February 1992

~m

By Jeff McKenna
Contents:

| A praposal for chan

in Smalitalic
by Jeff McKenna

6 A case in point
by Charles A. Rovira

management

Coiumns
9 Object-Oriented Design: The phases of
an nhlnr‘?..nrmnvprl nnnlﬁr"ar!nn

Qojeci-ot HeC apprialio

by Rebecca Wirfs-Brock

I3 Getting Real: How to use class vari-
ables and class instance variables
by juanita Ewing

i5 GUis: ObjectworksiSmaiitaik Reiease
4: The graphics madel

by Greg Hendley and Eric Smith

Departments

|7 Book Review:Cancerrs oF OBSECTE
ORIENTED PROGRAMMING
reviewed by Aariin Gsborne and Ann Cotien
roduct Announcerments

"
7

Avsm e e . A1 .- Hon
U ¥YNar Iney re Jaying ADout JMOHIaK

the preblems of change management durin
case, the user is the software developer.

a
Lo

Volume 1 Number 5

rom the point of view of designing software, object-oriented techniques gain
. considerable advantage by reducing the semantic distance between the user
; j D(Ju]: SD[EWEIE u,Slng [ne

object-oriented software development. In this

Y
Perhaps the same technigue of involving rhe user can be emploved when considering

Good object-oriented programmers commonly use two distinct phases of development.

The first is a functional expansion phase and the second is a “cleanup” or consolidation
phase. "W'nat i propose is that a desirabie change management system wouid ac'knowledge

CVEIILS. L ney can UE

QFP('] 1 {s)]’\rFH: ent nrocece
ea UL PTOCCSs,

1s)
nparce o o

OBSERVING SMALLTALK PROGRAMMERS

When developing new software, good Smalltalk programmers explore the new functional-

ity quickly by designing and implementing required new objects and by extending existing

OD] ects to support tne new requtrements T yplcauy. and COI‘I‘ECUY 50, not much thought is

5
Afrer snendinoe time on functional eynansinn, suc ecchil n norammers will ctan the av.
ter spending time on functional expansion, successful programmers will stop the ex
pansion of functionality while they clean up their work. When pressed, they will say that
they are improving understandability, readability, and reducing code bulk—“making it
nice.” At this stage, the hierarchy may be reworked as understanding of the application

grows: Metheds no longer required will be removed, method selectors will be renamed o

more directly reflect their actual intent, and methods will be reworked to become more

reusable.
i ~f tha e imraracting somanre of thacs mhommeariams ie tha simdmg of oo e g
LALLC U LG LV LIIC1CoLL lg ﬂ.BIJCLLB WL LLICD0 UUDOL VALLUALEdy 1> LLLIC LLILIL lg UL LLLEDC LYY aw-
tivities RPH’Pr nroorammers cnphr‘ more time IPS}I"IIT\G nMn I’]T:I nrhpr' NTOACTATMIMATS nrl
tivities. Better programmers spend more time cleaning up than other programmers and
they also tend to do it sooner. Typically, pood programmers clean up after just a few days

rather than weeks or months after devel opment.

CHAMGE MANAGEMENT

U G U JO P PR o

P : RSP P g [P e ~11..
o l]lul\.l!_. LU UTYCIUPCOLD, LIl LI WILC UpCIL Bhylc L% L1L LR UCYLUPILLC lt‘ tlllD dlly
means keenine the various individuals from srennine on each orher's work. Management
means Xeeping e varous Naividuals rom stgpping on €ach OINers word. Management

will also use the change management system to control releases, both internal releases for
testing and external ones.

A typical approach for change management in Smalltalk is to assign owners te classes.
Recently, we have seen some discussion of function-based ownership. Both of these ap-
proaches have advantages and disadvantages.

continued on page 4...

EDITORS’
CORNER

John Pugh Paul White

riting these notes just before heading off for New Year's celebrations sputred us to think of the ma-
jor developments that have taken place in the Smalltalk world in the last twelve months. The lan-
guage wars have continued, but C++ and Smalltalk have emerged as the dominant players as we
enter 1992. Why has Smalltalk made the cut? We believe there are a number of reasons. The
Smallralk vendors have taken a number of steps to attract real developers by focusing on issues such
as portability and providing better tools for application delivery. Third party vendors have ad-
dressed a number of areas critical to Smalltalk’s acceptance such as user interface builders, access to
darabases, and performance profilers. The project management tools sorely lacking in the base
Smalltalk systems have now appeared on the market in flavors to suit both small development
teams and large groups of Smalltalk programmers accessing a shared code repository over a network.
As the head of one major development group at a big multinational company told us recently at a
conference, “Smalltalk went from having next to no support for project management to having
perhaps the best object-oriented project management tools in the industry.” Finally, we can point
to documented Smalltalk success stories such as those reported on in the Experience Reports sec-

tion of the October OOPSLA conference in Phoenix.

Where is Smalltalk heading in 19927 The MIS marketplace for one! That's right, the world of
mainframes, Fortune 500 companies, and hundreds of thousands of lines of COBOL code has been
taking a serious look at O-O technology and Smalltalk. They are still separating out the hype from
the substance, but many forward-looking companies are already evaluating the technology through
pilot projects with a considerable number choosing Smalltalk as the initial vehicle of choice.

In this month’s lead article, Jeff McKenna continues our theme on change management. Following
recent articles by Juanita Ewing and S. Sridhar that focused on class ownership, Jeff puts forward
his view that change management is best organized around two distinct phases of software develop-
ment using Smalltalk—functional expansion and consolidation phases. Also, for those Smalltalk
programmers who still find occasion to lament the absence of a case statement in Smalltalk,
Charles-A. Rovira provides the answer in his article—"A case in point.”

Three of our regular columnists appear in this month's issue. Rebecca Wirfs-Brock continues her
Object-Oriented Design column by discussing the development phases of an object-oriented appli-
cation. As Rebecca points out: “No matter how great the Smalltalk development environment, it
isn't a replacement for planning, designing, and some amount of discipline.” In Getting Real,
Juanita Ewing concludes a two-part article on the appropriate use of class variables and class in-
stance variables. Finally, in the GUI column, Greg Hendley and Eric Smith discuss the graphics
model in Objectworks\ Smalltalk Release 4.

Also in this issue, Martin Osborne and Ann Cotton review Dave Smith's new book entitled Con-
cepts of Object-Oriented Programming. Despite the citle, this book is entirely Smallralk oriented and
provides an introducrion to the concepts underlying both OOP and Smalltalk. The review looks at
the baok from both the perspective of an experienced OOP person and of a novice.

Our publisher tells us that subscriptions to The Smalltalk Report are continuing to grow at a healthy
rate and rthat an unusually high number of our readers are from Europe. A special welcome to you—
we hope you enjoy the newsletrer and look forward to meeting you in February at OOP '92 in Mu-
nich, Germany, or LOOK '92 in Copenhagen, Denmark.

Finally, a big thank you to everyone who has helped us take The Smalltalk Report from an idea to
fruition in 1991, and an invitation to all of you in the Smalltalk community to contribute to the
report in '92.

s R R AN

The Smallralk Repore (185N= 1036-7976) is published 9 times a year, every month excepr for the MarfApr, July/Aug, and Nov/Dec comhined issues.
Published by COOT, Inc., a member of the SIGS Publications Gruup, 588 Broadway, New York, NY 10012 (212)274-0640. € Cuopyright 1992 by
COOT, Inc. All righrs reserved. Reproductiun of this material by electronic ransmission, Xerox or any orher method will he wreated as a willful viola-
tion of the US Cupyrighr Law and is flaly prohibited. Marerial may be reproduced with express permission frum the publishers. Mailed First Class.
Subscription rates | year, (9 issues) domestic, $63, Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and sub-
seription orders ro: THE SMALLTALK REPORT, Subscriber Services, Dept. SML, P.O. Box 3000, Denville, NJ 07834. Submit articles 1o the Editors ar 91
Second Avenue, Ottawa, Onrario K1S 2H4, Canada.

THE SMALLTALK REPORT

THE 1992
INTERNATIONAL
OOP DIRECTORY

Now You Can Have
Access To Accurate,
Up-To-Date And
Complete Information
On The Entire O-O
Technology Market
Right At Your
Fingertips

This handy 425-page sourcebook
is packed with everything you need to
make OOP-related purchasing decisions:

eQver 350 companies
eNearly 500 products
eConsultants & services
sReprints of landmark articles
sBibliography by author/article
sConferences &) seminars
s Cross-referenced by languages and
If you're using object technology, you systems supported
should have a copy of the International

OOP Directory.

e

_ 3 -
5 S g G O
2
3 Q= m¢~§
[~ P 58 00D
o < Q w BoR
(@) e aD U 8o 8
ee--c? Qg 2 @D —0
I 35 g 1~ 243823
-8 s 9 Q= :v—lu;o
=H .E—':_E“ Ha QE:«&
e o AT CIE - o D =
= e 8 ED = =R RS
89 LEE HzEgES ELBg
g & 2eE 25280 g£5AQY
BE FE:| g% 2528
s 45 | BEBES R
- 2k ET’%E"‘ Ho ;23
) 08 = HS'E:E . BEQ‘QC-)
= Evﬂ Z,_'gogg’n =1 3 E~ ucé)%d-
[B Uﬁ)mu] | = @ oy (=1 o~
g9 oBbgs = A & o & § » & vy 58559
S92 E HUB5U B B E 8 4 » & 3 E DE89YR
NACCs o 58 s = & ~ 6 =© = § & & =2 u.,.'o"ga
Jeok mdfsd O A B Z U <« 0O & U N R HFA®moWD

B A PROPOSAL FOR CHANGE MANAGEMENT

contnued from page 1 ...

Class-based ownership has the advantage that clear re-
sponsibility is established at a level of granularity that
reflects the belief that objects are primary. By owning a class,
a developer can ensure that the class is internally consistent
and is clean.

Function-based ownership has the advantage of more closely
reflecting how work proceeds in software development: Func-
tions (from the users’ point of view) are added, changed, and re-
moved. In general, this means that the work of individuals will
be independent.

The weakness of each of these approaches is the strength of
the other. Since adding functionality tends to be distributed
over a number of classes, using class-based ownership can slow
down development as various individuals need to implement
methods to complete some function. Likewise, function-based
development can easily result in poor quality classes since no
single individual is working to keep the class clean.

INCREMENTAL DEVELOPMENT

As illustrated above, using Smalltalk encourages an incremen-
tal style of software development. This style is demonstrated
by the individual developers and is also demonstrated by
teams of Smalltalk programmers when they are supported by
management in this approach. The change management sys-
tem used in projects is a key element in the successful adop-
tion of this style.

When incremental development is used in a project, it
also has an effect on the testing of the product. Testing can
begin much earlier than with classical development as re-
leases can be prepared with subsets of the full functionality.
This means that testing can proceed in parallel with the de-
velopment. The change management system needs to support
this practice.

GOALS

Taking all the above into account results in the following
goals for a change management system to support Smalltalk
development:

1. Suppott incremental development.

2. Support the “natural” style that good Smalltalk
programimers use.

3. Support the idea of ownership.

4. Support the timely release of versions.

For the purposes of this discussion, we assume that a
change management system accepts changes from individual
programmers, validates changes against the ownership rules,
and periodically produces a “build” using the validated
changes. A system tightly integrated with the development
environment would prohibit the developer from making any
changes that are not valid.

PROPOSAL

The key to our proposal is that the change management sys-
tem operate at all times in one of two phases: the expansion
phase or the consolidation phase. In each phase, the owner-
ship of classes and methods is different.

In the expansion phase, ownership is function based. This
allows individuals to focus their activity on the functions that
they have been assigned. When programmers receive a new
build in this phase, they will be able to continue their devel-
opment as if they were just using their image from the prior
build, chat is, the image should always work.

In the consolidation phase, ownership is class based. This
phase provides time for clean up of existing functionality, no
new functionality should be added. There is no guarantee that
the image will work for all functions after a build.

In a typical project, these two phases would altemate. Ex-
pansion is used when adding functionality, and consolidation
is used when cleaning up. The relative proportions of the
phases will change over the duration of the project. At the
start, the activity is primarily expansion since the bulk of the
new functionality is added. In the later stages, the dominant
phase is consolidation as code is tuned, code bulk is reduced,
and classes are cleaned for reuse.

When developing in Smalltalk, the time spent in the two
phases is relatively short. Assuming that a relatively complete
analysis has been performed, it appears that in the initial
stages of a project the expansion phases should be no longer
than three or four weeks. Hence, functionality needs to be
broken down to support these time frames. This is most easily
done by dividing functions breadth first in the early stages.

SPECIFIC RULES FOR THE PHASES
Below, I discuss some guidelines for the activities allowed in
each phase.

EXPANSION PHASE
During the expansion phase, classes and methods are owned
by functions. This ownership should be retained until the be-
ginning of a consolidation phase. No more than one individ-
ual should be assigned to a function, and not all classes need
to be owned.

Rules:

1. The creation of a class establishes ownership of the class.

2. The changing of a class definition establishes ownership of

the class.

3. Methods added to nonowned classes establishes ownership
of the method.

4_Methods that are not owned cannot be removed or changed.

5. Methods cannot be added that will change the method

look-up of existing messages.

These rules are designed to meet two objectives:

THE SMALLTALK REPORT

1. Allow individual developets to continue their develop-
ment between builds as if they were working in their
own image.

2. Minimize the conflict between different developers at
build time.

The rules as presented are not sufficient. Two developers
may add the same class or method to an existing build and
create a conflict. In practice, this would be minor, and the
validation system would catch it.

Some may consider the requirement of only one person
working on a function to be excessively restrictive when the
function is large. In this case, we suggest that a single individ-
ual develop the initial functionality in a sketch form, provid-
ing the initial classes and minimal methods. The ownership of
these can then be factored into smaller functions for individ-
ual assignment.

CONSOLIDATION PHASE

All classes should be owned by individuals during this phase.
Individuals clearly will need to own more than one class. Use
this tule: Changes can only be made by owners.

The objectives of this phase are to improve the quality of
the classes while retaining the functionality at the beginning
of the phase. No additional functions should be added.

Since message selectors can be changed and removed,
builds may not work for all functions. To solve this, first add
the new methods to a build, publish the replacement selectors
to the owners of the senders of obsolete messages, and then re-
move the old methods when they are no longer used. This ap-
proach will ease most consolidation efforts.

MANAGEMENT IMPLICATIONS

The alternating phases of this proposal strongly support incre-
mental development. They allow projects to be grown by
adding functions in small groups. This has two positive effects:
The progress of development can be more easily measured,
and testing can begin relatively early in the development. The
consolidation phases provide space for developers to reflect on
their work and to think about the reuse of developed classes.
Management has some flexibility in scheduling by reducing
the consolidation time at the risk of having less reusable

and suitable code.

A prototypical project plan might look like Table 1 for a
set of function groups {A, B, C, and D}. Each row holds the
parallel activities of the development and testing groups.

From Table 1, it is easy to see how better control of the
project is possible and also how consolidation phases could
be adjusted to alter the project schedule.

Managers need to understand, with object-oriented
development consolidation is a natural phase and needs
to be supported. When it is, systems are developed that
are more reliable and provide greater reuse for future de-
velopment.

Table 1. A prototypical project plan.

Development Testing

e(A), deliver A

c(A), deliver A' A

e(B), deliver B A

c(B), deliver B' B, regression test on A
e(C), deliver C B'

c(C), deliver C' C, regression test on A, B
e(D), deliver D C'

c(D), deliver D’ D, regression test on A, B, C

deliver final D'
regression test on A, B, C,D

SUMMARY

I have proposed a change management system that is based on
our observations of seasoned Smalltalk developers at work and
is designed to offer management more control in develop-
ment. By imitating the natural workings of good developers,
such a system will result in software that is more suitable,
timely, and provides greater reuse potential. [

Jeff McKenna has been involved in the software industry since 1963
and object-oriented technology since 1981. He is the founder of
McKenna Consulting Group, which offers services in object-oriented
technology. He has been actively involved with OOPSLA, the premier
object-oriented conference. Jeff is well known as a speaker, having in-
troduced O-O concepts at various convferences throughout the world.
He was the founding editor of the Hotline on Object-Oriented
Technology, an industry newsletter.

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,
dBASEIII, Lotus, and Excel.

ntelligent Systems, Inc.

g 504 N. State Street, Ann Arbor, MI 48104 (313) 996-4238 (313) 998-4241 fax

VoL. 1, No. 5: FEBRUARY 1992

A
CASE
IN POINT

Charles-A. Rovira

n his keynote speech at Developers’ Conference
'91, the first annual Digitalk and BYTE Magazine
Smalltalk/V developers conference, Daniel H. H.
Ingalls remarked that the reason Smalltalk didn’t
have a case statement was as a result of a conscious decision
by the Smalltalk development group to keep the syntax as
simple as possible. Smalltalk had enough of a leamning curve
to round without syntactic sugar cluttering up the language
specification. However, Dan did confide that it would have
been trivial to add a case statement to the compiler. A case
statement is essentially a series of if-then constructs. The
team at PARC felt that programmers might as well describe
them this way and, as far as Smalltalk went, they left well
enough alone.

WHAT IS THE TRUE “MOTHER OF INVENTION?”
While the PARC crew might have felt content to let sleeping
dogs lie, I, being an indolent person who gets lost in ‘[*]’ pairs
and who hates writing all those ifTrue: ifFalse: and and: or: ex-
pressions, quickly decided to remedy the situation without un-
due resort to the compiler. The remedy I concocted had to es-
chew the compiler because, unlike Smalltalk-80, Digitalk
attempts to hide its compiler behind classes with no real
names and methods without source code. Given the availabil-
ity of clever hacks, as well as hackers, I can report that though
the approach will yield to a concerted effort, it is sufficient to
discourage the casual Smalltalk user, should such a beast ever
be found. Since necessity is the mother of invention and sloth
is the mother of necessity, here is the case statement I cooked
up over a weekend.

Listing 1 includes all of the code required to add case state-
ment capability to Smalltalk. Listing 2 is a small sample that
uses the case statement to simplify its coding.

Listing 1. The case statement components.

Association subclass: #Case
instanceVariableNames: *
classVariableNames: “
poolDictionaries: *

Case methods
, aCase
“Answer a collection of cases”
~ Cases with: self with: aCase

OrderedCollection subclass: #Cases
instanceVariableNames: “
classVariableNames:
poolDictionaries: “

Cases methods
, aCase
“Answer an OrderedCollection containing all the
elements of the receiver followed by the new case”
~ self copy
add: aCase;
yourself

Object methods
case; aCollection
“Handle parameterless cases”
~self case: aCollection test: nil eval: nil

case: aCollection parm: anObject
“Handle single parameter cases”
Aself case: aCollection test: anObject eval: anOhject

case: aCollection test: test eval: eval
“Answer the result of the first case that rings true”
| trueCase conditionBlock actionBlock |
(aCollection isKindOf: Cases)

ifFalse: [~self error: ‘case statement improperly structured’].

trueCase := aCollection
detect: [:each |
(each isKindOf: Case)

ifFalse: [~self error: ‘case improperly structured’].

((conditionBlock := each key) isKindOf: Context)
ifFalse: [“self error: ‘case discriminant
improperly structured’].
(conditionBlock blockArgumentCount = 1)
ifTrue: [conditionBlock vatue: self]

ifFalse: [(conditionBlock blockArgumentCount = 2)
ifTrue: [conditionBlock value: self value: test]

iffalse: [conditionBlock value]]]
ifNone: [*nil].
((actionBlock := trueCase value) isKindOf: Context)
iffalse: [*self error: ‘case imperative
improperty structured’].
(actionBlock blockArgumentCount = 1)
ifTrue: [* actionBlock value: self]
ifFalse: [(actionBlock blockArgumentCount = 2)
ifTrue: [~ actionBlock value: self value: eval]
ifFalse: [* actionBlock value]]
cases: aCollection
“Handle parameterless cases”
~gelf cases: aCollection test: nil eval: nil

THE SMALLTALK REPORT

Listing 1., cont.

cases: aCollection parm: anObject
“Handle single parameter cases”
~self cases: aCollection test: anObject eval: anObject

cases: aCollection test: test eval: eval
“Perform all cases that ring brue”
| trueCases conditionBlock actionBlock |
(aCollection isKindOf: Cases)
ifFalse: [~self error: ‘cases statement improperly structured’].
trueCase := aCollection
select: [:each |
(each isKindOF: Case)
iffalse: [~self error: ‘cases improperly structured’].
((conditionBlock := each key) isKindOf: Context)
iffalse: [*self error: ‘cases discriminant
improperly structured’].
(conditionBlock blockArgumentCount = 1)
ifTrue: [conditionBlock value: self]
iffalse: [(conditionBlock blockArgumentCount = 2)
ifTrue: [conditionBlock value: self value: test]
ifFalse: [conditionBlock value]]].
trueCases do: [:each |
((actionBlock := each value) isKindOf: Context)
ifFalse: ["self error: ‘cases imperative
improperly structured’].
(actionBlock blockArgumentCount = 1)
ifTrue: [~ actionBlock value: self]
ifFalse: [(actionBlock blockArgumentCount = 2)
ifTrue: [* actonBlock value: self value: eval]
ifFalse: [* actionBlock value]]

Context methods
case: aBlock
“Answer a ‘sentive’ case”
(aBlock isKindOf: Context)
ifFalse: [*super case: aBlock].
~ Case key: self value: aBlock

blockArgumentCount
“Answer the number of arquments for the block. Note that
in /V PM, the isMemberOf: aBlockClass message would be
used instead; e.g., (aBlock isMemberOf: TwoArgumentBlock),
(aBlock isMemberOf: OneArgumentBlock).”
~ blockArgumentCount

UndefinedObject methods
case: aBlock
“Answer an ‘insentive’ case”
~ [true] case: aBlock

Listing 2. A sample of case statement use.

Number methods
printAs: aFormat
“Append the ASCII representation of the receiver to aStream.
Filter through aFormat.
Test: 123.45 printAs:'$,#$$.00 *
Test it with other numbers and other format strings.”
| temp answer sign format digit |
temp := (Pattern new: ‘") match: aFormat index: 1.
temp isNil
ifTrue: [temp := self abs]
iffalse: [temp := (self abs) *

(10 raisedTo: ((aFormat copyFrom: temp x to:
aFormat size) select: [:ch | #($# $0 $$) includes:
ch]) size).

temp := temp + 1 truncated].

answer := String new: aFormat size.

sign := self negative.

format := aFormat reversed.

answer := format collect: [:formatCharacter |
(formatCharacter case:

(([:=x | x=3#] case:

[digit := Character value: (48 + ((temp rem: 10)
truncated)).

temp := temp // 10.

(digit = $0 and: [temp = 0]) ifTrue: [$] ifFalse:
[digit]]) .

([:x | x=$0] case;

[digit := Character value: (48 + ((temp rem: 10)
truncated)).

temp :=temp // 10.

digit]) ,

([:x | x=$$] case:

[digit := Character value: (48 + ((temp rem: 10)
truncated)).
temp :=temp // 10.
(digit = $0 and: [temp = 0]) ifTrue: [$$] ifFalse:
[digit]]) ,
([:x | x=§,] case:
[temp = 0 ifTrue: [$] ifFalse: [$,]]) .
([:x | *-+()()DBCRdbcr includes: x] case:
[:x | (sign ifTrue: ['— ()DBCR ‘] ifFalse:
['+() DBCRY))
at: (*-+{}()DBCRdbcr’ indexOf: x ifAbsent:
[self halt])]) .
(il case:
[x | S

~answer reversed

Basically, all that was required was to examine how a case
statement really works. A case statement associates condi-
tions with actions. (In the search for more highfalutin bu-
reaucrateese and marginally more accurate bafflegab, I have
usurped the terms discriminant and imperative.) There are
times when only a single action need be taken, when only a
single case need be invoked, and there are times when all

the conditions should be evaluated and all suitable cases need

to be invoked.

This “simple” English version of the requirement definition

leads to the following class definitions:

® a Case that associates a discriminant with an imperative

and should therefore logically be a subclass of Association

® a Case that lists all individual cases for evaluation and should

therefore logically be a subclass of OrderedCollection

In addition, proper support must be found for the evalua-

tions both of the conditions and of the associated actions and
for the invocation of the evaluation of the conditions.

VoL. 1, No. 5: FEBRUARY 1992

M A CASE IN POINT

The fundamental idea behind the implementation of the
case statement was to use the deferted evaluation and late
binding facilities inherent in Smalltalk contexts, a.k.a. blocks,
to leave the actual evaluation of the discriminant of a case
and the execution of the imperative of a case whose discrimi-
nant evaluates to true until it is truly required. The principle
is the same as the passing of blocks of code to the detect: and
select: instance methods of the abstract class CollecHon. In fact,
these very methods are what allow the detection or selection
of none, one, ot many cases as per their discriminants into a
temporary collection of cases whose imperatives have to be
evaluated.

(<4

There are times when...only a single
case need be invoked, and there are
times when all of the conditions should
be evaluated and all suitable cases
need to be invoked.
9

The case statement can be made without any parameters.
This means that the block evaluating the case must be en-
tirely dependent on external data with either a single parame-
ter to the block (which means that the case can be based on
the object itself) or with two parameters (which means that
the case can be based on an object for the evaluation of the
case while being based on another object for the evaluation of
the result).

The sad part is that [can’t for the life of me remember what
could have possibly led me to write the methods with two pa-
rameters. There was a very good reason at the time but it is lost
in the mists of time and in some old client's /V PM code.

JUST IN CASE

As Listing 1 reveals, the code for both Case and Cases is simple.

It consists of the polymorphic implementation of the single

method: *,”. (Of course this begs the question, "Is the method

really a single method if it needs to be in two places at once?”)

The rest of the code presented is concerned with usability.
The other methods are broken down into three groups:

® UndefinedObject>>case:, which is included for ease of use

® Context>>case:, which will either build a single case or
cause a case statement to be evaluated, and
Context>>blockArgumentCount, which will supply the num-
ber of arguments for a particular case evaluation block

® Object methods, which will cause any object to be used as
the point of origin during the evaluation of a case state-
ment. The methods are divided into two types:

¢ case methods that will only look until the first suc-
cessful evaluation

¢ cases methods that will execute the actions of all
conditions that evaluate to true
The statements are also divided into three flavors:

¢ without parameters—the evaluation of the conditional
block will determine the truth of the assertion

® with a single parameter—the evaluation of the condi-
tional black on the object itself will determine the truth of
the assertion

® with two parameters

THE CASE FOR THE PROSECUTION

Listing 2 is a “quick and dirty” method for printing numbers
filtered through a format. The idea behind this method was to
provide something similar to the PRINTUSING() statement
found in BASIC. It is a simple way to format numbers in a re-
port using a print line layout “painted” by a CASE tool.

The method inverts the format string and pastes the value
of the receiver one digit at a time. That part is standard. What
is different is the scanning of the format string to look for
somewhere to paste in the digit. This routine relies on a loop
to examine each character of the format string and uses a case:
statement to decide what to do with the character.

The routine is not very sophisticated and doesn't handle
format string overflow. However, it will put plus or minus
signs, parentheses, or debit/credit annotations depending on
the sign of the number. The format selected as its space, dollar
sign, or zero fills the number and handles leading commas. It is
heavily dependent on the intelligence of the programmer and
does not check if the formatted string makes any kind of
sense. (This is actually an advantage as the routine can be
used for nonstandard formatting needs.)

The heart of the routine is a loop that sweeps the format
string, character by character, and relies on a case statement
to act according to the state of the character. The state of the
receiver (remember the number being formatted?) is totally ir-
relevant to the formatting process.

The code uses Digitalk’s Smalltalk/V Mac 1.2 and System
7.0 on a Macintosh Ilcx Bl

Now based in Ottowa, Canada, Charles-A. Rovira has been involved
with data processing since 1975 and with Smalltalk and other object-
oriented technologies since 1987. His CompuServe ID is
[71230,1217]. He'll admit to some unusual literary influences such as
Douglas Adams, Terry Pratchett, and D. H. Lawrence. Also,
Kierkegard, but why bring him up?

THE SMALLTALK REPORT

BJECT-ORIENTED DESIGN

Rebecca Wirfs-Brock

The phases of an object-oriented

application

I was lured to computer science by the fact that I could spend

hours and hours working on elegant solutions to faitly simple
problems. Often, when my code became too difficult to follow, I
could find a simpler design if I had the courage to back up and
rethink my almost workable solution. Things actually got better
if I relaxed and did not try so hard to force my program to work.
After I got my degree and an engineering job, I found that not
only did my code have to work, I had to provide a detailed plan
for my work and estimate the completion date of each major
task. Assignments no longer could be easily completed within a
week. As a consequence, I learned how to subdivide a large
problem into smaller, more manageable activities. I also learned
to pad my estimates (to account for the unaccountable) and to
reassess my plan whenever I achieved a subgoal.

Object-oriented technology can add complexity to the
software development puzzle. Object-oriented design tech-
niques and programming languages provide good tools for
handling abstractions and developing potentially reusable
software. Yet, what is the additional cost of developing
reusable code? It is hard enough to plan and deliver software
on time, within budget, and meeting customer expectations
with traditional development methods. Designing and imple-
menting for reuse presents a totally new set of challenges.

A class that has been designed and implemented to be used
in more than one application probably requires more effort
than a class designed to work within a single application.
However, shouldn't all classes be designed to be understood
and usable by other programmers, regardless of their general
utility? Certainly, not all classes are worth equal time and at-
tention. Since time is limited, what is an appropriate way to
divide the time spent developing various parts of an applica-
tion? The challenge is to know when and where to apply extra
effort. It’s also important to know when to stop tweaking code
for the sake of "making it better” when returns will be meager.

There is never enough time to get it absolutely, perfectly right.

TYPICAL APPLICATION STRUCTURE

An abject-oriented application of even moderate complexity
is naturally decomposed into several major subsystems. Each
subsystem consists of objects from classes that share the over-
all workload of the subsystem and collaborate to get the sub-
system's tasks accomplished. In a well-factored design, objects
within each subsystem primarily collaborate with each other.

Certain key objects handle requests from other objects outside
the subsystem. In general, however, few objects within a sub-
system are visible outside the subsystem.

In many designs, there also are a number of general utility
classes. Smalltalk environments provide a comprehensive set
of container, graphics, and user interface classes. In addition
to this valuable class library, many applications add their own
specific utility classes. Rather than having each subsystem de-
sign consist of its unique but perhaps only slightly different
classes, a common class library is developed and used through-
out the entire application. These classes serve to enforce com-
mon error handling policies, support default behaviors, or
encapsulate information passed between subsystems.

66

It is hard enough to plan and deliver
software on time, within budget, ... [etc.].
Designing and implementing
for reuse presents a totally new
set of challenges.

9

A DEVELOPMENT TIME LINE

The overall development process can be roughly divided into
distinct phases. The first stage of any design consists of explot-
ing possible alternatives. Major subsystem pattitioning strate-
gies are determined. An initial model of the key design objects
is proposed. Once this initial model has been developed, ef-
forts shift into a detailing phase where precision is added to
initial decisions. Subsystems and the classes within them are
sufficiently elaborated and then implemented.

Each subsystem will progress at a different pace due to vari-
ations in complexity and according to the abilities and experi-
ences of its designers. However, any subsystem will pass
through most of these steps:

1. Specification. During this stage, a rough idea of the pur-
pose of the subsystem and the services it will provide is

Vor. 1, No. 5: FEBRUARY 1992

10.

B OBJECT-ORIENTED DESIGN

proposed. An estimate of the subsystem's complexity can
be made. This estimate may include a list of key classes
(perhaps including their names and a brief description) and
some measure of their complexity and projected general
utility as well as an estimate for the time required to com-
plete an exploratory design.

2. Exploratory design. During this stage, key objects and

their interactions are modeled. An initial pass is made at
defining each key class’ role and responsibilities. Several
additional layers of each subsystem design can be elabo-
rated. Services available to objects outside the subsystem
are specified in greater detail. Assumptions about services
provided by other objects and subsystems are proposed.
These assumptions will need review and refinement in the
context of the averall application architecture.

. Detailed modeling. Elaboration of the initial exploratory

design means extensive review and refinement of the
initial model. Classes are scrutinized for appropriate fac-
toring of responsibilities. A lot of time can be spent
making slight readjustments of object roles and respon-
sibilities to minimize interobject dependencies and sim-
plify the design. New supporting classes may be created
to further reduce coupling between classes. Permissible
patterns of collaboration between objects can be formal-
ized through contracts that spell out services used by
specific clients. Finally, class inheritance hierarchies
can be developed. Common responsibilities can be
found, and superclasses can be created that generalize
behavior common among several classes.

4. Implementation. Whether one calls finalizing internal de-

tails of each class the last step in detailed modeling or the
first task of implementation isn’t important. However, at
this point a number of design issues that have been de-
ferred must now be decided. Decisions must be made
about the representation of each class’ ateributes or char-
acteristic properties. The choices are to derive an attribute
from other information or to store it as an instance vari-
able. New classes may be constructed to model attributes
if existing classes aren’t appropriate. Operations must be
decomposed into reasonable substeps and implemented.
Careful attention must be paid to ensure consistent, clear
message protocols. The fine details of abstract classes must
be developed and will be proven by the ease with which
their subclasses can be implemented.

. Integration. Another crucial point in any large application

comes when subsystems developed in relative isolation (af-
ter agreeing upon basic intersubsystem interactions and
publicly available services) are made to work together.
Test stub methods and objects are replaced by their appli-
cation stand-ins. It is at this stage that hidden assumptions
about services provided and/or expected patterns of usage
are uncovered and, once again, might need readjusting.

6. Validation. Once parts of the application are functioning,
the operation of classes and subsystems can undergo ex-
tensive validation. It is reasonable to test a class in isola-
tion (by developing test methods, adjusting its encapsu-
lated state, and testing how it responds). It is also
necessary to validate the overall behavior of major subsys-
tems in the actual working environment.

7. Cleanup. Once a subsystem has been implemented and
validated, it often merits further attention. A relatively
minor sweep through the classes and working code can
provide dramatic improvements in performance, code
clarity, and robustness. The goal of this phase is to provide
for better use and improved maintenance.

8. Generalization for broader utility. Once a subsystem is
implemented and works well, its general utility can some-
times be improved. This activity needs to be carefully
planned. Not all subsystems are significant enough or have
enough potential utility to merit this extra effort.

There is a separate time line for each subsystem under de-
velopment. Several major integration points can add subsys-
tem functionality in varying stages of maturity. Figure 1 shows
a time line for a hypothetical object-oriented application. The
time line for utility class development is intentionally missing.
In an ideal situation, utility classes would be developed along
with the subsystems that use them. They would need refining
throughout the project. In this hypothetical application, de-
velopers of one subsystem skipped over detailed modeling and
launched right into implementation. This might have been
due to an overeager implementation team or because the sub-
system was simple enough to not warrant much detailing.
Many subsystems were modeled in detail and passed through
most steps. However, only one subsystem is shown being gen-
eralized for even broader utility. Most subsystems (at least dur-
ing this time line) never were generalized.

Spec. Exp. Detail Impl. Velidate

Spec. Exp. Delail Imp. Validale Cleanup

Spec. Bxp. Impl. Validate

Subsystems
Spec. Exp. Detail Impl. Validate Cleanup Generalize

Spec. Exp. Detail Implement Validate

B
>

I I |

integrale integrate integrale

Time

Flgure 1. Time line for hypothetical object-oriented application.

THE SMALLTALK REPORT

WINDOWBUILDER

The Interface Builder for Smalltalk/V

... this is a potent rapid application development tool
which should be included in any Smalltalk/V developer’s
environment.”

- Jim Salmons, The Smalltalk Report, September 1991

Coorer B Perers, INC. (FORMEALY ACLMEN SOFTwanRE)

2600 Eu Camno Rear, Sue 609 Palo Auro, Caurornia 94306

The key to a good application is its user interface, and
the key to good interfaces is a powerful nser interface
development tool.

For Smalltalk, that tool is WindowBuilder.

Instead of tediously hand coding window definitions and
rummaging through manuals, you’ll simply “draw™ your
windows, and WindowBuilder will generate the code for
you. Don’t worry — you won’t be locked into that first,
inevitably less-than-perfect design; WindowBuilder
allows you to revise your windows incrementally. Nor
will you be forced to learn a new paradigm;
WindowBuilder generates standard Smalltalk code, and
fits as seamlessly into the Smalltalk environment as the
class hierarchy browser or the debugger.

Until March 31st, WindowBuilder/V PM will be available
at an introductory price of $295, $100 off the list price of
$395. WindowBuilder/V Windows sells for $149.95. Both
include an unconditional 60 day guarantee.

For a free brochure, call us at (415) 855-9036, or send us a
fax at (415) 855-9856. You’ll be glad you did!

Prone 415 B55 9038 Fan 415 B55 9856 Cowmruserve 71571,407

WHERE TO SPEND TIME AND EFFORT

Obviously, all classes are not of equal value or worth,.and
many classes in object-oriented applications are developed for
use, not reuse. But, to be used (by anyone other than the orig-
inal author) or enhanced in future maintenance releases,
classes still need to be engineered and implemented with care.
If an inadequate amount of time is spent in detailed modeling,
implementation and maintenance costs can skyrocket.

One reasonable estimate I've applied to scheduling is that
detailed modeling can take roughly twice as much time as ini-
tial exploration. This estimate was based on the assumption
that the designers had a good wotking knowledge of the prob-
lem area and weren’t trying to learn about the application re-
quirements as well as object technology. If the team has been
fairly disciplined about detailing the design model, then im-
plementation time can be shortened.

If the design team is relatively new to both the applica-
tion and object technology, it may be tempting to move
directly from an exploratory model right into implementa-
tion. This may be a reasonable strategy to get the team
thinking and implementing in objects. However, resist the
urge to bolt directly to implementation. Spend some time

(=<4

Perhaps only 20% of the application

classes are worth spending 80%

of the total time devoted to reuse
improvements.

b

reviewing the initial model. Try to assess high-leverage ar-
eas that are worth extra design time as well as areas where
the design still seems unclear. Given an inexperienced
team, the initial implementation may well turn out to be a
prototype. The application will more than likely need to be
redesigned and reimplemented following a more disciplined
approach once the basic model and application objectives
are understood.

Clearly state goals for the overall quality level expected
for each class and subsystem. Establish targets for each sub-

VoL. 1, No. 5: FEBRUARY 1992

11.

12.

B OBJECT-ORIENTED DESIGN

system for the amount of refinement and generalization war-
ranted. Perhaps only 20% of the application classes are
worth spending 80% of the total time devoted to reuse im-
provements. As work progresses on each subsystem, stop
and reassess progress shortly before and after each major
milestone, Examine the flaws and issues that have been un-
covered. Glossing over serious gaps in design or implementa-
tion will only delay later consequences when the cost of back-
tracking and fixing are higher.

It requires discipline on the part of management and the
design team to pause to measure progress and quality and to
plan for the next phase. Object-oriented software develop-
ment should not be an excuse for throwing out proven devel-
opment practices, even if the tools and techniques are a big
improvement. Here are some characteristics of a reasonably
well-thought-out design:

¢ Classes have been factored to do one thing well. Each
class has a singular, clearly stated purpose and the imple-
mentation follows the design intent. The alternative is
fewer classes that do several more things adequately.

Public interfaces to classes are straightforward and simple
to understand. In general, messages don’t have lots of ar-
guments. It's even better if using an object doesn't require
understanding complex modes, switches, or a complicated
internal state machine.

Methods have been decomposed into a several discrete
steps. These steps are implemented by sending messages to
the receiver (self) or delegating tasks to objects referenced
through instance variables. The altemative is lengthy,
long-winded methods.

e There are a number of classes having roles of manager, co-
ordinator, or information repository. They provide gener-
ally useful services that are straightforward and readily un-
derstood. These classes provide useful mechanisms,
infrastructures, and the “glue” for the rest of the system,
reducing the overall complexity of many other classes.

Class inheritance hierarchies may have been developed.
There may be abstract classes at the root of these hierar-
chies. The purpose of developing class hierarchies with ab-
stract classes is to abstractly specify behavior common to a
number of existing subclasses. The alternative is rather flat
inheritance hierarchies with little or no commonly shared
behavior. Future additions, extensions, and modifications
will be easier to make if time has been spent building
clean, understandable class hierarchies.

ENHANCING REUSE AND REDUCING
MAINTENANCE COSTS

Refining classes for reuse is analogous to optimizing code
for improved performance; neither happen by chance, but
well-planned and executed improvements can be quite dra-

matic. Here are some ways to improve existing classes and
subsystems:

e Isolate replaceable features and decompose algorithms into
subparts (which can be overridden by new subclasses).

 Encapsulate instance variables. Rewrite class code to call
accessing methods. This allows subclasses to change and/or
augment inherited instance variables without having to
rewrite superclass code.

® Spend time streamlining collaborations between subsys-
tems. Reduce the number of classes that are visible outside
the subsystem.

® Augment classes that worked adequately for one applica-
tion to increase their utility. Rework class hierarchies and
create both abstract classes to represent useful generaliza-
tions and new subclasses that represent useful specializa-
tions.

Improve the legibility and understandability of existing
classes. Simplify message protocols and make them more
consistent. Augment class and subsystem documentation
with discussions on intended usage, sample code, and call-
ing sequences. Add typical calling sequences to existing
code as comments.

No matter how great the Smalltalk development environ-
ment, it isn’t a replacement for planning, designing, and some
amount of discipline. Developing an object-oriented applica-
tion involves new ways of thinking and structuring solutions.
The biggest payoff comes when sound engineering practices
are added to the development picture. B

SUGGESTED READING

1. Moore, J. M., and S.C. Bailin. Domain analysis: framework for
reuse, in Domain Analysis and Software Systems Modeling, Ruben
Prieto-Diaz and Guillermo Arango, eds., [EEE Computer Society
Press, 1991, pp. 179 — 203.

2. Wirfs-Brock, A., and B. Wilkerson. Variables limit reusability,
Journal of Object-Oriented Programming 2(1): 34 — 40, 1990.

Rebecca Wirfs-Brock is the Director of Object Technology Services at
Instantiations and coauthor of Designing Object-Oriented Software.
She is the program chair for OOPSLA '92. She has sixteen years of ex-
perience designing, implementing, and managing software products.
During the last seven years she has focused on object-oriented software.
She managed the development of Tektronix Color Smalltalk and has
been immersed in developing, teaching, and lecturing on object-oriented
software. Comments, further insights, or wild speculations are greatly
appreciated by the author, who can be reached via email at rebecca@in-
stance.com or by mail at Instantiations, 921 S.W. Washington, Ste.
312, Portland, OR 97205.

THE SMALLTALK REPORT

ETTING REAL

Juanita Ewing

How to use class variables and class

instance variables

n last month's column, we discussed how classes that use
Iclass variables can be made easily reusable with a few
coding conventions that make it easier to create sub-
classes. However, class variables are shared by a class and
its subclasses. Often, this is inappropriate, and a subclass
needs to override inherited data. A better implementation
choice for a particular problem is often a class instance

variable rather than a class variable.

WHAT ARE CLASS INSTANCE VARIABLES?

Class instance variables are those that belong to a class.
Smalltalk systems rely on this facility. For example, each
class stores its name in a class instance variable. Just as
each instance has its own values for instance variables,
each class has its own values for class instance variables.
Unlike class variables, these variables are not shared by all
instances of a class.

Only class methods can reference class instance variables.
Direct references to these variables are not allowed from in-
stance methods. Instance methods that need the information
stored in a class instance variable must send a message to a
class method, which can return the requested information.

Class instance variables, but not their values, are inherited.
Since each class has its own values for class instance variables,
there is no sharing between a class and its subclasses.

In last month’s issue, we discussed how the convention
of using get and set methods for class variables, rather than

alListinterfap
iist (aLlstinterface
list
aLlstintertace

list

Listinterface
class variables

-— Imr—'—b aMenu

subclass

aCalculaledListinterface
list
calculationBlock

CalculatedLlislinterface

aCalculatedL
list
calculationBlock

Figure 1. Coding conventions Increase the reusability of
classes Implemented with class varlables.

direct references, made it easier to create subclasses by
minimizing the number of methods that must be over-
ridden. For example, in Figure 1 this made the class
ListInterface more reusable.

66

A common mistake is to use class
variables in places where sharing
between a class and its subclasses

is inappropriate.
pprop 9

However, a problem remained with the class ListInter-
face. Another class variable was created to provide a differ-
ent menu resulting in CalculatedListInterface having two
class variables, one of which (ListMenu) is not used. The
problem is that class variables share the data between sub-
class and superclass. However, we can avoid the sharing of
the class variable ListMenu through the use of class instance
variables.

This version of ListInterface, illustrated in Figure 2,
defines its menu with a class instance variable. The class

Lislinterface

aLlistinterfap
list (alLlstinterface
li

st

Alislinterface
list

listMenu | 4— aMenu

subclass

CaleulatedListinterface

aCalculatedListinterface
list
calculationBlock

llstMenu I —T—> aMenu

calculationBlack

Flgure 2. Subclasses have thelr own copy of class Instance variables.

VoL. 1, No. 5: JANUARy 1992

13.

14

m GETTING REAL

silence...

the end to your Smalltalk V troubles

» full mulli-user projeclt management

- source code version control

- aulomatic change documenting

- release packaging

- source code hiding

- code performance profiling

- change loy browser and reslorer

- inslaller with global renaming capability

oy pricing
ch dls R

Uil 6.3 von Canada. M3T 2Go
Phone. -

'ijigamma solutions

methods in ListInterface directly reference the class in-
stance variable. Instance methods cannot directly reference
listMenu, but instead send messages to the class to access
the value of listMenu:

ListInterface class
initdalize
“Create a menu.”

listMenu := Menu labels: #(‘add’ ‘remove’)

menu
“Return the menu.”

AlistMenu

ListInterface
hasMenu
“Return true if a menu is defined.”

~self class menu notNil

performMenuActivity
“Perform the mouse-based activity for my view.”

self hasMenu
ifTrue:[*self class menu startUp].

Now let’s create a version of CalculatedListInterface that
has a different menu. What does the developer need to do?
The developer does not need to define a new variable. Each
class has its own copy of the class instance variable listMenu.

Class methods in CalculatedListInterface simply need to as-
sign the appropriate menu to the class instance variable.
How many methods need to be overridden? Only one:

CalculatedListInterface class
initialize
. “Create a menu for calculated lists.”

listMenu := Menu labels: #(’add’ ‘remove’ “print’)

CalculatedListInterface has its own copy of the menu
stored in the class instance variable listMenu. All methods
that access this class instance variable work propetly in
subclasses because they reference the menu stored in their
own class. This version of CalculatedListInterface contains
only one method and uses all its defined variables, unlike
the previous version that contained a class variable from
the superclass.

Most classes, especially those created as stand-alone ab-
stractions, should use class instance variables so that new
subclasses can be created with minimal effort. A common
mistake is to use class variables in places where sharing be-
tween a class and its subclasses is inappropriate.

WHICH VERSION OF ListInterface IS

MORE REUSABLE?

The version of the class ListInterface that implements the
menu with a class instance variable is more reusable than
the version that uses a class variable. Fewer methods need
to be overridden to create a subclass with a different menu.
The version implemented with class variables requires a
new class variable, while the version implemented with
class instance variables does not.

Class instance variables are an important part of
Smalltalk because they provide an important mechanism
by which more reusable classes are created. All Smalltalk
dialects have class variables, but only Smalltalk-80-derived
dialects contain class instance variable support as deliv-
ered by the vendor. However, Smalltalk/V can be ex-
tended to support user-defined class instance variables
with just a handful of methods.

Whenever possible, serious developers of reusable
Smalltalk code should use the coding conventions discussed
in this article and class instance variables. Class variables
should be used only when there is an explicit need for shared
variables because they limit the reusability of classes. B

Juanita Ewing is a senior staff member of Instantiations, Inc., a soft-
ware engineering and consulting firm that specializes in developing and
applying object-oriented software prajects, and is an expert in the design
and implementation of object-oriented applications, frameworks, and
systems. In her previous position at Tektronix Inc., she was responsible
for the development of class libraries for the first commercial-quality
Smalltalk-80 system. Her professional activities include Workshop and
Panel Chairs for the OOPSLA conference.

THE SMALLTALK REPORT

Uls

Greg Hendley and Eric Smith

Objectworks\Smalltalk Release 4:

the graphics model

provides a platform-independent virtual image that pro-

motes complete portability of Smalltalk applications be-
tween various host systems. This level of portability is ob-
tained by isolating the virtual image from any information
about how input is gathered from, or output sent to, the host
system. In our last column, we explained how this trick is ac-
complished on the input side of the coin. In this column, we’ll
take a look at how the output side is handled.

ubjcctworks\Smalltalk Release 4 (R4) by ParcPlace systems

PRIMARY CLASSES

There are two primary classes used in displaying information
in R4: DisplaySurface and GraphicsContext. [t takes an instance
of each to conduct any sort of display operation. GraphicsCon-
text is the active component. Instances of this class are sent
messages to draw lines, set colors, fill rectangles, display text,
and so forth.

DisplaySurface is an abstract class representing an object
that can be drawn on. An instance of one of its subclasses,
ScheduledWindow, for example, is required to conduct any
drawing operations with a GraphicsContext. The DisplaySurface
is a passive partner in these operations, simply providing in-
formation to the GraphicsContext so that it may conduct the
operation propetly.

This arrangement provides a clean interface between the
virtual image and the host windowing system’s drawing primi-
tives. There is a single point of contact, GraphicsContext, re-
gardless of the number and type of DisplaySurfaces used. This
division of labor is like that seen in Digitalk's Smalltalk/V for
Presentation Manager and Windows. In Smalltalk/V, the
GraphicsMedium and GraphicsTool are the passive and acrive ob-
jects in V. At least in this respect, the two main varieties of
Smalltalk are moving closer together.

DISPLAYSURFACES

DisplaySurfaces are of three basic types: Windows, Pixmaps, and
Masks. Instances of all of these classes represent entities that
are external to Smalltalk. For example, examining the class
Window, we see that it holds very little information. Instances
of this class merely front for an entity within the world of the
host windowing system. It is this host windowing system ob-
ject that contains most of the real knowledge about what it
means to be a window under that system. All that the

Smalltalk object needs to know is how to identify the host
windowing system object so that it may be queried and manip-
ulated when necessary.

Under MS-Windows 3.0, this identification is easily ac-
complished by having instances of DisplaySurface maintain a
copy of the windows handle of the host windowing system ob-
ject that they represent. An instance of ScheduledWindow has
an instance variable that contains a Smalltalk representation
of the host window’s handle.

6

It is this host windowing system object
that contains most of the real knowledge
about what it means to be a window
under that system.

! 99

GRAPHICSCONTEXTS

DisplaySurfaces know how to create GraphicsContexts on them-
selves. The resulting object is an instance of GraphicsContext
that lkknows the medium, a DisplaySurface, on which it is to
draw. The two objects necessary to conduct display operations
Now exist.

Display messages may then be sent to the GraphiesContext
to either present information to the user or record it on a
Pixmap. The great advantage provided by R4 is that, no mat-
ter what system you are running on, XWindow System, MS-
Windows 3.0, Macintosh, etc., the protocol for displaying is
the same.

This is accomplished simply and elegantly with a relatively
small set of primitives that implement all of the operations done
to a GraphicsContext. Each of these primitives is implemented in
the virtual machine to call the necessary graphics functions to
accomplish the behavior defined for that primitive. Some of
these primitives are quite simple: merely converting parameters
and passing the call along to a single host windowing system
graphics call. Others, on some systems, will be quite complex:
performing a number of calculations to convert R4's idea of how
a particular operation is done into several calls to host window-

VoL. 1, NO. 5:FEBRUARY 1992

15.

16.

m Guis

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management with update transaction
control directly in the Smalltalk language

® Transparent access to Smalltalk objects on disk

Transaction commit/rollback

® Access to individual elements of virtual collections and
dictionaries

® Multi-key and multi-value virtual dictionaries with query by
key range and set intersection

® (Class restructure editor for renaming classes and adding or
removing instance variables allows incremental application
development

® Shared access to named virtual object spaces

® Source code supplied

Some comments we have received about VOSS:
“...clean ...elegant. Works like a charm.”

-Hal Hildebrand, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability.”

-Raul Duran, Microgenics Instruments

o VOSS/2B6 $595 ($375 to end of February 1992) + $15 shipping.

[0 g 1C VOs5/Windows $750 (475 to end of February 1992) +515 shipping.
—— &/ Quantity discountsavailable. Visa, MasterCard and EuroCard accepted.
A RTS Logic Ans Lid. 75 Hemingford Raad, Cambridge, England, CB1 38Y
22 Y TEL:+44 223212392 FAX: 444 223 45171

ing system functions. Since all of this is done in the virtual ma-
chine, the Smalltalk programmer never has to see it.

THE MECHANICS

What actually happens when a graphic operation on a Graphics-
Context disappears into a primitive? Let's lool at the case under
MS-Windows; the story on other systems is likely to be analo-
gous. First, it seems safe to assume that the Smalltalk operation
is eventually broken down into one or more calls to the graphics
and windowing functions in the MS-Windows libraries.

Those familiar with MS-Windows will realize that no
graphics operations can be done without having a handle
for a device context (HDC). The HDC identifies, within
MS-Windows, a complete graphics state for drawing on a
particular display medium, such as a printer or a window.
Naturally, the first task for the primitive that implements a
particular operation for GraphicsContext is to obtain an HDC
for the medium of that GraphicsContext. An HDC can be
created by using the handle stored in the GraphicsContext’s
medium.

If the HDC had to be created from scratch, as opposed to
cached, it would then have to be programmed with the patts
of the state of the GraphicsContext that are relevant to the cur-
rent drawing operation. If the operation involves drawing
lines, then the line width of the HDC must match that of the
GraphicsContext. After the HDC is brought into compliance
with the GraphicsContext, the MS-Windows calls that do the
actual drawing would be called.

A CLEAN SEPARATION

In our last column, we explained the separation between the
host system-specific aspects of input handling and the virtual
image. Like the handling of information display covered
above, by the time input gets to code in the virtual image, it
has been normalized to a standard representation that is the
same no matter what platform Smalltalk is running on. With
the separation between the Smalltalk developer and the host
windowing system’s display mechanisms, the independence of
the virtual image from the host environment is complete.
This model allows the Smalltalk developer to work in the
same image no matter what system he or she is working on. It
also allows a particular virtual image to be moved from one
kind of machine to another and to run without modification.

This would be enough to satisfy the goals of most develop-
ers. However, the lean design of the relationship between the
virtual image and the host windowing system provides even
more options. As mentioned above, the main point of contact
between the virtual image and the host’s display mechanisms
is the class GraphicsContext. In the last issue, we saw that on
the input side, the primary point of contact is the InputState.
Yet, suppose we wanted to display information on a device not
supported by R4 or by the host windowing system. All that is
required is to provide a subclass of GraphicsContext that knows
how to draw on that device. The rest of the code in the image
will then be able to use that device. If input must be drawn
from an alternate source, such as a serial port, then a version
of InputState could be created that maps the serial input into
the input event structures used by Smalltalk. Beyond that
translation, no other classes need know that the input is not
coming from the usual source.

In a recent experiment, subclasses of InputState and Graph-
iesContext were created to allow the Smalltalk user interface
to be accessed through standard ASCII terminals. Once the
differences in input and output models were hidden in these
subclasses, the rest of the Smalltalk environment proved
quite robust; very little other code was necessary to get win-
dows up and running on an ASCII terminal. That most of
the code in the interface framework works well in such a rad-
ically different environment, with most of the effort involved
in changing only two classes, is a testament to the elegant de-
sign of Release 4. W

Grreg Hendley is a member of the technical staff at Knowledge Sys-
tems Corp. His OOP experience is in Smalltalk/V (DOS),
Smalltalk-80 2.5, Objectworks\Smalltalk Release 4, and
Smalltalk/V PM.

Eric Smith is @ member of the technical staff at Knowledge Systems
Corp. His specialty is custom graphical user interfaces using Smalltalk
(various dialects) and C.

They may be contacted at Knowledge Systems Corp., 114 MacKenan
Dr., Cary, NC 27511 or by phone at (919) 481-4000.

THE SMALLTALK REPORT

OOK REVIEW

Reviewed by Martin Osborne and Ann Cotton

CoNCEPTS OF OBJECT-ORIENTED

PROGRAMMING

by David N. Smith
McGraw-Hill, New York, 1991

programming (OOP) and now you want to see what all

the fuss is about? Or are you faitly new to object-oriented
programming and wondering if you have the concepts
straight? Or are you an object-oriented programming expett
tired of trying to explain it to your friends over a cup of coffee?
If you answered yes to any of these questions, then Concepts of
Object-Oriented Programming, by David N. Smith, may be the
book for you. Here, the basic ideas and terminology of object-
oriented programming are explained and illustrated in a clear,
concise, and imaginative manner to the reader who is familiar
with the basic concepts of procedural programming. There are
a number of concepts associated with object-oriented pro-
gramming that the book does not discuss. Among these are
graphical user interfaces, sophisticated programming environ-
ments, object-oriented analysis, and object-oriented design.
The book also does not discuss advanced OOP concepts such
as delegation, double dispatching, and multiple inheritance.

Mr. Smith is highly qualified to write about OOP. He is a se-
nior programmer and researcher at IBM’s Thomas]. Watson Re-
search Center and has been active in OOP since 1983. He isa
founding member of the organization that sponsors OOPSLA,
the major yearly conference on OOP. Mr. Smith credits the
book’s origins to a challenge from a friend—give a one foil presen-
tation of OOP. He has never managed to do it, but he has given
day-long tutorials on OOP at several major ACM conferences,
with this book as the eventual outcome. The slow evolution has
allowed Mr. Smith to perfect his presentation of the subject.

In the paragraphs that follow, we will try to give an
overview of the book. Brevity will sometimes lead to oversim-
plification. We will give our opinions at the end.

Mr. Smith writes, “There are many books on object-
oriented programming for the professional programmer or de-
signer who wants in-depth knowledge...[but].._there are no
books on object-oriented programming for those that simply
want to know what it is all about; that just cover the impor-
tant ideas without trying to make the reader into a program-
mer or designer of object-oriented systems.”

Object-oriented programming has to be understood as a
new way of thinking about programming, and its methods are
radically different from those of procedural programming. Pro-
cedural programming began at a time when small programs
resided in core-processed data on cards, and the resulting dis-

H ave you been hearing a lot of hype about object-oriented

tinction between data and code remains a part of today's most
popular programming languages. Be warned, object-oriented
has become a fad term that vendors use freely “to stir some
spice into otherwise ordinary products.”

Object-oriented programming systems have four inter-
related characteristics: encapsulation, inheritance, polymot-
phism, and typeless variables. In simpler language: data hid-
ing, a hierarchy of object definitions, multiple routines with
the same name, and any variable can hold anything. (If your
favorite object-oriented programming language does not have
all of these features, you might enjoy arguing about the defini-
tion.) Throughout the book, the language Smalltalk is used to
illustrate the concepts of object-oriented programming. Even
people who eventually intend to use a hybrid language such as
C++ should start with Smalltalk. However, the intention of
the book is to introduce the concepts of OOP, not to train
programmers.

Chairs are familiar objects, and defining one in Smalltalk
introduces the notions of instance variables and methods. In-
stance variables are data, and methods are code; together they
combine to form objects. However, code in Smalltalk differs
greatly from code in languages such as C and Pascal. A simple
sort procedure written in Pascal is only good for sotting one
kind of thing, say an array of integers. Sotting an array of real
numbers would require another procedure. In Smalltalk, a
method implementing the same algorithm is much more pow-
erful. It can sort any collection of things, provided that the
things can be compared one to another.

Objects are organized in a hierarchy of classes. Because of
this hierarchy, they can inherit instance variables and meth-
ods from each other. Inheritance can be used in simple ways
or in ways that are subtle and complex {consider inheritance
with super and self), all of which are illustrated with concise
examples and diagrams. The concept of inheritance is ex-
tended “to include abstract classes which are never intended
to produce real objects but are used to provide characteristics
to be inherited.”

The design and implementation of three applications illus-
trates the real point of OOP. Although small and simple, the
applications incorporate a number of the techniques used in
designing a good hierarchy of classes and will be of interest to
experienced OOP programmers as well as beginners. Design
and implementation are seen as being iterative and consist of

Vou. I, No.5: FEBRUARY 1992

17.

18.

H Book ReviEw

Smalltalk/V users: the tool
for maximum productivity

pe
fndh B2

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates,
° Keep a history of previous versions; restore them with
a few keystrokes.

° View class hierarchy as graph or list.

° Print applications, classes, and methods in a formatted
EKQIL inated and commented.

°Fi into applications and merge them together.

° Applications are unaffected by compress log change

.and many other features..

Class

classes |

Deleted classes i
rowsers../ [Appiicafion
Yam < Deleted methods |
Image History

Utllitles.. —— Application printing | and more..
CodeIMAGER™ V286, VMac $129.95

& VWindow $249.95
Shipping & handling: $13 mail, $20 UPS, per copy
Diskette: D 3z (15w
SixGraph™ Computing Ltd.
E formerly ZUNIQ DATA Corp.

2035 Céte de Liesse, suite 201 .

PH Montreal, Que. Canada H4N 2M5

ﬁﬂ_—- Tel: (m&m 1331, Fax: (514) 956-1032
sareg. Inbmk of Si Camputing Lul

SmnllulHVblnl.lnMufDIdnlk.

L]

defining the hierarchy, protocol, and state of the classes. It is
fine to “do what you know how to do...[and]...see if what you
just did suggests additional things to do.”

Readers who might have been wondering why message and
class were not listed as fundamental OOP concepts are told
that “the idea of message sending...is a result of other ideas...
[and that]...classes are just one way to implement hierarchies.”
The benefits of object-oriented programming are code reuse,
localization of change, design assistance, extensibility, and
faster development. For readers who want to pursue OOP fur-
thet, there is a guide to a few good books, publications, con-
ferences, and software packages.

A reviewer’s opinion of a book is bound to depend on her/his
background and interests. With this in mind, you are about to
receive two sets of opinions. This book is Ann's first exposure to
OOP. She has worked as a programmer/analyst on university in-
formation systems since 1981 and is cutrently a database admin-
istrator. Martin has been involved with OOP for two years. He
teaches computer science, including courses on QOP.

In Ann’s opinion, the book is well organized, but the writing is
awkward at times. All the concepts are understandable, although
sometimes not without repeated reading. Early sections of the book are

easy to read, and later ones, more challenging. Technical savvy and a
willingness to wrestle with the matetial are required. She feels that
Concepts of Object-Oriented Programming has provided her with a good
understanding of OOP. However, the subtlety and complexity of some
of the examples mise concem that considerable experience with OOP
is required before one can think in an object-oriented way and create
good object-oriented designs and manageable code. This leads her to
question the claims of increased productivity. Skepticism aside, Ann
believes that OOP is promising and is wondering how she can take ad-
vantage of it in her environment.

Martin wishes that this had been the first book he had read
about OOP. If it were, he would have avoided a lot of his ini-
tial confusion about OQOP. He teaches a class on Smalltalk to
students who have had a year of programming experience and
he thinks the book provides an excellent checklist of the con-
cepts the class should cover with good examples of how to
cover them. He feels that the book overemphasizes the sub-
tleties and complexities of OOP and thus misleads a new-
comer into overestimating its difficulties. While all the con-
cepts illustrated are important, they usually do not occur in
such density in typical systems. The benefits of OOP stated by
the author are ones that most people would agree with and
pethaps would add some of their own to. Martin enjoyed Ap-
pendix B, which discussed the problems of procedural pro-
gramming languages. While some might argue that not all the
problems related would apply to Ada or Modula, or even other
languages when used with thought and care, the list of prob-
lems is enough to make one wonder why we continue to pro-
gram in these languages. But perhaps the current state of af-
fairs is only temporary, and soon most of the major languages
will be object oriented or, at least, object enhanced.

We wonder if Mr. Smith found it difficult to decide what
to include and exclude, and some readers are bound to wish
for a little more of this or a little less of that, However, all in
all, the book is excellent and receives two enthusiastic
thumbs up. B

Ann Cotton, after reading Mr. Smith’s book, has been introduced to
object-oriented programming. Currently, she is the Database Adminis-
trator at Western Washington University, Bellingham, Washington.
Her interests include relational database technology and computer ser-
vices. She can be reached at (206) 676-3826 or wis.uucp\!ann@hen-

son.cc.wwu.edu,

Martin Osbome has been involved with object-oriented programming
and Smalltalk since 1989. He works in the Department of Computer
Science at Western Washington University, Bellingham, Washington,
where he teaches classes on object-oriented programming, information
systems, and software engineering. His interests include object-oriented
programming, visual programming, and software development aids. He
can be reached at (206) 676-3798 or martin@cs.wwu.edu

THE SMALLTALK REPORT

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested in being included in this feature should send press releases to our editorial offices, Product Announcements Dept.,
91 Second Ave., Ottawa, Ontario KIS 2H4, Canada.

Dome Software Corp. has announced the formation of the
Smalltalk Metrics Project. The project’s goal is to establish a body
of quantitative information about design and development in
Smalltalk and to create a better understanding of how it is used in
production applications.

Dome has defined a variety of ways to measure programmer
activity, program complexity, and component reuse. It has cre-
ated a Smalltalk program that can compute these measures for a
specific system. The program also collects information from the
system’s developer, including the size and background of the de-
velopment team, the level of experience of its members, and the
methodology used to develop the system.

The company is enlisting the cooperation of other firms by
asking them to use Dome’s metric program to analyze their own
Smalltalk-based systems and report the results to Dome. By
gathering data for a wide variety of Smalltalk systems, the com-
pany hopes to distill a much clearer picture of how Smalltalk is
being used. Companies using Smalltalk to develop production
systems are invited to request an information packet from Mr.
Wilmes at Dome.

For more information, contact Dome Software Corp., 655 W. Carmel Dr.,
Carmel, IN 46032; (317) 573-8100

ArchiText, the language-driven document constructor designed
to write and maintain structured documents, is now also available
for Smalltalk and C/C++.

Developed by Interactive Software Engineering, ArchiText is
one of the first products ever constructed using purely object-
oriented programming techniques and is written entirely in the
Eiffel object-oriented language.

ArchiText is a powerful high-level tool for manipulating and
viewing structured documents, such as programs, specifications,
and technical or administrative reports. It was designed to relieve
computer users from the need to worry about language structures.

A unique feature of ArchiText is its ease of adaptation to any
context-free language. To build an ArchiText editor for a specific
language (programming language, design language, or even the
description of the structure of standardized technical documents),
it suffices to describe the language’s grammar in a simple nota-
tion called Language Description Language (LDL). The standard
delivery of ArchiText includes basic LDL grammars for Eiffel, Ada,
Pascal, C/C++, and Smalltalk.

ArchiText features a graphical user interface based on the Mo-
tif GUI standard that makes it quick and easy to manipulate com-
plex structures.

For more information, contact Burghardt Tenderich, Interactive Software
Engineering, Inc., 270 Storke Rd., Ste. 7, Goleta, CA 93117; (805) 685-
1006; fax (805) 685-6869.

ParcPlace Systems announced that it will support Information
Builders’ (IBl) Enterprise Data Access/SQL product family.

EDA/SQL provides direct access to information in corporate
databases including IBM‘s DB2 and IMS, Sybase, Oracle, Informix,
and IBI. ParcPlace Systems intends to extend its suite of Object-
works\Smalltalk Portable Objects (object-oriented class library) to
provide a common interface for applications that use IBl's
EDA/SQL product.

ParcPlace Systems also announced that the FACETS\4GL
fourth generation language (4GL) application development tool
for Objectworks\Smalltalk now includes an interface builder.
FACETS\AGL 2.0 enhances the capabilities of traditional 4GLs
with a graphical user interface (GUI) builder and provides a migra-
tion path from 4GLs to object-oriented technology. FACETS\AGL
is developed by Reusable Solutions and marketed by ParcPlace
Systems.

For further information, contact ParcPlace Systems, 1550 Plymouth St.,
Mountain View, CA 94043; (415) 691-6700.

Tigre Object Systems, Inc. announced a new agreement with
ParcPlace Systems. Tigre now bundles the Tigre Programming
Environment with ParcPlace’s Objectworks\Smalltalk object-
oriented language. The Tigre Programming Environment, which
uses Objectworks\Smalltalk as its scripting language, lets devel-
opers create state-of-the-art graphical user interface (GUI)
programs that run, without porting, on Macintosh Il, Microsoft
Windows 3.0, and all popular UNIX workstations.

For further information, contact Tigre Object Systems, Inc., 3004 Mission
St., Santa Cruz, CA 95060; (408) 427-4900.

Synergistic Solutions, Inc. announced additional platform support
for Smalltalk\SQL, the portable database interface for Smalltalk.
The product works in conjunction with ParcPlace Systems Object-
works\Smalltalk to enable graphical user interface (GUI) applica-
tions to access information stored in relational databases. Direct
database support is currently available for the Sybase and Oracle
databases. DB2, Informix, Ingres, Rdb, and other databases may
be accessed through a variety of gateway products.

For further information, contact Synergistic Selutions, Inc., 63 Joyner Dr.,
Lawrenceville, NJ 08648; (908) 855-7634.

InfoWare Version 1.0 is a database connectivity package that pro-
vides an object-oriented interface to relational databases for ap-
plications written in ParcPlace Systems' Objectworks\Smalltalk.
Applications built with InfoWare are able to access relational data
in the form of objects. The applications are written entirely in
Smalltalk, instead of the embedded SQL of the host server, pro-
viding the developer with a uniform object-oriented interface and
portability across a variety of RDBMS servers.

For further information, contact Ensemble Software Systems, Inc., 555
Bryant St., Ste. 347, Palo Alto, CA 94301; (415) 325-2773.

VoL. 1, No. 5: FEBRUARY 1992

19.

20.

WHAT THEY'RE SAYING

ABOUT SMALLTALK

Excerpts from industry publications

...As far as object-oriented technology goes, [Bob] Libutti [pro-
gramming systemns director of market strategy with IBM] said
that IBM was considering using Sapiens tools internally in sev-
eral industry areas. And prior to its discussions with Sapiens it
has been talking to DigiTalk. Indeed, SmallTalk is used exten-
sively in IBM—it was used to build the new Cross System Prod-
uct, CSP, and was also used by Intersolv Inc. to build its prod-
uct line for OS/2. Libutti said that IBM is making a major
investment in object-oriented technology. This is all well and
good except that IBM's Repository is based on the Entity-Rela-
tionship model and not the object-oriented model. However,
Libutti says that IBM is extending the Repository to cope with
object types, although when pressed said he didn’t know when
these extensions will appear...

IBM sets the record straight on misperceptions of
systems application architecture, Unigram X, 11/18/91

...Many people hear the term object-oriented and immediately
think of a programming language like Smalltalk, C++, or Eiffel.
These languages all provide language-level abstractions to cre-
ate and manage hierarchies of communicating objects that
serve as the implementation of user requirements. Some very
powerful programming environments have been developed
that support these languages by producing special-purpose
editors, browsers, and debuggers. These make it easy to deal
with complex collections of code. They're bad because they
tend to focus on implementation of language issues at the ex-
pense of higher-level design or requirements issues...

Languages like C++ and Eiffel support aggregation and in-
heritance, and consequently are considered true object-ori-
ented languages. Ada supports aggregation, but not inheri-
tance, leading object-oriented purists to call it an object-based
language. Still, it's possible to build object-oriented systems
with Ada...

Design applications: building a case for object-oriented
technology, Read Fleming and Lou Mazzucchelli,
Electronic Design,11/7/91

...Requirement views, context specification, event-object parti-
tioning, environment modeling, design templates, method hier-
archies, and a rapid system development strategy are all part of
a comprehensive object-oriented approach to system develop-
ment. All these elements evolved from structured techniques
into a significant number of today’s OO methods. These meth-
ods in various forms have been used and written about exten-
sively for the last ten years. Other concepts required by object-
oriented development are readily available from entity-
relationship analysis, Jackson'’s data-structure oriented ap-
proaches, and the Smalltalk language. These sources for object-
oriented methods have been around for a long time as well. As
with elements of the structured techniques, method developers
have been incorporating those ideas into what are now known
as OO methods. This is not to say that every last issue in object-
oriented development methods has been resolved, but the evo-
lution to revolution question is rendered moot given that the
structured techniques have already spawned OO methods.

Instead of revolution, the real issue is revelation. For a variety of
reasons, many in both the object and the structured world have
slept through the evolution of OO methods. For all of them, |
hope this article is a wake-up call.

Debate: evolution vs revolution: should structured methods be
objectified?, John Palmer, Object Magazine, 11-12/91

...In pure OOP systems, such as Smalltalk, memory allocation
and deallocation [are] handled by the language. In C++, as in
C, the programmer is responsible for memory management.
This complex task is a common source of bugs in C programs.

Techview: strengths and weaknesses of C++,
Larry Seltzer, PC Week, 12/2/91

...When | learned about object-oriented programming using
Smalltalk, | was preoccupied by the picayune details of the lan-
guage. | spent the first six months understanding the subtleties
of the syntax, learning the class libraries, studying the language
semantics and implementations, and mastering the program-
ming environment. At the end of that first half year, | had a
solid grasp on all the little issues of an object language, but |
still knew nothing about objects. | had been reimmersing my-
self in issues familiar to me from my days as a procedural pro-
grammer. | focused on the non-object-oriented aspects of my
object-oriented language to avoid the uncomfortable feeling
that | didn’t know what was going on. By clinging to my old
ways of thinking, like a nervous swimmer to the side of the
pool, | was preventing myself from reinventing my perspective.
It was only through patient and expert tutelage that | was able
to break free of my old habits and begin to make use of the
power in objects. | now know that learning objects needn‘t be
frightening or confusing...If you're willing to trust yourself to
learn the syntax and programming environment later (after all,
you've probably learned several of each already), you can be
doing objects in a few hours, too...

Think like an object, Kent Beck, UNIX Review, 10/91

...Traditional or “classical” object-oriented languages have cho-
sen a funny spot in the spectrum of possible object-oriented
languages. On the one hand, they have taken the model of au-
tonomous objects too far—we could justify calling languages
like Smalltalk object-obsessed languages. On the other hand,
the designers of object-oriented languages typically have not
taken the object-oriented model seriously, and so CLOS is one
of the few languages defined as an object-oriented program...

Metaobject protocol: generic functions and methods,
Nick Bourbaki, Al Expert, 10/91

...The Eiffel language is small compared to others, allowing a
user to understand and use the entire language instead of a
subset. At first glance, it looks like a hybrid between Smalltalk
and C. That is not to say the language is a combination of
these, but simply that the code will look like a conglomeration
of those language's styles and commands. Programming in Eif-
fel requires an excellent grasp of classes. The terminology used

THE SMALLTALK REPORT

in Eiffel is a collection of terms from other object-oriented lan-
guages, which may lead to some confusion. Classes are defined
rigorously using the Eiffel language...Learning Eiffel is a little
unnerving at first. Experience with other OOP languages will
certainly help, but a fair amount of learning is still
involved...The difficulty is not the language itself, but the cor-
rect use of it. Eiffel is well-defined and, once the concepts are
understood, is quite logical. However, a new user can antici-
pate many days of work before feeling comfortable with it.
Once mastered, though, it is easy to remain abreast of the lan-
guage due to its small size and logical layout...

Off the shelf: OOP languages, Tim Parker, UNIX Review, 10/91

...Embedded systems development using Smalltalk is no longer
a research curiosity. Real systems are being shipped today
which have used the technology described...As microproces-
sors continue to improve and memory becomes even cheaper,
the complexity of embedded applications will undoubtedly in-
crease. As this happens, the ability to meet customers’ expec-
tations and management's deadlines with traditional tools and
methods will decline. Using Smalltalk to develop embedded
systems is not a panacea. Developing complex systems will
never be easy. But developers who use object-oriented pro-
gramming systems such as Smalltalk will be engineering high-
quality solutions faster and cheaper than their competitors.

Smalltalk and embedded systems, John Duimovich and
Mike Milinkovich, Dr. Dobb’s Journal, 10/91

..[BT North America's Mike] Roberts says: “C++ combines the
expressive power of object-oriented languages like Smalltalk
with the efficiency and low-level control of C. Its wide dynamic
range lets you think of objects at abstract levels, then shove
bits around when you need to. That's a very attractive combi-
nation...Smalltalk was tempting...I like its support of rapid pro-
totyping and hypertext.” But the hypertext editor will stand or
fall on the basis of its user interface, and Roberts discovered he
couldn’t live with Smalltalk’s. “The object hierarchy that comes
with Smalltalk includes a complete graphical user interfacel,]...
which is very convenient if that's the interface you want. But I'm
fussy and Smalltalk’s fussy, and our fussiness didn‘t overlap. |
found that to make the changes | wanted to make, | had to
dive into the object hierarchy and rewrite code at a very low
level. If you're doing that, you might as well be using C++. You
aren‘t enjoying the benefits of Smalltalk’s reusable, extensible
classes anymore”...C++ is an important tool, Roberts says, but
it isn't a panacea. "It is naive to expect that C++ subclass reso-
lution will be useful for all message-routing [in a message-
based system]...It is not sufficient for generalized dispatching.”
Roberts has had to invest significant effort in writing message
decoding and dispatching functions for his project...

Pushing the envelope, J.D. Hildebrand, UNIX Review, 10/91

...At the higher layers, the object orientation of the system is
paramount. Designing a PenPoint application is similar to creat-
ing one for the Smalltalk environment, in that you instantiate

ImageSeft

AM/ST" ===

The original and still premier
% '| application manager for

| o Smalltalk/V™
A A, RO e
M/ST, developed by the SoftPert [EEainkrn ;) e 8 ChangeBrowser. As an additional
Systems Division of Coopers & iy Pt ot * f1 tool available for Smalltalk/V PM
e e #| and Smalltalk/V Windows, Change-
oanage g, compe, o nn- e | e B Srovsc suporsbrowang o e
ed applications, The AM/ST Appli- ; H Smalltalk/V change log file or any
cation Browser provides multiple 4 file in Smalltalk/V chunk format.

views of a developer's application. [

AM/ST defines Smalltalk / V applica-
tions as logical groupings of classes and
methods which can be managed in source
files independent of the Smalltalk /V
image. An application can be locked and
modified by one developer, enabling other
developers to browse the source code. The
source code control system manages multi-
ple revisions easily.

Coopers

&Lybrand

The addition of AM/ST to the
ImageSoft Family of software develop-
ment tools enhances and solidifies
ImageSoft’s position as —

“The World’s Leading Publisher
of Object-Oriented Software
Development Tools.”

1-800/ 245-884Q
ImageSeft

Publisher of Development Tools

All irademarks are the property of their respective owners. ImageSoft, Inc., 2 Haven Avenue, Port Washington, NY 11050 516/767-2233; Fax 516/767-9067; UUCP address: medhup!image'info

VoL. 1, No. 5: FEBRUARY 1992

21.

22.

B WHAT THEY'RE SAYING ABOUT SMALLTALK

and/or subclass the components of your app from existing
classes in the application framework...

A technical overview of PenPoint, R.V., Dr. Dobb’s Journal, 11/91

...[Robert Carr, cofounder of GOJ:” What we mean when we
say that PenPoint is object-oriented is that the programming
interfaces are implemented as a sequence of objects that you
can send messages to, and that these objects are instances of
classes, and classes can be subclassed, thereby modifying
their behavior, and of course the objects tend to encapsulate
information and behavior and hide the actual data represen-
tation from the folks who want to communicate with them. So
| think anybody who has studied what I'd call “true object ori-
entation” in the Smalltalk sense will find that when we talk
about object orientations that's what we mean...
A conversation with Robert Carr, part I,
Michael Swaine, Dr. Dobb’s Journal, 11/91

...How should analysis and design be used with object technol-
ogy? The answer is: incrementally, in conjunction with actual
development, using separate techniques for each layer of a lay-
ered system architecture....Instead of designing an entire
monolithic system on paper before beginning implementation,
sketch out a skeleton systemn to get you started, then code that
much and see how it works. What you learn from the imple-
mentation is bound to improve the design. Then take that im-
proved design, sketch out an incremental set of functionality,

and roll that into the code. The malleability of object technol-
ogy makes this incremental approach to development far more
feasible that it was with conventional technology. In addition,
tons of paperwork can be reduced to mere pounds, the prod-
uct rolls out faster, and the overall design is usually superior be-
cause it is proven in the field and enhanced in stages rather
that being thrust upon end users in the conventional “big
bang” fashion...

Easing into objects: redefining analysis & design,

David A. Taylor, Object Magazine, 11-12/91

..."[object-oriented programming is) the difference between
building a castle out of sand and building a castle with Legos,”
says Roger Heinen, Apple's vice president of Macintosh Soft-
ware Architecture...
Software industry is “object-oriented,” Rory J. O’Connor,
Huntsville Times, 11/10/91

...Developers using object CASE tools without the prerequisite
training, practice, and a fundamental understanding of object
will face the same failure as the inexperienced doctor operating
on patients using state of the art equipment. Tools alone can-
not save the patient!

Point/Counterpoint: using CASE tools without the methodology,

the developer’s perspective, Kathleen Meyer,
Object Magazine, 11-12/91

The Smalltalk Report

Don’t Delay! Become a Charter Subscriber Today!

Sampling of articles to appear:

B Introducing Smalltalk into Your Organization

B Designing and Managing Smalitalk Class Libraries

B Effectively Managing Multiprogrammer Smalltalk Projects
B Metrics for Measuring Smalltallk Systems

M Organizing Your Smalltalk Development Team

B Metalevel Programming

B Smalitalk in the MIS World
B Smalltalk as a Vehicle for Real-Time and Embedded Systems
B Teaching Smalltalk to COBOL Programmers
M Interfacing Smalltalk to an SQL Database

B Realizing Reusability

1 Yes, enter my Charter Subscription at the term indi-
| cated. This is risk-free offer. | can cancel at any time and get
i a refund of the unused portion of my subscription.

For faster service, call 212.274.0640 or fax 212.274.0646.

Make chechs payable to The Smalitalk Report in US dollars drawn on a
US bank. Pleas allow 46 weeks for delivery.

I
1

i I year (9 issues) 2 years (18 issues)
1 Q%65 Domestic 2$120
1 Q%90 Foreign (includes air service) [$170
1

1

i O Check enclosed Q Bill Me

i 0 Charge my [Visa 0 MasterCard

! Card # Exp. Date

! Signature

|

I

1

1

]

I

1

L

__ 4
i

Name :
1

Title :
1

Company :
i

Address i
1

City State Zip !
i

Phone E
1

i

Rewrnto: 'The Smalitalk Report !
Subscriber Services, Department SML !

PO Box 3000 !

Denville, N] 07834 i

D28G !
__ -

THE SMALLTALK REPORT

Fiot

VERSANT

Manages...

u.s‘ing an obhject DBMS
with today’s object-
oriented applications can
deliver to you dramatic
performance improve-
ments, significant reduc-
tions in code, simplified
application design and

unprecedented power and

flexibility for managing

0BJECTS

VERSANT is the preeminent object

DBMS that gives you:

= High-Performance
Object Management
» EHficient Object Level Locking
* Object Level Event Natification
» Object Containers
» Automated Object Migration
 User Defined Object Versioning
» Object Check-out and
Check-in
* Runtime Changes to
Ohject Classes
* Bi-Directional Object Linking
» |nterlaces for both C++ Objects
and Smalltalk Objects

Object Technology

And if your applica-
tion needs to perform in
the demanding environ-
ment of distributed,
heterogeneous comput-
ing— VERSANT is also
the natural choice!

To find out why
hundreds of users at

leading corporations

orldwide have chosen

your application objects.
- Butforyouto get these be
‘need an ODBMS architected
.. objects throughout. .~

SHOOT-OUT

WINDOWS AND (/2
PROTOTYPE T0 DELIVERY.
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V, you don't.

Start with the prototype. There’s no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It’s
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you'e writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just

$499.95.

So take a look at
Smalltalk/V today. It’s time to make

that prototyping time productive.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their respective holders.

Digitalk, Inc., 9841 Airport Blvd, Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO'S TALKING

HEWLETT-PACKARD NCR
HP bas developed a network trouble- NCR bas an integrated test program develop-
shooting tool called the Network Advisor. ment environment for digital, analog and
The Network Advisor offers a compreben- mixed mode printed circuit board testing.
sive set of tools including an expert system,
statistics, and protocol decodes to speed MIDLAND BANK
problem isolation. The NA user intetface is Midland Bank built « Windowed Technical

built on a windowing system which allows Trading Environment for currency, futures
multiple applications to be executed and stock traders using Smalltalk V.
simultaneously.

KEY FEATURES

I Worlds leading, award-winning object-
oriented programming system

M Complete prototype-to-delivery system

B Zero-cost runtitne

M Simplified application delivery for
creating standalone executable (EXE)
applications

B Code portability between Smalltalk/V
Windows and Smalltalk/V PM

@ Wrappers for all Windows and OS/2
controls

M Support for new CUA 91 controls for
05/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

B Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive samples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

B Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

”q Hﬁu[jﬁi

EED mDmDDDEE-
0o
podi

This Smalltalk/V Windows application
captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications—and they're portable to
Smalltalk/V Windows.

	By Article Title
	A case in point
	A proposal for change management in Smalltalk
	Concepts of Object-Oriented Programming
	How to use class variables and class instance variables
	Objectworks\Smalltalk Release 4: The graphics model
	The phases of an object-oriented application

	By Author Name
	Cotton, Ann
	Ewing, Juanita
	Hendley, Greg
	Osborne, Martin
	McKenna, Jeff
	Rovira, Charles A.
	Smith, Eric
	Wirfs-Brock, Rebecca

	By Topic
	Book Review
	Getting Real
	GUIs
	Object-Oriented Design

