legacy systems and convert it to objects...

Because the object-oriented market is in its infancy, Pex/Object
won't generate any short-term income. As the object-oriented mar-
ket becomes more mature, however, Sequent’s early entrance will
help it, say analysts...

Sequent’s software cure, Gary Andrew Poole, UNIX WORLD, 3/92

-..But we [Microsoft] also expected (and predicted) that “OOP"”
would become a vendor buzzword long before great OOP solutions
were generally available. Our concern was to ensure that the press
did not treat OOP as an end in itself, but merely as a means: to
make software easier to design and maintain for developers; to
malce applications easier to use and more functional for end users. If
OOP does not provide these benefits, then it remains only an
acronym, not a solution. ...Our concerns about OOP being over-
sold, however, remain. Object-oriented tools and systems are the
most sophisticated and complicated of any software products ever
built. Object orientation is not something that can be tacked onto

an existing system; it must be designed in. It is very difficult to do
right, technically. And the focus must always remain on providing
real value to the consumer...

Object insider: Bill Gates, OBJECT MAGAZINE, 3-4/92

...There is a creative tension building in the compurter industry be-
tween the “way we used to do it" and the “way we should do it” Ob-
ject technology is causing this tension, as the vision of the way we
should do it clashes with current reality. There is only one way to re-
solve this tension we find ourselves in: either pull the vision of object
technology towards reality, or pull reality toward the vision...

Object Request Broker—the end of the beginning,
Chris Stone, OBJECT MAGAZINE, 3-4/92

...In the longer term, it will be up to content specialists to define
the basic services that classes should provide in a way that makes
them more independent of their implementation context...

...In addition to warranties and certification processes, | believe
that class vendors should provide testing facilities with every class
they ship. Ideally, these facilities would include a complete test bed for
automatically sending a full range of messages to the class and check-
ing the correctness of its responses. Providing developers with these
testing tools would allow them to double check the performance of
any class. More importantly, it would help them assure that any modi-
fications or subclassing they performed had not violated the basic
functionality of the class. ..

...Ultimately, the solution to compensating class creators will be
determined by market forces, which usually have a way of defying the
most well-intentioned attempts at prediction...

Easing into objects: developing the object components industry,
David A. Taylor, OBJECT MAGAZINE, 3-4/92

...The changing nature of systems, however, including a move to dis-
tributed development and deployment, the increased use of graphical
user interfaces, improvements in language and environment technol-
ogy, and widespread availability of classes and libraries, will speed the
adoption of object-oriented programming languages. Large systems
of the future will evolve on a project or functional basis rather than
as multi-year phased systems. As the world migrates to reusable
components and the development of organic systems, small methods
will ence again dominate. A method like IE, based on the mainframe-
centric master enterprise model view of the world, will ultimately
collapse under its own weight. When objectified versions appear,
view them with caution, and ask if the problems they are solving will
be relevant to you by the time you complete your enterprise model.

Methodology: objectified information engineering—the method time bomb?,
Adrian Bowles, OBJECT MAGAZINE, 3-4/92

...Relational vendors believe that by extending the capabilities of
their database servers, or the capabilities of some front-end tools,
many of the benefits of object technology can be achieved without

THE SMALLTALK REPORT

adopting a new database model. Sybase’s [VP of marketing, Stewart]
Schuster referred to object technology as a “natural extension”
rather than a “fundamental paradigm shift"” [Mary] Loomis [VP of
technology for Versant Object Technology] noted that RDBMSes
have stored procedures and BLOBS, but claimed that was not ade-
quate, “They are baby steps,” Loomis said. "Some RDBMSes have
stored procedures which begin to put some actions in the databases,
but they’re in a very [limited] way. They really don’t couple the data
with the action. Object databases are much more than BLOBS.

SPARC databases square off, Barry D. Bowen,
OPEN SysTEms Tobay, 2/17/92

...According to the January/February 1992 issue of PC A|, the value
of the relational database market in 1980 was $2 million, but in 1990
it was $2.5 billion. Similarly, the value of the object-oriented market
today is $10 million. By 1995, PC Al estimates the value will sky-
rocket to $235 million...

Quick statistics, COMPUTOR EDGE, 2/7/92

-..Now they're scrambling to recreate their [CASE] programs to write
software for desktop machines and local area networks. Many of the
big mainframe CASE vendors, including IBM, Texas Instruments Inc.,
and Andersen Consulting, are already coming out with new products
for these markets...Otherwise, there will be a reapportioning of IS
dollars in favor of smaller CASE vendors...Such as object-oriented
programming environments. AT&T, for instance, is using an object-ori-
ented CASE program called Teamwork from Cadre Technologies Inc.
of Providence, Rl, to build a piece of its 91 | service. The object-ori-
ented technology combined with CASE programming capabilities, says
ATA&T systems engineer Michael irass, lets the company write code
that can be easily reused and maintained—unlike traditional CASE...

The case against CASE, Robert Moran,
INFORMATION WEEK, 2/17/92

...[Sun Microsystem's R.G.G.] Cattell made a couple of observations
on choosing among the available object databases: “For the object
database in question, look at the power of the query languages for
associative retrieval or queries across sets of objects. Second, how
well are they integrated with a programming language?’ In some ar-
eas, the differences among commercial offerings are minor. “Based
on the [Cattell] benchmarks, there is not much difference in perfor-
mance among the object databases. Further more, the size of the
benchmark database is not important. There is no storage-require-
ment penalty.” He said he would choose a database largely on the
basis of the company and its stability. “The technical differences are
small.” What about writing your own? “| would lean toward buying,”
Cattell said. “You can always build something faster relative to what
you can get off the shelf, but the performance of the commercial ob-
ject databases is quite impressive.”

Guidefines for choosing the best database technology,
Robert H. Blissmer, ELECTRONIC ENGINEERING TIMES, 2/17/92

...[Gartner Group's David Stein]"Object technology is probably the
most significant development in software technology in 40 years. Like
all major baseline technology shifts, this one won't be felt immediately,
but over a |0-year period. A massive amount of development has to
be done, but this is so far-reaching in its effects that it will impact lit-
erally everything that's being done with software. You now have the

ability to standardize, and that changes the economics of software
development, which is where the big bucks are spent..."”

[Merrill Lynch & Co.'s Anthony Pizi]"...Multimedia is the future
for training. It allows people to learn at their own pace. This technol-
ogy is very good for training people in a standardized way. A firm's
staff might be spread out among five different offices, but they can all
use the same training program. Investment bankers might use multi-
media to give a presentation to a client and make changes on the fly.
But one of the biggest problems is portability. You need either
tremendous amounts of memory or a U-haul to lug all the hardware
like CD player, CPU and monitor. Live video is on its way, but any
time you incorporate video and sound, huge files are created, which
have to be compressed. More “affordable” boards are coming out, so
end users don't have to worry about losing any data...”

[Andersen Consulting—Financial Markets Industry Group’s
Robert Gach]"...Rule-based processing and object-oriented devel-
opment are technologies that firms on the Street could use to steer
clear of large applications, which have millions of lines of code and
don't lend themselves to flexible new product development. Ob-
ject-oriented technology and maximizing code reusability—changing
something, copying it or adding a variant—as opposed to starting
from scratch, would save the Street a lot of development costs and
time. Applications would get to traders faster if programmers could
reuse packets of logic that are two to three commands long. Appli-
cations with only 30% to 40% of the code are easier to maintain,
document, understand and fix. In addition, by using both these
technologies, programmers stay in the end user’s world and define
systems from a business standpoint...”

Hot technologies for the 1990s, Ann Goodman and
Jenna Michaels, WaLL STREET & TECHNOLOGY, 2/92

...[Computer Associates” Dominique Laborde;}"The industry is
beginning to pay attention to object-oriented programming...

IBM does not have any products in this category but needs to say
something about an object-oriented DBMS. So the company pub-
lished a broad list of specifications. Right now, those specifications
are not mature enough for us or anyone else to support.”...

Data access solution now has 1BM road map,
Paul Korzeniowski, SOFTWARE MAGAZINE, 2/92

..-The constant refrain heard among the audience [at PC Forum]
was this: We shouldn’t talk about objects because nobody agrees
what they are, users don't see them, and nobody really has them.
The notion was that objects are sort of the industry’s dirty laundry,
so they really shouldn't be hung out in decent company...We dis-
agree. Objects should not be swept under the rug. We know that
the notions of object orientation have been around the industry
since the early 1970s. But we believe that the technology infrastruc-
ture is only now becoming sufficiently powerful and sophisticated so
those notions can be implemented in everyday systems. And we
think that development will change everything about computing for
our readers. And we mean everything, including what skills you need
to be successful, what kind of products you should invest in, the
methods you use to evaluate those products, the expectations you
have (and set for your management) about how fast you can imple-
ment new applications, and the approaches you choose to adopt in
designing your systems...A key benefit of object-based systems, for
instance, should be to move the locus of responsibility for applying
technology from the vendor...to the customer...

Editorial: Object-oriented technology needs to be thrashed out,
Stewart Alsop, INFOWORLD, 3/2/92

27.

VoL. 1, No. 7: MAy 1992

| JHWEEK e
LABS PR

) - A
SHOOT-OUT

WINDOWS AND 08/2:
PROTOTYPE TO DELIVERY.
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V, you don't.

Start with the prototype. There’s no development system you can buy
that lets you get a2 working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It's
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It's that safe.

And when you're done, whether you'e writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just

$499.95.

So take a look at
Smalltalk/V today. It's time to make

that prototyping time productive.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their respective holders.

Digitalk, Inc., 9841 Airport Blvd., Las Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOKWHO'S TALKING

HEWLETT-PACKARD NCR
HP bas developed a network trouble- NCR has an integrated test program develop-
shooting tool called the Network Advisor. ment environment for digital, analog and
The Network Advisor offers a compreben- mixed mode printed circuit board testing.
sive set of tools including an expert system,
statistics, and protocol decodes to speed MIDLAND BANK
problem isolation. The NA user interface is Midland Bank built « Windowed Tochnical
built on a windowing system which all Trading Environment for currency, futures
multiple applications to be executed and stock traders using Smalltalk V.
simultaneously.

KEY FEATURES

Bl World's leading, award-winning object-
oriented programming system

M Complete prototype-to-delivery system

B Zero-cost runtime

W Simplified application delivery for
creating standalone executable (EXE)
applications

M Code portability between Smalltalk/V
Windows and Smalltalk/V PM

B Wrappers for all Windows and OS/2
controls

M Support for new CUA "91 controls for
08S/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

M Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive sarmnples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

I Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

This Smalltalk/V Windows application
captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications —and they're portable to
Smalltalk/V Windows.

	By Article Title
	Class Instance variables for Smalltalk/V
	Implementation of OS/2 Multi-threading Support in Smalltalk\V PM
	More frequently asked questions
	Separating the GUI from the application
	SmallDraw--release 4 Graphics and MVC, part 1
	Why study Smalltalk Idioms?

	By Author Name
	Barbour, Doug
	Beck, Kent
	Benson, Dan
	Ewing, Juanita
	Hendley, Greg
	Knight, Alan
	Smith, Eric

	By Topic
	comp.lang.smalltalk
	Getting Real
	GUIs
	Smalltalk Idioms

