
The International Newsletter for Smalltalk Programmers

March/April 1992 Volume 1 Number 6

REIMPLEMENTING

t

C

8

I

1

17

D

20

22

28

29

he Model-View-Controller (MVC) architecture was first concel~ed at the

Xerox Palo Alto Research Center in the lat. 1970s and early 1980s. O!,er

the pist 10 years, the MVC architecture n,as used to develop many sophisti-

1*

e,

e

he

”s

d

i

ad

od

e

t.

ch

v

d

MODEL=VIN-

by David J. Leibs and
Kenneth S. Rubin

❑
:,

m

th

T

rc

in

It

re

tr

th

“a

ar

de

an
Reimplementing Model-View.
Controller
by Dondj. Leti$ & Kw”eh S. R“bi”

olumns

Obj@+*nted design:Becoming more
prdmble
by Reb-o Wi$$-Bcti

I Smolhalkwti se ~ps for improved
Smaltmlkreuse and rel!a~ky
by Ed Klimo, & S“ZUn”e Skubl,cs

5 GUI%:Paine palews (mk,ng control in
SmallalWPM 1,3)
by GrtE Hend!ey & Erfc Sm,th

8est ofcomphng.smailmlk

epatiments

Lab Review Smalkalk at tie U.ivemi~
of Washtn~On
rew.ewedby @a,” Freemo”-Benson

Pmdtia Retiew: Cmper$ & Lybmnfls
AWST, Version 3.5
m’ewd by]w Solm”s &Timhnn &tih

Prod”@ A“no”ncemen6

Mot They’re Soy;.g About Sm.lkalk

CLA

The

ye.,
mor

ves

dam

an

play

T~

In

inte

far

hea

and

feat

are

*Oh

,

I

{

cated Smallt.lk gr.lphical user interface applications. Engineering of these

1,1,,,,(,,~t,. Illustrated both the stren~rths >~ndweaknesses ~>fthe MVC concept and imple.

,t;,r>.,]~. Much of the experience gleaned &urn developing these applications in fl[jenced

cl~anges made to the MVC facihtlcs of the Objectworks \Smalhalk Release 4 s~stem?

se changes were made t. make the MVC implementation more understandable,

ahk, and efhcient.

This column describes the reimplementat>on of MVC in Release 4, and is intended for

ividuals who are interested in understanding and using the re,,ised MVC architecture.

s not tntended to be . tutorial on the subject of MVC and therefore assumes that the

.r is already familiar with basic MVC c<,ncepti. Other articles1,2 provide a quick in-

uction to MVC and some examples of its usage. A more comprehensive overview of

pre,Rekase 4 implementation ISalso a,.a,lahlc.~

In this column, we first discuss a,pects of the classic MVC implementation that moti-

d a redesign and reimplementation in Release 4, Next, we intrduce some of the

hcctur.1 fcat”res of Release 4 MVC, and discuss h“w these feat.res are .sed t“

elop sophisticated applications, giving special focus t. the netv concepts of wrappers

invahdation-based redisplay.

SSIC MVC I~LEMENTATION

classical MVC implementation served application developers !vell for the past 15

s. However, there were se~eral de ficlcncics that ofren made the implementarinn task
e d(fficuh than necessa~. Specifically, much of the MVC.related functionality was

ted in a few, components that were large and difficult to understand, In addition, a fun-

ental distinction was made bet!veen display objects, uhlch could render themselves on

arbitrary display medium, and \.ie\vs, which could only render themselves on the dis-

screen,

~iV AND TOO LARGE

classic MVC, too many of the features required to develop intcrestin~ pphical user

tiaces were located in too few components. In particular, the base class View emh.died

ton many features This is a t\,pical object, oriented design mistake, creating a fe,v

.~eight components that serve multiple hnctic,ns and can h. difficult to understand

extend. Applications that u~e these components are forced to deal with . Iargcr set of

ures than may be required to perform the desired task. This res~dts in applications that

.nnecessari Iy complex and inefficient. cnn”n,md mm, 3

j ectu,”rks LSa registered tradc,,?,,rk “f par. Place Systems In’

2.
EDITORS’
CORNER

John Pugh Paul White
I
n a recent retrospective in the February issue of the Hotline on Object-oriented Technology,
pmmincnt industry watcher Tom Lcrvc gave his synopsis of the most significant O-O related
events of 1991.1 t was interesting to see how many of the events that made his list were
Smallralk related—the introduction of the Mcrmcnta pen-based computer, which was devel-
oped using Smallralk technology; the partnership of Sequent, Versant, and ParcPlace to de-
velop a parallelized version of Smallcalk; the development of a batch version of Smakdk that
runs on MVS; and, perhaps the most improbable sight of the year, IBM salespeople peddling
Smalltalk/V! What wi[l 1992 hold for Smalltalk?

Another mpic mentioned by Tom is one that is near and dear to our own hearts—the
dearth of object-oriented education and [raining in educational institutions. Tom is right:
“mmr university graduates have nor heard of objects.” At Carleton, for the last three years we
have been doing as Torn suggests, teaching %malltalk as the first programming language for
CS majors. It’s been a great success. We’ve some good news for Tom. Things are changing, if
only slowly. Many universities have introduced 00P into the curriculum if only at the gradu-
ate or senior undergraduate levels. There are some big obstacles to rwetcome if the situation is
m improve-the current lack of knowledge among instructors about 00P technology, the
lack of sample curricula and good texts, and the politics involved in making significmt cur.
riculum changes, to name but a few. For the first time, 00PSLA ’92 in Vancrruver, Canada
will feature a special one-day Educators’ Symposium—a forum for educamrs to share their cst-
periences and ideas with those contemplating introducing object-oriented technology into
the curriculum. Let’s hope lots of educators attend.

In this month’s lead article, David Lcibs and Kenny Rubin from ParcPlace Systems give us
the inside story on the reimplementation of the Model.View-Cmttrcrller (MVC) paradigm in
Release 4. They review the original implementation of MVC in Smalltalk-80 and discuss its
deficiencies. By unifiing display objects and views into a hierarchy of visual components built
on a structured graphics foundation, the new implementation aims to prrsvide a more cohcr-
enr framework for producing sophisticated graphical user interfaces using
Objecrworks \ Smalltalk. This article provides the rationale behind the introduction of con-
cepts such as wrappers, SPIM, and composite parts in Release 4 and is a must read for all
Smalltalk programmers.

We welcome Alan Knight as a regular ccmrributm to The %mdhalk Report. Alan will be
monitoring the USENET bulletin boards for items rrf interest to Smalltalkers. In his first col-
umn, hc provides answers to some frequently asked questions and, in particular, reports on a
subject that troubles many beginning and experienced Smalltalk programmers-how to deal
with lost instances.

Ed Klirmas and Suzanne Skublics return with their popular Smaklk with Style column.
This month they provide tips on the use of global, pool, and class variables as WCI1as describ-
ing the use of multiple dispatching m eliminate the use of non-obj ect-oriented case
sratement-like code. We hear a lot about the benefits of using an incremental, iterative ap-
proach to software development in Smallmlk. The process is not without its dangers and pit-
falls bu[, as Rebecca Wirfs-Brock illustrates, proper planning and management cm go a long
way to ensuring succcss and removing unpredictability. In the GUI column, Greg Hcndley
and Eric Smith describe how to subclass the 0S/2 ValueSet control to prc)duce a palerte view
for selecting pint colors.

Following uur recent spwc of articles on team-oriented development in %makalk, Jim
Salmrsrrs and Timlynn Babitsky provide a comprehensive review of the AM/ST application
manager product for Smalltalk/V, And finally, in this issue’s lab review, Bjom Freeman-
Bcnscm reports on the research in constraint-based systems at the University of Washington.

Enjoy this issue!
Tlm Smallmlk Repro (ISSN* 1056-7976) u published!Jrmws a year,every m,mh except(or [h= M.r/Ap, J.ly/Aug, md Nwlkc c.rnbi.ml issu.$

P.hlished hy SIGS Puhlicawns 1..,588 Pmomhvay,New Y,wk,NY ICCII2 ph,,.u(2 121Z74-064~fax (2 12) 274-0646.CIti~}~ighr 192 hy SIGS Pub.

IicatimmInc. All rixhmresewed,Repnnlumi.. .[chu rnarcrid hy electronictrmmnm,um,Km). or any uthcr merhtd wdl k treatedu a willril viola.

rim ofrhe IX Copyrwht LJw and u flatlypmhibmcd.Mawnal my k rrpnduce.1 wi[h e.prm pwniw,,. (mm the phli+crs, Mailed First&M Suh-

scnptim rare, I war, (9 k) dorncstic,$65, R@. anJCanada,$90, SWIC copyprim’,$MO. POSSTMASrEtL Send addres changesandsubscription

onlm m Tim SMALLTALK k)RT, S.bscrikr %wims, Mr. SML, I!O. FiM 3CPY2,lknville, NJ 07H14.Subnm amidesr. the Edium m 91 %mnd Av-

mm,~.Wa. Onisrio KM 2H4, Cd

THE SWULTALKREPORT

2

cmuinuedfmmp age 1...

DISPLAYOBJECTVS.VIEW

In classic MVC two separate hierarchies of classes were used to

construct applications with visual presentations-the Display-

Object and the V%whierarchies, Both hierarchies had the same

intended function of rendering visual presentation, but each

supported different protocols with incompatible implementa-

tions. In particular, DisplayObjects such as Form, Circle, and Line

could render themselves on an arbitrary medium at an arbitrary

location, whereas Views could only render themselves on the

display screen at a fixed location. These differences made it im-

possible to use DisplayObjects and Views interchangeably.

CLASSVtEW

The classic MVC version of class View had so many different

features that it forced application developers to make generaliz-

ing assumptions that were often untrue and led to certain con-

ceptual as well as operational inefficiencies. These assumptions

involved visual, composite, layout, and control properties.

View’svisual properties included both edge decorating,

which described border thickness and color, and the inside

color of the view. In addition, each view assumed that it was a

composite and might contain subview=an assumption that

was certainly incorrect for leaf views in a view structure tree,

As for layout, each view knew its position both relative to

the containing view and the containing screen. This support

was provided by a complex, redundant set of transformations

that were difficult to understand and use. In addition, each

subview assumed that it scaled (occupied a relative percentage

of the area) with respect to its containing view. This made it

very difficult to have fixed-sized views, Furthermore, all views

were assumed to be aligned in a tiled fashion. If subviews

overlapped, it was not possible to update an occluded view

without damaging the visible view. (Worse yet, no noti-

fication was provided to the damaged view.) The same sce-

nario was true for windows that overlapped on the screen.

Finally, every view had to be prepared to handle control

when it received it via control delegation, This required every

view in a view structure tree to have a controller associated

with it.

Oversized by all these features, and overconstrained by un-

derlying assumptions, View instances were quite monolithic

(564-byte space overhead inherited from class mew) and often

difficult to use as desired.

DISTINCTIONBETWEENAPPLICATION VIEWSAND

STRUCTUREDGRAPHICS

Previous Smalltalk implementations provided the MVC

framework as a means of creating application views. However,

if applications required structured pictures it was the responsi-

bility of the developer to create the graphics framework to

support these applications,

Structured graphics frameworks typically embody a collec-

tion of lightweight, displayable objects that can be composed
VOL. 1, No. 6: MARCH/APRIL1992
and can overlap. Such objects display themselves on a

medium by communicating with an object that carries transla-

tion, clipping, and visual propertie~an object that the litera-

ture typically refers to as a “graphics context.” Good struc-

tured graphics frameworks carry forward ideas from MVC such

as the use of the dependency mechanism to initiate a change

in a displayed object. Having initiated the change, these sys-

tems then employ the concept of propagating a damage rect-

angle up the containing hierarchy to effect a redisplay. This is

a simple yet powerful mechanism for dealing with overlapping

displayed objects.

Most applications in classic MVC required both applica-

tion views, as provided by the system, and structured graphics,

which had to be provided by the programmer. Such applica-

66
A major focus of Release 4 was the

development of a framework that

incorporated the best ideas of structured

graphics and MVC,
99

tions were required to deal with the presence of two parallel

frameworks that overlapped in intent and functionality. Con-

sequently, these applications suffered from the union of the

inadequacies. For example, class view could only display at atr-

solute positions on the actual display screen (Display). In the

context of dependency-driven redisplay, View ignored the pos-

sibility of overlapping views and windows-the updating win-

dow had to pop to the top to displa&e:. As for the structured

graphics, they had no inherent notion of control since con-

trollers very much expected to be connected to views.

In addition, it was impossible to mix the two ideas to-

gether. For example, the structured graphics would reside

inside a view, but there was no way of purting a view inside a

structured graphic picture, e.g., making a TextEditor part of a

structured picture). As for views, they could only con~ain

other views. As such, views could draws tructured pictures

inside of themselves, but they did not contain the pictures as

part of their inherent structure. This meant that displaying,

interacting, and updating of pictures inside of views was han-

dled in a separate and different manner than displaying, inter-

acting, and updating of the views.

A major focus of Release 4 was the development of a

framework that incorporated the best ideas of structured

graphics and MVC. From structured graphics the ideas include

lightweight components, fine-grain control over layout, dis-

play on arbitrary media, and invalidation-based redisplay.

■ REIMPLEMENTING MODEL-VIEW-CONTROLLER

4.
From MVC the ideas include dependency-based redisplay and

separate control for user interaction.

RELEASE 4 VISUAL PRESENTATION FEATURES

Two somewhat independent major functionality changes in

Release 4 directly affect the MVC redesign-host window in-

tegration and the new imaging model. While a fill description

of these is beyond the scope of this article, this section summa-

rizes their most significant impacts on the MVC framework,

HOST WINDOWINTEGRATION

Under host window integration, Smalltalk windows are host

windows. As such, the responsibilities of the classic Smalltalk

window manager have been relegated to the host window

manager. Within this framework, Smalltalk is provided with

event notifications when windows are manipulated using the

host window manager. This event notification paradigm re-

quired substantial modifications to the classic StandardSys-

temview. In particular, the Release 4 version of this class,

called ScheduledWindow, must now be prepared to deal with

invalidation-based redisplay, a topic to be discussed later.

Furthermore, in Release 4 every window has its own sensor,

which is its channel to receive host events, This sets the

stage for complete event-driven input, although, for back-

ward compatibility reasons, Release 4 continues to use a

polling scheme.4

SMALLTALKPORTABLEIMAGINGMODEL

While classic Smalltalk had monochrome BitBlt drawing capa-

bilities, Release 4 provides a full-color, platform independent,

high-level graphics imaging model know as the Smalltalk

Portable Imaging Model (SPIM).4 The class GmphicsContext

defines the SPIM application programmers interface. Messages

are sent to a GraphicsContext to invoke host graphic capabili-

ties (drawing circles, lines, rectangle, polygons) on a display

surface (Window, PixMap). All visual presentations in Release 4

are achieved using this approach.The invalidation-based re-

display capability of MVC uses GraphicsContext as a means of

carrying translation, clipping, and certain visual properties of

visual components.

VISUAL COMPONENTS

In the Release 4 system, the basic presentation metaphor is

that of a component that is capable of rendering a visual pre-

sentation of itself on a DisplaySurface using a GraphicsContext.

Each such component can answer a prefened bounds, which

indicates the area of space that the component would prefer

to occupy, In addition, a visual component can respond with

an object that is capable of handling user interaction, if such

interaction is desired.

Visual components can also be composed into hierarchical

presentations by adding them to composite visual compo-

nents. Any visual component sttucture, singular or composite,

can be placed inside a host window.
[VimsaICosnpmrentl

I-=R-l

DependentPart CompositePart

I I I

I BorcIererdWrapper I

FIEura 1. A partial VisualComponenthierarchy.
Figure 1 shows a partial hierarchy of the Release 4 classes

that support visual components. The root class of the hierarchy

is VisualComponent, representing a lightweight, stateless, ab-

stract object that can create a visual presentation. This class

specifies the important abstract protocol of displayDn: aGraphics-

Context and prefezredBounds. In addition, it specifies the default

implementation of objectWantingContiol, which answers nil in-

dicating no control is desired. Subclasses that wish to take con-

trol must redefine this behavior to respond with the object to

which control should be passed, e.g., a view would respond

with a particular controller.)

visualPart, a subclass of Wsualcomponent, is used to makeup

a structured picture by providing a pointer to some containing

visual component. Some visual components need to know

about a containing visual component, others do not. Those

that do need to know are interested in interacting with their

surrounding environment.

At this point the hierarchy splits into visual components

that contain other visual components, and those that do not.

The class compositePazt captures the idea that a visual compo-

nent can be a collection of other visual components. With the

introduction of composition, it is necessary to consider where

each component resides in the coordinate system of the com-

posite. Rather than storing this information in the visual com-

ponent itself (as with the old class Vietis insetDisplayBox) or in

some form of parallel record structure in the composite, the

information is held in a special type of visual component

called a tma~~er. A wrapper is a visual component that con-

tains exactly one other visual component.

MVCIN RELEASE4

The classes VisualComponent, VisuaFart, and Compositepart prcr-

vide the base structured graphics framework upon which the

MVC facilities are implemented. Purposefully absent from the

framework thus far is the notion of a model and a controller.

Class DependentPart, a subclass of VisualPart, provides a

model for dependency relationships. As a subclass of visual-

Part, it has a direct way of turning an update message from a
THE SMALLTALKREPOIST

V

model into an invalidation message that is propagated up the

containment hierarchy to effectuate a dynamic redisplay con-

sistent with the surrounding environment.

The class View refines the dynamic redisplay behavior of

DependentPart by adding a controller. This enables users to in-

teract with a view and model in the traditional manner dic-

tated by MVC. view provides the abstraction for components

such as TextViews and Listviews.

For completeness, there are also DependentCompositePart

and CompositeView to support model and controller behavior

for composite visual components.

Notice, however, how low in the hierarchy the class View is

located. There are numerous lightweight abstractions from

which it is derived (in contrast to previous versions where

View was the heavyweight abstraction).

Even this low, View is lighter weight than in classic MVC.

Many features of the old class View are no longer present. In par-

ticular, there is no mention of information related to border

width, border color, or inside color. This information has been

removed and is now the responsibility of wrappers. Likewise,

there is no information regarding layout and current position—

tracking this information has also been relegated to wrappers,

The resulting framework provides the classic MVC func-

tionality within a structured graphics framework. It does so in

a singular, unified manner by which all visual components are

created, decorated, positioned, manipulated, and controlled.

WRAPPERS

The idea of a wrapper (or wrapping) is a generic design tech-

nique. It is a form of composition and delegation that can be

thought of as selective message forwarding. That is, given the

desire to enhance the capabilities of an existing object, we

might choose to subclass the object to add the additional ca-

pabilities, or we might construct a new object that is not nec-

essarily hierarchically related to the existing object, but con-

tains the new required features. The idea of wrapping is to

combine the two objects by placing the original object inside of

the wrapper, which is used to intercept messages destined for

the original object. When intercepting messages, wrappers may

perform their own special behavior, and then forward the mes-

sage on to the original object.

As an example of how wrappers are used, examine the ap-

plication shown in Figure 2. This represents a classic struc-
OL.1,No. 6:MARCHIAPRIL1992
tured picture editor where the user is able to manipulate a va-

riety of visual objects on a drawing surface. In particular, the

user is able to select, drag, group, and delete objects. In the

application window there are four buttons and several other

visual objects. The image and line are single visual objects.

The rectangle and two circles have been grouped together

into a composite object, which is currently selected (denrsted

by the selection handles). The visual component-level struc-

ture of the current state of this application is illustrated in

Figure 3.

Wrappers are visual components designed to extend the

features of other visual components. As such, wrappers

respond to a particular part of the visual component protocol.

To understand this, it helps to consider how wrappers interact

with other visual components. To begin with, the leaf visual

components of any hierarchy are always surrounded by wrap-

pers. In Figure 3, notice that all leaves in the tree are suitably

wrapped. Specifically, Circle, Rectangle, Image, and Line are all

contained within ‘hanslabngwrappers. The buttons are con-

tained within BorderedWrappers.

The components of compositeparts are always wrappers,

each of which can contain another wrapper or visual parr

transitively, until a leaf visual component is reached. Hence,

at least one wrapper will always intervene between a visual

component and a composite. Under this scheme, wrappers

forward messages sent by the composite toward the leaf and,

conversely, channel messages sent by the leaf toward the com-

posite. Messages moving in either direction maybe filtered or

modified by the intervening wrappers.

Structured Picture Editor I

H
Ilne

rect ■ ■ /W
circle

Image R
n ■

Figure 2.A typical application.
Figure 3. Visual componerrta of the structured picture editor.
Downward-moving messages that are interpreted/forwarded

by wrappers include messages used fo~

● instructing a component to display itself on a

GraphicsContezrt

● offering control to a component

● querying and asserting the bounds of a component, i.e., its

size and position
c

■ REIMPLEMENTING MODEL-VIEW-CONTROLLER

6.
Upward-moving messages include:

. invalidation of all or part of the component’s area, i.e., re-

questing redisplay

● asserting that a component has a new bounds, i.e., size or

location

● requesting information such as how big a component

should be, as well as a variety of visual attributes

The Release 4 implementation comes with a few standard

wrappers such as Transl.atirtgWrapper, BoundedWrapper, Bordered-

Wrapper, and EdgeWidgetWrapper.

fianslatigwrapper is used to positirrn a visual component at

a particular origin. In Figure 3, the structured graphic entities

are all in TranslatingWrappers. BoundedWrapper provides for a

bounds used in both the translation and clipping of a visual

component. A BoundedWrapper also provides a layout to deter-

mine the bounds of the visual component. This layout typi-

cally is an instance of hyoutfiame that permits developers to

specify the layout of a visual component with respect to an-

other visual component in either an absolute, relative, or

combination absolute/relative manner.

A BorderedWrapper provides for a border around a visual

component, as well as an inside color. In Figure 3, the buttons

al[reside within BorderedWrappers. An EdgeWidgetWrapper pro-

vides a convenient means of decorating a component with

desired widgets. This wrapper provides for the placement of

horizontal and vertical scrollbars as well as a menu bar around

the edges of a visual component.

There are many more uses for wrappers. Some of the more

interesting examples that have been built include:

● doubIe buffering for smooth animation

● read-only to limit interaction

● visibility controlling to determine whether a component is

visible, invisible, or somewhere in between (alpha)

● selection indication to illustrate when a component is

selected

. wrappers for arbitrary visual property manipulation

In Figure 2, the rectangle and the circles are contained

within a compositepart. In Figure 3, we see that the compositePart

is contained within a ‘hanslatigWrapper that positions the com-

posite relative to the other visual components, The Translating-

Wrapper is itself contained within a SelefionWrapper that pro-

vides the visual presentation of the selection handles that are

seen in Figure 2, This example illustrates that wrappers maybe

composed to create a desired effect, i.e., translation and selec-

tion. In addition, it should be noted that any visual component

in this application can be displayed with selection handles sim-

ply by wrapping it in a SelecbonWrapper (i.e., inserting a Sekc-

tionwrapper at the proper location in the structure hierarchy).

The Release 4 system suppotts transparent use of the stan-

dard wrappers by providing protocol in CompositePart that sup-
ports the automatic wrapping of constituent visual compo-

nents. For example:

CompositePart add: aVisualComponent at: aPoint

places a TranslatingWrapper around avisualcomponent,

CompositePart add: aVisualComponent k aLayout

places a BoundedWrapper around aVisualComponent, and

CompositePart add: aVisualComponent borderedh: aIayout

places a BorderedWrapper around aVisualComponent.

In summary, the use of wrappets in the visual component

framework facilitates the handling of bookkeeping informa-

tion required by many visual components, In addition, it pro-

vides a flexible technique for creating specific behavior once,

and quickly adding this behavior to existing objects via com-

position/delegation (i.e., wrapping).

INVALIDATION.BASEDREDISPLAY

As part of unifying structured graphics, MVC, and host win-

dows, it was necessary to choose a singular mechanism for dy-

namic redisplay. Based on the operation of host window man-

agers and past experience with structured graphics, invalidation-

based redisplay was chosen. The idea was briefly described ear-

lier and is elaborated on here.

When a visual component wants to change its presentation,

it assumes that it does not know enough about the envircm-

ment in which it resides. For example, it might not know if

other components are overlapping it, or rhere might be a col-

lection of damage rectangles from the host window thar need

to be considered at the same time to avoid multiple displaying.

As such, a visual component simply does not know enough to

redisplay itself at the time it wants to effect a change.

To achieve a proper redisplay within its environment, the

component invalidates its bounds, either in whole or in part,

by sending a message up the enclosing structure environment,

beginning with its container. The container, and anything

above it up to the top of the tree (the host window), can mod-

ify the invalidated regions in any manner.

Once the invalidated region reaches the window, it can be

merged with any damage queued by the host. Then the invali-

dated areas may be queued for later handling, or a message

may start down the structured picture request ing visual com-

ponents to redisplay themselves on a particular medium using

a graphics context that has been preclipped with the invali-

dated regions. In this manner, all visual components achieve a

proper redisplay within their environments. The idea is simple

and uniform. Any complexity that arises is due to the applica-

tion and not to the concept or the mechanism,

CONCLUS1ONS

Prior to Release 4, much of the MVC-related functionality was
THE SMALLTALKREPORT

AM/STTM The original and still premier
application manager for

SmuWalklVTM

AM/ST, developed by the SoftPert ChangeBrowser.As an additional

Systems Division of Coopers& tool available for SmaMalk/V PM

Lybrand, enables the developer to and Smalltalk/V Windows, Chartge-

manage large, complex, object-orient- Browser supports browsing of the

ed applications. The AM/ST Appli- Smalltalk/V change log file or any

cation Browser provides multiple file in SmaMalk/V chunk format.

views of a developer’s application.

AM/ST defines Smalltalk/V applica- -7.,.,; The addition of AM/ST to the
.

tions as logical groupings of classes and
ImageSoft Family of software develop-

~#m4;*~$*-’ ,mageSoftspsitionm -
methods which can be managed in source -.%’%$M+%’*x?J$q&* ~~~~

ment tools enhances and solidifies

files independent of the SmaHtalk/V ,;##&#” ‘ fi;””’-’”--* -: ,:.: ;

image. Art application can be locked and

modhled by one developer, enabling other B$.~~m= ~~~~ ~~b~!~e~~~~~~~ ‘“ ~

?:::!m~”.. : ,
+;, .. : ?, ?.~:$~ .. .“

developers to browse the source code. The ~’j~:;;~.:; ;:,,.. ;
Development Tools,” m

- - T)17A5.W/40
.

LU VU
6

aftE* Putkhcr of LkvelqmemTonls

source-code control system manages multi- “:;~;’? ~~”. ~~{%~”w
ple revisions easily. ;+%: -’,:: ‘,!’-:“!.:. -..*:: ,: 1-MIU/Mudvu

m !i!j%% -..
.-...,.....,.. .,,;”:*&*y@*:

“*,/@kw@v21Ei+i&i4fsi. I~mP.Cd‘fhtW[ldlrsb

AU rsackmarhsarc the p’o@y of kir rmpectil,e owners. lmageSoft, Inc., 2 Hawm Avenue, Pofl Wahington, NY 11050 516/767-2233; FJX 5 16/767-YOf17:LWCP fiddrcss: mcdhup!imigc!info
vested in a few components that were large and dit%cult co un-

derstand. In addition, a fundamental distinction was made

between display objects, which could render themselves on an

arbitrary display medium, and views, which could only render

themselves on the display screen. In Release 4, both of these

problems are handled by unifying display objects and views

into a hietarchy of visual components based on a structured

graphics foundation. In addition, many of the features that

were previously associated with views have been relegated to

wrapper visual components. This permits greater flexibility in

achieving the desired results, and promotes a high level of

reuse of the specialized features contained within wrappers.

Preliminary feedback from Objectworks \Smalltalk Release

4 users indicates that the new MVC facilities are powerful and

permit the development of sophisticated graphical user inter-

face applications in a more coherent manner. However, peo-

ple have noted that the facilities embody different and some-

what more sophistic ted principles, and thus require more

time to digest. The purpose of this article is to further the un-

derstanding of the facilities and of how to successfully employ

them. ❑

ACKNOWLEDGEMENTS

We would like to thank al of the members of tk ParcPlace

%udhalk team whose creativityand dedicationmade Object-

works\SsnalltalkRelease 4 a reality. We wou,!dalsoliketo thank

Glenn Kramer, Adele Goldberg, Brian Alexander, and Frank
VOL. 1, No. 6: MARCHIAPRIL 1992
Jackson for tkir input into this paper. However, any inacctmcies

or mnbi~”ties in thispaper are solely cur responsibility.

REFERENCES

1. Krasner, G. E. and S.T. Pope. A cookbook for using [h. Model-
View-Controller user interface in Smalkalk-80,]our-td of Object-
OrientedProgramming 1(3):26-49 1988.

2. Goldberg, A. Information models, views and crmtrollcrs, Dr.
Dobb’sJournal,]Idy, 1990.

3. LaLm-&, W.R. and J.R. Pugh. Ins& %mdltalkVolume II, Prentice

Hall, En.glewrsodCliffs, NJ, 1991.

4. ParcPlace Systems. Objectwurkr\Srmdkdk ReleuseNotes, ParcPlace
Systems, Inc., Mrsuntain View, CA, 1991.

DavidJ. Leibs is a Computer Scientist at ParcPlace Sywems wkre he

was the architect of the Relaw 4 MVC reimplemermztion and cur-

rently works on Smal[td.k specialprojects,He studed mathematics at

North Texas State University. He has been working with SrnAalk-80

since joining Xerox in 1984. He joined ParcPkzce in 1986 as tkir first

Smakd.k programmer.

Kenneth S. Rubin is Manager of Professiorsaiand Edr.uationa[Serwices

at ParcPlaee SysW wkre k is coauthoring a bookon nraq”ng ob-

ject-oriented software development pojects and cockwekping a rigorous
object-oriented analysisand &sign methodology. He has been affiliated

with tk Center for Human-Moe/tine Systems Research at Georgia

Tech, Advanced DecisionSystems, and tk Hughes Aircraft Company.

He receivedan M.S. in Computer Sciencefrom Stanford Lfniver.sity.
7.

8.
Rebecca Wirfs-13rock

Becoming more predictable
smalltalk provides an excellent platform for incremental

development. Prototypes can be built to clarify poorly un-

derstood requirements. Design can complement prototyp.

ing efforts to produce production-quality code. The benefits of

incremental, iterative software development are enormous.

Large, complex systems have a good chance of meeting cus-

tomer requirements when they ship. Concepts can be vali-

dated before major resources are committed and schedules

finalized. Functionality can be routinely added to an existing

application base without things grinding to a halt. Object-

oriented designs and programming languages are a real aid to

incremental, iterative development. The modularity, flexibil-

ity, and encapsulation that objects provide makes incremental

development pmctical.

Managing an incremental development can he extremely

challenging. This is particularly true when the development

te+am is new to both object technology and an incremental de-

velopment process. I know of no magic formula that guarant-

ees success, but life can be a lot easier if some checks and bal-

ances are applied. It is possible to design (and redesign) in an

iterative, incrementally developed object-oriented applica-

tion. Predictability (and taking action to become more pre-

dictable over time) is the key to making it work.

LIFE IN THE FAST LANE

Iterative, incremental development projects are typically

srarted for several valid reasons:

1. Requirements frrr parts of the software are unclear. The

plan is to develop prototype code, get feedback, assess

what needs to be done, and then do it.

2. New hardware or complex processes need validation.

Given long lead times, it rrmy be necessary to write code

that exercises new system functionality long before a de-

tailed design is finished.

3. In even moderately complex applications, it is difficult to

complete all subsystems at the same time. In fact, plan-

ning for a single massive integration phase is risky busi-

ness. Confidence can often be gained if the system is

brought alive in planned phases. With phased develop-

ment, temporary functionality needs to be provided to

make the things work. These interim parts are replaced
over time (if things go according to plan) with well-

designed, production-quality code.

These are sound reasons. There are also situations where

projects slide into an iterative whirlpool due to lack of leader-

ship and planning, neglect, or inexperience. One danger to

avoid (regardless of how you embarked on an iterative devel-

opment) is wandering for too long without making significant

progress, jeopardizing the entire project. Another risk m avoid

is continual backtracking to fix things up when premature de-

cisions don’t pan out.

Odds can be improved by committing to and sticking with

a process that encourages open communications. People need

to consider the consequences of their actions or inaction.

Even if you have to tinker and adjust the process over the

course of the project, it’s easier to put the appropriate force

fields in place early than to inject change into an organization

that has been lumbering along for a while. The objective is to

encourage communication and thoughtful behavior, making

the entire team function more smoothly.

SOME TYPICAL SCENARIOS

In the remainder of this month’s column I want to discuss sev-

eral tasks that are part of most incremental developments and

offer advice cm how to perform them effectively. Although

the tasks undertaken by most object-oriented development

teams are roughly equivalent, outcomes vary widely. What’s

startling to consider, however, is just how big an influence

anticipating and preparing for change can have on the final out-

come. It’s crucial to think things through before reacting, and

to provide enough information to allow others that same op-

portunity. I’ve learned some strategies for improving the out-

come through direct personal experience. Observing the

habits of people and organizations that meet or exceed their

objectives has been another rich source of inspiration.

MAKtNGPROGRESS

Knowing precisely what’s left to do and how long it will take

is difficult to ascertain in a phased development. It’s imPor-

tant to be as open and honest as possible when assessing sta-

tus. Trust and teamwork play a big part. On one project, we

lived and breathed the creed of incremental, iterative devel-

opment. Not every project team will be so dynamic, have such
THE SMALLTALKREPCMT

.- .—— .— —-—

Voss
Virtual Object Storage System for

Smalltalk/V
Seamless persistent object management with update transaction

control directly in the Smalltalk language

● Transparent acmasto SrnsUtalkobjectson disk
● Trarrssetionmmrrnit/mdlback

● Access to individual elements of virtual reflections and
dlctiomries

. Multi-keysnd multi-valuevirtual dicfionsrim with query by
key rsnge and set intemection

● Ctsss ~tructum editor for rmsrning ctasa~ and adding or
removing irratanee variables allows incrernen tal apptfcation
dwelopment

● Shsredarremto mrned virtust object spaces

● %urce code supptied

SOrrurmnmcnfs rueham rece+vcdaboutVOSS:
“..clean .elegsnt. Works tike a ctrarrn.”

–Hal Hil&brand, AnametLdraraton’es
“Worksabwlutely beautifully; excellent performance and
applirsbtity.”

–Raul Duran, MicrogcrricsInstruments

fo~ic ~<w.d~$m(~fit.~.f~b-,~.+$15,h,m
VOSS/2S6&595 ($373 to cnd of February 1992) + $15 shipping.

— htydkmunb avaifabteVk,MasterCsrdsndEuraCarda.xcpted.

A R T S L@c Ark L&4.75 Hemir@ord had, Cambridge, En@and, CBI 3BV
TEL +44 22s 212392 FAX +44 223245171

—

exciting chemistry, or be so committed to the project. But, I

learned a lot horn that project that I’ve found extremely use-

ful on many other occasions.

We recognized our plans were estimates. They needed to

be living, changing documents. We knew we couldn’t do it

otherwise. Team members didn’t feel persecuted when they

were behind on their initial estimates. If someone honestly

didn’t know where they were, the last thing they did was hide

the fact. We described our designs and implementations as ei-

ther being throwaway, experimental, temporary, works well

enough, or of finished quali~. We had guidelines for commu-

nicating project status that stated both our progress and

confidence in our decisions and achievements,

When things didn’[go as planned, we brainstormed about

what it might take to get back on track. We set a new date for

achieving measurable results, generated a Iist of action items,

and kept moving. We acknowledged our situation, and ac-

tively sought help and advice from others when necessary. We

were team players. It was important to do assigned tasks, but

making the team succeed was the primary objective. We freely

debated the impacts of change (and our progress) not only

with the design and development team, but also with market-

ing, manufacturing, and project management,

Management made it very clear that it was OK to say, “I

don’t know.” You were expected take action to find answers,

but you didn’t have to bear the burden alone. The team

helped develop alternatives. And most importantly, a messen-

ger of unexpected news was never punished.

46
The most effec-hve prototyping effort

I have seen was pulled off by a team

that felt certain that they’d require

several prototyping cycles before

finalizing their design,
99

DECIDINGWHAT TO PROTOTYPE

Determining what you want to prototype before starting is im-

portant. Sloppiness and unpredictability on the part of some

prototyping efforts has gained prototyping an undeservedly

bad reputation. If you have a clear set of objectives and a plan

of attack, it will be much easier to get management to buy in.

It also improves your chances for developing a meaningful

prototype. It’s vital to explore options before committing to

any serious prototyping. What’s serious prototyping? Spending

more than a couple of weeks.

Take enough time to collect your thoughts and set objec-

tives. One way to ensure that you’ve done enough homework is
VOL. 1, No. 6: MARCHIAPRIL 1992
to write things down. If you have trouble summarizing objec-

tives, you aren’t ready to launch into prototyping. You need to

be able to smte both what you hope to accomplish and how you

intend to do so. Summarize any burning issues or questions.

Communicate what you know and what you want to find out.

To clarify objectives, discuss the prototype with people

whose perspectives differ from your own. It is fair to state a

preferred course of action, but be willing to listen to other

ideas. It’s best if you can bounce ideas off someone who is

both receptive to your ideas and a good critic. Brainstorm al-

ternatives. Listen carefully to others’ comments and criticisms.

Don’t shoot down new ideas. Mull things over.

Do a paper design of the parts you think you understand.

This preliminary design probably won’t be worked out in

much detail. But be prepared to discuss key objects and archi-

tectural strategies, Talk to those who are reviewing your ideas

in their own language. If your audience understands objects,

talk about objects. If they don’t, you can either spend time

educating them, or speak to them in their own terms. I have

had several meaningful discussions with people with an elec-

tronic engineering background. I found it useful when pre-

senting my prototyping ideas to draw analogies with phased

hardware development.

Setting objectives doesn’t require a lot of time. What’s ap-

propriate obviously depends on the duration of the prototype.

It’s perfectly reasonable to spend a few days setting goals be-

fore a month-long prototyping effort. A six-month effort

9.

■ OBJEm-ORIENTED DESIGN

10.
might require a few weeks to set clear objectives. Without

such forethought, it’s difficult to know if you are even working

on the right problem.

BUILDING A SUCCESSFUL PROTOTYPE

The most effective pmtotyping effrn-t I have seen was pulled off

by a team that felt certain that they’d require several prototyp-

ing cycles before finalizing their design. Knowing that, they

planned for incremental, iterative success. I wouldn’t character-

ize their efforts as random prototyping. They didn’t just build

something and keep tinkering with it until they had a final

product. They documented what they expected to accomplish

(and what issues they wouldn’t address). They made sure others

bought into their concept of prototyping. They made it clear to

management that they wanted to design and implement proto-

types to gain understanding. They didn’t hope or expect a final

result would “pop out” if they were lucky. They set milestones,

and measured results along the way. They spent as much time

assessing their prototypes as they did building them. They ac-

tively solicited advice and expertise when they felt uncermim

They spent a lot of time analyzing whether their design would

be flexible enough and whether it would scale to accommodate

future system requirements.

They went through several prototyping cycles on a major

part of a large, complex system without ever being on the crit-

ical path. Were these people more brilliant or harder working

than their teammates? They were skilled and had over 10

years of experience. But they weren’t the only bright stars on

the team. Instead, I’d characterize them as being in the habit

of thinking before doing. They also believed very strongly in

working smarter, not harder. They weren’t constantly pro-

gramming. Coding was a by-product of designing and reason-

ing about the problem and not its only manifestation, even

during prototyping.

SOLIDIFYING SUBSYSTEM INTERFACES

In incremental development, the objective is to accommodate

change without leaving interfaces too ill defined or soft and

squishy. Working out interfaces is naturally an iterative pro-

cess. Expect to refine them to match both class users’ and class

developers’ needs. The key is to agree upon initial interfaces,

and agree to mrugotiate change. Changes should be made in

context of their impacts on the overall system. Although re-

sponsibility for making change ultimately rests with the devel-

opers, system concerns need to be injected into the process of

deciding what (and how) to change.

As subsystem designers work out the details of how services

provided by their subsystem will be supported, they collect

ideas for changes. Others using their subsystem will also find

room for improvement. Evolving an interface requires team-

work. One way to foster teamwork is to publish proposed

changes rather than to notifj others after the fact. If no one

responds to proposed changes, don’t assume they agree by de-

fault. Things go more smoothly if people are given a chance to
understand and comment on proposed changes. Make sure

people have enough time to absorb the impacts of a proposed

change. What may seem minor to subsys tern implementors

can cause major repercussions elsewhere. Expect debate on al-

ternatives before making any major change.

Smalltalk team programming environments make it easier

to propose changes. Developers can pass back and forth

workable alternatives without affecting others. The y aren’ t a

substitute for thinking things through. Effectively evolving

interfaces requires adopting and promoting “systems think.”

On larger projects, one way to promote system thinking is to

designate a system architect. The architect’s initial role is to

determine the initial structure and organization of the appli-

cation, including subsystem interfaces. Throughout the pro-

ject, the architect keeps on top of proposed changes, and ac-

tively works to mediate needs of the subsystems’ developers

and users.

Avoid the two ends of the spectrum: standardizing too

early, or being so flexible that nothing can ever be agreed

upon, Both extremes cause problems. If an interface is

frozen, other parts of the application contort to fit. It isn’t al-

ways appropriate that the first one “done” defines what is ex-

pected of others. On the other hand, if nothing is ever

agreed upon, people are constantly in a reactionary mode,

consuming lots of time adjusting and readjusting to shifting

interfaces,

AN ALTERNATIVE TO JUST LIVING WITH

THE CONSEQUENCES

There are many factors that go into a project’s success. There’s

no substitute for persistence, intelligence, and commitment.

Iterative and incremental development require extra attention

to planning and designing and careful consideration of conse-

quences. Individuals can make a difference by planning for

change, rather than just letting it happen, Things won’t work

well if individuals go off and “do their own thing” ignoring the

rest of the project. Successful iteration is fostered by teamwork

and a willingness to accept and solicit constructive criticism.

Improving predictability is a constant, ongoing process. ❑

Rebecca Wi&Brcck istheDirector of Object Technology Servicesat
Digkdk and coauthor of Designing Object-Oriented Software. She

is theprogramchairfor 00P.SLA ’92. She has ove~ 16 years of expe-
rience designing,implementing,and mmwging software products. DuT-

ing the lasteight years she has focused on object-orientedsoftware.ShE

managedthedevelopmentof Tektronix Cofor Srn&dk and has been

immersed in developing,~aching, and lecturingon object-oriented soft-

ware. Comments, further insights,or wildspecuhions are greatly ap-

preciated by the author. Rebecca can lx reackd viamail at

rebecca@instance.com. Her US mail address isDigitalk,921

S. W. Wdington, Suite 312, Portland,Oregon 97205.
THE SMALLTALKREPORT

MALLTALK WITH STYLE Ed Klimas and Suzanne Skubbcs

Tips for improved Smalltalk
reuse and reliability
“DON’T POUND NAILS WITH A CHAINSAW.”

Every programming language has certain features that can

be sources of trouble when misused. These features are

typically included in the language to solve specific issues

but can, if misapplied, result in code that is bug ridden,

difficult to reuse, and expensive to maintain. This month’s

column covers a few of these Smalltalk features to help de-

velopers understand some of the issues associated with

their proper use and the potential problems associated with

their misuse.

GLOBAL, POOL, AND CLASS VARIABLES

Smalltalk provides mechanisms for sharing information via

global variables, pool dictionarieslpcrol variables, class vari-

ables, and instance variables. Although each mechanism has

a specific intended use, some of these mechanisms can be

misused in ways that can impact code quality and reusability

GLOBAL VARIABLES

Global variables represent data that are directly accessible

to all of the classes in a program. Global variables are use-

ful for holding the tempormy code used in debugging,

recording the count of window events that camot be in-

terrupted, and the tapid testing of prototype code seg-

ments. However, they typically have a negative effect on

commercial software quality. The problems with global

variables in conventional software development have been

well documented by William Wulf and Mary Shawl during

the “X considered hatmhd” wave of papets. The problems

with globals in object-oriented programs were succinctly

summarized by Bertrand Meye? as follows:

As different modules share global variables, they make

each of these modules more difficult to understand, read,

and maintain.

Global variables form a hidden dependency between mod-

ules. They are a major obstacle to software evolution be-

cause they make it harder to modify a module without hav-

ing an impact on others.

The use of global variables violates encapsulation and the

protective software “fire walls” that result. It is much easier
VOL. J , No. 6: MARCH&SIL 1992
to make stand-alone, portable applications and classes

without global variables.

They are a major source of errors. An error in one module

may propagate to many others. As a result, the manifesta-

tion of the error may be remote from its cause, making it

difficult to trace errors and correct them.

A less fundamental problem is that a global variable does

not typically belong to one module in particular. llms, it is

not clear where to initialize the global.

@deZine-Avoid using globalvariables. Use class variables

insteadof globalvariablesif the value is to be shared in only one

class.

POOL VAtUABLES/POOL DICTIONARIES

Pool variables or pool dictionaries are mechanisms for shar-

ing the same information between instances of several

classes. Pool dictionaries are usually used [o hold dictionar-

ies of related constants for a given application, e.g., Color-

constants and CharacterConstants.

@i&line-To avoid creating M.&m dependencies, set the
values of the class variablesthatare re~hcing pool dictionmies

only in one common initializationmethod.

Without this practice, it is easy to change a number in one

method and miss it in another. Class variable names can also

provide semantic information about the use of a constant. For

example, ButtonDown equals one and ButtonUp equals zero.

@deline-Use symbolicconsmnts and corutant expresswns
to ahv multiple dependencies to link to one or a srrd number

of syrnbah in pool dictionaries.

In some 00P circles, using pool variables-as ubiquitous

as they are in the base Smalltalk image—is considered a bad

programming practice because they permit the violation of

encapsulation. Therefore, in some situations, pool variables

may not meet with the strictest guidelines of good encapsula-

tion and 00P practice. Also, be aware that various dialects of

Smalltalk handle pool variable inheritance differently. For ex-

ample, in the Smalltalk/V implementations, pool dictionaries

are not inherited while in Smalltalk-80, pool variables are in-

herited by subclasses.

11,

■ SMALLTALK WITH STYLE

12,
@sideline-Use cluss variables with acce5sormethods instead

of pool dictionm-ieslvariables. If an object must be shared aCTOSS

sevmal classes, create a separak new ckms to hold the pool d.ic-
tionmyobject in a class variableof the newly created class.

Use clAssmethods to UKco-mums instead of repeating them in

many methods:

“Instead of declaring MyWindowConbolKeysa pool diction~
of MyWindowuse the foUowingtechnique”

Objectsubclass: #MyWindowControWys
instanceVariableNames:“
classVariableNames“
‘MyWindowContiolKeys’
poolDiclionaries:“!

!MyWindowContiolKeysclass methods !

myWindowControlKeys
“Usethe lazy iniliatisation technique to create and initialize the
dictionary if necessary in this get accessormethod”

MyWindowControUCeysistfil
HTrua [self initializeMyWindowContiolKeys].

‘MyWrrdowControWys.!

rnyWindowControl@s:~ifionary
“Setthe value of the instance variable using this setter accessor
method”

MyWindowConholKeys:= aDictionary,!

initiahzeMyWiridowContioUCeys
‘Ike a commoninitialization method to add a key constant to the
MyWindowControlKeysdictionary .“

‘(self myWindowContiolKeys:(Dictionarynew)) ak #F9Keyput: 120,!

ak asymbol
‘seWmyWindowControlXeys

ak asymbol
ifAbsent: [nil].!

at: a$nnbol iflibsenh aBlock
‘(setfincludes: asymbol)

it’he: [selfmyWindowControlXeysat asymbol]
ifFalsa [aBlockvahre].!

includes: asyrnbol
‘(self myWindowControLKeysincludes: a$nnbol).! !

Objectsubclass: #MyWindow
instanceVariableNames:“
classVariableNames:“
poolDictionaries:“!

!MyWindowmethods !

keyInput anInteger
“Private- Processa key input to check if the pane should be cycled.”
anInteger = (MyWindowControLKeysat: #F9Key)

ifl’rue: Notifier cycle].! !
CLASS VARIABLES

Class variables are shared only by the instances of the sin-

gle class in which they are declared. Class variables contain

the same value for all instances of the assigned class,

A class variable is often a good replacement for a global

variable. The class should include the protocol necessary to

initialize the global, access it, and modify it as necessary.

For example, suppose there is a class called User represent-

ing users of a system. Instead of using a global variable to

store all the users, define a class variable called Users. The

class protocol added to class User might include:

addUse~
deleteUse~
deleteUse~ifAbsenti
checkForUse~
users “to retmn the coUectionof users”

@i&line-Use elms variables for shared components between
all irumnces of a clQssand itssubclasses, and us a public interf-

ace for al classes.

ELIMINATE CASE ANALYSIS

In 00P, case analysis is the practice of testing an object

for some criteria to determine what kind of action needs to

be taken

anObjectisMemberOERectangle
ifl’rue: [anObjectdrawRectangle].

anObjectisMemberOfiCircle
ifl’ruw [anObjectdrawCircle].

anObjectisMemberOfLine
ifhue: [anObjectdrawLine].

The problem with this kind of programming technique is

that it leads to a combinatorial explosion for large systems

where many different objects need to be tested and appropri-

ate methods need to be dispatched. The practice of case analysis

in large systems generally results in code thatk more difficult to re-

liablyrrwin~in. Subsequent developers must find every relevant

case struement in the system and make sure that it is properly up.

dated. Ano[her negative side effect of this practice is that case

analysis greatly reduces the reusability of the code. Using case

statements, a new developer will be required to modify all the

existing case statements to accommodate a new object.

The concept of polymorphism was designed to provide a

simple and efficient solution to this problem, Briefly, with

polymorphism there are many objects that respond to the

same command, each taking the necessary steps to complete

the actions of the command. The above problem can be

greatly simplified if each object has a common command such

as draw that it implements so that wherever an object needs to

be drawn, the following message is sent:

anObjectdraw.
THE SMALLTALKREPORT

~ Smalltalk/V users: the tool
* for maximum productivity ~

Put selated classes and methods into a single task-
oriented object called application.
Browse what the application sees, yet easily move code
between it and external environment,
Automatically document code via modifiable templates.
Keep a history of previous vemions; restore them with
a few keystrokes.
View class hierarchy as graph or list.
Print applications, classes, and methods in a formatted
report, paginated and commented.
File code into applications and merge them together.
applications are untiected by compress log change
mdmany other features..

class
;-----------........................
‘ Deleted classes I

<(

<-------------------------------

....................................
Browsers.. ~~~iq

Yarn : Deleted methods !......................................

Iger Histm-y — ~Code recovery]
...

Utilities.. - Application printing J and more.

CodeIMAGERm V286, VMac $129.95
VWindow & VPM 249.95%Shipping& handfing:S13 mad, $20 U , per copy

Diskette: ❑ 3]n ~ 53fi

❑
SixGraphm Computing Ltd.
formerly ZUNIQ DATA Corp.+ 2035C5tede Liesse, suite 201

~~ Montreal, Que. Canada H4N 2M5
_ T~ (514) 332-1331, Fax: (514) 956-1032

MAG+umc,timnrkdSixOr&+t~ Ltd.
ZmdMk/V m a ES. mknuk of Digifdk,

13.
A draw method needs to be defined only once for each ob-

ject, as follows:

<Rectangle>draw
“Codeto draw a reclangle”

<circle>draw
“Codeto draw a Circle”

<tine> draw
“Codeto draw a Line”

Different but appropriate actions will be tien by each object

to implement its own drawing. When properly implemented,

any previously existing code that dealt with displaying objects

can now be readily reused under this scheme, The developer of a

new object need only take advantage of the existing code to cre-

ate a draw method for the new object, In addition to greatly sim-

plified programming, polymorphic programming uses the mes-

sage dispatching scheme for achieving the desired result, which

is usually a much quicker mechanism than any case statement.

Although it may take more effort initially, case ma~rnents can al-

ways lx rewurked intopolyrnm-phicmessages.

CHECKtNG FOR CLASS -BERSHtP

In object-oriented languages, polymorphism can also re-

place checking the class of an object. Different classes han-

dle the same message differently. Using code with multiple

calls to isKindOf, isMemberOf, or code of the form:

“classWindowinstance method”

resizeToMasScreen
(self class = FixedWindow)

ifl’rue: [self resizeNotAllowed]
itFalze: [self resize]

is often an indication of a function being in the wrong

class. Replace these statements with a message to the ob-

ject whose class is being checked. Create methods in the

various classes of the object that respond to the message.

Each method should contain one clause of the cases. An

example of avoiding case analysis for the above problem

might be to have the following code instead:

“classWindowinstance method”
resizeToMaxScreen

self resize

“classFixedWindowinstance method”
resizeToMasScreen

self resizeNoWkmed

Sending the message resizeToMaxSaeen to an instance of ei-

ther window class will result in the receiver window sending

the correct message to resize itself or not,

@ideline-Avoid explicitlychecking tke cfassof an object.

Using these case Niztients is almost alwaysincorrect.
VOL. 1, No. 6: MARCHL4SWL1992
MULTIPLE DISPATCHING

Even messages composed of more than one argument can

be simplified using the double dispatching technique de-

scribed by Dan Ingalls.3 This problem can be illustrated by

the following summary of Ingalls’ examples where the ob-

ject to be displayed might be routed to a screen, a printer,

or a clipboard. In this case, a programmer might be

tempted to write the following case statements:

<Rectangle>diaplayonaPort
aPort isMemberOEScreen

ihre ~code for displayingon the screen”]
sPort isMemberOEPrinter

iflhre: ~code for displayingon the printef]
aPort iaMemberOkClipBoard

ifl’nre: ~code for displayingon the clip board”]

Although the above code is local to the specific object to

be displayed, it will still be difficult to extend and to maintain.

The solution to these “doubly polymorphic” situations is to

use a relay method in each object to be displayed to further

dispatch on the port as follows:

<Rectangle>diaplayOrr:sPort
aPort dizplayRectangle self

<Circle>displayon:sPort
aPort dizplaycircle:self

<Line>displayon:aPort
flort displayLine:self

14,

ODBMS

ODBMS
The ObjectOrientedIkabase forWtiows 3
and 0S/2.

ORDER NOW !

0 TheODBMS- Complete Vkrsion
o The ODBMS - Programmer’sVersion
o The IMSDe - DistributedSmaUtalk

So&are Development environment

More applications using ODBMS including
the exiting combination of ODBMS and
SQL areavailable

VC Software Construction
Petritorwall 28
3300 Braunschweig
Germany
TeL +49 53124240-0
FaIL +49 531 24240-24

■ SMALLTALK WITH SIYLE
To complete the dispatching, one now only needs to define

methods for each of the display port classes as follows:

<Sereen>displayRetingle aReet
“Codeto displaya rectangle on a saeen”

Gcreen>displaycircle: aCircle
“Codeto display a circle on a screen”

CScreenxiispkqline: aLine
“Codeto displaya he on a screen”

and similarly for the other objects to be displayed:

+rinte-diaplayReckmgle: aReet
“Codeto displaya rectangle on a Printef

-4hinter>dMplayCircle:aCircle
“Codeto displaya circle on a Printer”

@ri.nteGdisplayLine:aLine
“Codeto display a line on a Printer”

By following this approach, one can add new objects to the

system without having to tamper with the existing code by

only defining the relay message in the new class and the corre-

sponding display method in each port class,

@i&line-To obtain k intended benejits of reusability, de-
velopers should avoid case statements jlom & start ad avoid

using case arudysis to check the values of variables.

CONCLUSION

Smalltalk has many powerful features that can result in the

efficient development of commercial-quality code. New de-

velopers should take a few minutes early on in their

Smalltalk experiences to understand these issues so that they

can significantly improve the reusability and reliability of

their code from the start. The sooner one develops good pro-

gramming style and techniques, the more valuable the effort

will be to the pro~ammer and to others in the future. ❑

REFERENCES

1. Wulf, W. and M. Shaw. Global variable considered harmful, ACM
SIGPLAN Notices 8, 1973.

2. Meyer, B. Bidding farewell to globals, Joumal of Object-Ori-m~d

Programming1(3): 73-76, 1988.

3. Ingalls, D. A simple technique for handling multiple polymor-
phism, Proceedingsof 00PSLA ’86, Portland, OR, 1986,

Ed Wirnas is managing director of Lines Engineering, k., a su~plier

of custom object-oriented based solutions for industrial applications.He

can be reached at (216) 381 -S493. Suzanne Skubl.icsis education

managerat Object TechnologyInternational.Suzanw can be reuhed
at (613) 228-3535. Ed and Suzanne, along with Dave Thomas, are

coauthorsof an upcomingM&n-Wesley book tided Smalltalk with

Style that covers these and many other isswzsmsociated w“drcornrner-

cid %nal.hdk-based code development.
THESMAUTALKREPORT

Greg Hend!ey and Eric Smith

Paint palettes (taking control in
Smalltalk/VPM 1.3)
T
his installment of GUI Smalltalk will take you on a jour-

ney. In the process of creating a palette, we will make use

of an 0S/2 2.0 control, take advantage of VPM’S easy PM-

subclassing feature, try out a feature of ViewManager, and

override several PM behaviors. As an example use of the

palette we will use it to enhance the old example application

FreeDrawing. The palette will be used as an alternative to the

menu for selecting drawing colors.

PRELIMINARIES

We will start off easy by filing in FreeDrawing, The necessary

files can be found in the subdirectory EXAMPLF,S\FREDRWNG.

Follow the instructions in the file FIUDRWNG.TXT.To be safe,

create FreeDrawingWithPalette as a subclass of FreeDrawing. This

way we can experiment without losing the original FreeDraw-

ing. Remember to include PMConstants as a pool dictionary for

the new subclass.

Next install the the new control valueSe~ The necessary files

can be found in the subdirectory EXTRAS\VALUESE1’.Follow the

instructions in the file VALUES~.’l’YX.ValueSet is documented in

the file and in the ,Smal!dJV PM Programming Handbook Sup-

@nwnt. 1 Briefly, ValueSet is an array of recungles where only

one rectsmgle maybe selected at a time. The rectangles may

contain bitmaps, icons, colors defined in either of two ways, or

text, ValueSet seems ideally suited for ux in palettes.

A FIRST PASS

We will add the palette as a view of FreeDrawingWithPalette.

The new view will contain one subpane, a ValueSet. The code

is straightforward with one exception, the initialization of the

contents of the ValueSet. To set the color of row 1 column 1 to

red, one would normally write aSubPane colorItem: llrRed row

I column: 1. But in this example, the colors are kept in a two-

dimensional array (an array of arrays). So the loading is done

in a two-level loop:

createPaletteView
“Createand add a palette to mylist of views.

I aTopPaneaSubPane I
aTopPsne:= PaletteTopPme new.
aTopPanefranringBloclc[:box I 10@200extenk 100@120].
aSubPane := PaletteValueSetnew.
aSubPane

framingRatio:(O@Ocome~ l@ O.8);
VOL. 1, No. 6: LIARCH/APRIL1992
when: #select perform #colorSelectedFronrPalette:;
owne~ self;
rows: 2 columns: 2.

1 to: 2 do: [:aRow I
1 to: 2 do: [:aCohrrnnI

aSubPane
colorItern ((self paletteColorArrayat: aRow)

ah aCohmnn)
row aRow
column: aCobxon]].

aTopPaneaddSubpane: aSubPane.
self addview aTopPane

The supporting methods are:

paletteColorArray
“Answeran arraywith the colorsfor the palette.”

“May
with: (hay with: ChRed with: ChBlue)
with: (Arraywith: CI13reenwith CkBlack)

colorSelectedFromPakstte:a%ne
‘Aselection was made in the palette view,set
the drawing color to the se[eciion in the palette.”

I index color I
index:= aPane seletion.
color:= (selfpaktteColorArrayak index y) ab index x.
seLfcolorSelected color.!

The quick and dirty way to add the palette view to open is

to copy it from FreeDrawing to FreeDrawingWithPalette. Add the

line createPaMteView right before openWindow. Now try it out

by doing FreeDrawingWithPalette new openOn ‘temp’.

One nice feature you will notice is when the main

“Smalltalk/V Paint” view is closed the palette view also

closes. One slightly annoying characteristic is that once a

color is selected from the palette you can not immediately

draw on the main view. You first have to click on the main

view to get its attention (make it active). Then you can con-

tinue drawing.

A SECOND PASS

The quick fix is to set the global Smalltalk variable, CUA, to

ttue. Now there is no delay in drawing on the main view, but

there is also no delay in going between any two Smalltalk

windows. And we still have one view becoming active, then

the other. Some people find this distracting, What we would

like to do is modify the palette so it does not take control.

This way the title bars do not change colors when the palette

15.

■ GUIS
-. ..—

16.
is used, and there is no delay going back and forth between

the main drawing view and the palette.

The palette view becomes active upon processing the tiut-

tonlDown:witk message. This is done under PM control. To keep

the view fi-om becoming active we need to take conttol from PM.

First make a new class, palettevalueset, as a subclass of Val-

ueset. Remember to give it the same pool dictionaries as its

superclass. Copy the method wrnButtonlDownxvith: from the

class Window to the class PaletteValueSet, Remove the line be-

ginning with CUA. (We want to respond especially when the

palette is not active.) Change the return value horn nil to O.

(This keeps the default winProc ftom processing the message,

which keeps the palette from becoming active.)

So far, so good. Except, the palette does not get the wrnBut-

tonldown:with: became the control has not been PM-sub.

classed, Subclassing in PM is not the same as subclassing in

Smalltalk. When you PM-subclass a control you get messages

before the control’s winRoc does. Returning nil tells the

winProc to do its standard processing after your method is

done. Returning Otells the winRoc not to bother. (See Ref. 2

for more information.) Digitalk provides a neat way to take

care of this with the message receiveAllWindowMessages. This

ensures the control is PM-subclasses. Make use of this by

adding the following method to PaletteValueSet

initialize
“Ritnte - Initialize the receiver.”
~is Ms me take control fromPM.”
super initialize.
self receiveAllWindowMessages.

Now we have control of buttondown. Clicking on the

palette no longer deactivates the main drawing window. h

also no longer changes the selection in the palette, Along

with control comes responsibility. To determine and set the

selection, add the following method:

buttondown: apoint
“Theuser pressed button at aPoint within me.
Determinewhichvalue (rectangle) apoint is
in. Set my sele~on to that value. And send
myselfthe select went. Thislast part keeps
me consistent with my superclass.

I se[ectedllowselect.edCohunnselectedCeUI
selectedColurmr:=apoint x // (self rectangle width // cokrms) + 1.
selectedRow:= rows- (aPoint y // (seLfrectangle height// rows)).
selectedCeU:=selectedColurrm@ selectedRow.
self seletion selectedCeU.

The last line returns control to PM. It tells the PM control

ValueSet to select the cell the cursor was over when buttonl

was pressed. PM responds by marking the selected item and

sending a Wrrtcontrol event. Smalkalk responds with a

syncconbol, which responds with an asyrtccontrol, which gen-

erates the Smalltalk event #select. This puts us back into fa-

miliar territory. The next action is whatever we told the

palette pane to do through the when: perfrsmt: when we created

the pane.

AN EXERCISE FOR THE READER

There are several details you may want to cleanup yourself.

These include handling the wmButtonldblclknvith: event and

getting rid of the menu bar. You may also want to give the di-

alog behavior of always floating above the main dtawing view.

The dialog behavior was covered in this column in the Octo-

ber 1991 issue. ❑

REFERENCES

1. SrnaUtalk/VPM ProgrammingHandbook Supplement, Digitalk, Inc.,
Los Angeles, CA.

2. SmaUtdk+/VPM P~ogrammingHandbook Su@zment, Digitalk, Inc.,

Los Angeles, CA, p.469.

Greg Hend.J.eyisa member of tJret.eclmicalstizffatKnowledge.syswms

Cor@ration. His 00P experience is in SmaJkaik/V(DOS),

Smalkdk-80 2.5, ObjectworksSmaUtalkRelease 4, and

SrnAUtalk/VPM. Eric Smithis a member of tlwtechnicalstaff at

KnowledgeSystemsCorporation. His specialtyiscustomgraphicaluser
in~~es using Srrs&Zk (variousdialects) and C. They can b con-

tacted at Knowledge SystemsCorporation, J 14MacKenan Drive,

Caryr NC 27511, or byphoneat (919) 481-4000.
THESMALLTALKREPORT

J● EST OF comp.lang
●

The Best of comp.lang.smalltalk

Alan Knight
M
elcome to a new feature of The Srrrdktdk Report, a column

summarizing the best Smalltalk-relevant discussions from

USENET’s comp.lang,smalltalk bulletin board.

WHAT IS USENET NEWS?

USENET is an informal computer network that carries elec-

tronic mail and discussion groups from all over the world. Al-

though the discussion groups are referred to as “news,” they

are really open forums, similar to those available through elec-

tronic “bulletin boards” or commercial online services such as

CompuServe or BIX.

The most significant difference between USENET and

commercial systems is that USENET is based on a distributed

(some would say anarchic) architecture. Rather than a few

large, centralized machines, news is carried by an enormous

number of smaller machines, without any central organization

at all. Messages are distributed primarily through the Internet,

a term that loosely describes the high-speed wide area net-

works linking universities, government institutions, and many

large corporations. Machines that are not on the Internet usu-

ally get their news and email services by connecting (perhaps

indirectly) to a machine that is.

A common feature of commercial online services are the

“vendor forums,” in which users can ask questions of company

representatives and get authoritative answers. Because many

of the networks over which USENET operates are gover-

nment funded, they are not permitted to carry commercial

traffic of this nature. Groups for discussion of particular prod-

ucts do exist, but these are primarily user groups, with only an

occasional word from company representatives.

This is an important distinction. Although these user dis-

cussions can be very valuable, with good advice, ideas, and

even snippets of code, one should take what is said there with

at least one grain of salt, These are open forums, in which mes-

sages don’t last very long, and the amount of thought that goes

into the messages varies. Just because someone speaks confidently

orI a subject does not mean they know what they ‘re talking about.

Of course a particularly outrageous statement will likely be

corrected by someone more knowledgeable. It’s even possible

that the mistake will be politely pointed out, the original

poster will see and admit the error, and everyone will come

away having learned something. It doesn’t usually work that

way. Instead we find a message beginning with:
VOL. 1, No. 6: MARCHIAPRILJ992
BZZZZT! Wrong! No points for effort. The correct

answer is...

This is not designed to inspire calm and rational discus-

sion. A typical response would be:

I always suspected everyone from <insert appropriate affili-

ation> had wallpaper paste for brains, but this surpasses

even their usual standard of idiocy. My view is clearly sup-

ported by the following definitive sources...

66
Although these user discussions

can be very valuable, with good advice,

ideas, and even snippets of code, one

should take what is said there with

at least one grain of salt.
99

This soon becomes a “flame war,” an endurance contest for

electronic abuse which lasts until no one involved can re-

member the original point of debate and no one else is reading

the messages.

FREQUENTLY ASKED QUESTIONS

One of the purposes of a user group is to answer questions. Of-

ten, to save answering the same questions repeatedly, the

members of the group will put together a list of standard an-

swers. In this spirit, I will lead off the column by providing an-

swers to a few such questions.

WHERE CAN I GET FREE STUFF?

This is by far the most common question in any user group.

We will omit the common variations of “Where can I get stuff

even if I have to pay for it?” and “Should I buy this product?”,

because these are better dealt with by the ads, product an-

nouncements, and reviews elsewhere in this publication.

W BE5T OF COln@tn9

18,
When people ask about free stuff on a computer network,

they often want it to be accessible through the network.

There are several ways of going about this:

● f~. File Transfer Protocol (ftp) is a fast and easy way of

transferring files over the Internet, A local systems admin-

istrator should be able to tell you if you can use ftp from

your site.

. E+naIL Sites not on the Internet but with electronic mail

access can often receive files by email. A message in a spe-

cial format is decoded by the receiving computer, which

automatically translates the files into a mailable form and

forwards them.

● Modem. Other machines may allow you to call directly by

modem and mansfer files.

WHERECAN I GET A FREEVERSIONOF SMALLTALK

FOR MYMACHINE?

1 have only seen two freely distributable implementations of

Smalltalk mentioned, and unfortunately neither of them is

even close to competitive with the commercial versions. They

are as follows:

. A Little Smalltalk is Timothy Budd’s implementation of a

portable Smalltalk system for UNIX, though it has been

ported to MS-DOS, and probably to other machines. It

has no graphical user interface. It is available for ftp horn

Oregon State University, cs.orst.edu.

● GNU Smalltalk is produced by the Free Software Founda-

tion. It is another text-only Smalltalk, with a rudimentary

user interface using the EMACS editor. h is also for

UNIX, but runs on Atari ST computers as well. The stan-

dard ftp source is prep. ai.mit.edu, but like most GNU soft-

ware it is available from many other places. For $200 US

you can get the source for it and whatever else happens to

be on the same tape from the Free Software Foundation.

WHERECAN 1GET SMALLTALK CODE?

Because we all think code reuse is important, it’s good w know

what code is outtherebeggingm be reused. Fortunately there’s

quite a bit available and it’s begiming to be organized for easy

retrieval, with centralized archive sites in Europe and North

America. Ralph Johnson described the North American

archive in the first issue of this magazine, but I’ll mention it

again for the sake of completeness. There’s far too much code

in these archives to describe, but in future columns I may

highlight some iterns of interest. Here are some sources of

Smalltalk code:

. The University of Manchester maintains an archive of

Smalltalk-80 code, accessible through an email server. To

get instructions and an index, send a message of the form

To goodies-lib@cs.man. ac.uk

Subject: help; index
● In North America, the University of Illinois maintains

an archive accessible by ftp at st.cs,uiuc.edu (an alias for

128.174.241. 10). This contains a copy of the Manchester

Smalltalk-80 archives along with lots of Smalltal~ code,

postscript versions of journal papers, and numerous other

goodies. This archive can also be reached thrrrugh an e-

mail server by sending a message of the form:

To: archive-server@st. cs.uiuc.edu

Subject:

path youmame@your.intemet. address

archiver shar

encoder uuencode

help

encodedsend ls-lR.Z

If you have neither ftp nor email access, and can’t find any-

one who does to help you out, the archive is available by mail

in various formats by sending $200 US to William Voss at the

Department of Computer Science, University of Illinois, 1304

W. Springfield, Urbana, IL, USA 61801.

s Commercial online services such as CompuServe and BIX

often have Smalkalk discussion forums and accompanying

file download areas. These are only semi-free, as you have

to pay for access.

● ParcPlace runs a bulletin board called ParcBench (in

California) with discussion areas and files available. This

has the advantage of featuring vendor-supplied fixes and

enhancements, but you have to be a paid customer of

ParcPlace technical support to access many of the areas.

The number is (415)691-6716, and is answered by a

2400 baud modem. There should be information on the

service with your documentation. I haven’t seen anything

similar for Digitalk customers mentioned, but check the

documentation.

LOST INSTANCES

A familiar cry on USENET is that of the Smalltalker who has

gotten into a bad situation and can’t find a way out. One of

the common problems is “lost instances.”

As everybody knows, Smalltalk is garbage collected. Ob-

jects that are no longer needed disappear quietly, without any

intervention on the part of the programmer. This is true most

of the time, but even the best programmers sometimes have

difficulty convincing Smalltalk that certain objects are no

longer needed.

The problem is more serious in Smalltalk/V than Smalltalk-

80. In ST/V the definition of a class with instances cannot be

changed. Even a few stray insmnces can make it impossible to

work until they are tracked down and eliminated.

In ST-80 existing instances are changed to conform to the

new definition when a class is recompiled. Lost instances take

up space, but don’t usually cause any further trouble. Usually.

Often, though, lost instances are a symptom of something more
THESMALLTALKREPORT

fund.artundy wrong with the image. This is particularly true of

instances of system classes like ScheduledWindow or Process.

These deeper problems are often due to errors in user-interface

code, e.g., windows that did not properly finish opening or

closing. They can have bizarre effects, and be very difficult to

fix. I’ve had the delete key stop working due to these kind of

problems, and I still don’t understand how.

INSTANCE EXTERMINATION

Given that lost instances may be or signal a problem, you

need to know how to get rid of them as quickly and easily as

possible. First, you need to find out if you have them. If you

want to check for instances of a particular class, evaluate atlass

alhstances inspti If you have the problem, here are a few

standard techniques for trying to solve ic

1. Check the obvious places. The most likely, and least

troublesome, reason for lost instances is that you have a

reference you’ve overlooked. Check global or class vari-

ables, as well as instances of other classes that might ref-

erence them. Be sure you don’t have any inspectors or

custom windows open. To minimize problems with glob-

als, I avoid their use except for scratch storage, and I al-

ways start their name with a distinctive prefix. This

makes it very easy to find all of my globals using Smalkallt

inspect

2. Start again. Go back to an old image that doesn’t have

this problem and file in your changes. If necessary, start

from a clean image and file in all of your changes. Natu-

rally, all Smalltalk programmers keep numerous backup

images of different ages and file out their changes regu-

larly, so this shouldn’t be much trouble. Unfortunately, if

the problem has been around for a while without you

noticing you may have to back up quite a long way.

3. Use become:. If you’re reluctant to abandon an image so

soon, you can try forcibly eliminating the instances. Be

warned that this may not solve an underlying system prob-

lem, and it can introduce new ones. Be prepared to start

over unexpectedly. For classes that should have no in-

stances, try evaluating something like:

ProblesnClassalllnstances do: [:eachkLhstance I
eachLostIn.skmcebecome: somethnghsocuous].

The central operation here is become:. This finds all refer-

ences anywhere in the system to the block argument

eachkthwtance and changes each one into a reference to

sometighmocuous. A good choice for something hmocuous

is String new. This works in any dialect of Smalltalk. You’re

left with a number of empty strings, which still take up

space, but nothing more serious.

A potentially bad choice for somethirtghmocuous is nil, and

unfortunately this is often what is suggested on USENET.
VOL. 1, No. 6: MARCH/APRJL1992
The danger is that this works perfectly well in Digitalk im-

plementations, and in fact it doesn’t even leave you with

empty strings that take up space. In ParcPlace implementa-

tions, on the other hand, this will instantly kill your image.

This is due to the different semantics of the become oPera-

tion in these implementations.

Digitalk uses a one-way become:, which works as described

above, effectively changing one object into another. Parc-

Place uses a two-way become:, which swaps the references, ef-

fectively interchanging the two objects. Think for a moment

about the likely effects of changing every reference to nil in

the system this way and you’ll see why your image crashes.

4. Check the non-obvious places. If you are really deter-

mined to find and solve the problem with your image, be

prepared for a mind-bending and time-consuming odyssey

into Smalltalk’s subconscious. Your tools are the methods

alllleferences (ST/V) or allowners (ST-80). Explaining how

to do this is far beyond the scope of a frequently asked

question, but here are a few words of advice.

c Be prepared to go through several layers of indirection

to find the real owner.

. Realize that you will be creating references as you go.

Try to minimize them. Don’t keep inspectors open on

objects you’re trying to track down references to. Use

long expressions instead, e.g., Mytlass allhtstances first

owners fist owners. Because the order in which in-

stances and references occur is not fixed, this can be

confusing.

● References to associations indicate a dictionary entry.

If the key is a symbol it may well be the Smalltalk dic-

tionary. References in medium-sized, odd-looking col-

lections may be compiled code or block contexts.

Blocks (sort blocks are often culprits) sometimes hold

onto their last arguments. Also, it’s possible to get

“lost processes,” which then hold onto data referenced

by the code they are supposed to be executing. I gener-

ally try setting everything to nil and hoping for the

best.

Good luck. Are you sure you wouldn’t just rather file those

changes in? ❑

Akm Knight is a researckr in tk Department of Mechanicaland

Aerospace Engineering at Carleton University, Ottawa, Carud.u, KI S

5B6. He currently works on problems related to jinite efement analysis
in ParcPlaceSrnaUtAr and has worked in most .%mdMk dialects at

one time or another. He can be reackd at (61 3)788-2600 x5783 or

by esnad as knight@hnrco.carkton. ca.

19.

20.
I AB REVIEW

Smalltalk at the University of
Washington

Eljom Freeman-Benson
I
n the Weird Languages Group at the University of Wash-

ington, we have used Par;Place’s Smalltalk-80 for a number

of years. Not only have we used it as our personal computing

environment, but we have also used it to develop a series of

comtraint-based systems: ThingLab-87, ThingLab II, and

Kaleidoscope’90. However, while the overall goal of our re-

search has been to prrrvide constraint-based technology to

users and programmers, each of the three projects has deliv-

ered this technology in different packages. The goal of group

director Alan Boming’s original ThingLab system was to pro-

vide a constraint-based simulation environment. However, af-

ter almost a decade of growth by accumulation, the ThingLab

system no longer met our needs. Thus, we undertook redesign-

ing and reimplementing it as ThingLab-87. In the process, we

reexamined our ideas about constraints and produced con-

straint hierarchies. A constraint is a multidirectional, system-
maintained assertion about the state of a system, Constraints
are useful in programming languages, user-interface toolkits,

simulation packages, and other systems because they allow

programmers and users to state declaratively a relation that is

to be maintained, rather than requiring them to write proce-

dures to maintain the relation themselves. In general, there

may be many interrelated constraints in a given application; it

is left up to the system to sort out how they interact and to

keep them all satisfied. In a constraint hierarchy, each con-

straint has a strength such that stronger constraints dominate

weaker ones. Constraint hierarchies are especially useful in

graphical layout or user interface applications because they al-

low the user or programmer to state preferences as well as re-

quirements. For example, in a ThingLab physics simulation

required constraints express the connectivity of rods and

levers, Hooke’s Law of spring force, and so on; weaker con-

straints attach the mouse and keyboard to the simulation,

These user constraints are merely preferences because we

don’t want the user to be able to break the simulation—just

to manipulate it.

In our second system, ThingLab 11(also known as Min-

strel), our research emphasis shifted from providing a tool for

simulations to providing a tool for building constraint-based

user interfaces. Thus the ThingLab 11system concentrated on

three specific issues: providing a very efficient constraint

solver; providing a library of “Things” (objects) for user inter-

faces; and integrating the constraint system into Smalltalk-80.
This later integration turned out to be very difficult to do cor-

rectly, The two fundamental problems were that Smalltalk is

an imperative object-oriented language whereas constraints are

a declarative language; and imperative assignment and explicit

control flow do not merge with multidirectional relations. For-

tunately, we were able to design and implement a very efficient

constraint-solving algorithm named DeltaBlue. Supported by

the rapid protoryping features of Smalltalk, we were able to ex-

amine numerous variations of the algorithm and choose the

best one for average base user interface. In addition, we devel-

oped a constraint compiler to find solutions to a fixed subset of

constraints at compile time, rather than at runtime. This ccrm-

piler uses Smalltalk’s built-in compiler and reflective capabili-

ties to translate constraints into executable byte-codes.

66
. . the goal of our third project,

Kaleidoscope’90, was to develop a

constraint-imperative extension of

Smalltalk-80,
m

The ThingLab II system was successfully used to prototype

a number of user interfaces including a statistical visualization

tool and a multimedia presentation control panel. Further-

more, the underlying cons traint engine, DeltaBlue, has been

ported from Smalltalk to other object-oriented languages and

is being used around the world by both commercial software

developers and other research labs.

During our experience with ThingLab H, it became clear

that ad-hoc constraint-imperative integration techniques were

not sufficient. We decided that proper support of constraints

could only be accomplished in a language in which the imper-

ative and constraint constructs were equal partners in the se-

mantics of the language. In other words, we could not imple-

ment constraints on top of Smalltalk and hope for a safe,

robust integration. Thus the goal of our third project, Kaleido-

scope’90, was to develop a constraint-imperative extension of

Smalltalk-80. After designing the language, we planned to im-
THESMALLTALKREPORT

Universal Database
OBJECT BRIDGE m

This developer’s tool allows Smalltalk to read and write to
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIIL Lotus. and Excel.

IntelligentSystems, Inc.
1

I ~ 306N. 3tofe Streef,AnnAfbor. M14S104 (313) W6-423S(313)996-4241 fa
plement it by modifying the byte-code interpreter. How-

ever, this could not be done within the Smalltalk environ-

ment, and so we shifted to plan B; a new Kaleidoscope’90

interpreter written in Smalltalk. We subclasses the

Smalltalk compiler to create a Kaleidoscope’90 compiler

that produces K-code trees rather than Smalltalk-80 byte-

codes. Then we implemented a K-code interpreter, a few

invisible dispatching methods, and a KaleidoClass. As a re-

sult, we had a very slow Kaleidoscope’90 implementation

in which, more or less automatically, Kaleidoscope code

could call Smalltalk code and Smalltalk code could call

Kaleidoscope code.

These three projects have been supported by numerous

sources including the National Science Foundation, Apple

Computer, and the Washington Technology Center, Natu-

rally, these institutions are interested in supporting technol-

ogy transfer such as is being done with DeltaBlue. In addition,

two of the major contributors have graduated and taken their

projects and technology with them Bjom Freeman-Benson is

now at the University of Victoria, Canada, and is continuing

to collaborate on the design and implementation of our sec-

ond-generation constraint-imperative language, Kaleido-

scope’91. John Maloney is now at Sun Labs and is busy inte-

grating the kernel of the ThingLab 11system into the
Don’t Delay! Become a C

Sampling of articles to appezw

■ Introducing Smalltalk into Your Organization

■ Designing and Managing Smalltalk Class Libraries

■ Effectively Managing Mukiprogtammer Smalltalk Projects

■ Metrics for Measuring Smalkalk Systems

■ Organizing Your Smalldk Development Team

r --------- ---------------------------- -----------------

~~ Y’SJ enter my Charter Subscription at the term indi-

~cated. This is risk-free offer. I can cancel at any time and get

; a refund of the unused portion of my subscription.

1year (9 issues) 2 years(18 issues)
Q $65 Domestic Q$120

c1 $90 Foreign (includesair service) El $170

D Check enclosed D Bill Me

Cl Charge my D Visa D MasterCard

Card # Exp, Date

Signature

For faster service, call 212.274.0640 or fax 212.274.0646.

Ftakachecks payableto ~ S~ ❑epOti in US dollars drawn on a

US bank Fleas allow 4-6 weeks for delivery.

,------------ ------ ------ ------ ____________ ---

VOL. 1, No. 6: MARCH/APRZL1992
prototype-based Self language. We hope that eventually we

will have implementations of these systems and languages that

are reliable enough to be used outside the University of Wash-

ington. As a university, however, we cannot foresee having

the necessary resources. Instead, we expect to continue to

contribute by developing proof-of-concept systems and

spreading the word, ❑

Bjorn Freetrsan.Bemonisan assistintprojessor in the Depmtment of

Computer ScienceattheUniversity of Victoria. He can be reuched

there at P.O. BOJC3055, Victm”a, BC, Canada, bYohm at (604)

721-7209, ~ @at (604) 721-7292, or via enwilat
bnfbtzlcsr.uvic. ca.
harter Subscriber Today!

■ Metalevel Programming

■ Smalltalk in the MIS World

■ Srnalltalk as a Vehicle for Real-Time and Embedded Systems

■ Teaching Smalltalk to COBOL Programmers

I Interfacing Smalltalk to an SQL Database

■ Realizing Reusability

--- --------------------------- ----

Name

Title

Company

Address

city state zip

Phone

Return to: The Smautalk IIepori
Subscriber Services, Department SML

PO Box 3000

Denville, NJ 07e34
D2CG

--- -------------- ------------------- ------ 21,

22.
RODUCT REVIEW Jim Salmons and 71mlynn Babitdty

Coopers & Lybrand’s AM/S~ Version 3.5
T
he SoftPett Division of Coopers& Lybrand, the worldwide

accounting and management consulting firm, has been in

the Smalltalk/V enhancement business about as long as

anyone. Its Application Manager was an early entry in the ap-

plication-based project manager browsers, The most recent in-

carnation of this product, AM/ST Version 3.5 is curtently

available for the 0S/2 Presentation Manager and DOS-based

Windows versions of Smalltalk/V. (The Macintosh and DOS

implementations of Srnalltalk/V are still being served by the

older, less feature-rich AM/ST Version 3.0 and are not the

subject of this review,)

In the years since its initial introduction, AM/ST has ma-

tured and evolved into a solid product. Where it once stood

alone, however, AMIST now stands in an increasingly

ctowded market segment-products that wtap real-world soft-

ware engineering features around the early vision of Smalltalk

as the tool of the lone, exploratory hacker/developer.

As object technology has continued to push into main-

stream software engineering projects, the Smalltalk develop-

ment environment has often stood hat in hand with no means

to support real-world, team-based application development.

Version control, performance testing, application delivery,

and source documentation standards were missing for early

Smalltalk teams of developers.

Nancy Martin of SoftPert, needing team development

tools for her own division’s Smallr.al~ work at Coopers &

Lybtand, saw the market opportunity and began to work on

early versions of AM/ST. The product has evolved into a mul-

timodule system placed squarely, price- and feature-wise, in

the middle ground of Smalltal~ team-oriented application

managers.

PRODUCTS AND PRICING

The AM/ST product suite currently consists of three interre-

lated modules: AM/ST, which is the base Application Man-

ager product; the AM/ST Source Control extension; and the

AM/ST Change Browser. The cost per user license for either

the PM or Windows version of the AM/ST base module is

$475- The network file server-based Source Control can be
added to this base product for $1,595 for the first user and

$595 per each additional user. (Site licenses, at $3,430for

AMIST and $7,495 for the AMIST Source Control extension,

are also available.)
The AM/ST Change Browser (single copies at $195 and

site licenses at $1,170) is a full-featured Change Log browser

that can be used independently of AM/ST. This tool gives you

complete freedom in viewing and selectively restoring classes,

methods, and evaluations from the Smalltalk Change Log or

any file in the Smalltalk/V “chunk” format. While it makes an

affordable and well-integrated enhancement to AM/ST, it is

not strictly a component of AM/ST and thus is not a fitrther

subject of this review.

THE APPLICATION ARCHITECTURE

The traditional Smalltalk Class Hierarchy Browser and

Class Browser are, as their names imply, designed with the

Smalltalk class in mind as their organizing “molecule” with

method and instance variable “atoms.” AM/ST is designed

with a higher-level “molecular” abstraction of the

application.

An AM/ST application is a functionally based, logical

group of classes and methods that are accessible and manipu-

lable as a single unit. Under a traditional Smalkalk environ-

ment, applications are loose abstractions in the minds of the

developer. Their implementation is sprinkled throughout the

class hierarchy, in objects that interact to provide the at-

tributes and behaviors required.

Under AM/ST, an application is explicit. An application

consists of a gtoup of contributing classes. The AM/ST Appli-

cation Browser makes this application-based organization

clearer. In Figure 1, the supplied Networltrlpp application is

shown to consist of three contributing classes: Network, Net-

worlrNode, and NetworkTest. Actually, the implementation is

found in the Network and NetworkNode classes. The presence of

NetworkTest demonstrates a strength of application-based class

access. That is, the implementation classes are logically orga-

nized and accessible with a class whose sole purpose during de-

velopment is to encapsulate case-testing methods that exer-

cise and verify the implementation.

Anyone familiar with the Digita!k Handbook’s Network of

Nodes example, from which this AM/ST application is de-

rived, would recognize that the NetworkNode class is not lim-

ited to the name and position methods. This highlights an-

other feature of AM/ST applications. A class within an

application need only contribute the methods relevant to that

application.
THE SMALLTALKREPORT

AM/ST- NetuOlkAIZII[drceked Ollf by Ralph] [eunerj -.

ile Edit Smalllalk Applleatlons ~laaaes Melhods ~arlabks
* name

aphkWew
...NetuorkTest

elworkEdilor
etworkGranher
:GrephsAp~...

[*I [+1 14

Mods Inalance Doarmentslion I InstanceVariables
G

]]ecf subclass:SNetworkNode

:ssrfption
A NetwotiNode is a node or element of a network.

Ibllc methods:
<=

draw
name
name: position
position
prkrtDn:

Wan= Variables:
name - String

I

Figure 1. The AM/H Applkatlon Manager Browser ahowlng a documentation pane.

--
Further, an application can be functionally defined as a

collection of subappkiorrs. The NetworkAppexample consists

of the NetworkEditor and NetworkGraphersubapplications which
each also use the Network and NetworkNode classes. The meth-

ods of these classes relevant to network construction are found

under the NetworkEditor subapplication, and the graphics ren-

dering methods under the NetworkGrapher subapplication.

A class maybe included in any number of related or unre.

lated applications. You may, however, designate an applica-

tion as an owner of a class. Owned classes may only have their

class definitions modified within the owning application, al-

though methods may be edited or added to the class horn any

application which uses the owned class.

As useful as it is to access the vast Smalltalk class hierarchy

ftom an application browsing perspective, a real benefit of the

AM/ST architecture is its ability to load and unload applica-

tions and to create application-specific Dynamic Link Li-

braries (DLLs). Under the AM/ST Source Control extension,

this ability to load and unload applications is extended to net-

work-based getbrrg and putbng operations with lock and un-

lock capabilities.

When you define or load an application into AM/ST, it

creates and maintains a Smalltalk class with a name derived

from the application name. AM/ST transparently creates and

maintains class and instance “bookkeeping” methods in this

application class that keep track of inclusion and ownership of

classes and methods in the application.

AM/ST PRODUCT OVERVIEW

AM/ST is delivered on a single diskette, with whichever of its

optional modules you may have purchased. h comes with a
VOL. 1, No. 6: MAKCHIAPFUL1992
140-page manual covering the base product

and the source control extension. If you

purchase the optional Change Log

Browser, a separate 13-page manual is pro-

vided.

Not surprisingly, the AM/ST product

was developed and is delivered as a collec-

tion of AM/ST applications:

1. ApplicationManager, the main appli-

cation, which itself consists of the fol-

lowing subapplications:

. AppManBrowser, the application

browser, with each of its panes imple-

mented as subapplications.

s AppManDLLizer, an exciting facility

for creating DLLs from AM/ST appli-

cations.

● AppManInstaller, which implements

the load and unload facilities.

● Apropos, which adds flexible and

powerful string searching features to

the Smalltalk environment.
● DynamicAnalysis, which provides the method and block

counting features.

● FinderApp, which implements the very useful Finder dla-

Iog used strategically throughout the Application Browser.

● StaticAnalysis, which implements variable and method

cross-referent ing.

2. ConfigurationManager, the Source Control extension

(sold separately).

3. ChangeLogBrowser (sold separately).

4- GraphicView, which implements the graphical tree dtaw-

ing utility.

5. STMods, a wide-ranging collection of changes and addi-

tions to the Smalkalk/V base classes.
THE APPLICATION MANAGER BROWSER

Your primary interaction with the features supplied by

AM/ST is through the Application Manager Browser. As

shown in Figure 1, the Application Manager Browser is essen-

tially a Smalltalk browser with its application-oriented extra

level of presentation organization. If all AM/ST did was de-

liver a well-designed application browser, it would be enough

for consideration as a helpful extension to an unadorned

Smalltalk/V environment. What the figure does not capture

are some of the features that make the AM/ST Application

Browser even more useful.

In concert with the ability to designate application owners

of classes and, under source control, to check out and lock ap-

.23.

■ PRODUCT REVIEW

. AMIST - STAddMions .*

We Edll Smalitalk Appllartiona Claaaca Methods Varlablea ~exl

4etuorkGrapher * ...MelhodStream * rnn~l * applicallonName *
CGrapheApp... ...MultiPlckMenu dirList - FileDialog –
TMods dlrLletChange ddxa

...MonltorWlndow fileInBuSton directory
~ChangesCompilel%re ● fileLlst , dhLlsl
~TEnhan-mente

-,, -., , . .-, +

$ Instance Source Code Instance Varlablea

IT

lleDlalog aubclaaa:~lakAppllcallonsDlalog
instsnrWariableNames: III

‘appllcationName ‘ II
d~_ SmalllalklV Clasaea of STMdillona . .

1/Slream — ReadStream - MethodStream

ApplicationWindow - MultiPickMenu

Ob’ed\WndW(!DialogBox(~’~~~n~~’’’’iTsmasog’og

1 \ ControlPane –TentEdit —TetiParre – CompilePane
SubPane (

LlatPane — MuitlPane

Flgura 2. The AM/ST Graphic View of classes In an application.

24.
placations, the Application Browser textpane intelligently sets

itself to either editable or read-only capabilities. So while you

may view all manner of class definitions, method source and

related documentation, you will only be able to make changes

if you are in the appropriate application, or if you are the cur-

rently active developer who has checked out and locked an

application. Read-only text is displayed in a different color

than editable, black text.

A nice fearure of the Application Manager Browser is the

Graphic View, which presents a hierarchical tree diagram of

all Smalltalk classes or the classes in a selected application, as

shown in Figure 2. Not only does this graphical view show you

the inheritance relationship among classes, it is color coded

and interactive. Classes included in the selected application

are shown in blue type, their superclass parents in black, and

the currently selected application class is shown in red. Click-

ing on an application class name will cause the Application

Manager Browser to display the selected class.

The AM/ST Profile dialog lets you set a user id, default

project directory, server/workstation time zone offset, and se-

lect to implement hierarchical or flat project directory struc-

tures as well as turn on and off the optional Source Control

module. The time zone offset feature is particularly important

in the case of remote developers working on a source-con-

trolled application getiing and puting through telecommuni-

cation connections.

The loading and unloading facilities make it quick and

easy to add, update, or remove the collection of classes and

methods grouped according to application-based functional-

ity. You are given the option of loading classes and methods

together or methods only to quickly update an application in

which the classes required are already in your image. AM/ST
also has a convenient means to add pre-

and post-load initialization code for appli-

cations and classes. This gives you the

ability to perform preconditional process-

ing as well as post-loading housekeeping.

DOCUMENTATION AND EDITING

FEATURES

AM/ST strongly values and encourages

full documentation. This emphasis is fa-

cilitated by the Source/Documentation

toggle pushbutton in the Application

Manager Browser. While you are encour-

aged to make traditional in line com-

ments within the source code of your

methods, AM/ST facilitates a standards-

meeting implementation of full applica-

tion, class, and method comment docu -

mentation. By toggling the Source

button to Documentation, the lower

textpane is devoted to editing and view-

ing documentary comments.
AM/ST uses user-modifiable templates to simplify docu-

mentation and to encourage consistent, full commentary.

These templates are automatically inserted as you add or cre-

ate classes and methods in your application. h is particularly

helpfil that structured documentation comments are main-

tained for classes as well as methods. Class comments are

maintained in class methods named classHeader. (AM/ST

maintains its application classes and all these classHeader and

related “bookkeeping” methods transparently-the Applica-

tion browser filters them from view unless you explicitly ask to

see all classes and methods.)

Because the documentation templates are user definable,

the extent to which you want to implement comments is fully

under your control. Also, AM/ST implements its temPlate-

inserting features in documented methods defined in the Ap-

plication class. This means that the templates may be defined

locally to an application, allowing application-specific com-

menting standards.

Fully-customizable coding templates are also supported.

Templates supplied include conditional, whileTrue/False,

block, do, collect, select, reject, popup menu specification,

and dictionary lookup expressions.

The Apropos facility is a powerhrl, pattern-matching,

GREP-like search tool for text strings in source code.

For the “hunt, cut, and paste” crowd of rapid prototypes,

AM/ST provides a “method scrap” similar to but separate from

the PM and Windows clipboard. This scrap can capture copies

of multiple methods, simultaneously holding any number of

class and instance variables. After gathering a number of

methods from other applications’ classes, you can return to

your curtent application and, in one fell swoop, paste all the

methods in the scrap into the currently selected class.
THESWTALK REPORT

Every time you create or edit a class or method, a simple

dialog pops up asking you what change was made. These brief

comments are added with a time and date stamp to a revision

history maintained in the class or method’s documentation.

REPORTING FEATURES

AM/ST includes a wide-ranging collection of informative re-

ports easily accessible through menu selections. The Applica-

tions, Classes, and Methods menus each have a hierarchical

menu item that opens to one or more levels of specific report-

ing topics.

1. Applications menu reports

● class and global variable dependencies of a selected

application

● listing of application directories

● class and method documentation for a selected

application

● class ownership and class inclusion listing by application

● method indexes showing methods and the classes in

which they appear

● application content inconsistencies, including classes

owned by more than one application, classes neither

owned nor part of an application, methods in more than

one application, and methods in an application that no

longer exist

2. Classes menu reporlx

c antes tor classes of a selected class

● dependency listing of classes and global variables directly
. AWST - NelworkApp [checked out by Ralph] lowne~ v.

~lasses ~elhods ~ariahles ~ext

:onfigurstlonManag * * graphParre
irsphlcVlew openOn: model

m recordingPen
topParre

qefworkEdktor
UefworkGrapher m

- ApplicalionWind
❑ acfiveTerrtPa ne

CGraphsApp.., d

TMods “ ~ Source Code ‘1 ‘1’;JlceVariabl

rawNsfwork aPane

Qlredary
@Xall pul

recordlngpen := al+ &ihoul Lock
I:,oad Pul @eked +

aPane erase. ~lnloo(l I:,ol:k
recordingl%r down ~le In unlock

File Out ~(ltl .qp!$(%fil)rl
remrdingt%n

drawlletainl%h Reports _&move Application

Make DLL ~eports +

Edit hrif Qode Clear Lock +

Edll ~emplafes +

~rhrt Pane
Help

Flgura 3. The AMIST Appllcatlon Managar ❑rowsar Source Control manua.
referenced in the selected class

● various cross-referenced listings of all

references to a selected class, all classes,

or classes in a selected application

3. Methods menu repotta include:

. applications containing a designated

method

● methods in no applications

. methods in multiple applications

● methods not in a selection application

● methods with no sendets

● various method cross-reference listings

of the instance, class, shared, pool, and

global variables used by a class

Variables menu reports include a global

variables and cross-reference listing.

All reports are time and date stamped

and generated into a Smalltalk/V

Workspace window where they may be

printed or saved to disk.
VOL.1, No. 6: MARCHIAPRILJ992
PERFORMANCE TUNING FEATURES

The dynamic performance tuning features are as easily ac-

cessed as repotts. Both method and block counting are imple-

mented. AM/ST adds instmmentation code to the compiled

code of the profiled methods or blocks. This instrumentation

code exists only in the compiled code and is not added m the

visible source code. Instrumented methods are marked with a

“x” character prefix and instrumented blocks are marked with

a “W prefix.

To add profiling instrumentation, you simply highlight a

class or specific method and select Add Counters from a sub-

menu of the Counters menu: either the Classes or Methods

menus. Once instrumented, you need only turn on the coun-

ters and run your application. You then select Report from a

submenu of the Counters menu item to view the method and

block execution counts.

While execution counts is a rather crude means of method

performance tuning, it is particularly well suited to testing

coverage and code use measurements. You simply develop test

suite methods that ensure all instrumented methods return a

non-zero counter. In the event you are satisfied that all user

interaction conditions are covered and you still return zero

values, you have identified unnecessary methods or blocks

that can be removed without affecting your application.

CREATING APPLICATION-BASED DLLS
The Smalltalk/V Windows and Presentation Manager (Ver-

sion 1.3) have an exciting enhancement in which libraries of

dvnamicallv bindable obiects are accessible throuuh DynamicB–
Link Libraries. This object library DLL feature significantly

enhances and simplifies the development and delivery of

Smalltal~ appli~ations and development extensions, Dig-
25.

■ PRODUa REVIEW

26.
italk provides an Object Library Builder application, which is

used to specify and generate the object library DLLs. Creating

a DLL can be time and energy consuming. In particular, you

need to fully understand what classes and methods must be

included in your DLL to encapsulate the functionality you

have in mind.

The application architecture of AM/ST is a petfect com-

plement to the creation of object library DLLs. What goes

into your DLL is the currently selected application. A simple

Make DLLmenu item selection transparently runs the Object

Library Builder application, passing it all the required infor-

mation from the Application Manager Browser. You may indi-

cate a Development version, with source code included, or a

Delivery version of your DLL.

In most cases, your application-based DLL is generated au-

tomatically. Occasionally, you will be prompted to resolve

pointers,

SOURCE CONTROL FEATURES
Slipped easily into this already bulging feature set is the op-

tional Source Code extension. When included in your image,

the Source Code extension shows up as a Source Control menu

item in the Apfrlications menu, as shown in Figure 3.

To use AM/ST Source Control, you simply access a net-

work server as a logical drive on your local workstation. You

can then add an application from your image into the project-

based directory structure of the server’s application library.

Once an application is entered into Source Control, it can be

checked out with or without a lock. I_mcked applications can

be retrieved by other team developers, but only the developer

who set the lock can modify and put the application back for

subsequent checkout.

AMJST maintains a time and date stamp record rrf all ap-

plications under Source Control, You can ask Source Control

to update all applications in your image older rhan the ver-

sions on the Source Control server,

For an application under Source Control, the load and un-

load facilities are deactivated when that application is se-

lected. You are not, however, deprived from loading and un-

loading applications not under Source Control management.

PERSONAL EXPERIENCE
Our personal experience using AM/ST over several days was

easily partitioned into two phases: resistance and appreciation.

We used AM/ST to develop a variation on rhe Network of

Nodes application under Source Control on a two-station,

LanManager-based 0S/2 network.

For the first two days, we were resistant. The application

architecture adds a different perspective to the typical”1 have

the Universe at my command” feel of the traditional class hi-

erarchy browser. With so many interactive features, the Ap-

plication Manager Browser is pane and menu intensive. The

shift in organizing perspective and the elaborate array- interac-
tive features initially combine to intimidate.
Our resistance was maintained during initial, nmt-goal-di-

rected exploration of the Application Manager Browser. Then

we got to work on our test project. Three features combined

to shake us out of our reticence: the method scrap, the DLL

generator, and the get/load and put/unload Facilities of the

Application Manager Browser. While AM/ST has not yet

achieved “how’d we ever live without it“ status, it has gar-

nered sufficient respect to be given continued, hopeful explo-

ration. The following summarizes our reactions.

Among the features we like about AM/ST:

c The Method Scrap is a prototyper’s dream. The efficiency of

your “hunting parries” is increased tenfold. This feature

alone is worth 30% of the cost of the basic AM/ST product.

● The application architecture combined with the DLL

builder is tremendous. The application perspective neatly

prepares you for generating modular, functional DLL ob-

ject libraries. This feature is worrh another 30~0 of the

cost of the basic AM/ST product.

● The application-based load and unload faci Iities are a real-

world project-based developer’s salvation. By setting dif-

ferent base directories and using the hierarchical project

directories setting, archiving project-specific versions of an

application is easy. This feature would be especially valu-

able to any consultant or corporate developer working si-

multaneously on multiple, independent projects. This fea-

ture justifies another 30% of the crrst of the basic AM/ST

product.

. The long list of additional features of this product easily

justify rhe remaining 10% of the cost of the base product.

High on the list is coverage testing instrumentation; the

flexible implementation of coding and documentation

templates, together with the browser’s separation of source

code and header comments; the wide range of informative

reports; and the class hierarchy graphical view.

Among the features of AM/ST we did not like are:

. You can easily find but not prevent inconsistencies in mul-

tiapplication use of methnds. A change in a method used

by multiple applications is a change to all those dependent

applications.

. Class ownership is by application, not by developer. This

model recognizes the application developer, but ignores

the contribution of class developers who can contribute

reusable classes for read-only consumption by application

developers.

● User profile sign-ens are not password protected, nor can

application access be restricted by user id. Neglecting pass-

word protection and restricted access assumes an idyllic

world of noncompetitive, nonprivate group development.

● AM/ST implements its own menu-specific, nonstandard

help system. Each Browser menu includes a Help item as
THE S~ALLTALKREPORT

~ ~
its last item. While there is much valuable information in

each of these Help items, this design does not follow the

Windows or PM user interface standards.

OUR AM/ST WISH LIST
While some features of AM/ST that we did not like are mat-

ters of personal preference, the following three areas should be

high on a list for future improvements:

● The Source Control module shou Id be improved to sup-

port password user id protection and application access re-

striction via user id. Some form of a version resolution sys-

tem is needed to allow multiple developers to work on the

same application at the same time. It is hard to imagine a

large project for which the one-developer-per-application

granularity is sufficient.

● Application-specific method vers ions would be a

significant improvement. This single enhancement would

do much to alleviate the “tyranny” of the application-as-

owner model of the current AM/ST. By allowing applica-

tions to overshadow methods, the potential for bringing

the “team model” of class developers and application de-

velopers into the picture would be greatly improved.

● While the template-based documentation features of

AM/ST are a positive contribution to real-world project

development, they still depend heavily on the time, en-

ergy, and proper attitude of the individual developer. We

would really like to see more automated documentation

features. Automatic updating of class documentation by

self-examination of its methods and instance variables to

extract key documentation into the class header would al-

leviate the need for the developer to enter and maintain

this information.

AM/ST IN THE COMPETITIVE MARKET
To determine the real value and quality of a commercial prod-

uct it must be lined up against its competitors in the commer-

cial marketplace. AM/ST competes in three product cate-

gories; application/project browsers, performance tuning tools,

and source control.

APPLICATION/PROJECT BROWSERS

AM/ST falls in the middle range of price here. Third-party

products claiming to add application- and project-based orga-

nization to Smalltalk/V are popping up in every OOP-related

publication. Some of these new products allege to provide the

same range of tools provided by AM/ST, but for a fraction of

the cost. A number of these application/project browsers come

with a change log browsing feature, which must be purchased

as an extta-cost option with AM/ST.

Given the expanding field of possible contenders, a

roundup review is certainly in order. However, if you just

can’t wait to make your purchase, our belief is that AM/ST

has maturity and corporate development resources behind it
VOL. 1, No. 6: MARCt4APRIL1992
that will most likely be invested in increased product perfor-

mance and stability over the long term. The price rrmy come

down; the quality will most likely go up.

PERFORMANCE TUNING TOOLS

AM/ST is again in the middle ground of a growing pack of

products. In its favor, the AM/ST test coverage and

identification of unnecessary code is sufficient and conve-

nient. The method and block counting instrumentation is cer-

tainly easier to use than the Profiler supplied with both the

Windows and PM versions of Smalltalk/V. However, the in-

formation you get in the AM/ST count reports does not ap-

proach the detailed information presented in the Digitalk

profiler report.

66
AM/ST competes in three

product categories; application/project

browsers, performance tuning tools,

and source control,
~

The AM/ST features cannot compete with a dedicated per-

formance tuning tool such as First Class Software’s Profiler.

Profiler’s ability to collapse and expand its performance measures

based on recursive and other conditional forms is extremely im-

pm-rant in assessing bottlenecks and optimization potential.

SOURCE CONTROL

Source Control is serious business. Based on the quality of the

product and the utility of irs features for your particular pro-

ject, what you use can support or abuse, For large-scale pro-

jects involving team development with Smalltalk/V there are

two main competitors: AM/ST and OTI’S ENVY/Developer.

Both of these products come in at the higher-price end of the

spectrum, with ENVY/Developer topping the two.

ENVY/Deve[oper is a strong competitor in team-based de-

velopment. h supports the desirable application-specific

method versioning but it also provides a built-in e-mail rata-

bility to facilitate communication between class-owning and

application-owning developers. At the base configuration (re-
quires 3 nodes at $4,000 each), ENVY/Developer COSLSa lot.

But the cost may be justifiable if your project requires multiple

developers working on single applications or if class ownership

by individual developers suits your engineering model.

If not, AM/ST would seem to be well suited to an organiza-

tion with a non-real-time networked team, where remote ac-

.cmninued on page 28
L/ .

28.
continued from page 27,.,

cess is used tcs upload and download applications from a cen-

tral repository.

Inching into the source conrml market are a few of those

low-cost application/project browser products that claim to

also have source conrtol features. If cost is important, you’ll

have to lay out the features of these products side by side with

those of AM/ST before you make your purchase decision.

Does the less expensive product provide enough of the source

control features needed on your projects to be a contender for

your Smalltalk source control dollar?

THE BOTTOM LINE
The current Windows and Presentation Manager incarnation

of Coopers & Lybrand’s AM/ST is a definite forward step in

the development of this product. At $475, the basic module

presents a cost-justifiable grab-bag of powerful extensions to

the basic SmalltallrfV development environment. AM/ST

must, however, be prepared to assess and respond to competi-

tion from the low end of application/project browsers.

As far as the source control extension is concerned, we see

room for growth and improvement. Venturing into source
control is new territory for the otherwise mature AM/ST

product, Given this company’s history of commitment and ef-

forts to improve its Smalltal~ enhancement products, the

Source Control module prcrbably will mature and evolve over

the next couple of years.

Finally, we encourage Coopers& Lybrand to bring their

Smalltalk/V Mac, Smalltalk/V DOS and Smalltalk/V 286 ver-

sions of AM/ST up to the Version 3.5 standard. Smalltalk/V

developers on these platforms deserve to have the same fea-

ture set currently available to their Windows and Presentation

Manager colleagues. ❑

-lim Salmom and Tirrdynn Babit&y are principalsin JFS Consulting,

o&ring corporateand peer con.dting sewicesin object teclmob~.

JFS Consuking speciabzes in user interface wrsiun control systmu and

technicaldocumentation..Jimand Timlynn are coeditorsof tfreannual

International00P Directosy, A Guide to Object-Oriented Producu

and Services. Tky are theExhibits Cockairs for OOPSLA’92 and

willserve as theConference Cochairsfor 00PSLA’93.
ProductAnnouncements are not reviews. Tky are abstmc~d from press releases provided by vendors, and no endorsement is implied.Vendors 1
interested in being includedin thisfeature should send press releases to our editorialoffices, Product Announcements Dept., 91 Second Aue,,

Ottawa, (%tflriOKIS 2H4, Canada.
I I
dence

Digamma Solutions is now offering silence, a collection of tools for
project management and code delivery. silence provides a full-
function professional environment at a low cost, without the need
for expensive add-ens and upgrades, and drastically reduces the
work involved in developing efficient, well-organized, and maintain-
able Smalltalk/V Windowe code. silence for Smalltalk/V Wndows is
available immediately. silence for Smalltalk/V PM will be shipping
the beginning of the second quarter of 1992. Information about si-
lence for SmalltalkN Mac is available.

For further information, contact Digamma Solutions, .5padina Ave., Unit 6,

Toronto, Ontario, Canada MST 2GS, (416)351-8833, fax {416)408-2850.

SmalltalW PM Relational Database Interface

Digitalk announced availability of its 5malkallW PM Relational
Database Interface. This new extension to Smalkalk/V PM, Dig-
italk’s object-oriented programming system for 0s/2 Presentation
Manager, provides an easy-to-understand interface to the 0S/2 Ex-
tended Edition (EE) Database Manager and the Microsoft-Sybase
SQL Server.
The new database classes implement the application programming
interface (API) of EE Database Manager and SQL Server. k with
Digitalk’s other products, this allows the programmer access to
these database interfaces by creating objects that understand how
the underlying database functionality works. The programmer can
then send messages to these objects to perform database func-
tions, and the objects handle the underlying API. The classes in-
clude protocols to perform standard SQL operations, send SQL ex-
pressions to the database, and create such database objects a
SQLDatabase, SQLTable, and SQLROW.

For further information, contact Digitalk, Inc., 9841 Airport Blvd., Los Ange-
les, CA 90045, (370)645-7082, fax (310)645-1306.
THESMALLTALKREPORT

VOL. 1, No. 6: M.MCHIAPRIL1
Excerpts from industry publications
SPECIFICALLY SMALLTALK
...“Object-oriented programming (OOP) and ODBMS are among
the most important leading edge technologies today,” says
[Patrick] Arnone [president of PRC Open Technology Inc,]. “k’s
still a very small part of the industry, but we believe the market for
OOP and ODBMS will grow throughout this decade. Right now
we have to educate the community on the benefik of ODBMS,
sort of like how the relational DBMS vendors did in the late ‘70s.
It is not going to replace RDBMS technology, however, but rather
will complement it very nicely.” Advantages of object-oriented
over relational database systems include better integration of
text, sound, images and graphim, as well as features suited for
highly interactive application. k such, ODBMS is expected to be
at the core of tomorrow’s multimedia and image proce=ing soft-
ware. “The early adopters, in both federal and commercial mar-
kets, will be in the engineering and scientific areas for computer-
aided design and computer-aided engineering, certain segments
of the MIS market, of%ce automation system, multi-media net-
work management, CASE, financial modeling and compound
document imaging,” Arnone offers as examples

...The ability to isolate and minimize platform-specific code
within a program is one of the most important advantages of
00P. Only 2 percent of the code for ObjectStore for example,
addresses the hardware platform it runs on. This characteristic
of 00P and ODBMS simplifies porting effo~ and makes the
technology eminently suitable for client-server and distributed
applications. “Portability is crucial,” says Ron Suarez, president
of Arbor Intelligence Systems Inc., Ann Arbor, Mich., “especially
for corporations that have already bought into different hard-
ware platforms. Where a group of developers maybe sitting at
Unix workstations and people in accounting are using PCs and
the graphi= department is using Ma=, you may have certain
applications that they should all be able to use. ” That portability
brings important benefits to VARS and developers building
products with 00P as well. “For a small company like us, work-
ing with these kinds of tools means that we can reach a much
wider market, ” points out Suarez. “We can sit at our machine of
choice, which is the Mac, and develop applications that will run
on Unix machines and on Microsoft Windows.’’...’’Our product,
Smalltalk Nexpert Bridge, allows one to imbed a knowledge
base produced using Nexpert within an application created with
Smalltalk,” says Suarez. “The programs that you create are in-
stantly portable from the Mac operating system to Microsoft
Windows to Unix workstations. So a knowledge base developed
with Nexpert can be used across all those platforms.’’

Brave new VARS,Jim Waddell, VAR Business, 12/91

...virtually all object-oriented systems rely on relatively strict hi-
erarchies. (Multiple inheritance, as implemented in C++, bends
the rules, but only a bit.) Inheritance is useful..., but more useful
still would be a paradigm that allowed programmers to assem-
ble new classes from a network of smaller componen= — in a
sense, “modular” objec& With more structural options at hand,
we’d be less likely to suffer the pain and inconvenience of rip
ping up an existing hierarchy by the rook — or turning it inside
out — to implement a new concept or feature...

...Too often, when you want to use a class that’s part of a rel-
992
atively deep hierarchy, you’ll find the program awash in code
pertaining to its superclasses, Think of it this way imagine
you’ve invited a friend over for dinner. At the appointed time,
he arrives — along with all his forebears: parents, grandparents,
even the spiri= of a few ancestors who are now, as it were, vir-
tual. These ancestors stampede across the threshold and prm
teed to eat you out of house and home. Your friend explains,
“Well, Ma taught me how to hold a spoon, so I need her hereto
help me eat, And Gramps taught me how to read, so he needs
to be here in case 1want to read anything. And Great-
grandma...” The thought of anyone dragging his ancestors with
him everywhere he goes is comical, but having to put up with
relatives of a class you import from a large toolkit isn’t funny.
Even with “smart linking,” which cuts down on uninvited “sib
Iing” classes, the overhead can be daunting

...One of the touted advantages of 00P is the ability to use
“toolk-ks” of objects from which you can select classes and create
subclasses according to your needs. But have you ever tried to
combine pieces of two toolki~, with two different hierarchies ar-
ranged two different ways? Here, the abili~ to assemble objects
from smaller components in customized, structured networks
would free programmers from the tyranny of monolithic hierar-
chies that must be imported wholesale, bag and baggage...

...Unfortunately. few of the current crop of obje~-oriented
languages are dynamic enough to comprehend such environ-
ments [as software which is flexible at runtime as well as at com-
pile time]. Xerox’s Smalltalk can rebuild the innermost parts of
the operating system as it is running (most current implementa-
tions share this flexibility to some degree), but the most popular
object-oriented language, C++, is statically compiled and does
not allow classes to be created or destroyed at runtime. A C++
program that deals with a dynamic obje~-oriented environment
must support two kinds of classes that have two kinds of seman-
ti=: C++ classes, which are manipulated via the fundamental
constructs of the language, and the environment’s classes, ma-
nipulated by the C-1ike, non-object-oriented construcb of the
language. It’s a shame when the powerful, object-oriented fea-
tures of a language can’t extend to the environment in which
programs run. and it’s a poor idea, as William of Oc=m once
noted, to multiply entities beyond necessity — to deal with two
kinds of objects that abide by different sets of rules

. ..Before “strictly static” 00P languages proliferate, like the
IBM PC architecture, to the extent that there’s no turning back,
we need to send our language designers back to the drawing

board, exhorting them to seek new language models that
gracefully accommodate both [the static and dynamic] worlds.
Otherwise, we will be left with tools that are largely extensions
of static, non-object-oriented languages and that don’t address
our real needs in increasingly dynamic environments

Trouble in Object City, Brett Glass, Programmer’s Journal, 12/91

.,.Most 00P advocates, like Object Management Group’s
[John] Slitz, believe that 00P, usually written with C++ or
Smalltalk programming languages, is “revolutionizing the indus-
try.” Others, like Bill Moritz, owner of IQ Computer in Boulder
[Colorado], disagree. “Everyone is jumping on the bandwagon.
It’s the marketing buzzword of the ‘90s, like “user-friendIv” in
29s

■ WHAT THEY’RE SAYING

2n
dun
the ’70s and “intuitive” in the ‘80s. OOP has lost its initial, rigor-
ous definition. It was a computer science and engineering tool;
now it’s just hype, “ he contends

...Mark Hatch, president of the Alpha Marketing Group, which
specializes in helping stat--up companies bring OOP to market,
cautions, “Reusability can be a curse if you don’t fmd inherent
function problems during testing. These problems are then car-
ried through to other programs, like a virus. You don’t always
know how the objects will behave in different environments.’’

...[Roger] Loeb [chief executive officer of Boulder’s
MarTech Group], among others, emphasizes that to write pro-
grams with reusable objects entails an entirely new way of
thinking and looking at problems. “You must start the process
with the right pioneers. Programmers can’t often see through
their specific task. They write procedures enabling them to
solve problems in the way the problems are described, but
they don’t see the whole picture. You need people with a vi-
sion to understand how someone else may want to use their
design, or object, in another situation. They must have antici-
patory skills, the ability to generalize a problem. Systems are
always changing; they must be able to deal with exceptions. ”
Loeb adds that others can learn once the right people start
out designing the initial objects. Since OOP is a relatively new
concept, the effects of training programmers to shift their way
of thinking to “a tolerance for ambiguity, ” as Loeb says,
presently isn’t known...

...The Object Paradigm Research Group, headed up by Dr.
David Monarchi, a professor in the School of Business at the
Universi~ of Colorado in Boulder, is researching the effects that
00P may have on programmers and on business. “We study
how this technology can be transferred into businesses, how to
implement these concepts. We’re looking at the process of
building object- oriented systems, how to perform object-ori-
ented analysis and design, how to judge the quality of the d-
sign, what additional problems need to be solved to make this a
commercially viable technology. ” Monarchi adds that it’s
difficult to quantify benefits because there haven’t been many
large commercial systems using 00P. “We don’t have the ex-
perience to know, for example, what the long-term mainte
nance effects will be. ” Although he says that 00P will prevail in
this decade, “there aren’t many skilled in it or in teaching it. You
can’t just suddenly grasp the concept of 00P without using
it.’’

Trying to make software simple, !-lilary Lane,
The Boulder County Business Repoti, 12/97

OF GENERAL INTEREST
The five leading object-oriented DBMS vendors recently out-
lined their efforts to create object-oriented database standards
for approval by the Object Management Group (OMG). The
new group, called the Object Database Management Group
(ODMG), consist of Objectivity Inc., Object Design Inc., Ontos
Inc., Servio Corp., and Versant Object Technology Corp. For
expedience ODMG is currently not inviting other vendors to
join in i= work, which includes drafting technical proposals that
respond to the recently drafted OMG Object Services request
for information...ODMG has defined a common object
database perspective, which was used to help shape the efforts
of the OMG’S Object Model, which OMG has been working on
since last spring...ODMG is now addressing database-specific
technology areas beyond the scope of the OMG’S Object
Model. ODMG is considering an object-oriented query lan-
guage, perhaps based on some of ib members’ own lan-
guages..,Another task is to define an object-oriented database
interface with the OMG Object Request broker and distributed
data management.

Five DBMS vendors agree to create 00DB standard, Scott Mace,

InfoWorld, 12/23/91

...Any menu or window on the desktop can be hooked into and
subclasses. This means that anything is fair game, whether it’s
the Iistbox in your application that you need to enhance, or the
menu bar in Aldus Pagemaker that needs an extra command or
two. I have to admit, at first this made me think a little about the
legal ramifications. However, as long as you’ve actually pur-
chased the application, nobody can really complain of any
wrongdoing. After all, you haven’t actually modified anybody’s
code-@t the way it interacts with Windows and other objects...

Subclassing Applications, Mike Klein, Dr. Dobb’s Journal, 12/91

...But as we head into the 1990s, there is a new category of
computer specialist that is about to emerge, people I call para-
programmers. This new type of programmer could create some
interesting new job opportunities for a lot of people who do not
have specific computer backgrounds, but are willing to learn
some new skills in order to get into the world of computers and
business. Other business fields have specialists like paralegals
and paramedics, and now the computer industry is about to get
its own: paraprogrammers. The role of a paraprogrammer is
linked to a significant new software programming concept
called object- oriented programming (OOP). With this approach
to programming, much of the programming code is actually
pre-written by the programming language vendor, and the per-
son working with this code draws on the objects, or object li-
braries, to write the bulk of the specific programWe actually
have a type of paraprogrammer today. These individuals nor-
mally reside within an MIS department and are given the task of
customizing a datebase or spreadsheet... Many times they cre-
ate macros for repetitive tasks. Some of these are actually prm
fessionally trained programmers, while many of them have just
learned a particular database language and are trained to cre-
ate this custom layer of the program...Trained programmers will
continue to play a very important role, especially in the creation
of code that will be used for the commercial market. They will
also become an important part of the management of these
paraprogrammers, in the same way doctors or lawyers oversee
the work of their paraprofessionals...

lndust~ Insight: new category of computer specialist, 7imf3ajarin,
Computer Currents: San Francisco Bay Area, 12/3/91

[Lou Mazzucchelli of Cadre]:...Traditionally, people have tended
to concentrate on the functional behavior or the process behav-
ior. I mean, what happens when this data turns into this data
and then it goes over here and gets turned into something else.
What object-oriented analysis does is borrow a lot of ideas from
database design and information engineering. Before you do
that, let’s understand what the data space looks like. What are
the things that the system is manipulating? Why do those things
exist? How do those things relate to each other? It turns out
that if you do a good job of that, you’re actually beginning to
identify candidates for objects that you might design into a sys-
tem to support this space. So there’s been a lot of work in the
last year or two on ways to represent the design of an ob- ject-
oriented program and then ways to transform that design into a
reasonable implementation: and you’re beginning to see a few
products that do things like that — you’ll see more

Q &A: Lou Mazzucchelli, Cadre’s vice president, Gregg Wendorf,

The Sun Observer, 12/91
THESMALLTALKREPORT

...Driving the shift to object-oriented programming is a change
in the IS environment itself. “The desktop operating system is
fragmenting: The old DOS standard is splintered into Windows
and 0S/2,” says Eugene Wang, director of the languages group
at Borland International Inc., the Scotts Valley, Calif., software
vendor. “IS is nervous about choosing the wrong operating SP
tern, and object-oriented architectures are much more
portable.’’...

...another reason for the slow acceptance of object-oriented
programming is that, initially at least, it has been most available
for languages that are not widely used for state-of- the-art prm
gramming. “Object-oriented code started in C++ and Pascal,
which are not the IS languages of choice,” says Rob Dickerson,
VP and general manager of Borland’s database business unit.
“Obje~-oriented programming has to become more available
in fourth-generation languages that have database-modelings-
mantics built in.’’.,..

A Reusable Revolution, John Parker, Information Week 1/6/92

...[Joseph] Firmage’s [president of Serius Corporation] current
goal is much broader than creating a lone business application.
He says he would like “to raise the level of software develop
ment away from code so the end user can construct application
software. ” A more distant goal is to redefine the way software is
sold, which he predicts will take about a decade. “What hap
pens if mom-and-pop consultants can build Microsoft Excel in
seven days?” Firmage asks. “What we’re basically talking about
here is customized software that can compete fiscally with pack-
aged software.” Adds Firmage: “We’re proposing that you
move power out of the hands of those large companies and
closer to the users.’’

Joseph Firmage Means Business — “Seriusly,” Dawn Smith,

MARKE7W4G Computers, 1291

...[Peter] Meng [co-founder of Drochelman/Meng & Associates,
a multimedia integration company based in St. Louis] corn-
mented on a recent TIME Magazine article about multimedia
which expressed the opinion that what multimedia lacks is the
so-called “killer application” — something like the electronic
spreadsheets or word processors that triggered the personal
computer revolution. Meng thinks that this “killer application”
will turn out to be not an application at all but an object-ori-
ented operating system that gives users the capability of creat-
ing their own customized applications. One example he gives is
that a user could create an individual application such as a
spreadsheet with the numbers animated, along with sound ac-
companiment. Meng predicts that the recently announced al-
liance of Apple and IBM will do much to enhance and move for-
ward the whole field of interactive multimedia, particularly in the
matter of standards and system compatibility. Potential uses of
interactive multimedia are virtually limitless, especially in the
field of education and corporate training. Meng says, “In our
fast-moving society, where it’s vital to educate and re-educate
people quickly, multi-media offers itself as an incredibly power-
ful training tool.’’...h for the future of multimedia,[co-founder
Peter] Drochelman sap that even though we still live in basically
a print world, he thinks that’s changing. “1see multimedia re
placing print. Television has been an interim step in this process.
Eventually, I see the computer becoming an all-encompassing
technology, integrated in tho totali~ of our daily lives.”

Drochelman/Meng & Associates: a media resource integration firm,
Carol Ellerman, St. LouisComputing, 12/91

...Analysis and design methods are already changing to accom-

modate objects. They will need to change even more to accom-
modate organic systems development. For objects, the trend is
to move away from phased development towards task oriented
development. In a method such as Coad/Yourdon, e.g., several
layers are created, but it is not necessary to construct them se-
quentially. A distinction is still made between the requirements
and the design of a component, but all the requirements need
not be known before design may begin. Organic systems will
evolve, as the name implies, over time. It will still be necessary
to understand the requirements of an enhancement, but the re
alization of those requirements in soflware maybe automated
to the extent that there will be no formal design phase for an
individual component

Methodology: Developing organic systems, Adrian Bow/es,
Object Magazine, 1-192

. ..As a result of controllers and views, the application object is
much less in control of its own destiny. It will only handle a
subset of the events that it otherwise might. When it does re-
spond to an event, the response is likely to be restricted to the
application data. The days when the application ruled the in-
ter-face are over. Losing autonomy isn’t bad in itself. Given the
enormous complexity of GUIS, overall control is best left to the
application-independent GUI classes, By reusing view and con-
troller classes, designers and programmers can largely limit
their attentions to the design of application classes. However,
reuse means that a programmer no longer has the control that
comes from creating a program from scratch, As major league
control freaks, programmers may find this pill a bit hard to
swallow...

...The secrecy and lack of attention associated with GUI is-
sues is ironic in the extreme. 00 was largely created as a reac-
tion to command line-based — DOS, for example — user-com-
puter interfaces. 00 pioneers like Alan Day wanted user
interfaces that provided direct manipulation capability. This
means that the objects the user manipulates in the “real world”
are used in the computer system’s interface. (Flight simulators
are good examples of this concept. Virtual reality is the ultimate
application of direct manipulation.) Object orientation is more
than the communicating objects the programmer sees. It is a
whole new way for most users to interact with computer system.
Dynamic binding is a mind bender. But, there is also a
significant paradigm shift when command line or character-
based hierarchical interfaces are converted to GUIS. Unlike dy-
namic binding, however, the GUI part of the paradigm shift af-
fects everyone — user, software developers, and methods
specialists. The universal impact of the shift to GUIS is the great-
est dirty little secret. No one will be spared the conceptual dev-
astation of the 00 paradigm shift, not even the users. How long
before we hear the sound of shattered glass because users are
trying to click their mice on their windows?

Antihype: 00’s dirty little GUI secrets, John Palmer,
Object Magazine, 1-2/92

...“Thirty percent of federal agencies are already using some
kind of object-oriented programming (OOP) software,” says
Robin Rather, of Vienna, Va. - based Information Strategies
Group, who recently completed a study of OOP in the federal
government. She also discovered that another 25 percent of the
agencies said they would be buying 00P technology in the
next three years

Company courts Federal market with object-oriented

programming,

Washington Technology 12/1 9/97

31.
VOL. 1, No. 6: MARCHIAPRIL1992

ANDOS12:WNDOWS
PRm _EN)DELIVERY
NowmG.hWindows and 0S/2, you need prototypes You have to get a sense

for what an application is going to look like, and feel like, before you can write

it, And you can’t afford to throw the prototype away when you’re done.

With SmalltalWv you don’t.

Start with the prototype. There’s no development system you can buy

that lets you get a working model working faster than Smalltalk/V

Then, incrementally, grow the prototype into a finished applica-

tion. Tiy out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/Vgives you the freedom to eqm-iment without risk. It’s

made for trial. And error. You make changes, and test them, one at a time.

Safely. You get immediate feedback when you make a change. And you can’t

make changes that break the system. It’s that safe.
And when you’re done, whether you’re writing applications for

Windows or 0S/2, youll have a standalone application that runs on both.

Smalltal.k/V code is portable between the Windows and the 0S/2 versions,

And the n4ting application carries no runtime charges. All for just

$499.95.

So take a look at

SmalMk/V today. It’s time to make

that prototyping time productive.
Smlalltalklv

Smalltallr/V is a registered tmdemark of Digitalk,Lnc.Other product names are trademarks or registered
trademarks of their respective holders.
Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045
(800) 922-8255; (213) 645-10S2; Fax (213) 645-1306

LOOK WHO’S TALKING

HEWLETT-PACKARD NCR

HP hasdeveloped a network trouble. NCR ba~anintegratedtat prngramdeve[op-
sbooting tool call.sdthe Network Advisoz ment environmentfor digikd,amzlo~and
The Network Advisor offer~a compraben- mtisd mo& pn”ntedcircuitboardteding.
JiveJelof tools includin~an axpertsyxtem,
stitfitics,andprotoco[decoda to speed MIDLAND BANK
probIamisoksiion.The NA mer interfacek Midkmd Bank bui[t a Windowed Technkzl
bui[ton a windowingsy~tem which allows TmdingEnvironmentfor currsncy,futurss
muhiplsapplicationsto be s.mzuted andstock traderswing Smalltalk V
simultaneously

m mms

H Wbrlds L4.ing, award-ting object-
oriented prcggg system

1 Complete prototype-to-delivery system

H Zero-mist runtime

■ Simplified application delivery for
cmting standalone executable (,EXE)
applications

■ Code portability between Smalkalk/V
Windows and SmalltWV PM

H Wrappers for all Windows and 0S/2
controls

■ Support for new CUA 71 controls for
0S/2, including drag and drop, booktab,
containeq value set, slider and more

■ ‘E-ansparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Libraq (DLL) C~S

■ Fully integrated programming environ-
ment, including interactive debuggq
source code browsers (all source code
included), world’s most extensive Win-
dowx and 0S/2 class libraries, tutorial
(printed and on disk), extensive samples

■ Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

■ Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

This Smsllmlk/V Windows application
captured the PC W&ekShootout aWz?ld— and
it was completed in 6 hours.

%ldtddv PM apph@iOllS - UWd [0

develop stat~of-th= CUA-compliant
appkmions — snd they’re portable to
Smalkatk/V Windows.

	By Article Title
	Becoming more predictable
	Coopers & Lybrand's AM/ST, Version 3.5
	Lab Review: Smalltalk at the University of Washington
	Paint palettes (taking control in Smalltalk/VPM 1.3)
	Reimplementing Model-View-Controller
	Tips for improved Smalltalk reuse and reliability

	By Author Name
	Babitsky, Timlynn
	Freeman-Benson, Bjorn
	Hendley, Greg
	Kilmas, Ed
	Leibs, David J.
	Rubin, Kenneth S.
	Salmons, Jim
	Smith, Eric
	Skublics, Suzanne
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	GUIs
	Object-Oriented Design
	Product Review
	Smalltalk With Style

