The International Newsletter for Smalltalk Programmers

by Dauid J. Leibs and
Kenneth S. Rubin

by David |. Leibs & Kenneth S. Rubin
Columns
B Objec-oriented design: Becoming more
predicable
by Rebecca Wirfs-Brock

I} Smafhalk with style: Tips for fmprcved
Smalleatk reuse and reliabikity
by Ed Klimas & Suzanne Skublics

i5 GUIs: Painc palettes (taking control in
Smalleali/vVPM 1.3

e Db Jlo O Eoim Conni
Uf TEE J_H:'IILHC}' O¢ LG Fnitdi

. reviewed by Bjorn Freeman-Benson
2% Product Review: Coopers & Lybrand’s
AM/IST, Version 35 .
reviewed by Jim Sakmons &Timbynn Bab::sky
28 Product Announcements.

29 What They're Saying About Smalitalk

he Model-View-Controller {MVC) architecture was first conceived at the
Xerox Palo Alto Research Center in the late 1970s and early 1980s. Qver

- the past 1C years, the MVC architecture was used to develop many sophisti-
PN <:tcd Smalitalk graphical user interface applications. Engineering of these
applicatons illustrated both the strenpths and weaknesses of the MVC concept and imple—

the chang made to the MVC facdmes of th blectworks\Smalltalk Releaie 4 system™
These changes were made to make the MVC 1mplemenmtlon matre understandable,
reusable, and efficient.

This column describes the reimplementarion of MVC in Release 4, and is intended for
individuals who are interested in understanding and using the revised MVC architecrure.

IRV)

It is not intended to be a tutorial on the sub]ect of MVC and therefore assumes that the
reader is du‘eauy familiar with basic MYC co fncepis . Other ar uclcsl'“ proviae
troduction to MYC and some examples of its usage. A more comprehensive overview of
the pre-Release 4 implementztion is also available.?

In this column, we first discuss aspects of the classic MVC implementation that moti-
vated a redesign and reimplementaticn in Release 4. Next, we introduce some of the
architectural features of Release 4 MVC, and diseuss how these features are used to
develop sophisticated applicarions, giving special focus to the new concepts of wrappers

and invalidation-based redisplay.

Ariials
a \.{uu.,n int-

CLASSIC MVC IMPLEMENTATION

The classical MVC implementation served application developers well for the past 15
years. However, there were several deficiencies that often made the implementation task
more difficult than necessary. Specifically, much of the MVC-related functionality was
vested in a few components that were large and difficult to undetstand. In addition, a fun-
damental distinction was made between display objects, which could render themseives on
an arbitrary display medium, and views, which could only render themselves on the dis-

play screen.

TOO FEW AND TOO LARGE

In classic MVC, too many of the features required to develop interesting graphical user
interfaces were located in too few components. In particular, the base class View embodied
far too many features, This is a typical object-oriented desipn mistake, creating a few
heavyweight components that serve multiple functions and can be difficult to understand
and extend. Appchatlons that use these components are forced to deal with a 1arg_,er set of

R, [N PRS- S (IR o R R PR s R [y o TSI, DI DU SR R =
TEaTUres tndn m4ay pe IequiIredl] Lo perterii Ui acsired tasK. 1INis Tesults iii « PPLILALIULLS thdt
are unnecessarily complex and inefficient. continued on page 3. .

R LT - 1 1 1, N ™ Core T
TUbiecthworks 15 a registered radeinark of I'arcllace Jysiems Inc

EDITORY’
CORNER

John Pugh Paul White

n a recent retrospective in the February issue of the Hotline on Object-Oriented Technology,
prominent industry watcher Tom Love gave his synopsis of the most significant O-Q related
events of 1991. It was interesting to see how many of the events that made his list were
Smallealk related—the introduction of the Momenta pen-based computer, which was devel-
oped using Smalltalk technology; the partnership of Sequent, Versant, and ParcPlace to de-
velop a parallelized version of Smallralk; the development of a batch version of Smalltalk that
runs on MVS; and, perhaps the most improbable sight of the year, IBM salespeople peddling
Smallealk/V! What will 1992 hold for Smallralk?

Another topic mentioned by Tom is one that is near and dear to our own hearts—the
dearth of object-oriented education and craining in educational institutions. Tom is right:
“most university graduates have not heard of objects.” At Carleton, for the last three years we
have been doing as Tom suggests, teaching Smallralk as the first programming language for
CS majors. It's been a great success. We've some good news for Tom. Things are changing, if
only slowly. Many universities have introduced OOP into the curriculum if only at the gradu-
ate or senior undergraduate levels. There are some big obstacles to overcome if the situation is
to improve—the current lack of knowledge among instructors about OOP technology, the
lack of sample curricula and good texts, and the politics involved in making significant cur-
riculum changes, to name but a few. For the first time, OOPSLA ’92 in Vancouver, Canada
will feature a special one-day Educators’ Symposium—a forum for educators to share their ex-
periences and ideas with those contemplating introducing object-oriented technology into
the curriculum. Let's hope lots of educators attend.

In this month’s lead article, David Leibs and Kenny Rubin from ParcPlace Systems give us
the inside story on the reimplementation of the Model-View-Controller (MVC) paradigm in
Release 4. They review the original implementation of MVC in Smalltalk-80 and discuss its
deficiencies. By unifying display objects and views into a hierarchy of visual components built
on a structured graphics foundation, the new implementation aims to provide a more coher-
ent framework for producing sophisticated graphical user interfaces using
Objectworks \ Smallealk. This article provides the rationale behind the introduction of con-
cepts such as wrappers, SPIM, and composite parts in Release 4 and is a must read for all
Smallralk programmers.

We welcome Alan Knighe as a regular contributor to The Smalltalk Report. Alan will be
monitoring the USENET bulletin boards for items of interest to Smallralkers. In his frst col-
umn, he provides answers to some frequently asked questions and, in particular, reports on a
subject that troubles many beginning and experienced Smalltalk programmers—how to deal
with lost instances.

Ed Klimas and Suzanne Skublics return with their popular Smalltalk with Style column.
This month they provide tips on the use of global, pool, and class variables as well as describ-
ing the use of multiple dispatching to eliminate the use of non-object-oriented case
statement-like code. We hear a lot about the benefits of using an incremental, iterative ap-
proach to software development in Smalltalk. The process is not without its dangers and pit-
falls but, as Rebecca Wirfs-Brock illustrates, proper planning and management can go a long
way to ensuring success and removing unpredictability. In the GUI column, Greg Hendley
and Eric Smith describe how to subclass the OS/2 ValueSet control to produce a palette view
for selecting paint colors.

Following our recent spate of articles on team-oriented development in Smalltalk, Jim
Salmons and Timlynn Babitsky provide a comprehensive review of the AM/ST application
manager product for Smalltalk/V. And finally, in this issue’s lab review, Bjomn Freeman-
Benson reports on the research in constraint-based systems at the University of Washington.

Enjoy this issue!

D.te ?jk QB\\Q%

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, every manth except for the Mar/Apr, July/Aug, and Nov/Dec cumbined issues.
Published by SIGS Publicarions Inc, 588 Broadway, New York, NY 10012 phune:(212)274-0640; fax: (212) 274-0646. © Copyright 1992 by SIGS Pub-
lications, Inc. All rights reserved. Reproduction of this material by electronic transmission, Xeron or any other merhod will be treated as a willful viola-
tion of the US Copyright Law and is flatly prohibited. Material may be repruduced with express permission from the publishers. Mailed First Class. Sub-
scription rares | year, (9 issues) domestic, $65, Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and subscripion
onlers ro: Tie SMaLLTALK REPORT, Subscriber Services, Depr. SML, P.O. Box 3000, Denville, NJ 07834 Submir articles to the Editors at 91 Second Av-
enue, Ortawa, Onmrio KIS 2H4, Canada.

THE SMALLTALK REPORT

continued from page 1...

DISPLAY OBJECT VS. VIEW

In classic MVC two separate hierarchies of classes were used to
construct applications with visual presentations—the Display-
Object and the View hierarchies. Both hierarchies had the same
intended function of rendering visual presentation, but each
supported different protocols with incompatible implementa-
tions. In particular, DisplayObjects such as Form, Circle, and Line
could render themselves on an arbitrary medium at an arbitrary
location, wheteas Views could only render themselves on the
display screen at a fixed location. These differences made it im-
possible to use DisplayObjects and Views interchangeably.

CLASS VIEW

The classic MVC version of class View had so many different
features that it forced application developers to make generaliz-
ing assumptions that were often untrue and led to certain con-
ceptual as well as operational inefficiencies. These assumptions
involved visual, composite, layout, and control properties.

View's visual properties included both edge decorating,
which described border thickness and color, and the inside
color of the view. In addition, each view assumed that it was a
composite and might contain subviews—an assumption that
was certainly incottect for leaf views in a view structure tree.

As for layout, each view knew its position both relative to
the containing view and the containing screen. This support
was provided by a complex, redundant set of transformations
that were difficult to understand and use. In addition, each
subview assumed that it scaled (occupied a relative percentage
of the area) with respect to its containing view. This made it
very difficult to have fixed-sized views. Furthermore, all views
were assumed to be aligned in a tiled fashion. If subviews
overlapped, it was not possible to update an occluded view
without damaging the visible view. (Worse yet, no noti-
fication was provided to the damaged view.) The same sce-
nario was true for windows that overlapped on the screen.

Finally, every view had to be prepared to handle control
when it received it via control delegation. This required every
view in a view structure tree to have a controller associated
with it.

Oversized by all these features, and overconstrained by un-
derlying assumptions, View instances were quite monolithic
(564-byte space overhead inherited from class View) and often
difficult to use as desired.

DISTINCTION BETWEEN APPLICATION VIEWS AND
STRUCTURED GRAPHICS
Previous Smalltalk implementations provided the MVC
framework as a means of creating application views. However,
if applications required structured pictures it was the responsi-
bility of the developer to create the graphics framework to
suppott these applications.

Structured graphics frameworks typically embody a collec-
tion of lightweight, displayable objects that can be composed

and can overlap. Such objects display themselves on a
medium by communicating with an object that carries transla-
tion, clipping, and visual properties—an object that the litera-
ture typically refers to as a “graphics context.” Good struc-
tured graphics frameworks carry forward ideas from MVC such
as the use of the dependency mechanism to initiate a change
in a displayed object. Having initiated the change, these sys-
tems then employ the concept of propagating a damage rect-
angle up the containing hierarchy to effect a redisplay. This is
a simple yet powerful mechanism for dealing with overlapping
displayed objects.

Most applications in classic MVC required both applica-
tion views, as provided by the system, and structured graphics,
which had to be provided by the programmer. Such applica-

66

A major focus of Release 4 was the
development of a framework that
incorporated the best ideas of structured
raphics and MVC,

grap)

tions were required to deal with the presence of two parallel
frameworks that overlapped in intent and functionality. Con-
sequently, these applications suffered from the union of the
inadequacies. For example, class View could only display at ab-
solute positions on the actual display screen (Display). In the
context of dependency-driven redisplay, View ignored the pos-
sibility of overlapping views and windows—the updating win-
dow had to pop to the top to displaySafe:. As for the structured
graphics, they had no inherent notion of control since con-
trollers very much expected to be connected to views.

In addition, it was impossible to mix the two ideas to-
gether. For example, the structured graphics would reside
inside a view, but there was no way of putting a view inside a
structured graphic picture, e.g., making a TextEditor part of a
structured picture). As for views, they could only contain
other views. As such, views could draw structured pictures
inside of themselves, but they did not contain the pictures as
part of their inherent structure. This meant that displaying,
interacting, and updating of pictures inside of views was han-
dled in a separate and different manner than displaying, inter-
acting, and updating of the views.

A major focus of Release 4 was the development of a
framework that incorporated the best ideas of structured
graphics and MVC. From structured graphics the ideas include
lightweight components, fine-grain control over layout, dis-
play on arbitrary media, and invalidation-based redisplay.

VoL. 1, No. 6: MARCH/APRIL 1992

B REIMPLEMENTING MODEL-VIEW-CONTROLLER

From MVC the ideas include dependency-based redisplay and
separate control for user interaction.

RELEASE 4 VISUAL PRESENTATION FEATURES

Two somewhat independent major functionality changes in
Release 4 directly affect the MVC redesign—host window in-
tegration and the new imaging model. While a full description
of these is beyond the scope of this atticle, this section summa-
rizes their most significant impacts on the MVC framework.

HOST WINDOW INTEGRATION

Under host window integration, Smalltalk windows are host
windows. As such, the responsibilities of the classic Smalltalk
window manager have been relegated to the host window
manager. Within this framework, Smalltalk is provided with
event notifications when windows are manipulated using the
host window manager. This event notification paradigm re-
quired substantial medifications to the classic StandardSys-
temView. In particular, the Release 4 version of this class,
called ScheduledWindow, must now be prepared to deal with
invalidation-based redisplay, a topic to be discussed later.
Furthermore, in Release 4 every window has its own sensor,
which is its channel to receive host events. This sets the
stage for complete event-driven input, although, for back-
ward compatibility reasons, Release 4 continues to use a
polling scheme.*

SMALLTALK PORTABLE IMAGING MODEL

While classic Smalltalk had monochrome BitBlt drawing capa-
bilities, Release 4 provides a full-color, platform independent,
high-level graphics imaging model know as the Smalltalk
Portable Imaging Model (SPIM).* The class GraphicsContext
defines the SPIM application programmers interface. Messages
are sent to a GraphicsContext to invoke host graphic capabili-
ties (drawing circles, lines, rectangle, polygons) on a display
surface (Window, PixMap). All visual presentations in Release 4
are achieved using this approach.The invalidation-based re-
display capability of MVC uses GraphicsContext as a means of
carrying translation, clipping, and certain visual properties of
visual components.

VISUAL COMPONENTS

In the Release 4 system, the basic presentation metaphor is
that of a component that is capable of rendering a visual pre-
sentation of itself on a DisplaySurface using a GraphicsContext.
Each such component can answer a preferred bounds, which
indicates the area of space that the component would prefer
to occupy. In addition, a visual component can respond with
an object that is capable of handling user intetaction, if such
interaction is desired.

Visual components can also be composed into hierarchical
presentations by adding them to composite visual compo-
nents. Any visual component structure, singular or composite,
can be placed inside a host window.

VisualComponent

VisualPart

DependentPart Wrapper CompositePart

ITranslatingWrappel;l DependentCumpositePaIl

CompositeView

BoundedWrapper

BordererdWrapper

Flgure 1. A partial VisualComponent hierarchy.

Figure 1 shows a partial hierarchy of the Release 4 classes
that support visual components. The root class of the hierarchy
is VisualComponent, representing a lightweight, stateless, ab-
stract abject that can create a visual presentation. This class
specifies the important abstract protocol of displayOn: aGraphics-
Context and preferredBounds. In addition, it specifies the default
implementation of objectWantingControl, which answers nil in-
dicating no control is desired. Subclasses that wish to take con-
trol must redefine this behavior to respond with the object to
which control should be passed, e.g., a view would respond
with a particular controller.)

VisualPart, a subclass of VisualComponent, is used to make up
a structured picture by providing a pointer to some containing
visual component. Some visual components need to know
about a containing visual component, others do not. Those
that do need to know are interested in interacting with their
surrounding environment.

At this point the hierarchy splits into visual components
that contain other visual components, and those that do not.
The class CompositePart captures the idea that a visual compo-
nent can be a collection of other visual components. With the
introduction of composition, it is necessary to consider where
each component resides in the coordinate system of the com-
posite. Rather than storing this information in the visual com-
ponent itself (as with the old class View’s insetDisplayBox) or in
some form of parallel record structure in the composite, the
information is held in a special type of visual component
called a wrapper. A wrapper is a visual component that con-
tains exactly one other visual component.

MVC IN RELEASE 4
The classes VisualComponent, VisualPart, and CompositePart pro-
vide the base structured graphics framework upon which the
MVC facilities are implemented. Purposefully absent from the
framework thus far is the notion of a madel and a controller.
Class DependentPart, a subclass of VisualPart, provides a
model for dependency relationships. As a subclass of Visual-
Part, it has a direct way of tuming an update: message from a

THE SMALLTALK REPORT

model into an invalidation message that is propagated up the
containment hierarchy to effectuate a dynamic redisplay con-
sistent with the surrounding environment.

The class View refines the dynamic redisplay behavior of
DependentPart by adding a controller. This enables users to in-
teract with a view and model in the traditional manner dic-
tated by MVC. View provides the abstraction for components
such as TextViews and ListViews.

For completeness, there are also DependentCompositePart
and CompositeView to support model and controller behavior
for composite visual components.

Notice, however, how low in the hierarchy the class View is
located. There are numerous lightweight abstractions from
which it is derived (in contrast to previous versions whete
View was the heavyweight abstraction).

Even this low, View is lighter weight than in classic MVC.
Many features of the old class View are no longer present. In par-
ticular, there is no mention of information related to border
width, border color, or inside color. This information has been
removed and is now the responsibility of wrappers. Likewise,
there is no information regarding layout and current position—
tracking this information has also been relegated to wrappers.

The resulting framework provides the classic MVC func-
tionality within a structured graphics framework. It does so in
a singular, unified manner by which all visual components are
created, decorated, positioned, manipulated, and controlled.

WRAPPERS
The idea of a wrapper (or wrapping) is a generic design tech-
nique. It is a form of composition and delegation that can be
thought of as selective message forwarding. That is, given the
desire to enhance the capabilities of an existing object, we
might choose to subclass the object to add the additional ca-
pabilities, or we might construct a new object that is not nec-
essatily hierarchically related to the existing object, but con-
tains the new required features. The idea of wrapping is to
combine the two objects by placing the original object inside of
the wrapper, which is used to intercept messages destined for
the original object. When intercepting messages, wrappers may
petform their own special behavior, and then forward the mes-
sage on to the original object.

As an example of how wrappers are used, examine the ap-
plication shown in Figure 2. This represents a classic struc-

Structured Picture Editor

line

rect

circle

image

Figure 2, A typlcal application.

KEY:
BJ - Batten
kW - Borderadw-apaer

L3 = Zompesizeban
M=
LN = Lire

REC =Re-rangl=
J .]

b
TW = Transiatregwre zpper

Flgure 3. Visual components of the structured picture edlitor.

tured picture editor where the user is able to manipulate a va-
riety of visual objects on a drawing surface. In particular, the
user is able to select, drag, group, and delete objects. In the
application window there are four buttons and several other
visual objects. The image and line are single visual objects.
The rectangle and two circles have been grouped together
into a composite object, which is currently selected (denoted
by the selection handles). The visual component-level struc-
ture of the current state of this application is illustrated in
Figure 3.

Wrappers are visual components designed to extend the
features of other visual components. As such, wrappers
respond to a particular part of the visual component protocol.
To understand this, it helps to constder how wrappers interact
with ather visual components. To begin with, the leaf visual
components of any hierarchy are always surrounded by wrap-
pers. In Figure 3, notice that all leaves in the tree are suitably
wrapped. Specifically, Circle, Rectangle, Image, and Line are all
contained within TranslatingWrappers. The buttons are con-
tained within BorderedWrappers.

The components of CompositeParts are always wrappers,
each of which can contain another wrapper or visual part
transitively, until a leaf visual component is reached. Hence,
at least one wrapper will always intervene between a visual
component and a composite. Under this scheme, wrappers
forward messages sent by the composite toward the leaf and,
conversely, channel messages sent by the leaf toward the com-
posite. Messages moving in either direction maybe filtered or
modified by the intervening wrappers.

Downward-moving messages that are interpreted/forwarded
by wrappers include messages used for:

¢ instructing a component to display itself on a
GraphicsContext

¢ offering control to a component

® querying and asserting the bounds of a component, i.e., its
size and position

VoL. 1, No. 6: MARCH/APRIL 1992

B REIMPLEMENTING MODEL-VIEW-CONTROLLER

Upward-moving messages include:

e invalidation of all or part of the component’s area, i.e., re-
questing redisplay

® asserting that a component has a new bounds, i.e., size or
location

® requesting information such as how big a component
should be, as well as a variety of visual attributes

The Release 4 implementarion comes with a few standard
wrappers such as TranslatingWrapper, BoundedWrapper, Bordered-
Wrapper, and EdgeWidgetWrapper.

TranslatingWrapper is used to position a visual component at
a particular origin. In Figure 3, the structured graphic entities
are all in TranslatingWrappers. BoundedWrapper provides for a
bounds used in both the translation and clipping of a visual
component. A BoundedWrapper also provides a layout to deter-
mine the bounds of the visual component. This layout typi-
cally is an instance of LayoutFrame that permits developets to
specify the layout of a visual component with respect to an-
other visual component in either an absolute, relative, or
combination absolute/relative manner.

A BorderedWrapper provides for a border around a visual
component, as well as an inside color. In Figure 3, the buttons
all reside within BorderedWrappers. An EdgeWidgetWrapper pro-
vides a convenient means of decorating a component with
desired widgets. This wrapper provides for the placement of
horizontal and vertical scrollbars as well as a menu bar around
the edges of a visual component.

There are many more uses for wrappers. Some of the more
interesting examples that have been built include:

e double buffering for smooth animation
e read-only to limit interaction

¢ visibility controlling to determine whether a component is
visible, invisible, or somewhere in between (alpha)

e selection indication to illustrate when a component is
selected

® wrappers for arbitrary visual property manipulation

In Figure 2, the rectangle and the circles are contained
within a CompositePart. In Figure 3, we see that the CompositePart
is contained within a TranslatingWrapper that positions the com-
posite relative to the other visual components. The Translating-
Wrapper is itself contained within a SelectionWrapper that pro-
vides the visual presentation of the selection handles that are
seen in Figure 2. This example illustrates that wrappers may be
composed to create a desired effect, i.e., translation and selec-
tion. In addition, it should be noted that any visual component
in this application can be displayed with selection handles sim-
ply by wrapping it in a SelectionWrapper (i.e., inserting a Selec-
HonWrapper at the proper location in the structure hierarchy).

The Release 4 system suppotts transparent use of the stan-
dard wrappers by providing protocol in CompesitePart that sup-

ports the automatic wrapping of constituent visual compo-
nents. For example:

CompositePart add: aVisualComponent at: aPoint

places a TranslatingWrapper around aVisualComponent,
CompositePart add: aVisualComponent in: aLayout

places a BoundedWrapper around aVisualComponent, and
CompositePart add: aVisualComponent borderedIn: aLayout

places a BorderedWrapper around aVisualComponent.

In summary, the use of wrappers in the visual component
framewotk facilitates the handling of baokkeeping informa-
tion required by many visual components. In addition, it pro-
vides a flexible technique for creating specific behavior once,
and quickly adding this behavior to existing objects via com-
position/delegation (i.e., wrapping).

INVALIDATION-BASED REDISPLAY

As part of unifying structured graphics, MVC, and host win-
dows, it was necessary to choose a singular mechanism for dy-
namic redisplay. Based on the operation of host window man-
agers and past experience with structured graphics, invalidation-
based redisplay was chosen. The idea was briefly described ear-
lier and is elaborated on here.

When a visual component wants to change its presentation,
it assumes that it does not know enough about the environ-
ment in which it resides. For example, it might not know if
other components are overlapping it, or there might be a col-
lection of damage rectangles from the host window that need
to be considered at the same time to avoid multiple displaying.
As such, a visual component simply does not know enough to
redisplay itself at the time it wants to effect a change.

To achieve a proper redisplay within its environment, the
component invalidates its bounds, either in whole or in part,
by sending a message up the enclosing structure environment,
beginning with its container. The container, and anything
above it up to the top of the tree (the host window), can mod-
ify the invalidated regions in any manner.

Once the invalidated region reaches the window, it can be
merged with any damage queued by the host. Then the invali-
dated areas may be queued for later handling, or a message
may start down the structured picture requesting visual com-
ponents to redisplay themselves on a particular medium using
a graphics context that has been preclipped with the invali-
dated regions. In this manner, all visual components achieve a
proper redisplay within their environments. The idea is simple
and uniform. Any complexity that arises is due to the applica-
tion and not to the concept or the mechanism.

CONCLUSIONS
Prior to Release 4, much of the MVC-telated functionality was

THE SMALLTALK REPORT

ImageSeft

cation Browser provides multiple

™ T T T The original and still premier
TR .o
Ao | e | application manager for

=3 W Smallialk/V.™

Find
AM/ST, developed by the SoftPert E&?:i:?":"‘:" Fun : - ’mu ChangeBrowser. As an additional
Systems Division of Coopers & 'E_'E:"d P mernd tool available for Smalltalk / V PM
Lybrand, enables the developer to Sioks O Slteck # and Smalltalk/V Windows, Change-
manage large, complex, object-orient- EOh Tepnrs | P sopicstian - Browser supports browsing of the
ed applications. The AM/ST Appli- P Smalltalk/V change log file or any

'§ file in Smalltalk /V chunk format.

| -

views of a developer's application.

AM/ST defines Smalltalk / V applica-
tions as logical groupings of classes and
methods which can be managed in source
files independent of the Smalltalk / V
image. An application can be locked and
modified by one developer, enabling other
developers to browse the source code. The
source code control system manages multi-
ple revisions easily.

CooBers
&Lybrand

The addition of AM/ST to the
ImageSoft Family of software develop-
ment tools enhances and solidifies
ImageSoft’s position as —

“The World’s Leading Publisher
of Object-Oriented Software
Development Tools.”

1-800/245- 8840
ImageSeft

“The World's Lending Publisher of Develapment Tools

All trademarks are the property of their respective owners. ImageSoft, Inc., 2 Haven Avenue, Port Washington, NY 11050 516/767-2233; Fax 516/767-9067; UUCP address: mcdhup'imageinfo

vested in a few components that were large and difficult to un-
derstand. In addition, a fundamental distinction was made
between display objects, which could render themselves on an
arbitrary display medium, and views, which could only render
themselves on the display screen. In Release 4, both of these
problems are handled by unifying display objects and views
into a hierarchy of visual components based on a structured
graphics foundation. In addition, many of the features that
were previously associated with views have been relegated to
wrapper visual components. This permits greater flexibility in
achieving the desired results, and promotes a high level of
reuse of the specialized features contained within wrappers.

Preliminary feedback from Objectworks\Smalltalk Release
4 users indicates that the new MVC facilities are powerful and
permit the development of sophisticated graphical user inter-
face applications in a more coherent manner. However, peo-
ple have noted that the facilities embody different and some-
what more sophisticated principles, and thus require more
time to digest. The purpose of this article is to further the un-
derstanding of the facilities and of how to successfully employ
them. B

ACKNOWLEDGEMENTS

We would like to thank all of the members of the ParcPlace
Smalltalk team whose creativity and dedication made Object-
works \Smalltalk Release 4 a reality. We would also like to thank
Glenn Krasner, Adele Goldberg, Brian Alexander, and Frank

Jackson for their input into this paper. However, any inaccuracies
or ambiguities in this paper are solely our responsibility.
REFERENCES
1. Krasner, G. E. and S.T. Pope. A cookbook for using the Model-

View-Controller user interface in Smalltalk-80, Journal of Object-
Oriented Programming 1(3)-26-49 1988.

2. Goldberg, A. Information models, views and controllers, Dr.
Dobb’s Journal, July, 1990.

3. LaLonde, W.R. and].R. Pugh. Inside Smalltalk Volume II, Prentice
Hall, Englewood Cliffs, NJ, 1991.

4. ParcPlace Systems. Objectworks\Smalltalk Release Notes, ParcPlace
Systems, Inc., Mountain View, CA, 1991.

David J. Leibs is a Computer Scientist at ParcPlace Systems where he
was the architect of the Release 4 MVC reimplementation and cur-
rently works on Smalltalk special projects. He studied mathematics at
North Texas State University. He has been working with Smalltalk-80
since joining Xerox in 1984. He joined ParcPlace in 1986 as their first
Smalltalk programmer.

Kenneth S. Rubin is Manager of Professional and Educational Services
at ParcPlace Systems where he is coauthoring a book on managing ob-
Ject-oriented software development projects and codeveloping a rigorous
object-oriented analysis and design methodology. He has been affiliated
with the Center for Human-Machine Systems Research at Georgia
Tech, Advanced Decision Systems, and the Hughes Aircraft Company.
He received an M.S. in Computer Science from Stanford University.

VoL. 1, No. 6: MARCH/APRIL 1992

BJECT-ORIENTED DESIGN

Rebecca Wirfs-Brock

Becoming more predictable

malltalk provides an excellent platform for incremental

development. Prototypes can be built to clarify poorly un-

derstood requirements. Design can complement prototyp-
ing efforts to produce production-quality code. The benefits of
incremental, iterative software development are enormous.
Large, complex systems have a good chance of meeting cus-
tomer requirements when they ship. Concepts can be vali-
dated before major resources are committed and schedules
finalized. Functionality can be routinely added to an existing
application base without things grinding to a halt. Object-
oriented designs and programming languages are a real aid to
incremental, iterative development. The modularity, flexibil-
ity, and encapsulation that objects provide makes incremental
development practical.

Managing an incremental development can be extremely
challenging. This is particularly true when the development
team is new to both object technology and an incremental de-
velopment process. | know of no magic formula that guaran-
tees success, but life can be a lot easier if some checks and bal-
ances are applied. It is possible to design (and redesign) in an
iterative, incrementally developed object-oriented applica-
tion. Predictability (and taking action to become more pre-
dictable over time) is the key to making it work.

LIFE IN THE FAST LANE
Iterarive, incremental development projects are typically
started for several valid reasons:

1. Requirements for parts of the software are unclear. The
plan is to develop prototype code, get feedback, assess
what needs to be done, and then do it.

2. New hardware or complex processes need validation.
Given long lead times, it may be necessary to write code
that exercises new system functionality long before a de-
tailed design is finished.

3. In even moderately complex applications, it is difficult to
complete all subsystems at the same time. In fact, plan-
ning for a single massive integration phase is risky busi-
ness. Confidence can often be gained if the system is
brought alive in planned phases. With phased develop-
ment, temporary functionality needs to be provided to
make the things work. These interim parts are replaced

over time (if things go according to plan) with well-
designed, production-quality code.

These are sound reasons. There are also situations where
projects slide into an iterative whirlpool due to lack of leader-
ship and planning, neglect, or inexperience. One danger to
avoid (regardless of how you embarked on an iterative devel-
opment) is wandering for too long without making significant
progress, jeopardizing the entire project. Another risk to avoid
is continual backtracking to fix things up when premature de-
cisions don’t pan out.

Odds can be improved by committing to and sticking with
a process that encourages open communications. People need
to consider the consequences of theit actions or inaction.
Even if you have to tinker and adjust the process over the
course of the project, it's easier to put the appropriate force
fields in place early than to inject change into an organization
that has been lumbering along for a while. The objective is to
encourage communication and thoughtful behavior, making
the entire team function more smoothly.

SOME TYPICAL SCENARIOS

In the remainder of this month’s column I want to discuss sev-
eral tasks that are part of most incremental developments and
offer advice on how to perform them effectively. Although
the tasks undertaken by most object-oriented development
teams are roughly equivalent, outcomes vary widely. What’s
startling to consider, however, is just how big an influence
anticipating and preparing for change can have on the final out-
come. It’s crucial to think things through before reacting, and
to provide enough information to allow others that same op-
portunity. I've learned some strategies for improving the out-
come through direct personal experience. Observing the
habits of people and organizations that meet or exceed their
objectives has been another rich source of inspiration.

MAKING PROGRESS

Knowing precisely what's left to do and how long it will take
is difficult to ascertain in a phased development. It’s impor-
tant to be as open and honest as possible when assessing sta-
tus. Trust and teamwork play a big part. On one project, we
lived and breathed the creed of incremental, iterative devel-
opment. Not every project team will be so dynamic, have such

THE SMALLTALK REPORT

exciting chemistry, or be so committed to the project. But,
learned a lot from that project that I've found extremely use-
ful on many other occasions.

We recognized our plans were estimates. They needed to
be living, changing documents. We knew we couldn't do it
otherwise. Team members didn’t feel persecuted when they
were behind on their initial estimates. If someone honestly
didn’t know where they were, the last thing they did was hide
the fact. We described our designs and implementations as ei-
ther being throwaway, experimental, temporary, works well
enough, or of finished quality. We had guidelines for commu-
nicating project status that stated both our progress and
confidence in our decisions and achievements.

When things didn’t go as planned, we brainstormed about
what it might take to get back on track. We set a new date for
achieving measurable results, generated a list of action items,
and kept moving. We acknowledged our situation, and ac-
tively sought help and advice from others when necessary. We
were team players. It was important to do assigned tasks, but
making the team succeed was the primary objective. We freely
debated the impacts of change (and our progress) not only
with the design and development team, but also with market-
ing, manufacturing, and project management,

Management made it very clear that it was OK to say, “I
don't know.” You were expected take action to find answers,
but you didn’t have to bear the burden alone. The team
helped develop altemnatives. And most importantly, a messen-
ger of unexpected news was never punished.

6
The most effective prototyping effort

| have seen was pulled off by a team
that felt certain that they'd require
several prototyping cycles before
finalizing their design.

»

DECIDING WHAT TO PROTOTYPE
Determining what you want to prototype before starting is im-
portant. Sloppiness and unpredictability on the part of some
prototyping efforts has gained prototyping an undeservedly
bad reputation. If you have a clear set of objectives and a plan
of attack, it will be much easier to get management to buy in.
It also improves your chances for developing a meaningful
prototype. It’s vital to explore options before committing to
any serious prototyping. What's serious prototyping? Spending
more than a couple of weeks.

Take enough time to collect your thoughts and set objec-
tives. One way to ensure that you've done enough homeworlk is

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management with update fransaction
control directly in the Smalltalk language

® Transparent access to Smalltalk objects on disk

Transaction commit/rollback

® Access to individual elements of virtual collections and
dichionaries

® Multi-key and multi-value virtual dictionaries with query by
key range and set intersection

® Class restructure editor for renaming classes and adding or
removing instance variables allows incremental application
development

® Shared access to named virtual object spaces

® Source code supplied

Some comments we have received about VOSS:

“...clean ...elegant. Works like a charm.”
—Hal Hildebrand, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability.”

—Raul Duran, Microgenics Instruments

VOSS /286 $595 ($375 to end of February 1992) + $15 shipping.
VOS5/Windows $750 ($475 to end of February 1992) +515 shipping,.
Quantity di ilable. Visa, MasterCard and EuroCard accepted.
Logic Arts Ltd. 75 Hemingford Raad, Cambridge, England, CB1 3BY
TEL: +44 223 212392 FAX: +44 223 245171

logic

ARTS

to write things down. If you have trouble summarizing objec-
tives, you aten't ready to launch into prototyping. You need to
be able to state both what you hope to accomplish and how you
intend to do so. Summarize any burning issues or questions.
Communicate what you know and what you want to find out.

To clarify objectives, discuss the prototype with people
whose perspectives differ from your own. It is fair to state a
preferred course of action, but be willing to listen to other
ideas. I¢’s best if you can bounce ideas off someone who is
both receptive to your ideas and a good critic. Brainstorm al-
ternatives. Listen carefully to othets’ comments and criticisms.
Don't shoot down new ideas. Mull things over.

Do a paper design of the parts you think you understand.
This preliminary design probably won’t be worked our in
much detail. But be prepared to discuss key objects and archi-
tectural strategies. Talk to those who are reviewing your ideas
in their own language. If your audience understands objects,
talk about objects. If they don't, you can either spend time
educating them, or speak to them in their own terms. I have
had several meaningful discussions with people with an elec-
tronic engineering background. I found it useful when pre-
senting my prototyping ideas to draw analogies with phased
hardware development.

Setting objectives doesn’t requite a lot of time. What's ap-
propriate obviously depends on the duration of the prototype.
It's perfectly reasonable to spend a few days setting goals be-
fore a month-long prototyping effort. A six-month effort

VoL. 1, No. 6: MARCH/APRIL 1992

10.

m OBJECT-ORIENTED DESIGN

might require a few weeks to set clear objectives. Without
such forethought, it's difficult to know if you are even working
on the right problem.

BUILDING A SUCCESSFUL PROTOTYPE

The most effective prototyping effort I have seen was pulled off
by a team that felt certain that they'd require several prototyp-
ing cycles before finalizing their design. Knowing that, they
planned for incremental, iterative success.] wouldn’t character-
ize their efforts as random prototyping. They didn’t just build
something and keep tinkering with it until they had a final
product. They documented what they expected to accomplish
(and what issues they wouldn’t address). They made sure others
bought into their concept of prototyping. They made it clear to
management that they wanted to design and implement proto-
types to gain understanding. They didn’t hope or expect a final
result would “pop out” if they were lucky. They set milestones,
and measured results along the way. They spent as much time
assessing their prototypes as they did building them. They ac-
tively solicited advice and expertise when they felt uncertain.
They spent a lot of time analyzing whether their design would
be flexible enough and whether it would scale to accommodate
future system requirements.

They went through several prototyping cycles on a major
part of a large, complex system without ever being on the crit-
ical path. Were these people more brilliant or harder working
than their teammates? They were skilled and had over 10
years of experience. But they weren’t the only bright stars on
the team. Instead, I'd characterize them as being in the habit
of thinking before doing. They also believed very strongly in
working smarter, not harder. They weren't constantly pro-
gramming. Coding was a by-product of designing and reason-
ing about the problem and not its only manifestation, even
during prototyping.

SOLIDIFYING SUBSYSTEM INTERFACES

In incremental development, the objective is to accommodate
change without leaving interfaces too ill defined or soft and
squishy. Working out interfaces is naturally an iterative pro-
cess. Expect to refine them to match both class users’ and class
developers’ needs. The key is to agree upon initial interfaces,
and agree to renegotiate change. Changes should be made in
context of their impacts on the overall system. Although re-
sponsibility for making change ultimately rests with the devel-
opers, system concerns need to be injected into the process of
deciding what (and how) to change.

As subsystem designers work out the details of how services
provided by their subsystem will be supported, they collect
ideas for changes. Others using their subsystem will also find
room for improvement. Evolving an interface requires team-
work. One way to foster teamwork is to publish proposed
changes rather than to notify others after the fact. If no one
responds to proposed changes, don’t assume they agree by de-
fault. Things go more smoothly if people are given a chance to

understand and comment on proposed changes. Make sure
people have enough time to absorb the impacts of a proposed
change. What may seem minor to subsystem implementors
can cause major repercussions elsewhere. Expect debate on al-
ternatives before making any major change.

Smalltalk team programming environments make it easier
to propose changes. Developers can pass back and forth
workable alternatives without affecting othets. They aren't a
substitute for thinking things through. Effectively evolving
interfaces requires adopting and promoting “systems think.”
On larger projects, one way to promote system thinking is to
designate a system architect. The architect's initial role is to
determine the initial structure and organization of the appli-
cation, including subsystem interfaces. Throughout the pro-
ject, the architect keeps on top of proposed changes, and ac-
tively works to mediate needs of the subsystems’ developers
and users.

Avoid the two ends of the spectrum: standardizing too
early, or being so flexible that nothing can ever be agreed
upon. Both extremes cause problems. If an interface is
frozen, other parts of the application contott to fit. It isn’t al-
ways appropriate that the first one “done” defines what is ex-
pected of others. On the other hand, if nothing is ever
agreed upon, people are constantly in a reactionary mode,
consuming lots of time adjusting and readjusting to shifting
interfaces.

AN ALTERNATIVE TO JUST LIVING WITH

THE CONSEQUENCES

There are many factors that go into a project’s success. There’s
no substitute for persistence, intelligence, and commitment.
Iterative and incremental development require extra attention
to planning and designing and careful consideration of conse-
quences. Individuals can make a difference by planning for
change, rather than just letting it happen. Things won't work
well if individuals go off and “do their own thing” ignoring the
rest of the project. Successful iteration is fostered by teamwork
and a willingness to accept and solicit constructive criticism.
Improving predictability is a constant, ongoing process.

Rebecca Wirfs-Brock is the Director of Object Technology Services at
Digitalk and coauthor of Designing Object-Oriented Software. She
is the program chair for OOPSLA '92. She has over 16 years of expe-
rience designing, implementing, and managing software products. Dur-
ing the last eight years she has focused on object-oriented software. She
managed the development of Tektronix Color Smalltalk and has been
immersed in developing, teaching, and lecturing on object-oriented soft-
ware. Comments, further insights, or wild speculations are greatly ap-
preciated by the author. Rebecca can be reached via email at
rebecca@instance.com. Her US mail address is Digitalk, 921

S.W. Washington, Suite 312, Portland, Oregon 97205.

THE SMALLTALK REPORT

MALLTALK WITH STYLE

Ed Klimas and Suzanne Skublics

Tips for improved Smalltalk

reuse and reliability

“DON’T POUND NAILS WITH A CHAINSAW.”

Every programming language has certain features that can
be sources of trouble when misused. These features are
typically included in the language to solve specific issues
but can, if misapplied, tesult in code that is bug ridden,
difficult to reuse, and expensive to maintain. This month's
column covers a few of these Smalltalk features to help de-
velopers understand some of the issues associated with
their proper use and the potential problems associated with
their misuse.

GLOBAL, POOL, AND CLASS VARIABLES

Smalltalk provides mechanisms for sharing information via
global variables, pool dictionaries/pool variables, class vari-
ables, and instance variables. Although each mechanism has
a specific intended use, some of these mechanisms can be

misused in ways that can impact code quality and reusability.

GLOBAL VARIABLES

Global variables represent data that are directly accessible
to all of the classes in a program. Global variables are use-
ful for holding the temporary code used in debugging,
recording the count of window events that cannot be in-
terrupted, and the rapid testing of prototype code seg-
ments. However, they typically have a negative effect on
commercial software quality. The problems with global
variables in conventional software development have been
well documented by William Wulf and Mary Shaw?! during
the “X considered harmful” wave of papers. The problems
with globals in object-oriented programs were succinctly
summarized by Bertrand Meyer? as follows:

As different modules share global variables, they make
each of these modules more difficult to understand, read,
and maintain.

Global variables form a hidden dependency between mod-
ules. They are a major obstacle to software evolution be-
cause they make it harder to modify a module without hav-
ing an impact on others.

The use of global variables violates encapsulation and the
protective software “fire walls” that result. It is much easier

to make stand-alone, portable applications and classes
without global variables.

They are a major source of errors. An error in one module
may propagate to many others. As a result, the manifesta-
tion of the error may be remote from its cause, making it
difficult to trace errors and correct them.

A less fundamental problem is that a global variable does
not typically belong to one module in particular. Thus, it is
not clear where to initialize the global.

Guideline—Auwoid using global variables. Use class variables
instead of global variables if the value is to be shared in only one
class.

POOL VARIABLES/POOL DICTIONARIES

Pool variables or pool dictionaries are mechanisms for shar-
ing the same information between instances of several
classes. Pool dictionaries are usually used to hold dictionar-
ies of related constants for a given application, e.g., Color-
Constants and CharacterConstants.

Guideline—To avoid creating hidden dependencies, set the
values of the class variables that are replacing pool dictionaries
only in one common initialization method.

Without this practice, it is easy to change a number in one
method and miss it in another. Class variable names can also
provide semantic information about the use of a constant. For
example, ButtonDown equals one and ButtonUp equals zero.

Guideline—Use symbolic constants and constant expressions
to allow multiple dependencies to link to one or a small number
of symbols in paol dictionaries.

In some OOP circles, using pool variables—as ubiquitous
as they are in the base Smalltalk image—is considered a bad
programming practice because they permit the violation of
encapsulation. Therefore, in some situations, pool variables
may not meet with the strictest guidelines of good encapsula-
tion and OOP practice. Also, be aware that various dialects of
Smalltalk handle pool variable inhetitance differently. For ex-
ample, in the Smalltalk/V implementations, pool dictionaries
are not inherited while in Smalltalk-80, pool variables are in-
herited by subclasses.

VoL. 1, No. 6: MARCH/APRIL 1992

11.

12.

B SMALLTALK WITH STYLE

Guideline—Use class variables with accessor methods instead
of pool dictionaries/variables. If an object must be shared across
several classes, create a separate new class to hold the pool dic-
tionary object in a class variable of the newly created class.

Use class methods to tag constants instead of repeating them in
many methods:

“Instead of declaring MyWindowControlKeys a pool dictionary
of MyWindow use the following technique”

Object subclass: #MyWindowControlKeys
instanceVariableNames: *
classVariableNames: “
‘MyWindowControlKeys *
poolDictionaries: “!

!MyWindowControlKeys class methods !

myWindowControlKeys
“Use the lazy initialization technique to create and initialize the
dictionary if necessary in this get accessor method”
MyWindowControlKeys isNil
ifTrue: [self initializeMyWindowControlKeys].
~MyWindowControlKeys.!

myWindowControlKeys: aDictionary
“Set the value of the instance variable using this setter accessor
method”

MyWindowControlKeys := aDictionary.!

initializeMyWindowControlKeys
“Use a common initialization method to add a key constant to the
MyWindowControlKeys dictionary .”

~(self myWindowControlKeys: (Dictionary new)) at: #F9Key put: 120.!

at: aSymbol
~self myWindowControlKeys

at: aSymbol
ifAbsent: [nil].!

at: aSymbol ifAbsent: aBlock
~(self includes: aSymbol)
ifTrue: [self myWindowControlKeys at: aSymbol]
ifFalse: [aBlock value].!

includes: aSymbol
~(self myWindowControlKeys includes: aSymbol).! !

Object subclass: #MyWindow
instanceVariableNames: *
classVariableNames: “
poolDictionaries: !

!MyWindow methods !

keyInput: anInteger
“Private - Process a key input to check if the pane should be cycled.”
anlnteger = (MyWindowControlKeys at: #F9Key)
ifTrue: [Notifier cycle].! !

CLASS VARIABLES

Class variables are shared only by the instances of the sin-
gle class in which they are declared. Class variables contain
the same value for all instances of the assigned class.

A class variable is often a good replacement for a global
variable. The class should include the protocol necessary to
initialize the global, access it, and modify it as necessary.
For example, suppose there is a class called User represent-
ing users of a system. Instead of using a global variable to
store all the users, define a class variable called Users. The
class protocol added to class User might include:

addUser:

deleteUser:

deleteUser:ifAbsent:

checkForUser:

users “to return the collection of users”

Guideline—Use class variables for shared components between
all instances of a class and its subclasses, and as a public inter-
face for dll classes.

ELIMINATE CASE ANALYSIS

In OOP, case analysis is the practice of testing an object
for some criteria to determine what kind of action needs to
be taken:

anObject isMemberOf: Rectangle

ifTrue: [anObject drawRectangle].
anObject isMemberOf: Circle

ifTrue: [anObject drawCircle].
anObject isMemberOf: Line

ifTrue: [anObject drawLine].

The problem with this kind of programming technique is
that it leads to a combinatorial explosion for large systems
where many different objects need to be tested and appropri-
ate methods need to be dispatched. The practice of case analysis
in large systems generally results in code that is more difficult to re-
liably maintain. Subsequent developers must find every relevant
case statement in the system and make sure that it is properly up-
dated. Another negative side effect of this practice is that case
analysis greatly reduces the reusability of the code. Using case
statements, a new developer will be required to modify all the
existing case statements to accommodate a new object.

The concept of polymorphism was designed to provide a
simple and efficient solution to this problem. Briefly, with
polymorphism there are many objects that respond to the
same command, each taking the necessary steps to complete
the actions of the command. The above problem can be
greatly simplified if each object has a common command such
as draw that it implements so that wherever an object needs to
be drawn, the following message is sent:

anObject draw.

THE SMALLTALK REPORT

ﬁdeN. Smalltalk/V users: the tool

A draw method needs to be defined only once for each ob-
ject, as follows:

<Rectangle> draw
“Code to draw a rectangle”

<Circle> draw
“Code to draw a Circle”

<Line> draw
“Code to draw a Line”

Different but appropriate acrions will be taken by each object
to implement its own drawing. When properly implemented,
any previously existing code that dealt with displaying objects
can now be readily reused under this scheme. The developer of a
new object need only take advantage of the existing code to cre-
ate a draw method for the new object. In addition to greatly sim-
plified programming, polymorphic programming uses the mes-
sage dispatching scheme for achieving the desired result, which
is usually a much quicker mechanism than any case statement.
Although it may take more effort initially, case statements can al-
ways be reworked into polymorphic messages.

CHECKING FOR CLASS MEMBERSHIP

In object-oriented languages, polymorphism can also re-
place checking the class of an object. Different classes han-
dle the same message differently. Using code with multiple
calls to isKindOf:, isMemberOf:, or code of the form:

“class Window instance method”

1esizeToMaxScreen
(self class = FixedWindow)
ifTrue: [self resizeNotAllowed]
ifFalse: [self resize]

is often an indication of a function being in the wrong
class. Replace these statements with a message to the ob-
ject whose class is being checked. Create methods in the
various classes of the object that respond to the message.
Each method should contain one clause of the cases. An
example of avoiding case analysis for the above problem
might be to have the following code instead:

“class Window instance method”
resizeToMaxScreen
self resize

“class FixedWindow instance method”
resizeToMaxScreen
self resizeNotAllowed

Sending the message resizeToMaxScreen to an instance of ei-
ther window class will result in the receiver window sending
the correct message to resize itself or not.

Guideline—Awoid explicitly checking the class of an object.
Using these case statements is almost always incorrect.

— for maximum productivity E’

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.

° Keep a history of previous versions; restore them with
a few keysirokes.

° View class hierarchy as graph or list.

° Print applications, classes, and methods in a formatted
report, paginated and commented.

° File code into applications and merge them together.

° Applications are unaffected by compress log change
and many other features..

 Deleted methods |

Tmager

Utilities.. —— Application printing | and more..

CodeIMAGER™ V286, VMac $129.95
VYWindow & VYPM $249.95

Shipping & handling: $13 mail, $20 UPS, per copy
Diskette: [(]32 [] 534
—— SixGraph™ Computing Ltd.
formerly ZUNIQ DATA Corp.
) 2035 Céate de Liesse, suite 201

Montreal, Que. Canada H4N 2M5

Tel: (514) 3321331, Fax: (514) 956-1032
SmallulisY s sep. oo g Digmie T

fixghael

MULTIPLE DISPATCHING

Even messages composed of more than one argument can
be simplified using the double dispatching technique de-
scribed by Dan Ingalls.? This problem can be illustrated by
the following summary of Ingalls’ examples where the ob-
ject to be displayed might be routed to a screen, a printer,
or a clipboard. In this case, a programmer might be
tempted to write the following case statements:

<Rectangle>displayOn: aPort
aPort isMemberOf: Screen
ifTrue: [“code for displaying on the screen”]
aPort isMemberOf: Printer
ifTrue: [“code for displaying on the printer”]
aPort isMemberOf: ClipBoard
ifTrue: [“code for displaying on the clip board”]

Although the above code is local to the specific object to
be displayed, it will still be difficult to extend and to maintain.
The solution to these “doubly polymorphic” situations is to
use a relay method in each object to be displayed to further
dispatch on the port as follows:

<Rectangle>displayOn; aPort

aPort displayRectangle: self
<Circle>displayOn: aPort

aPort displayCircle: self
<Line>displayOn: aPort

aPort displayline: self

VoL. 1, No. 6: MARCH/APRIL 1992

13.

14.

ODBMS
'The Objectoriented Database for Windows 3
and OS/2.

ORDER NOW !

O The ODBMS - Complete Version

(J The ODBMS - Programmer’s Version

(J The DSSDe - Distributed Smalltalk
Software Development environment

More applications using ODBMS including
the exiting combination of ODBMS and
SQL are available.

VC Software Construction
Petritorwall 28

3300 Braunschweig
Germany

Tel. +49 531 24240-0
Fax. +49 531 24240-24

W SMALLTALK WITH STYLE

To complere the dispatching, one now only needs to define
methods for each of the display port classes as follows:

<Screen>displayRectangle: aRect

“Code to display a rectangle on a screen”
<Screen>displayCircle: aCircle

“Code to display a circle on a screen”
<Screen>displayLine; aLine

“Code to display a line on a screen”

and similarly for the other objects to be displayed:

<Printer>displayRectangle: aRect

“Code to display a rectangle on a Printer”
<Printer>displayCircle: aCircle

“Code to display a circle on a Printer”
<Printer>displayLine: aLine

“Code to display a line on a Printer”

By following this approach, one can add new objects to the
system without having to tamper with the existing code by
only defining the relay message in the new class and the corre-
sponding display method in each port class.

Guideline—To obtain the intended benefits of reusability, de-
velopers should avoid case statements from the start and avoid
using case analysis to check the values of variables.

CONCLUSION

Smalltalk has many powerful features that can result in the
efficient development of commercial-quality code. New de-
velopers should take a few minutes early on in their
Smalltalk experiences to understand these issues so that they
can significantly improve the reusability and reliability of
their code from the start. The sooner one develops good pro-
gramming style and techniques, the more valuable the effort
will be to the programmer and to others in the future.

REFERENCES

1. Wulf, W. and M. Shaw. Global variable considered harmful, ACM
SIGPLAN Notices 8, 1973.

2. Meyer, B. Bidding farewell ta globals, Journal of Object-Oriented
Programming 1(3): 73-76, 1988.

3. Ingalls, D. A simple technique for handling multiple polymor-
phism, Proceedings of OOPSLA '86, Portland, OR, 1986.

Ed Klimas is managing director of Linea Engineering, Inc., a supplier
of custom object-oriented based solutions for industrial applications. He
can be reached at (216) 381-8493. Suzanne Skublics is education
manager at Object Technology International. Suzanne can be reached
at (613) 228-3535. Ed and Suzanne, aong with Dave Thomas, are
coauthors of an upcoming Addison-Wesley book titled Smalltalk with
Style that covers these and many other issues associated with commer-

cial Smalltalk-based code development.

THE SMALLTALK REPORT

Uls

Greg Hendley and Eric Smith

Paint palettes (taking control in

Smalltalk/VPM 1.3)

his installment of GUI Smalltalk will take you on a jour-
Tney. In the process of creating a palette, we will make use

of an OS/2 2.0 control, take advantage of VPM’s easy PM-
subclassing feature, try out a feature of ViewManager, and
override several PM behaviors. As an example use of the
palette we will use it to enhance the old example application
FreeDrawing. The palette will be used as an alternative to the
menu for selecting drawing colors.

PRELIMINARIES

We will start off easy by filing in FreeDrawing. The necessary
files can be found in the subdirectory EXAMPLES\FREDRWNG.
Follow the instructions in the file FREDRWNG.TXT. To be safe,
create FreeDrawingWithPalette as a subclass of FreeDrawing. This
way we can experiment without losing the original FreeDraw-
ing. Remember to include PMConstants as a pool dictionary for
the new subclass.

Next install the the new control ValueSet. The necessary files
can be found in the subdirectory EXTRAS\VALUESET. Follow the
instructions in the file VALUESET.TXT. ValueSet is documented in
the file and in the Smalltall/V PM Programming Handbook Sup-
plement.! Briefly, ValueSet is an array of rectangles where only
one rectangle may be selected at a time. The rectangles may
contain bitmaps, icons, colors defined in either of two ways, or
text. ValueSet seems ideally suited for use in palettes.

A FIRST PASS

We will add the palette as a view of FreeDrawingWithPalette.
The new view will contain one subpane, a ValueSet. The code
is straightforward with one exception, the initialization of the
contents of the ValueSet. To set the color of row 1 column 1 to
red, one would normally write aSubPane colorItem: ClrRed row:
1 column: 1. But in this example, the colors are kept in a two-
dimensional array (an array of arrays). So the loading is done
in a two-level loop:

createPaletteView
“Create and add a palette to my list of views.
| aTopPane aSubPane |
aTopPane := PaletteTopPane new.
aTopPane framingBlock: [:box | 10@200 extent: 100@120].
aSubPane := PaletteValueSet new.
aSubPane
framingRatio: (0@0 comner: 1@0.8);

when: #select perform: #colorSelectedFromPalette: ;
owner: self:
Tows: 2 columns: 2.
1to: 2 do: [:aRow |
1 to: 2 do: [:aColumn |
aSubPane
colorItem: ((self paletteColorAmay at: aRow)
at: aColumn)
row: aRow
column: aColumn]].
aTopPane addSubpane; aSubPane.
self addView: aTopPane

The supporting methods are:

paletteColorAmray
“Answer an array with the colors for the palette.”
~Armray
with: (Array with: ClrRed ~ with: ClrBlue)
with: (Array with: ClrGreen with: ClrBlack)
colorSelectedFromPalette: aPane
“A selection was made in the palette view.set
the drawing color to the selection in the palette.”
| index color |
index := aPane selection.
color := (self paletteColorArray at: index y) at: index x.
self colorSelected: color.!

The quick and dirty way to add the palette view to open is
to copy it from FreeDrawing to FreeDrawingWithPalette. Add the
line createPaletteView; right before openWindow. Now try it out
by doing FreeDrawingWithPalette new openOn: ‘temp’.

One nice feature you will notice is when the main
“Smallralk/V Paint” view is closed the palette view also
closes. One slightly annoying characteristic is that once a
color is selected from the palette you can not immediately
draw on the main view. You first have to click on the main
view to get its attention (make it active). Then you can con-
tinue drawing.

A SECOND PASS

The quick fix is to set the global Smalltalk variable, CUA, to
true. Now there is no delay in drawing on the main view, but
there is also no delay in going between any two Smalltalk
windows. And we still have one view becoming active, then
the other. Some people find this distracting. What we would
like to do is modify the palette so it does not take control.
This way the title bars do not change colors when the palette

VoL. 1, No. 6: MARCH/APRIL 1992

15.

16.

m GUIs

o s-j-l-e-n-c-e

a callecrion of laols for projed managemenl and cade delivery

e [ull mulli-user project managemeni
« source code version control
* qutomatic chonge docwumenting

* release packaging

« ship compiled code wilhout source
= reconfigurable inslallotion tool
intradudlory priting

- on Windows version aniil March 3151, 1992
*an 05/2 version ualil Mey 1151, 1992

« change log browser and reslorer
* cade performance profiling

$99.95 ' T

,digamma solutions

- Unil 6, 387 Spadina Avenve, Torento, Onlgria, Conoda, MST 2G6
Phone: {416) 351-8833 Fox: {416} 40B-2850

is used, and there is no delay going back and forth between
the main drawing view and the palette.

The palette view becomes active upon processing the wmBut-
ton1Down:with: message. This is done under PM control. To keep
the view from becoming active we need to take control from PM.

First make a new class, PaletteValueSet, as a subclass of Val-
ueSet. Remember to give it the same pool dictionaries as its
superclass. Copy the method wmButton1Down:with: from the
class Window to the class PaletteValueSet. Remove the line be-
ginning with CUA. (We want to respond especially when the
palette is not active.) Change the return value from nil to 0.
(This keeps the default winProc from processing the message,
which keeps the palette from becoming active.)

So far, so good. Except, the palette does not get the wmBut-
tonldown:with: because the control has not been PM-sub-
classed. Subclassing in PM is not the same as subclassing in
Smalltalk. When you PM-subclass a control you get messages
before the control’s winProe does. Returning nil tells the
winProc to do its standard processing after your method is
done. Returning 0 tells the winProc not to bother. (See Ref. 2
for more information.) Digitalk provides a neat way to take
care of this with the message receiveAllWindowMessages. This
ensures the control is PM-subclassed. Make use of this by
adding the following method to PaletteValueSet:

initialize

“Private - Initialize the receiver.”
“This lets me take control from PM.”

super initialize.
self receiveAllWindowMessages.

Now we have control of button1ldown. Clicking on the
palette no longer deactivates the main drawing window. It
also no longer changes the selection in the palette. Along
with control comes responsibility. To determine and set the
selection, add the following method:

button1Down: aPoint
“The user pressed button at aPoint within me.
Determine which value (rectangle) aPoint is
in. Set my selection to that value. And send
myself the select event. This last part keeps
me consistent with my superclass.
| selectedRow selectedColumn selectedCell |
selectedColumn := aPoint x // (self rectangle width // columns) + 1.
selectedRow := rows - (aPoint y // (self rectangle height // rows)).
selectedCell ;= selectedColumn @ selectedRow.
self selection: selectedCell.

The last line retumns control to PM. It tells the PM control
ValueSet to select the cell the cursor was over when button1
was pressed- PM responds by marking the selected item and
sending a wmControl event. Smalltalk responds with a
syncControl, which responds with an asyncControl, which gen-
erates the Smalltalk event #select. This puts us back into fa-
miliar territory. The next action is whatever we told the
palette pane to do through the when:perform: when we created
the pane.

AN EXERCISE FOR THE READER

There are several details you may want to clean up yourself.
These include handling the wmButton1dblclk:with: event and
getting rid of the menu bar. You may also want to give the di-
alog behavior of always floating above the main drawing view.
The dialog behavior was covered in this column in the Octo-

ber 1991 issue. W

REFERENCES

1. Smalltalk/V PM Programming Handbook Supplement, Digitalk, Inc.,
Los Angeles, CA.

2. Smalltalk/V PM Programming Handbook Supplement, Digitalk, Inc.,
Los Angeles, CA, p.469.

Greg Hendley is a member of the technical staff at Knowledge Systems
Corporation. His OOP experience is in Smalltall/V(DOS),
Smalltalk-80 2.5, Objectworks Smalltalk Release 4, and
Smalltalk/VPM. Eric Smith is a member of the technical staff at
Knowledge Systems Corporation. His specialty is custom graphical user
interfaces using Smalltalk (various dialects) and C. They can be con-
tacted at Knowledge Systems Corporation, 114 MacKenan Drive,
Cary, NC 27511, or by phone at (919) 481-4000.

THE SMALLTALK REPORT

EST OF comp.lang

Alan Knight

The Best of comp.lang.smalltalk

elcome to a new feature of The Smalltalk Report, a column
m summarizing the best Smalltalk-relevant discussions from
USENET’s comp.lang.smalltalk bulletin board.
WHAT IS USENET NEWS?
USENET is an informal computer network that catries elec-
tronic mail and discussion groups from all over the world. Al-
though the discussion groups are referred to as “news,” they
are really open forums, similar to those available through elec-
tronic “bulletin boards” or commercial online services such as
CompuServe or BIX.

The most significant difference between USENET and
commercial systems is that USENET is based on a distributed
(some would say anarchic) architecture. Rather than a few
large, centralized machines, news is catried by an enormous
number of smaller machines, without any central otganization
at all. Messages are distributed primarily through the Internet,
a term that loosely describes the high-speed wide area net-
works linking universities, government institutions, and many
large corporations. Machines that are not on the Internet usu-
ally get their news and email services by connecting (perhaps
indirectly) to a machine that is.

A common feature of commercial online services are the
“vendor forums,” in which users can ask questions of company
representatives and get authoritative answers. Because many
of the networks over which USENET operates are govemn-
ment funded, they are not permitted to carry commercial
traffic of this nature. Groups for discussion of particular prod-
ucts do exist, but these are primarily user groups, with only an
occasional word from company representatives.

This is an important distinction. Although these user dis-
cussions can be very valuable, with good advice, ideas, and
even snippets of cade, one should take what is said there with
at least one grain of salt. These are open forums, in which mes-
sages don't last very long, and the amount of thought that goes
into the messages varies. Just because someone speaks confidently
on a subject does not mean they know what they're talking about.

Of course a particularly outrageous sratement will likely be
corrected by someone more knowledgeable. It’s even possible
that the mistake will be politely pointed out, the original
poster will see and admit the errot, and everyone will come
away having leared something. It doesn’t usually work that
way. Instead we find a message beginning with:

BZZZ7T! Wrong! No points for effort. The correct

answer is...

This is not designed to inspire calm and rational discus-
sion. A typical response would be:

I always suspected everyone from <insett appropriate affili-
ation> had wallpaper paste for brains, but this surpasses
even their usual standard of idiocy. My view is clearly sup-
ported by the following definitive sources...

6

Although these user discussions
can be very valuable, with good advice,
ideas, and even snippets of code, one

should take what is said there with
at least one grain of salt.

b

This soon becomes a “flame war,” an endurance contest for
electronic abuse which lasts until no one involved can re-
member the original point of debate and no one else is reading
the messages.

FREQUENTLY ASKED QUESTIONS

One of the purposes of a user group is to answer questions. Of-
ten, to save answering the same questions repeatedly, the
members of the group will put together a list of standard an-
swers. In this spirit, | will lead off the column by providing an-
swers to a few such questions.

WHERE CAN 1 GET FREE STUFF!

This is by far the most common question in any user group.
We will omit the common variations of “Where can I get stuff
even if I have to pay for it?” and “Should I buy this product?”,
because these are better dealt with by the ads, product an-
nouncements, and reviews elsewhere in this publication.

VoL. 1, No. 6: MARCH/APRIL 1992

17.

18.

W BEST OF comp.lang

When people ask about free stuff on a computer network,
they often want it to be accessible through the network.
There are several ways of going about this:

¢ ftp. File Transfer Protocol (ftp) is a fast and easy way of
transferring files over the Intemet. A local systems admin-
istrator should be able to tell you if you can use ftp from
your site.

® E-mail. Sites not on the Intemet but with electronic mail
access can often receive files by email. A message in a spe-
cial format is decoded by the receiving computer, which
automatically translates the files into a mailable form and
forwards them.

¢ Modem. Other machines may allow yoﬁ to call directly by
modem and transfer files.

WHERE CAN 1 GET A FREE VERSION OF SMALLTALK

FOR MY MACHINE?

I have only seen two freely distributable implementations of
Smalltalk mentioned, and unfortunarely neither of them is
even close to competitive with the commercial versions. They
are as follows:

¢ A Little Smalltalk is Timothy Budd’s implementation of a
portable Smalltalk system for UNIX, though it has been
ported to MS-DOS, and probably to other machines. It
has no graphical user interface. It is available for ftp from
Oregon State University, cs.orst.edu.

® GNU Smalltalk is produced by the Free Software Founda-
tion. It is another text-only Smalltalk, with a rudimentary
user interface using the EMACS editor. It is also for
UNIX, but runs on Atari ST computers as well. The stan-
dard ftp source is prep.ai.mit.edu, but like most GNU soft-
ware it is available from many other places. For $200 US
you can get the source for it and whatever else happens to
be on the same tape from the Free Software Foundation.

WHERE CAN 1 GET SMALLTALK CODE?
Because we all think code reuse is important, it's good to know
what code is out there begging to be reused. Fortunately there’s
quite a bit available and it’s beginning to be organized for easy
retrieval, with centralized archive sites in Europe and North
America. Ralph Johnson described the North American
archive in the first issue of this magazine, but I'll mention it
again for the sake of completeness. There's far too much code
in these archives to describe, but in future columns I may
highlight some items of intetest. Here are some sources of
Smalltalk code:

® The University of Manchester maintains an archive of

Smalltalk-80 code, accessible through an email server. To
get instructions and an index, send a message of the form:

To: goodies-lib@cs.man.ac.uk
Subject: help; index

¢ In North America, the University of lllinois maintains
an archive accessible by ftp at st.cs.uiuc.edu (an alias for
128.174.241.10). This contains a copy of the Manchester
Smalltalk-80 archives along with lots of Smalltalk/V code,
postscript versions of journal papers, and numerous other
goodies. This archive can also be reached through an e-
mail server by sending a message of the form:

To: archive-server@st.cs.uiuc.edu
Subject:

path yourname@your.internet.address
archiver shar

encoder uuencode

help

encodedsend Is-IR.Z

If you have neither ftp nor email access, and can’t find any-
one who does to help you out, the archive is available by mail
in various formats by sending $200 US to William Vaoss at the
Department of Computer Science, University of Illinois, 1304
W. Springfield, Urbana, IL, USA 61801.

® Commercial online services such as CompuServe and BIX
often have Smalltalk discussion forums and accompanying
file download areas. These are only semi-free, as you have
to pay for access.

® ParcPlace runs a bulletin board called ParcBench (in
California) with discussion areas and files available. This
has the advantage of featuring vendor-supplied fixes and
enhancements, but you have to be a paid customer of
ParcPlace technical support to access many of the areas.
The number is (415)691-6716, and is answered by a
2400 baud modem. There should be information on the
service with your documentation. | haven’t seen anything
similar for Digitalk customers mentioned, but check the
documentation.

LOST INSTANCES

A familiar cry on USENET is that of the Smalltalker who has
gotten into a bad situation and can’t find a way out. One of
the common problems is “lost instances.”

As everybody knows, Smalltalk is garbage collected. Ob-
jects that are no longer needed disappear quietly, without any
intervention on the part of the programmer. This is true most
of the time, but even the best programmers sometimes have
difficulty convincing Smalltalk that certain objects are no
longer needed.

The problem is more serious in Smalltallk/V than Smallralk-
80. In ST/V the definition of a class with instances cannot be
changed. Even a few stray instances can make it impossible to
work until they are tracked down and eliminated.

In ST-80 existing instances are changed to conform to the
new definition when a class is recompiled. Lost instances take
up space, but don’t usually cause any further trouble. Usually.
Often, though, lost instances are a symptom of something more

THE SMALLTALK REPORT

fundamentally wrong with the image. This is particularly true of
instances of system classes like ScheduledWindew or Process.
These deeper problems are often due to errors in user-interface
code, e.g., windows that did not properly finish opening ot
closing. They can have bizarre effects, and be very difficult to
fix. I've had the delete key stop working due to these kind of
problems, and I still don’t understand how.

INSTANCE EXTERMINATION

Given that lost instances may be or signal a problem, you
need to know how to get rid of them as quickly and easily as
possible. First, you need to find out if you have them. If you
want to check for instances of a particular class, evaluate aClass
allInstances inspect. If you have the problem, here are a few
standard techniques for trying to solve it:

1. Check the obvious places. The most likely, and least
troublesome, reason for lost instances is that you have a
reference you've overlooked. Check global or class vari-
ables, as well as instances of other classes that might ref-
erence them. Be sure you don't have any inspectors or
custom windows open. To minimize problems with glob-
als, I avoid their use except for scratch storage, and I al-
ways start their name with a distinctive prefix. This
makes it very easy to find all of my globals using Smalltalk
inspect.

2. Start again. Go back to an old image that doesn't have
this problem and file in your changes. If necessary, start
from a clean image and file in all of your changes. Natu-
rally, all Smalltalk programmers keep numerous backup
images of different ages and file out their changes regu-
larly, so this shouldn't be much trouble. Unfortunately, if
the problem has been around for a while without you
noticing you may have to back up quite a long way.

3. Use become:. If you're reluctant to abandon an image so
so0n, you can try forcibly eliminating the instances. Be
warned that this may not solve an undetlying system prob-
lem, and it can introduce new ones. Be prepared to start
over unexpectedly. For classes that should have no in-
stances, try evaluating something like:

ProblemClass allTnstances do: [:eachLostInstance |
eachLostInstance become: somethingInnocuous).

The central operation here is become:. This finds all refer-
ences anywhere in the system to the block argument
eachLostInstance and changes each one into a reference to
somethingInnocuous. A good choice for somethingInnocuous
is String new. This works in any dialect of Smalltalk. You're
left with a number of empty strings, which still take up
space, but nothing more serious.

A potentially bad choice for somethingInnocuous is nil, and
unfortunately this is often what is suggested on USENET.

The danger is that this works petfectly well in Digitalk im-
plementations, and in fact it doesn’t even leave you with
empty strings that take up space. In ParcPlace implementa-
tions, on the other hand, this will instantly kill your image.
This is due to the different semantics of the become: opera-
tion in these implementations.

Digitalk uses a one-way become:, which works as described
above, effectively changing one object into another. Parc-
Place uses a two-way become:, which swaps the references, ef-
fectively interchanging the two objects. Think for a moment
about the likely effects of changing every reference to nil in
the system this way and you'll see why your image crashes.

4. Check the non-obvious places. If you are really deter-
mined to find and solve the problem with your image, be
prepared for a mind-bending and time-consuming odyssey
into Smalltalk’s subconscious. Your tools are the methods
allReferences (ST/V) or allOwners (ST-80). Explaining how
to do this is far beyond the scope of a frequently asked
question, but here are a few words of advice.

@ Be prepared to go through several layers of indirection
to find the real owner.

® Realize that you will be creating references as you go.
Try to minimize them. Don’t keep inspectors open on
objects you’re trying to track down references to. Use
long expressions instead, e.g., MyClass alllnstances first
owners first owners. Because the order in which in-
stances and references occur is not fixed, this can be
confusing.

® References to associations indicate a dictionary entry.
If the key is a symbol it may well be the Smalltalk dic-
tionary. References in medium-sized, odd-looking col-
lections may be compiled code or block contexts.
Blocks (sort blocks are often culprits) sometimes hold
onto their last arguments. Also, it’s possible to get
“lost processes,” which then hold onto data referenced
by the code they are supposed to be executing. [gener-
ally try setting everything to nil and hoping for the
best.

Good luck. Are you sure you wouldn’t just rather file those
changes in? @

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada, K1S
5B6. He currently works on problems related to finite element analysis
in ParcPlace Smalltalk, and has worked in most Smalltalk dialects at
one time or another. He can be reached at (613)788-2600 x5783 or
by email as knight@mrco.carleton.ca.

VoL. 1, No. 6: MARCH/APRIL 1992

19.

20.

AB REVIEW

Bjorn Freeman-Benson

Smalltalk at the University of

Washington

ington, we have used ParcPlace’s Smalltalk-80 for a number

of years. Not only have we used it as our personal computing
environment, but we have also used it to develop a series of
constraint-based systems: ThingLab-87, ThingLab II, and
Kaleidoscope'90. However, while the overall goal of our re-
search has been to provide constraint-based technology to
users and programmers, each of the three projects has deliv-
ered this technology in different packages. The goal of group
director Alan Boming's original ThingLab system was to pro-
vide a constraint-based simulation environment. However, af-
ter almost a decade of growth by accumulation, the ThingLab
system no longer met our needs. Thus, we undertook redesign-
ing and reimplementing it as ThingLab-87. In the process, we
reexamined our ideas about constraints and produced con-
straint hierarchies. A constraint is a multidirectional, system-
maintained assertion about the state of a system. Constraints
are useful in programming languages, user-interface toolkits,
simulation packages, and other systems because they allow
programmers and users to state declaratively a relation that is
to be maintained, rather than requiring them to write proce-
dures to maintain the relation themselves. In general, there
may be many interrelated constraints in a given application; it
is left up to the system to sort out how they interact and to
keep them all satisfied. In a constraint hierarchy, each con-
straint has a strength such that stronger constraints dominate
weaker ones. Constraint hierarchies are especially useful in
graphical layout or user interface applications because they al-
low the user or programmer to state preferences as well as re-
quirements. For example, in a ThingLab physics simulation
required constraints express the connectivity of rods and

In the Weird Languages Group at the University of Wash-

levers, Hooke’s Law of spring force, and so on; weaker con-
straints attach the mouse and keyboard to the simulation.
These user constraints are metely preferences because we
don't want the user to be able to break the simulation—just
to manipulate it.

In our second system, ThingLab II (also known as Min-
strel), our research emphasis shifted from providing a tool for
simulations to providing a tool for building constraint-based
user interfaces. Thus the ThingLab II system concentrated on
three specific issues: providing a very efficient constraint
solvet; providing a library of “Things” (objects) for user inter-
faces; and integrating the constraint system into Smalltalk-80.

This later integration turned out to be very difficult to do cor-
rectly. The two fundamental problems were that Smalltalk is
an imperative object-oriented language whereas constraints are
a declarative language; and imperative assignment and explicit
control flow do not merge with multidirectional relations. For-
tunately, we were able to design and implement a very efficient
constraint-solving algorithm named DeltaBlue. Supported by
the rapid prototyping features of Smalltalk, we were able to ex-
amine numerous variations of the algorithm and choose the
best one for average base user intetface. In addition, we devel-
oped a constraint compiler to find solutions to a fixed subset of
constraints at compile time, rather than at runtime. This com-
piler uses Smalltalk’s built-in compiler and reflective capabili-
ties to translate constraints into executable byte-codes.

(<
...the goal of our third project,

Kaleidoscope'90, was to develop a

constraint-imperative extension of

Smalltalk-80.
b

The ThingLab II system was successfully used to prototype
a number of user interfaces including a statistical visualization
tool and a multimedia presentation control panel. Further-
more, the underlying constraint engine, DeltaBlue, has been
ported from Smalltalk to other object-oriented languages and
is being used around the world by both commercial software
developers and other research labs.

During our experience with ThingLab II, it became clear
that ad-hoc constraint-imperative integration techniques were
not sufficient. We decided that proper support of constraints
could only be accomplished in a language in which the imper-
ative and constraint constructs were equal partners in the se-
mantics of the language. In other words, we could not imple-
ment constraints on top of Smalltalk and hope for a safe,
robust integration. Thus the goal of our third project, Kaleido-
scope’0, was to develop a constraint-imperative extension of
Smalltalk-80. After designing the language, we planned to im-

THE SMALLTALK REPORT

plement it by modifying the byte-code interpreter. How-
ever, this could not be done within the Smalltalk environ-
ment, and so we shifted to plan B; a new Kaleidoscope'90
interpreter written in Smalltalk. We subclassed the
Smalltalk compiler to create a Kaleidoscope’90 compiler
that produces K-code trees rather than Smalltalk-80 byte-
codes. Then we implemented a K-code interpreter, a few
invisible dispatching methods, and a KaleidoClass. As a re-
sult, we had a very slow Kaleidoscope’90 implementation
in which, more or less automatically, Kaleidoscope code
could call Smalltalk code and Smalltalk code could call
Kaleidoscope code.

These three projects have been supported by numerous
sources including the National Science Foundation, Apple
Computer, and the Washington Technology Center. Nam-
rally, these institutions are interested in supporting technol-
ogy transfer such as is being done with DeltaBlue. In addition,
two of the major contributors have graduated and taken their
projects and technology with them: Bjorn Freeman-Benson is
now at the University of Victoria, Canada, and is continuing
to collaborate on the design and implementation of our sec-
ond-generation constraint-imperative language, Kaleido-
scope’91. John Maloney is now at Sun Labs and is busy inte-
grating the kemel of the ThingLab II system into the

Universal Database
OBJECT BRIDGE ™

dBAGSEII], Lotus, and Excel.

Intelligent Systems, Inc.

{ 506 N. State Street, Ann Arbor, Ml 48104 (313) 996-4238 (313) 9964241 fax

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

prototype-based Self language. We hope that eventually we
will have implementations of these systems and languages that
are reliable enough to be used outside the University of Wash-
ington. As a univetsity, however, we cannot foresee having
the necessary resources. Instead, we expect to continue to
contribute by developing proof-of-concept systems and
spreading the word. @

Bjorn Freeman-Benson is an assistant professor in the Department of
Computer Science at the University of Victoria. He can be reached
there at P.O. Box 3055, Victoria, BC, Canada, by phone at (604)
721-7209, by fax at (604) 721-7292, or via email at
nfb@csr.uvic.ca.

The Smalltalk Report

Don’t Delay! Become a Charter Subscriber Today!

Sampling of articles to appear:

B Introducing Smalltalk into Your Organization

B Designing and Managing Smalltalk Class Libraries

B Effectively Managing Multiprogrammer Smalltalk Projects
B Metrics for Measuring Smalltall Systems

B Organizing Your Smalltalk Development Team

M Meulevel Programming

B Smalltalk in the MIS World

B Smallalk as a Vehicle for Real-Time and Embedded Systems
B Teaching Smalitalk to COBOL Programmers

B Interfacing Smalltalk to an SQL Database

B Realizing Reusability

! D Yes, enter my Charter Subscription at the term indi-
| cated. This is risk-free offer. | can cancel at any time and get
I a refund of the unused portion of my subscription.

2 years (18 issues)
as$i20
asi7o

I year (9 issues)
1 %65
1 $90

Domestic
Foreign (includes air service)

2 Check enclosed [Bill Me

| O Charge my O Visa O MasterCard
Card #
Signature
For faster service, call 212.274.0640 or fax 212.274.0646.

Make checks payable to 'The Smalltalk Report in US dollars drawn on a
US bank. Pleas allow 4—& weeks for delivery.

Exp. Date

__ 5
Name !

]

Title 1

I

Company i

I

Address I
1

Ciyy State Zip i

I

Phone :

]

]

Returnto: 'The Smalltalk Report !
Subscriber Services, Department SML !

PO Box 3000 !

Denville, N 07834 i

D2CG :
__ 4

VoL. 1, No. 6: MARCH/APRIL 1992

22.

RODUCT REVIEW

Jim Salmons and Timlynn Babitsky

Coopers & Lybrand’s AM/ST, Version 3.5

accounting and management consulting firm, has been in

the Smalltalk/V enhancement business about as long as
anyone. Its Application Manager was an early entry in the ap-
plication-based project manager browsers. The most recent in-
carnation of this product, AM/ST Version 3.5 is currently
available for the OS/2 Presentation Manager and DOS-based
Windows versions of Smalltalk/V. (The Macintosh and DOS
implementations of Smalltalk/V are still being served by the
older, less feature-rich AM/ST Version 3.0 and are not the
subject of this review.)

In the years since its initial introduction, AM/ST has ma-
tured and evolved into a solid product. Where it once stood
alone, however, AM/ST now stands in an increasingly
crowded matket segment—products that wrap real-world soft-
wate engineering features around the eatly vision of Smalltalk
as the tool of the lone, exploratory hacker/developer.

As object technology has continued to push into main-
stream software engineering projects, the Smalltalk develop-
ment environment has often stood hat in hand with no means
to support real-world, team-based application development.
Version control, performance testing, application delivery,
and source documentation standards were missing for early
Smalltalk teams of developers.

Nancy Martin of SoftPert, needing team development
tools for her own division’s Smalltalk/V work at Coopers &
Lybrand, saw the market opportunity and began to work on
early versions of AM/ST. The product has evolved into a mul-
timodule system placed squarely, price- and feature-wise, in
the middle ground of Smalltalk/V team-oriented application
managers.

The SoftPert Division of Coopers & Lybrand, the worldwide

PRODUCTS AND PRICING

The AM/ST product suite currently consists of three interre-
lated modules: AM/ST, which is the base Application Man-
ager product; the AM/ST Source Control extension; and the
AM/ST Change Browser. The cost per user license for either
the PM or Windows version of the AM/ST base module is
$475. The network file server-based Source Control can be
added to this base product for $1,595 for the first user and
$595 per each additional user. (Site licenses, at $3,400 for
AM/ST and $7,495 for the AM/ST Source Control extension,
are also available.)

The AM/ST Change Browser (single copies at $195 and
site licenses at $1,170) is a full-featured Change Log browser
that can be used independently of AM/ST. This tool gives you
complete freedom in viewing and selectively restoring classes,
methods, and evaluations from the Smalltalk Change Log or
any file in the Smalltalk/V “chunk” format. While it makes an
affordable and well-integrated enhancement to AM/ST, it is
not strictly a component of AM/ST and thus is not a further
subject of this review.

THE APPLICATION ARCHITECTURE

The traditional Smalltalk Class Hierarchy Browser and
Class Browser are, as their names imply, designed with the
Smallealk class in mind as their organizing “molecule” with
method and instance variable “atoms.” AM/ST is designed
with a higher-level "molecular” abstraction of the
application.

An AM/ST application is a functionally based, logical
group of classes and methods that are accessible and manipu-
lable as a single unit. Under a traditional Smallralk environ-
ment, applications ate loose abstractions in the minds of the
developer. Their implementation is sprinkled throughout the
class hierarchy, in objects that interact to provide the at-
tributes and behaviors required.

Under AM/ST, an application is explicit. An application
consists of a group of contributing classes. The AM/ST Appli-
cation Browser makes this application-based organization
clearer. In Figure 1, the supplied NetworkApp application is
shown to consist of three contributing classes: Network, Net-
workNode, and NetworkTest. Actually, the implementation is
found in the Network and NetworkNode classes. The presence of
NetworkTest demonstrates a strength of application-based class
access. That is, the implementation classes are logically orga-
nized and accessible with a class whose sole purpose during de-
velopment is to encapsulate case-testing methods that exer-
cise and verify the implementation.

Anyone familiar with the Digitalk Handbook’s Network of
Nodes example, from which this AM/ST application is de-
rived, would recognize that the NetworkNode class is not lim-
ited to the name and position methods. This highlights an-
other feature of AM/ST applications. A class within an
application need only contribute the methods relevant to that
application.

THE SMALLTALK REPORT

= AMIST - NetworkApp [checked out by Ralph] [owner]

> »] 140-page manual covering the base product

File Edit Smalltalk Applications Classes Melhods Varlables Teat
ConfigurationManage * | .Network tname

*Iname)

and the source control extension. If you
purchase the optional Change Log

GraphicView position position

GraphicsLah ...NetworkTest — Object— Browser, a separate 13-page manual is pro-

NetworkE ditor vided.

cheéwr:G;.;phﬂ " . . Not surprisingly, the AM/ST product
raphsApp... . .

STMods r Instance " Documentation JL Instance Variables II \\-ras developed and 1? delivered as a collec-

| STagdidons |¥ =1 tion of AM/ST applications:

Object subclass: #NetworkNode 1. ApplicationManager, the main appli-

Description cation, which itself consists of the fol-

A NetworkNode is a node or element of a network. lowing subapplications:

Puh|||(:=methods: 1 s AppManBrowser, the application
draw browser, with each of its panes imple-
:::::pusitiun mented as subapplications.

:I'_’If"t‘(')‘:l':' o AppManDLLizer, an exciting facility
for creating DLLs from AM/ST appli-

Instance Variables: cations

name - String .
T e AppManlnstaller, which implements

Figure 1. The AM/ST Application Manager Browser showing a documentation pane.

Further, an application can be functionally defined as a
collection of subapplications. The NetworkApp example consists
of the NetworkEditor and NetworkGrapher subapplications which
each also use the Network and NetworkNode classes. The meth-
ods of these classes relevant to network construction are found
under the NetworkEditor subapplication, and the graphics ren-
dering methods under the NetworkGrapher subapplication.

A class may be included in any number of related or unre-
lated applications. You may, however, designate an applica-
tion as an owner of a class. Owned classes may only have theit
class definitions modified within the owning application, al-
though methods may be edited or added to the class from any
application which uses the owned class. '

As useful as it is to access the vast Smalltalk class hierarchy
from an application browsing perspective, a real benefit of the
AM/ST architecture is its ability to load and unload applica-
tions and to create application-specific Dynamic Link Li-
braries (DLLs). Under the AM/ST Source Control extension,
this ability to load and unload applications is extended to net-
work-based getting and putting operations with lock and un-
lock capabilities.

When you define or load an application into AM/ST, it
creates and maintains a Smalltalk class with a name derived
from the application name. AM/ST transparently creates and
maintains class and instance “bookkeeping” methods in this
application class that keep track of inclusion and ownership of
classes and methods in the application.

AM/ST PRODUCT OVERVIEW
AM/ST is delivered on a single diskette, with whichever of its
optional modules you may have purchased. It comes with a

the load and unload facilities.

® Apropos, which adds flexible and
powerful string searching features to
the Smalltalk environment.

® DynamicAnalysis, which provides the method and block

counting features.

* FinderApp, which implements the very useful Finder dia-
log used strategically throughout the Application Browser.

e StaticAnalysis, which implements variable and method
cross-referencing.

2. ConfigurationManager, the Source Control extension
(sold separately).

3. ChangeLogBrowser (sold separately).

4. GraphicView, which implements the graphical tree draw-
ing utility.

5. STMods, a wide-ranging collection of changes and addi-
tions to the Smalltalk/V base classes.

THE APPLICATION MANAGER BROWSER
Your primary interaction with the features supplied by
AM/ST is through the Application Manager Browser. As
shown in Figure 1, the Application Manager Browser is essen-
tially a Smalltalk browser with its application-oriented extra
level of presentation organization. If all AM/ST did was de-
liver a well-designed application browser, it would be enough
for consideration as a helpful extension to an unadorned
Smalltalk/V environment. What the figure does not capture
are some of the features that make the AM/ST Application
Browser even more useful.

In concert with the ability to designate application owners
of classes and, under source control, to check out and lock ap-

VoL. 1, No. 6: MARCH/APRIL 1992

23.

24.

B PRODUCT REVIEW

= AMIST - STAdditions >~ also has a convenient means to add pre-
Flle Edit Smalitalk Applications Classes Methods Variablee Text and post—load initialization code for appli—
NetworkGrapher %] ...MethodStream * |cancel 1 |applicatlonName T . N
SCGraphaApp... | ...MultiPickMenu dirList ~ FileDialog — cations and classes. This gives you the
STMods CJDiskApplicationst dirListChange devices ablllty to perfom preconditional process-
..MonitorWindow fileinButton directory . . .
STChanges | |.... CompilePane |, [fileLlst 4 |dirList + ing as well as post-loading housekeeping.
STEnhancements ALlion — —
sl Instance [Source Code J[_instance Varlables ||
> DOCUMENTATION AND EDITING
FileDlalog subclass: #¥DiskApplicationsDialog FEATURES
llgsrp':f:‘::::m':nm{““: AM/ST strongly values and encourages
a e . . o
= TR Y Py T — ==4 full documentation. This emphasis is fa-

Yol File

cilitated by the Source/Documentation

/ Stream — ReadStream - MethodStream
Object ApplicationWindow - MultiPickMenu

Window [DislogBox <Mnnltol‘Windnw

*]

SubPane {
LisiPane — MultiPane

o ==

Figure 2. The AM/ST Graphic View of classes in an application.

plications, the Application Browser textpane intelligently sets
itself to either editable or read-only capabilities. So while you
may view all manner of class definitions, method source and
related documentation, you will only be able to make changes
if you are in the appropriate application, or if you are the cur-
rently active developer who has checked out and locked an
application. Read-only text is displayed in a different color
than editable, black text.

A nice feature of the Application Manager Browser is the
Graphic View, which presents a hierarchical tree diagram of
all Smalltalk classes or the classes in a selected application, as
shown in Figure 2. Not only does this graphical view show you
the inheritance relationship among classes, it is color coded
and interactive. Classes included in the selected application
are shown in blue type, their superclass parents in black, and
the currently selected application class is shown in red. Click-
ing on an application class name will cause the Application
Manager Browser to display the selected class.

The AM/ST Profile dialog lets you set a user id, default
project directory, server/workstation time zone offset, and se-
lect to implement hierarchical or flat project directory struc-
tures as well as turn on and off the optional Source Control
module. The time zone offset feature is particularly important
in the case of remote developers working on a source-con-
trolled application getting and putting through telecommuni-
cation connections.

The loading and unloading facilities make it quick and
easy to add, update, or remove the collection of classes and
methods grouped according to application-based functional-
ity. You are given the option of loading classes and methods
together or methods only to quickly update an application in
which the classes required are already in your image. AM/ST

FileDialog — DiskAppIilﬁgonsDialog

/CnntmIPane —TextEdit — TeutPane — CompilePane

+] toggle pushbutton in the Application
Manager Browser. While you are encour-
aged to make traditional inline com-
ments within the source code of your
methods, AM/ST facilitates a standards-

meeting implementation of full applica-

tion, class, and method comment docu-

*] mentation. By toggling the Source
button to Documentation, the lower
textpane is devoted to editing and view-
ing documentary comments.

AM/ST uses user-modifiable templates to simplify docu-
mentation and to encourage consistent, full commentary.
These templates are automatically inserted as you add or cre-
ate classes and methods in your application. It is particularly
helpful that structured documentation comments are main-
tained for classes as well as methods. Class comments are
maintained in class methods named classHeader. (AM/ST
maintains its application classes and all these classHeader and
related “bookkeeping” methods transparently—the Applica-
tion browser filters them from view unless you explicitly ask to
see all classes and methods.)

Because the documentation templates are user definable,
the extent to which you want to implement comments is fully
under your control. Also, AM/ST implements its template-
inserting features in documented methods defined in the Ap-
plication class. This means that the templates may be defined
locally to an application, allowing application-specific com-
menting standards.

Fully-customizable coding templates are also supported.
Templates supplied include conditional, whileTrue/False,
block, do, collect, select, reject, popup menu specification,
and dictionary lookup expressions.

The Apropos facility is a powerful, pattern-matching,
GREP-like search tool for text strings in source code.

For the *hunt, cut, and paste” crowd of rapid prototypers,
AM/ST provides a “method scrap” similar to but separate from
the PM and Windows clipboard. This scrap can capture copies
of multiple methods, simultaneously holding any number of
class and instance variables. After gathering a number of
methods from other applications’ classes, you can return to
your cutrent application and, in one fell swoop, paste all the
methods in the scrap into the currently selected class.

THE SMALLTALK REPORT

Every rime you create or edit a class or method, a simple
dialog pops up asking you what change was made. These brief
comments are added with a time and date stamp to a revision
history maintained in the class or method's documentation.

REPORTING FEATURES

AM/ST includes a wide-ranging collection of informative re-
ports easily accessible through menu selections. The Applica-
tions, Classes, and Methods menus each have a hierarchical
menu itemn that opens to one or more levels of specific report-
ing topics.

1. Applications menu reports

® class and global variable dependencies of a selected
application

listing of application directories

class and method documentation for a selected
application

class ownership and class inclusion listing by application

method indexes showing methods and the classes in
which they appear

application content inconsistencies, including classes
owned by more than one application, classes neither
owned nor part of an application, methods in more than
one application, and methods in an application that no
longer exist

2. Classes menu reports

® ancestor classes of a selected class

* dependency listing of classes and global variables directly
referenced in the selected class

® various cross-referenced listings of all

PERFORMANCE TUNING FEATURES

The dynamic performance tuning features are as easily ac-
cessed as reports. Both method and block counting are imple-
mented. AM/ST adds instrumentation code to the compiled
code of the profiled methods or blocks. This instrumentation
code exists only in the compiled code and is not added to the
visible source code. Instrumented methods are marked with a
“#" character prefix and instrumented blocks are marked with
a “&" prefix.

To add profiling instrumentation, you simply highlight a
class or specific method and select Add Counters from a sub-
menu of the Counters menu: either the Classes or Methods
menus. Once instrumented, you need only turn on the coun-
ters and run your application. You then select Report from a
submenu of the Counters menu item to view the method and
block execution counts.

While execution counts is a rather crude means of method
performance tuning, it is particularly well suited to testing
coverage and code use measurements. You simply develop test
suite methods that ensure all instrumented methods return a
non-zero countet. In the event you are satisfied that all user
interaction conditions are covered and you still return zero
values, you have identified unnecessary methods or blocks
that can be removed without affecting your application.

CREATING APPLICATION-BASED DLLS

The Smalltalk/V Windows and Presentation Manager (Ver-
sion 1.3) have an exciting enhancement in which libraries of
dynamically bindable objects are accessible through Dynamic
Link Libraries. This object library DLL feature significantly
enhances and simplifies the development and delivery of
Smalltalk/V applications and development extensions. Dig-

references to a selected class, all classes, = AMJST - NetworkApp checked aut by Ralph] [owner) v -
. L File Edit Smaltalk p Classes Methods Variables Text
or classes in a selected application
ConfigurationManagg] New + 1 |graphPane +
. GraphicView Update openOn: model
3. Methods menu reports include: GraphicsLab Fll; " recordingPen
L. . . A topPane
® applications containing a designated NetworkE ditor ;::!‘?mp"e — ApplicationWind
method NetworlkGrapher activeTextPane
SCGmphsApp... Remove -+ hd *lenllance
* methods in no applications SI_'I_MO:'s“m ::Z%:me | source code | instance variables
¢ methods in multiple applications drawNetworlc aPane D ol 5 Y
¢ methods not in a selection application Direclory -
— Install Put Without Lock
® methods with no senders recordingPen := aPy Load Put Locked +
* various method cross-reference listings aPane erasc. Unload Lock
) 1 hared I and recordingPen down| File In Unlock
of the instance, class, shared, pool, an e File Out 04 Application
global variables used by a class remdr:::!ll'-le'l:inPi Reports Remove Application
Make DLL Reports +
Variables menu reports include a global EditInft Code |__Clear Lock +
variables and cross-reference listing. Edit Templates
All repotts are time and date stamped E’ilﬂ‘ Pane
and generated into a Smallealk/V F +
Workspace window where they may be .l d

printed or saved to disk.

Figure 3. The AM/ST Application Manager Browser Source Control menus.

VoL. 1, No. 6: MARCH/APRIL 992

25.

26.

B PRODUCT REVIEW

italk provides an Object Library Builder application, which is
used to specify and generate the object library DLLs. Creating
a DLL can be time and energy consuming. In particular, you
need to fully understand what classes and methads must be
included in your DLL to encapsulate the functionality you
have in mind.

The application architecture of AM/ST is a perfect com-
plement to the creation of object library DLLs. What goes
into your DLL is the cutrently selected application. A simple
Make DLL menu item selection transparently runs the Object
Library Builder application, passing it all the required infor-
mation from the Application Manager Browser. You may indi-
cate a Development version, with source code included, or a
Delivery version of your DLL.

In most cases, your application-based DLL is generated au-
tomatically. Occasionally, you will be prompted to resolve
pointers.

SOURCE CONTROL FEATURES

Slipped easily into this already bulging feature set is the op-
tional Source Code extension. When included in your image,
the Source Code extension shows up as a Source Control menu
item in the Applications menu, as shown in Figure 3.

To use AM/ST Source Control, you simply access a net-
work server as a logical drive on your local workstation. You
can then add an application from your image into the project-
based directory structure of the server's application library.
Once an application is entered into Source Control, it can be
checked out with or without a lock. Locked applications can
be retrieved by other team developers, but only the developer
who set the lock can modify and put the application back for
subsequent checkout.

AM/ST maintains a time and date stamp record of all ap-
plications under Source Control. You can ask Source Control
to update all applications in your image older than the ver-
sions on the Source Control server.

For an application under Source Control, the load and un-
load facilities are deactivated when that application is se-
lected. You are not, however, deprived from loading and un-
loading applications not under Source Control management.

PERSONAL EXPERIENCE

Our personal experience using AM/ST over several days was
easily partitioned into two phases: resistance and appteciation.
We used AM/ST to develop a variation on the Network of
Nodes application under Source Control on a two-station,
LanManager-based OS/2 network.

For the first two days, we were resistant. The application
architecture adds a different perspective to the typical “I have
the Universe at my command” feel of the traditional class hi-
erarchy browser. With so many interactive features, the Ap-
plicarion Manager Browser is pane and menu intensive. The
shift in organizing perspective and the elaborate array-interac-
tive features initially combine to intimidate.

Our resistance was maintained during inirial, non-goal-di-
rected exploration of the Application Manager Browser. Then
we got to work on our test project. Three features combined
to shake us out of our reticence: the method scrap, the DLL
generator, and the get/load and putfunload facilities of the
Application Manager Browser. While AM/ST has not yet
achieved “how'd we ever live without it” status, it has gar-
nered sufficient respect to be given continued, hopeful explo-
ration. The following summarizes our reactions.

Among the features we like about AM/ST:

® The Method Scrap is a prototyper’s dream. The efficiency of
your "hunting parties” is increased tenfold. This feature
alone is worth 30% of the cost of the basic AM/ST product.

The application architecture combined with the DLL
builder is tremendous. The application perspective neatly
prepares you for generating modular, functional DLL ob-
ject libraries. This feature is worth another 30% of the
cost of the basic AM/ST product.

The application-based load and unload facilities are a real-
world project-based developer’s salvation. By setting dif-
ferent base directories and using the hierarchical project
directories setting, archiving project-specific versions of an
application is easy. This feature would be especially valu-
able to any consultant or corporate developer working si-
multaneously on multiple, independent projects. This fea-
ture justifies another 30% of the cost of the basic AM/ST
product.

The long list of additional features of this product easily
justify the remaining 10% of the cost of the base product.
High on the list is coverage testing instrumentation; the
flexible implementation of coding and documentation
templates, together with the browser's separation of source
code and header comments; the wide range of informarive
reports; and the class hierarchy graphical view.

Among the features of AM/ST we did not like are:

® You can easily find but not prevent inconsistencies in mul-
tiapplication use of methods. A change in a method used
by multiple applications is a change to all those dependent
applications.

® Class ownership is by application, not by developer. This
model recognizes the application developer, but ignores
the contribution of class developers who can contribute
reusable classes for read-only consumption by application
developers.

® User profile sign-ons are not password protected, nor can
application access be restricted by user id. Neglecting pass-
word protection and restricted access assumes an idyllic
world of noncompetitive, nonprivate group development.

¢ AM/ST implements its own menu-specific, nonstandard
help system. Each Browser menu includes a Help item as

THE SMALLTALK REPORT

its last item. While there is much valuable information in
each of these Help items, this design does not follow the
Windows or PM user interface standards.

OUR AM/ST WISH LIST

While some features of AM/ST that we did not like are mat-
ters of personal preference, the following three areas should be
high on a list for future improvements:

® The Source Control module should be improved to sup-
port password user id protection and application access re-
striction via user id. Some form of a version resolution sys-
tem is needed to allow multiple developers to work on the
same application at the same time. It is hard to imagine a
large project for which the one-developer-per-application
granularity is sufficient.

Application-specific method versions would be a
significant improvement. This single enhancement would
do much to alleviate the “tyranny” of the application-as-
owner model of the current AM/ST. By allowing applica-
tions to overshadow methods, the potential for bringing
the “team model” of class developers and application de-
velopers into the picture would be greatly improved.

® While the template-based documentation features of
AM/ST are a positive contribution to real-world project
development, they still depend heavily on the time, en-
ergy, and proper attitude of the individual developer. We
would really like to see more automated documentation
features. Automatic updating of class documentation by
self-examination of its methods and instance variables to
extract key documentation into the class header would al-
leviate the need for the developer to enter and maintain
this information.

AM/ST IN THE COMPETITIVE MARKET

To determine the real value and quality of a commercial prod-
uct it must be lined up against its competitors in the commer-
cial marketplace. AM/ST competes in three product cate-
gories; application/project browsers, performance tuning tools,
and source control.

APPLICATION/FROJECT BROWSERS

AM/ST falls in the middle range of price here. Third-party
products claiming to add application- and project-based orga-
nization to Smalltalk/V are popping up in every OOP-related
publication. Some of these new products allege to provide the
same range of tools provided by AM/ST, but for a fraction of
the cost. A number of these application/project browsers come
with a change log browsing feature, which must be purchased
as an extra-cost option with AM/ST.

Given the expanding field of possible contenders, a
roundup review is certainly in order. However, if you just
can’t wait to make your purchase, our belief is that AM/ST
has maturity and corporate development resources behind it

that will most likely be invested in increased product perfor-
mance and stability over the long term. The price may come
down; the quality will most likely go up.

PERFORMANCE TUNING TOOLS

AM/ST is again in the middle ground of a growing pack of
products. In its favor, the AM/ST test coverage and
identification of unnecessary code is sufficient and conve-
nient. The method and block counting instrumentation is cer-
tainly easier to use than the Profiler supplied with both the
Windows and PM versions of Smalltalk/V. However, the in-
formation you get in the AM/ST count reports does not ap-
proach the detailed information presented in the Digiralk
profiler report.

66
AM/ST competes in three

product categories; application/project
browsers, performance tuning tools,
and source control,
*

The AM/ST features cannot compete with a dedicated per-
formance tuning tool such as First Class Software's Profiler.
Profiler’s ability to collapse and expand its performance measures
based on recursive and other conditional forms is extremely im-
portant in assessing bottlenecks and optimization potential.

SOURCE CONTROL
Source Control is serious business. Based on the quality of the
product and the utility of ics features for your particular pro-
ject, what you use can support or abuse. For large-scale pro-
jects involving team development with Smalltalk/V there are
two main competitors: AM/ST and OTI's ENVY/Developer.
Both of these products come in at the higher-price end of the
spectrum, with ENVY/Developer topping the two.

ENVY/Developer is a strong competitor in team-based de-
velopment. It supports the desirable application-specific
method versioning but it also provides a built-in e-mail capa-
bility to facilitate communication between class-owning and
application-owning developers. At the base configuration (re-
quires 3 nodes at $4,000 each), ENVY/Developer costs a lot.
But the cost may be justifiable if your project requires multiple
developers working on single applications or if class ownership
by individual developers suits your engineering model.

If not, AM/ST would seem to be well suited to an organiza-
tion with a non-real-time networked team, where remote ac-

...continued on page 28

VoL. 1, No. 6: MARCH/APRIL 1992

27.

28.

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors
interested in being included in this feature should send press releases to our editorial offices, Product Announcements Dept., 91 Second Ave.,
Ottawa, Ontario KIS 2H4, Canada.

silence

Digamma Solutions is now offering silence, a collection of tools for
project management and code delivery. silence provides a full-
function professional environment at a low cost, without the need
for expensive add-ons and upgrades, and drastically reduces the
work involved in developing efficient, well-organized, and maintain-
able Smalltalk/V Windows code. silence for Smalltalk/V Windows is
available immediately. silence for Smalltalk/V PM will be shipping
the beginning of the second quarter of 1992. Information about si-
lence for Smalltalk/V Mac is available.

For further information, contact Digamma Solutions, Spadina Ave., Unit 6,
Toronto, Ontario, Canada M5T 2GS, (416)351-8833, fax (416)408-2850.

Smalltalk/V PM Relational Database Interface

Digitalk announced availability of its Smalltalk/V PM Relational
Database Interface. This new extension to Smalltalk/V PM, Dig-
italk’s object-oriented programming system for OS/2 Presentation
Manager, provides an easy-to-understand interface to the OS/2 Ex-
tended Edition (EE) Database Manager and the Microsoft-Sybase
SQL Server.

The new database classes implement the application programming
interface (API) of EE Database Manager and SQL Server. As with
Digitalk’s other products, this allows the programmer access to
these database interfaces by creating objects that understand how
the underlying database functionality works. The programmer can
then send messages to these objects to perform database func-
tions, and the objects handle the underlying API. The classes in-
clude protocols to perform standard SQL operations, send SQL ex-
pressions to the database, and create such database objects a
SQLDatabase, 5QLTable, and SQLRow.

For further information, contact Digitalk, Inc., 9841 Airport Blvd., Los Ange-
les, CA 90045, (310)645-1082, fax (310)645-1306.

continued from page 27...

cess is used to upload and download applications from a cen-
tral repository.

Inching into the source control market are a few of those
low-cost application/project browser products that claim to
also have source control features. If cost is important, you’ll
have to lay out the features of these products side by side with
those of AM/ST before you make your purchase decision.
Does the less expensive product provide enough of the source
control features needed on your projects to be a contender for
your Smalltalk source control dollar?

THE BOTTOM LINE
The current Windows and Presentation Manager incaration
of Coopers & Lybrand’s AM/ST is a definite forward step in
the development of this product. At $475, the basic module
presents a cost-justifiable grab-bag of powerful extensions to
the basic Smalltalk/V development environment. AM/ST
must, however, be prepared to assess and respond to competi-
tion from the low end of application/project browsers.

As far as the source control extension is concerned, we see
room for growth and improvement. Venturing into source

control is new territory for the otherwise mature AM/ST
product. Given this company’s history of commitment and ef-
forts to improve its Smalltalk/V enhancement products, the
Source Control module probably will mature and evolve over
the next couple of years.

Finally, we encourage Coopers & Lybrand to bring their
Smallealk/V Mac, Smalltalk/V DOS and Smalltalk/V 286 ver-
sions of AM/ST up to the Version 3.5 standard. Smalltalk/V
developers on these platforms deserve to have the same fea-
ture set currently available to their Windows and Presentation
Manager colleagues. &

Jim Salmons and Timlynn Babitsky are principals in JFS Consulting,
offering corporate and peer consulting services in object technology.
JFS Consulting specializes in user interface version control systems and
technical documentation. Jim and Timlynn are coeditors of the annual
International OOP Directory, A Guide to Object-Oriented Products
and Services. They are the Exhibits Cochairs for OOPSLA'92 and
will serve as the Conference Cochairs for OOPSLA’93.

THE SMALLTALK REPORT

WHAT THEY'RE SAYING
ABOUT SMALLTALK

Excerpts from industry publications

SPECIFICALLY SMALLTALK

..."Object-oriented programming (OOP) and ODBMS are among
the most important leading edge technologies today,” says
[Patrick] Arnone [president of PRC Open Technology Inc.]. “It's
still a very small part of the industry, but we believe the market for
OOP and ODBMS will grow throughout this decade. Right now
we have to educate the community on the benefits of ODBMS,
sort of like how the relational DBMS vendors did in the late ‘70s.
It is not going to replace RDBMS technology, however, but rather
will complement it very nicely.” Advantages of object-oriented
over relational database systems include better integration of
text, sound, images and graphics, as well as features suited for
highly interactive application. As such, ODBMS is expected to be
at the core of tomorrow’s multimedia and image processing soft-
ware. “The early adopters, in both federal and commercial mar-
kets, will be in the engineering and scientific areas for computer-
aided design and computer-aided engineering, certain segments
of the MIS market, office automation system, multi-media net-
work management, CASE, financial modeling and compound
document imaging,” Arnone offers as examples....

...The ability to isolate and minimize platform-specific code
within a program is one of the most important advantages of
OOP. Only 2 percent of the code for ObjectStore for example,
addresses the hardware platform it runs on. This characteristic
of OOP and ODBMS simplifies porting efforts and makes the
technology eminently suitable for client-server and distributed
applications. “Portability is crucial,” says Ron Suarez, president
of Arbor Intelligence Systems Inc., Ann Arbor, Mich., “especially
for corporations that have already bought into different hard-
ware platforms. Where a group of developers may be sitting at
Unix workstations and people in accounting are using PCs and
the graphics department is using Macs, you may have certain
applications that they should all be able to use.” That portability
brings important benefits to VARs and developers building
products with OOP as well. “For a small company like us, work-
ing with these kinds of tools means that we can reach a much
wider market,” points out Suarez. “We can sit at our machine of
choice, which is the Mac, and develop applications that will run
on Unix machines and on Microsoft Windows."..."Our product,
Smalltalk Nexpert Bridge, allows one to imbed a knowledge
base produced using Nexpert within an application created with
Smalltalk,” says Suarez. “The programs that you create are in-
stantly portable from the Mac operating system to Microsoft
Windows to Unix workstations. So a knowledge base developed
with Nexpert can be used across all those platforms.”....

Brave new VARS, Jim Waddell, VAR Business, 12/91

-.Virtually all object-oriented systems rely on relatively strict hi-
erarchies. (Multiple inheritance, as implemented in C++, bends
the rules, but only a bit.) Inheritance is useful..., but more useful
still would be a paradigm that allowed programmers to assem-
ble new classes from a network of smaller components —in a
sense, “modular” objects. With more structural options at hand,
we’d be less likely to suffer the pain and inconvenience of rip-
ping up an existing hierarchy by the roots — or turning it inside
out — to implement a new concept or feature...

...Too often, when you want to use a class that's part of a rel-

atively deep hierarchy, you'll find the program awash in code
pertaining to its superclasses. Think of it this way: imagine
you've invited a friend over for dinner. At the appointed time,
he arrives — along with all his forebears: parents, grandparents,
even the spirits of a few ancestors who are now, as it were, vir-
tual. These ancestors stampede across the threshold and pro-
ceed to eat you out of house and home. Your friend explains,
“Well, Ma taught me how to hold a spoon, so | need her here to
help me eat. And Gramps taught me how to read, so he needs
to be here in case | want to read anything. And Great-
grandma...” The thought of anyone dragging his ancestors with
him everywhere he goes is comical, but having to put up with
relatives of a class you import from a large toolkit isn't funny.
Even with “smart linking,” which cuts down on uninvited “sib-
ling” classes, the overhead can be daunting....

...One of the touted advantages of QOP is the ability to use
"toolkits” of objects from which you can select classes and create
subclasses according to your needs. But have you ever tried to
combine pieces of two toolkits, with two different hierarchies ar-
ranged two different ways? Here, the ability to assemble objects
from smaller components in customized, structured networks
would free programmers from the tyranny of monolithic hierar-
chies that must be imported wholesale, bag and baggage...

...Unfortunately, few of the current crop of object-oriented
languages are dynamic enough to comprehend such environ-
ments [as software which is flexible at runtime as well as at com-
pile time]. Xerox's Smalltalk can rebuild the innermost parts of
the operating system as it is running (most current implementa-
tions share this flexibility to some degree), but the most popular
object-oriented language, C++, is statically compiled and does
not allow classes to be created or destroyed at runtime. A C++
program that deals with a dynamic object-oriented environment
must support two kinds of classes that have two kinds of seman-
tics: C++ classes, which are manipulated via the fundamental
constructs of the language, and the environment's classes, ma-
nipulated by the C-like, non-object-oriented constructs of the
language. It's a shame when the powerful, object-oriented fea-
tures of a language can't extend to the environment in which
programs run. and it's a poor idea, as William of Occam once
noted, to multiply entities beyond necessity — to deal with two
kinds of objects that abide by different sets of rules....

...Before “strictly static” OOP languages proliferate, like the
IBM PC architecture, to the extent that there's no turning back,
we need to send our language designers back to the drawing
board, exhorting them to seek new language models that
gracefully accommodate both [the static and dynamic] worlds.
Otherwise, we will be left with tools that are largely extensions
of static, non-object-oriented languages and that don’t address
our real needs in increasingly dynamic environments....

Trouble in Object City, Brett Glass, Programmer’s Journal, 12/91

...Most OOP advocates, like Object Management Group's
[John] Slitz, believe that OOP, usually written with C++ or
Smalltalk programming languages, is “revolutionizing the indus-
try."” Others, like Bill Moritz, owner of IQ Computer in Boulder
[Colorado], disagree. “Everyone is jumping on the bandwagon.
It's the marketing buzzword of the '90s, like “user-friendly” in

29.

VoL. 1, NO. 6: MARCH/APRIL 1992

30.

B WHAT THEY'RE SAYING

the ‘70s and “intuitive” in the ‘80s. OOP has lost its initial, rigor-
ous definition. It was a computer science and engineering tool;
now it's just hype, “ he contends....

...Mark Hatch, president of the Alpha Marketing Group, which
specializes in helping start-up companies bring OOP to market,
cautions, “Reusability can be a curse if you don’t find inherent
function problems during testing. These problems are then car-
ried through to other programs, like a virus. You don't always
know how the objects will behave in different environments.”....

..[Roger] Loeb [chief executive officer of Boulder's
MarTech Group], among others, emphasizes that to write pro-
grams with reusable objects entails an entirely new way of
thinking and looking at problems. “You must start the process
with the right pioneers. Programmers can’t often see through
their specific task. They write procedures enabling them to
solve problems in the way the problems are described, but
they don‘t see the whole picture. You need people with a vi-
sion to understand how someone else may want to use their
design, or object, in another situation. They must have antici-
patory skills, the ability to generalize a problem. Systems are
always changing; they must be able to deal with exceptions.”
Loeb adds that others can learn once the right people start
out designing the initial objects. Since OOP is a relatively new
concept, the effects of training programmers to shift their way
of thinking to “a tolerance for ambiguity,” as Loeb says,
presently isn’t known...

...The Object Paradigm Research Group, headed up by Dr.
David Monarchi, a professor in the School of Business at the
University of Colorado in Boulder, is researching the effects that
OOP may have on programmers and on business. “We study
how this technology can be transferred into businesses, how to
implement these concepts. We're looking at the process of
building object- oriented systems, how to perform object-ori-
ented analysis and design, how to judge the quality of the de-
sign, what additional problems need to be solved to make this a
commercially viable technology.” Monarchi adds that it’s
difficult to quantify benefits because there haven't been many
large commercial systems using OOP. “We don't have the ex-
perience to know, for example, what the long-term mainte-
nance effects will be.” Although he says that OOP will prevail in
this decade, “there aren’t many skilled in it or in teaching it. You
can't just suddenly grasp the concept of OOP without using
it.”....

Trying to make software simple, Hilary Lane,
The Boulder County Business Report, 12/91

OF GENERAL INTEREST

The five leading object-oriented DBMS vendors recently out-
lined their efforts to create object-oriented database standards
for approval by the Object Management Group (OMG). The
new group, called the Object Database Management Group
(ODMG), consist of Objectivity Inc., Object Design Inc., Ontos
Inc., Servio Corp., and Versant Object Technology Corp. For
expedience ODMG is currently not inviting other vendors to
join in its work, which includes drafting technical proposals that
respond to the recently drafted OMG Object Services request
for information...ODMG has defined a common object
database perspective, which was used to help shape the efforts
of the OMG’s Object Model, which OMG has been working on
since last spring...ODMG is now addressing database-specific
technology areas beyond the scope of the OMG’s Object
Model. ODMG is considering an object-oriented query lan-
guage, perhaps based on some of its members’ own lan-
guages...Another task is to define an object-oriented database

interface with the OMG Object Request broker and distributed
data management.

Five DBMS vendors agree to create OODB standard, Scott Mace,
InfoWorld, 12/23/91

...Any menu or window on the desktop can be hooked into and
subclassed. This means that anything is fair game, whether it's
the listbox in your application that you need to enhance, or the
menu bar in Aldus Pagemaker that needs an extra command or
two. | have to admit, at first this made me think a little about the
legal ramifications. However, as long as you've actually pur-
chased the application, nobody can really complain of any
wrongdoing. After all, you haven't actually modified anybody’s
code—just the way it interacts with Windows and other objects...

Subclassing Applications, Mike Klein, Dr. Dobb’s Journal, 12/91

...But as we head into the 1990s, there is a new category of
computer specialist that is about to emerge, people | call para-
programmers. This new type of programmer could create some
interesting new job opportunities for a lot of people who do not
have specific computer backgrounds, but are willing to learn
some new skills in order to get into the world of computers and
business. Other business fields have specialists like paralegals
and paramedics, and now the computer industry is about to get
its own: paraprogrammers. The role of a paraprogrammer is
linked to a significant new software programming concept
called object- oriented programming (OOP). With this approach
to programming, much of the programming code is actually
pre-written by the programming language vendor, and the per-
son working with this code draws on the objects, or object Ii-
braries, to write the bulk of the specific program....We actually
have a type of paraprogrammer today. These individuals nor-
mally reside within an MIS department and are given the task of
customizing a database or spreadsheet... Many times they cre-
ate macros for repetitive tasks. Some of these are actually pro-
fessionally trained programmers, while many of them have just
learned a particular database language and are trained to cre-
ate this custom layer of the program...Trained programmers will
continue to play a very important role, especially in the creation
of code that will be used for the commercial market. They will
also become an important part of the management of these
paraprogrammers, in the same way doctors or lawyers oversee
the work of their paraprofessionals...

Industry Insight: new category of computer specialist, TimBajarin,
Computer Currents: San Francisco Bay Area, 12/3/91

[Lou Mazzucchelli of Cadre}....Traditionally, people have tended
to concentrate on the functional behavior or the process behav-
ior. | mean, what happens when this data turns into this data
and then it goes over here and gets turned into something else.
What object-oriented analysis does is borrow a lot of ideas from
database design and information engineering. Before you do
that, let's understand what the data space looks like. What are
the things that the systemn is manipulating? Why do those things
exist? How do those things relate to each other? It turns out
that if you do a good job of that, you're actually beginning to
identify candidates for objects that you might design into a sys-
tem to support this space. So there’s been a lot of work in the
last year or two on ways to represent the design of an ob- ject-
oriented program and then ways to transform that design into a
reasonable implementation: and you're beginning to see a few
products that do things like that — you’ll see more....

Q & A: Lou Mazzucchelli, Cadre’s vice president, Gregg Wendorf,
The Sun Observer, 12/91

THE SMALLTALK REPORT

...Driving the shift to object-oriented programming is a change
in the IS environment itself. “The desktop operating system is
fragmenting: The old DOS standard is splintered into Windows
and OS/2," says Eugene Wang, director of the languages group
at Borland International Inc., the Scotts Valley, Calif., software
vendor. “IS is nervous about choosing the wrong operating sys-
tem, and object-oriented architectures are much more
portable.”...

...another reason for the slow acceptance of object-oriented
programming is that, initially at least, it has been most available
for languages that are not widely used for state-of- the-art pro-
gramming. “Object-oriented code started in C++ and Pascal,
which are not the IS languages of choice,” says Rob Dickerson,
VP and general manager of Borland's database business unit.
“Object-oriented programming has to become more available
in fourth-generation languages that have database-modeling se-
mantics built in.”....

A Reusable Revolution, John Parker, Information Week, 1/6/92

..[Joseph] Firmage's [president of Serius Corporation] current
goal is much broader than creating a lone business application.
He says he would like “to raise the level of software develop-
ment away from code so the end user can construct application
software.” A more distant goal is to redefine the way software is
sold, which he predicts will take about a decade. "What hap-
pens if mom-and-pop consultants can build Microsoft Excel in
seven days?” Firmage asks. “What we're basically talking about
here is customized software that can compete fiscally with pack-
aged software.” Adds Firmage: “We're proposing that you
move power out of the hands of those large companies and
closer to the users.”....

Joseph Firmage Means Business — “Seriusly,” Dawn Smith,
MARKETING Compurters, 12/91

..[Peter] Meng [co-founder of Drochelman/Meng & Associates,
a multimedia integration company based in St. Louis] com-
mented on a recent TIME Magazine article about multimedia
which expressed the opinion that what multimedia lacks is the
so-called "killer application” — something like the electronic
spreadsheets or word processors that triggered the personal
computer revolution. Meng thinks that this “killer application”
will turn out to be not an application at all but an object-ori-
ented operating system that gives users the capability of creat-
ing their own customnized applications. One example he gives is
that a user could create an individual application such as a
spreadsheet with the numbers animated, along with sound ac-
companiment. Meng predicts that the recently announced al-
liance of Apple and IBM will do much to enhance and move for-
ward the whole field of interactive multimedia, particularly in the
matter of standards and system compatibility. Potential uses of
interactive multimedia are virtually limitless, especially in the
field of education and corporate training. Meng says, “In our
fast-moving society, where it’s vital to educate and re-educate
people quickly, multi-media offers itself as an incredibly power-
ful training tool.”...As for the future of multimedia,[co-founder
Peter] Drochelman says that even though we still live in basically
a print world, he thinks that’s changing. “I see multimedia re-
placing print. Television has been an interim step in this process.
Eventually, | see the computer becoming an all-encompassing
technology, integrated in tho totality of our daily lives.”

Drochelman/Meng & Associates: a media resource integration firm,
Carol Ellerman, St. Louis Computing, 12/91

.-.Analysis and design methods are already changing to accom-

modate objects. They will need to change even more to accom-
modate organic systems development. For objects, the trend is
to move away from phased development towards task oriented
development. In a method such as Coad/Yourdon, e.g., several
layers are created, but it is not necessary to construct them se-
quentially. A distinction is still made between the requirements
and the design of a component, but all the requirements need
not be known before design may begin. Organic systermns will
evolve, as the name implies, over time. It will still be necessary
to understand the requirements of an enhancement, but the re-
alization of those requirements in software may be automated
to the extent that there will be no formal design phase for an
individual component....

Methodology: Developing organic systems, Adrian Bowles,

Object Magazine, 1-2/92

...As a result of controllers and views, the application object is
much less in control of its own destiny. It will only handle a
subset of the events that it otherwise might. When it does re-
spond to an event, the response is likely to be restricted to the
application data. The days when the application ruled the in-
terface are over. Losing autonomy isn‘t bad in itself. Given the
enormous complexity of GUIs, overall control is best left to the
application-independent GUI classes. By reusing view and con-
troller classes, designers and programmers can largely limit
their attentions to the design of application classes. However,
reuse means that a programmer no longer has the control that
comes from creating a program from scratch, As major league
control freaks, programmers may find this pill a bit hard to
swallow...

...The secrecy and lack of attention associated with GUI is-
sues is ironic in the extreme. OO was largely created as a reac-
tion to command line-based — DOS, for example — user-com-
puter interfaces. OO pioneers like Alan Day wanted user
interfaces that provided direct manipulation capability. This
means that the objects the user manipulates in the “real world”
are used in the computer system'’s interface. (Flight simulators
are good examples of this concept. Virtual reality is the ultimate
application of direct manipulation.) Object orientation is more
than the communicating objects the programmer sees. It is a
whole new way for most users to interact with computer system.
Dynamic binding is a mind bender. But, there is also a
significant paradigm shift when command line or character-
based hierarchical interfaces are converted to GUIs. Unlike dy-
namic binding, however, the GUI part of the paradigm shift af-
fects everyone — user, software developers, and methods
specialists. The universal impact of the shift to GUIs is the great-
est dirty little secret. No one will be spared the conceptual dev-
astation of the OO paradigm shift, not even the users. How long
before we hear the sound of shattered glass because users are
trying to click their mice on their windows?

Antihype: OO's dirty little GUI secrets, John Palmer,
Object Magazine, 1-2/92

..."Thirty percent of federal agencies are already using some
kind of object-oriented programming (OOP) software,” says
Robin Rather, of Vienna, Va. - based Information Strategies
Group, who recently completed a study of OOP in the federal
government. She also discovered that another 25 percent of the
agencies said they would be buying OOP technology in the
next three years....
Company courts Federal market with object-oriented
programming,
Washington Technology 12/19/91

VoL. 1, No. 6: MARCH/APRIL 1992

31.

|UTHWEEK . TRM % st
o ==
LABS % ’ *:.
7 Ty hY
SHOOT-OUT

WINDOWS AND 05/2
PROTOTYPE TO DELIVERY.
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V, you don't.

Start with the prototype. There’s no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It’s
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just
$499.95.

So take a look at
Smalltalk/V today. It's time to make

that prototyping time productive.

Smalltalk/V is a registered trademark of Digiralk, Inc. Other product names are trademarks or registered
tradernarks of their respective holders.

Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO'S TALKING

HEWLETT-PACKARD NCR
HP bhas developed a network trouble- NCR bas an integrated test program develop-
shooting tool called the Network Advisor. ment environment for digital, analog and
The Network Advisor offers a compreben- mixed mode printed circuit board testing.
séve set of tools including an expert system,
statistics, and protocol decodes to speed MIDLAND BANK
problem isolation. The NA user interface is Midland Bank built a Windowed Technical
built on a windowing system which all Trading Environment for currency, futures
multiple applications to be executed and stock traders using Smalltalk V.
simultaneousty.

KEY FEATURES

B World's leading, award-winning object-
oriented progratming system

B Complete prototype-to-delivery system

B Zero-cost runtime

M Simplified application delivery for
creating standalone executable ((EXE)
applications

B Code portability between Smalltalk/V
Windows and Smalltalk/V PM

Bl Wrappers for all Windows and OS/2
controls

88 Support for new CUA "91 controls for
0S/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

M Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive sarnples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

B Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

This Smalltalk/V Windows application
captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications—and they're portable to
Smalltalk/V Windows.

	By Article Title
	Becoming more predictable
	Coopers & Lybrand's AM/ST, Version 3.5
	Lab Review: Smalltalk at the University of Washington
	Paint palettes (taking control in Smalltalk/VPM 1.3)
	Reimplementing Model-View-Controller
	Tips for improved Smalltalk reuse and reliability

	By Author Name
	Babitsky, Timlynn
	Freeman-Benson, Bjorn
	Hendley, Greg
	Kilmas, Ed
	Leibs, David J.
	Rubin, Kenneth S.
	Salmons, Jim
	Smith, Eric
	Skublics, Suzanne
	Wirfs-Brock, Rebecca

	By Topic
	comp.lang.smalltalk
	GUIs
	Object-Oriented Design
	Product Review
	Smalltalk With Style

