
February 1992 Volume 1 Number 5

F

6

C

9

1

1

D

1

1

20

m r.mth,,OintOf.i.wOfdesi,nn,.~.,.Ohie.t.ri.nt,dt,.hni,.,s,ain
:, considenble advantage by xeduc,ng the semantic dtsmnce between the use,
,r
By Jeff McKenm

Contents

eat ureslAtiicles

,, and the programmer. Ohlects gi”e uz a way to talk about mfwarc ming the

w same vmah”la~ as the end “ser.

[’erha!.~ the saint tech”iq”e of ~n”olving the user can be employed when considcri”g

the problems of change management during object-oriented s“ftware de”el”pment, ln this

case, the user is the software developer,

Good object-oriented programmers commonly use two distinct phases of development,

The first is a functional expansion phase and the second is a “clea””p,’ or comolidation

phase. mat I propose is that a desirable change management system wa”ld achowledge

and suppon both of these phases. I think of these phases as natural tvents. ~ey can be

compared to breathing in and our, injecting life into the deve Iopment process,

OBSER VIN(; SMALLTA1.K PROGRAMMERS

When developing new software, good Small talk pro~ammers e~lore the new functional,

i~ quickly by desi~ing and implementing required new objects and by extendrng existing

oh]ects to support the new, requirements. Typically, and comectly so, not much th”ught is

given to issues of reuse or to the demils of comect style.

Atier spending time on functional expansion, s“ccessbl programmed will stop the ex-

pansion of hnctionahy whale they cleanup their work. When pressed, they wdl say chat
I A pvopo$a! for change management
in Smallmlk

byJeff Af.Ke.nO

A c=e in point
by Chu,les A. Rorir.

olumns

O&ea-Oriented Design:The phases of

an objeti-orientd application
byRekcco W;&Bm&

3 Gemng Reek How to use class vari-
ables and clas insence mriables

byl,.nc. E~ng

5 Gufs: O~e*orb\Smallmlk Rel-e
4 The gmphcs model
& GregHendlw ondEriCSmtih

epatiments

7 Book Review: Co~cEp~ OF OmEcT

ORIENTED PROGRAMMING

mw’wed by Mati” O,borne o“d An” Cow,”

9 Pmd”e Anno”ncemen%

Mat They’~ Sqing About Smolhalk

the

nic

gro

mo

reu

tiv

the

rath

CH

A

of

me

wil

tes

Rec

pre
y are improving undemtandability, readability, and reducing code bulk—’{making it

e.” At this stage, the hierarchy may be reworked as undemanding of the application

ws Methds no longer required will be r~mo”ed, method selectors will be renamed to

re direct ly reflect their actual intent, and methds will be reworked to become more

sable.

One of the more interesting zpects of rhese obsewations IS the timing of these two ac-

ities. Better programmers spend more time cleaning up than other programmers and

y also rend to do it sooner. Typically, g~d programmers clean up after just a few days

er than u,eeks or months after development.

ANGE h[ANAC;FikfEN’r

prima~ role of change management in software development is to coordinate the work

multiple developers. [n the wide open swIe of Smalltalk development, this usually

ans keeping the various individuals from stepping on each othcr,s work. Management

l also uxc the change management system to contr”l Teleases, both internal releases for

ting and external ones.

A ~ical approach for change management in Smalhalk is to assign omcrs to cl~ses.

ently, we have seen some discussion of finction-based “w”ership. bth of these a~

aches have advantages and disadvantages.

cmtind “. w, 4

EDITORS’
CORNER

John Pugh Paul WI&?

I
riting these notes just before heading off for New Year’s celebrations sputrcd us to think of the ma-
jor developments that have taken place in the Smallralk world in the last twelve mrmths. The lan-
guage wws have continued, but C++ and Smalltalk have emerged as the dominant players as we
enter 1992. Why has Small talk made the cut? We believe there are a number of reasons. The
Smalltalk vendors have taken a number of steps to attract teal developers by focusing on issues such
as portability and providing better tools for application delivery. Third party vendors have ad-
dressed a number of areas critical to Smalkalk’s acceptance such as user interface builders, access to
databases, and performance profilers. The project management tools sorely lacking in the base
Smalkalk systems have now appeared on the market in flavors to suit both small development
teams and large groups of Smalltalk programmers accessing a shared crrde repository over a network.
As the head of one major development group at a big multinational company told us recently at a
conference, “Smalltalk went from having next to no support for proj ect management to having
perhaps the best object-oriented project management tools in the industry.” Finally, we can point
to documented %nalltalk success stories such as those reported on in the Errperience Reports sec-
tirm of the October OOPSLA conference in Phoenix.

Where is Smalltalk heading in 1992? The MIS marketplace for one! That’s right, the world of
mainframes, Fortune 500 companies, and hundreds of thousands of lines of COBOL code has been
taking a serious look at O-O technology and Smalltalk. They are still separating out the hype from
the substance, but many forward-looking companies are already evaluating the technology through
pilot projects with a considerable number choosing Smalkalk as the initial vehicle of choice.

In this monrh’s lead article, Jeff McKenna continues our theme on change management. Following
recent articles by Juanitit Ewing and S. Sridhar that focused on class ownership, Jeff purs fmward
his view that change management is best organized around two distinct phases of software develop-
ment using Smalltalk—functional expansion and consolidation phases. Also, for those Smalltalk
programmers who still find occasion to lament the absence of a case statement in Smalkalk,
Charles-A. Rovira provides the answer in his articl~”A case in point.”

Three of our reeular columnists armear in this month’s issue. Rebecca Wirfs-Bmck continues her. . .
Objecr-Oriented Design column by discussing the development phases of an object-oriented appli-
cation. As Rebecca points out: “No matter how great the Smalltalk development environment, it
isn’t a replacement for planning, designing, and some amount of discipline.” In Getting Real,
Juanita Ewing concludes a two-part article on the appropriate use of class variables and class in-
stance variables. Finally, in the GUI column, Greg Hendley and Eric Smith discuss the graphics
model in ObjectWorks \ Small talk Release 4.

Also in this issue, Martin Osborne and Ann Cotton review Dave Smith’s new book entitled Con-
cepLsof Object-Ork&d Programming. Despite the title, this book is entirely Smalltalk oriented and
provides an intmducrion to the conceprs underlying both OOP and !%rdltalk. The review looks at
the bm-skfrom both the perspective of an experienced 00P pemon and of a novice.

Our publisher tells us that subscriptions to The Srn&dk Report are continuing to grow at a healthy
rate and thar an unusually high number of our readers are from Europe. A special welcome to you—
we hope you enjoy the newsletter and look forward to meering you in February at 00P ’92 in Mu-
nich, Germany, or LOOK ’92 in Copenhagen, Denmark.

Finally, a big thank you to everyrrne who has helped us take The SrrudkalkReport from an idea to
fruition in 1991, and an invitation to all of you in the Smalkalk community to contribute to the
report in ’92.

Tlw Smallralk RepNI (1.SSN# 1056-7976) is puhlmhd 9 mm ;, WIr, every rmnth cxccpr 6,r rhe MJr/Apr, July/Aug, and N,w/lkc cwnhind issues.

Z’uhlishd hy (J_WT, IIU., a rnwnher ,,f rhe S1(;S Puhlicmm,.s (hum 5M FIrIwJwny, New York NY 10012 (.21Z)274A2640. ~ G,pyrtghr 1991 hy

~, 1.., All rights reserved Reproductit,. of rhk rnmcri.l hy elecrronm rramniuiom, Xemm or w orhcr mcrhd will h-=mead as a u,illful vitJa-

rion of the US Gwymghr t-w and m flatly pruhihitd MareriJl may h+ rcpnducecf wirh CNPICSYprnission fr,mn (he puhli.shem. Mailed FIBI Class.

S.hzripcinn Gum I .pr, 19 twuch) hncwic, $65, Foreign and Cmd,,, $90, SW@ .,TY price, $8.W. REP.4ASTSR: .%.d AIw* thinps *.J wh-

scripuon orders rm THE 5MALLTALK tWVRT, Suhmriher Services, l@I. SML, P.O fh KW [Zmvillq NJ 07B14. Suhrni! aru.les m !hc SLIM(!ISm 91

2.
SecondAvenue, Ottawa, Ontario K 1S 1H4, Canada.

THE 1992
INTERNATIO

00P DIRECTORY

Myou’re using object technology, you
should have a copy of the International

00P Directory.

--&--

Now You Can Have
Access To Accurate,

Up-To-Date And
Complete Information

On The Entire O-O
Technology Market

Right At Your
Fingertips

This handy 425-page sourcebook
is packed with everything you need to

make 001? -related purchasing decisions:

● Over 350 companies
.Nearly 500 products

.Consultants d services
●Reprints of landmark articles

.Bibliograph y by author/article
. Conferences & seminars

. Cross-referenced by languages and
systems supported

■ A PROPOSAL FOR CHANGE MANAGEMENT

4.
Cmltiwifmpage1.,,

Class-based ownership has the advantage that clear re-

sponsibility is established at a level of granularity that

reflects the belief that objects are primary. By owning a class,

a developer can ensure that the class is internally consistent

and is clean.

Function-based ownership has the advantage of more closely

reflecting how work proceeds in software development Func-

rions (from the users’ point of view) are added, changed, and re-

moved. In general, this means that the work of individuals will

be independent.

The weakness of each of these approaches is the strength of

the other. Since adding functionality tends to be distributed

over a number of classes, using class-based ownership can slow

down development as various individuals need to implement

methods to complete some function. Likewise, function-based

development can easily result in poor quality classes since no

single individual is working to keep the class clean.

INCREMENTAL DEVELOPMENT

As illustrated above, using Smalltalk encourages an incremen-

tal style of software development. This style is demonstrated

by the individual developers and is also demonstrated by

teams of Smalltalk programmers when they are supported by

management in this approach. The change management sys-

tem used in projects is a key element in the successful adop-

tion of this style,

When incremental development is used in a project, it

also has an effect on the testing of the product. Testing can

begin much earlier than with classical development as re-

leases can be prepared with subsets of the full functionality.

This means that testing can proceed in parallel with the de-

velopment. The change management system needs to support

this practice.

GOALS

Taking all the above into account results in the following

goals for a change management system to support Smalltalk

development:

1. Support incremental development.

2. Support the “natural” style that good Smalltalk

programmers use.

3. Support the idea of ownership.

4-Support the timely release of vetsions.

For the purposes of this discussion, we assume that a

change management system accepts changes from individual

programmers, validates changes against the ownership rules,

and periodically produces a “build” using the validated

changes. A systern tightly integrated with the development

environment would prohibit the developer from making any

changes that are not valid,
PROPOSAL

The key to our proposal is that the change management sys-

tem operate at all times in one of two phases: the expansion

phase or the consolidation phase. In each phase, the owner-

ship of classes and methods is different.

In the expansion phase, ownership is function based, This

allows individuals to focus their activity on the functions that

they have been assigned. When programmers receive a new

build in this phase, they will be able to continue their devel-

opment as if they were just using their image from the prior

build, that is, the image should always work.

In the consolidation phase, ownership is class based. This

phase provides time for clean up of existing functionality, no

new functionality should be added. There is no guarantee that

the image will work for all functions after a build.

In a typical project, these two phases would alternate. Ex-

pansion is used when adding functionality, and consolidation

is used when cleaning up. The rela[ive proportions of the

phases will change over the duration of the project. At the

start, the activity is primarily expansion since the bulk of the

new functionality is added. In the later stages, the dominant

phase is consolidation as code is tuned, code bulk is reduced,

and classes are cleaned for reuse.

When developing in Smalltalk, the time spent in the two

phases is relatively short. Assuming that a relatively complete

analysis has been performed, it appears that in the initial

stages of a project the expansion phases should be no longer

than three or four weeks. Hence, functionality needs to be

broken down to support these time fi-ames. This is most e+asily

done by dividing functions breadth first in the early stages.

SPECIFIC RULES FOR THE PHASES

Below, I discuss some guidelines for the activities allowed in

each phase,

EXPANSION PHASE

During the expansion phase, classes and methods are owned

by functions. This ownership should be retained until the be-

ginning of a consolidation phase. No more than one individ-

ual should be assigned to a function, and not all classes need

to be owned.

Rules:

1. The creation of a class establishes ownership of the class.

2. The changing of a class definition establishes ownership of

the class.

3. Methods added to nonowned classes establishes ownership

of the method.

4. Methods that are not owned cannot be removed or changed.

5. Methods cannot be added that will change the method

look-up of existing messages,

These rules are designed to meet two objectives:
THESMALLTALKREPORT

Universal Database
OBJECT BRIDGE “

This developer’stool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIH, Lotus, and Excel.

Intelligent Systems, Inc.
z

1. Allow individual developers to continue their develop-

ment between builds as if they were working in their

own image.

2. Minimize the conflict between different developers at

build time.

The rules as presented are not sufficient. Two developers

may add the same class or method to an existing build and

create a conflict. In practice, this would be minor, and the

validation system would catch it.

Some may consider the requirement of only one person

working on a function to be excessively restrictive when rhe

function is large. In this case, we suggest that a single individ-

ual develop the initial functionality in a sketch form, provid-

ing the initial classes and minimal methods. The ownership of

these can then be factored into smaller functions for individ-

ual assignment.

CONSOLIDATION PHASE

All classes should be owned by individuals during this phase.

Individuals clearly will need to own more than one class. Use

this rule: Changes can only be made by owners.

The objectives of this phase are to improve the quality of

the classes while retaining the functionality at the beginning

of the phase. No additional functions should be added.

Since message selectors can be changed and removed,

builds may not work for all functions. To solve this, first add

the new methods to a build, publish the replacement selectors

to the owners of the senders of obsolete messages, and then re-

move the old methods when they are no longer used. This ap-

proach will ease most consolidation efforts.

MANAGEMENT IMPLICATIONS

The alternating phases of this proposal strongly support incre-

mental development. They allow projects to be grown by

adding fimctions in small groups. This has two positive effects

The progress of development can be more easily measured,

and testing can begin relatively early in the development. The

consolidation phases provide space for developers to reflect on

their work and to think about the reuse of developed classes.

Management has some flexibility in scheduling by reducing

the consolidation time at the risk of having less reusable

and suitable code.

A prototypical project plan might look like Table 1 for a

set of function groups {A, B, C, and D). Each row holds the

parallel activities of the development and testing groups.

From Table 1, it is easy to see how better control of the

project is possible and also how consolidation phases could

be adjusted to alter the project schedule.

Managers need to understand, with object-oriented

development consolidation is a natural phase and needs

to be supported. When it is, systems are developed that

are more reliable and provide greater reuse for future de-
velopment.

VOL.1,No. 5: FEBRUARY1992
Table 1. A prototypical project plan.

Development Testing

e(A), deliver A

c(A), deliver A’ A

e(B), deliver B A’

c(B), deliver B’ B, regression test on A

e(C), deliver C B’

c(C), deliver C’ C, regression test on A, B

e(D), deliver D c’
c(D), deliver D’ D, regression test on A, B, C

deliver final D’

regression test on A, B, C, D

SUMMARY

I have proposed a change management system that is based on

our observations of seasoned Smalltalk developers at work and

is designed to offer management more control in develop-

ment. By imitating the natural workings of good developers,

such a system will result in software that is more suirable,

timely, and provides greater reuse potential, El

.leffMcKenna has been involved in the software industry since 1963

and object-oriented technology since 198 f. He is thefounder OJ

McKenrsa Consulting Group, which offers services in object-oriented

technology. He has been actively invo[ued with 00PSLA, the premier

object-oriented conference. Jeff is well known as a speaker, having in-

troduced 0-0 conceps at various conferences throughout the world.

He was the founding editor of the Hodine on Object-Oriented
T--L--1_—. -- :-.L..-. –-.,”l...”-
5.

Au,
A
CASE

IN POINT

Charles-A. Rotira

II
n his keynote speech at Developers’ Conference

’91, the first annual Digitalk and BYTE Mugstzine

Smalltak/V developers conference, Daniel H. H.

Ingalls remarked that the reason Smalltalk didn’t

have a case sta;ement was as a result of a conscious decision

by the Smalltalk development group to keep the syntror as

simple as possible. Smalldk had enough of a learning curve

to round without syntactic sugar cluttering up the language

specification. However, Dan did confide that it would have

been trivial to add a case statement to the compiler. A case

statement is essentially a series of if-then cons tmcta. The

team at PARC felt that programmers might as well describe

them this way and, as far as Smalltalk went, they left well

enough alone.

WHAT IS THE TRUE “MOTHER OF INVENTION?”

While the PARC crew might have felt content to let sleeping

dogs lie, I, being an indolent person who gets lost in’~ ‘]’ pairs

and who hates writing all those ifie: ifFalse: and and OKex-

pressions, quickly decided to remedy the situation without un-

due resort to the compiler. The remedy I concocted had to es-

chew the compiler because, unlike Smalltalk-80, Digitalk

attempts to hide ita compiler behind classes with no real

names and methods without source code. Given the availabil-

ity of clever hacks, as well as hackem, I can report that though

the approach will yield to a concerted effort, it is sui%cient to

discourage the casual Smalltalk user, should such a beast ever

be found. Since necessity is the mother of invention and sloth

is the mother of necessity, here is the case statement I cooked

up over a weekend.

Listing 1 includes all of the code required to add case state-

ment capability to Smalltalk. Listing 2 is a small sample that

uses the case statement to simplify its coding.
Llatlng 1. The case statement components.

AeaOciahn helms: #Case

inakmceVariableNames:”
claasVariableNames:”
poolDiclionaries:”

Casemethods
, aCaae

“Answera collection of cases”
ACaseswith: self witlv aCaae

OrderedColledon mbclasx #CaeeB
-ceVariabkNames:”
claaaVarisbleNames:”
poollhcbonsries:”

Gasesmethods
, aCaae

“Atswer an OrderedCoUefioncontaining all the
elements of the receiverfollowedby the new case”

“ self copy
add aCase;
yourself

Objectmethods
- aCoUecbon

“Handleparameterless cases”
“self case: aCollechontesL nil eva~ nil

mew aColletion parm: anObject
%urdle single parameter cases”

‘self case: aColl*on test anObjectevah anObject

case: aCoUetion teat test evak eval
“hswer the result of the 6rst case that rings tie”

I tnreCase conditionlllock actionBlock I
(aCoW&on iaKindOfiCases)

ifFaLse:[“self erroc ‘casestatement improperlystructured’].
lnreCase:= aCollechon

detect [:each I
(each iaKindOfCase)

ifFalse: [“self erro~ ‘caseimproperlystictured’].
((condiSionBlock:=each key) iaKindOfiContext)

ifFalse: [“self erro~ ‘case diacrhninant
improperlyahuctured’].

(conditionBlockbhkArgumentCount = 1)
iflkue: [conditionBlockvalue: sew
iffalse: [(condtionBlock blockhgumentCount = 2)

ifl’rw [conditionBlockvalue: aelfvaluw test]
ifFalsti [conditionBlockvalue]]]

ifMonc [“nil].
((afionBlock:= tieCase value) istidOE Context)

ifFalsC [“self error ‘caseimperati
improperlystructured’].

(aclionBlockblockArgurnentCount= I)
iP1’rue:[AafionBlock value: selq
iffalse: [(achonBlockblockArgumentCount= Z)

ifl’rrre:[“ actionBlockvalue: self valuw eval]
ifFalae: [AaclionBlockvahre]]

cases: aCoUeclion
“Handleparameterless cases”

“self cases: aColledon test NI evak nil
I

THE SMAUTALKREPORT

Basically, all that was required was to examine how a case

statement really works, A case statement associates condi-

tions with actions. (In the search for more highfalutin bu-

reaucrateese and marginally more accurate bafflegab, I have

t and imperative.) There areusurped the terms discriminan

times when only a single action need be taken, when only a

single case need be invoked, and there are times when all

the conditions should be evaluated and all suitable cases need

to be invoked.
VOL. 1, INO. 5: FEBRUARY1992
This “simple” English version of the requirement definition

leads to the following class definitions:

● a case that associates a discriminant with an imperative

and should therefore logically be a subclass of hsociation

s a case that lists all individual cases for evaluation and should

therefore logically be a subclass of OrderedColleclion

In addition, proper support must be found for the evalua-

tions both of the conditions and of the associated actions and

for the invocation of the evaluation of the conditions.
Llstlng 1., cont.

eaee.s:aCoUe&onpasm: anObject
%ndle single pammeter cases”

%elf cases: aCoUecbontesh anObjectwak arrObject

uiaee: atillecfion test test evah evd
“PerformaUcases that sing hue”

I huecaaes conditionBlockachrBlock I
(aCoUectionisKndOf, Cases)

ifPalse: [“self error ‘cases statement improperlys~ctured’].
hwCase:= aCoUec&m

selech [:each I
(each islGndOF.case)

ifPafse: [“self error: ‘cesesimproperly.vhuctured’].
((condifionBlock:= each key) iaKindOl?Conte@

ifFalse: [Asdf eno~ ‘casesdiscrhninant
improperlysbuctored’].

(conditionBlockblockArgumentCount=1)
ifl’rue: [condtionBlock vahse: selfj
Halse: [(condNionBlockblockkrgumentcount = Z)

itTme [conditionBlockvalux selfvalue: test]
iFalae: [conditionBlockvalue]]].

bueCaaes do: [:each I
((ationBlock:= each value) isIhdOE Context)

ifFalae:[“self error ‘casesimperati
improperlystmctored’].

(afionBlock bloclrkgumentcount = 1)
ifl’rue [“ ationBlock value: sew
Wake: [(actionBlock bloclrkgumentcount = Z)

WI’rue:[“ atinBlock value self vahre: awl]
ifpalse: [“ acliofllock value]]

Contextmethods
case: aBlock

“Aosweta ‘seniive’case”
(aBlockisKindOfContext)

fialsw [“super case aBlock].
“ Casekey selfvdue: SB1OCIS

bkkArgumentCount
“Answerthe number of arguments for the block, Note that

in/V PM,the iablembeti aBlockClassmessage would be
used instead; e.g., (aBlockisMemberOETwuArgumentBlock)
(aBlockisMemberOfiOneArgomentBlock).”

AbloclrArgumentCount

UndefiedObject methods
ease: eBlock

“Answeran ‘iwsentive’case”
“ [hue] case tilock
Llstlng 2. A sample of cese statement use.

Numbermethods
p-: aPomsat

“Appendthe ASCIIrepresentation of the receiverto a,Weam.
piker through #05111ti.

Test 123.45 pMtAs:’$,#$$,00 ‘
Test it with other numbers and other format slings.”

I tamp answersign format digit I
temp:= (pattern new ‘.’)match: tionnat index: 1.
temp istiil

ifl’rw [temp:= sell abs]
ifFalse [tamp := (self abs) ●

(10 miaedTo:((tiomrat copyprom:temp x to:
epormat size) selech [:ch I #($# $0$$) inchsdes:
Ch])sise).

temp:= temp + 1 truncated].
answer:= String new aponnat sise.
sign:= self negatie.
format:= tiormat rweraed.
answer:= format colleti [:lkmnatcharacter I

(hnratCharacter cssw
(([:x Ix= s#] case:

[digit:= Chamctervahre: (48+ ((temp rem: 10)
huncated)).

temp := temp // 10.
(digit =$0 and [temp = O])W1’rue:[$] ifpalse:

[digit]]),
([:x I x= $0] case

[digit:= Charactervahse: (4B+ ((temp rem 10)
ticated)).

tamp:= temp // 10.
digit]) ,

([:x I x= $$] case
[digit:= Cheractervahre: (4B+ ((temp rem: 10)

Insncated)).
tamp:= temp // 10.
(digit =$0 and [tamp = O])iiTme: [S$] ifPalse:

[digit]]),
([:x Ix= $,] case:

[temp = OWTrue:[$] ifpalse: [$,]]),
([:x I ‘-+(] ODBCRdbcfinclud- IS]case:

[:x I (sign ifhuti ~– ODBCR ‘] ifFalse:
~ +() DBCR’])
ak (’-+{]ODBCRdbcr”indexOfix ifAbsenk
[seLfhalt])]),

(nil rose:
[:x I x])))].

“answer rweraed
7.

■ A CASE IN POINT

8.
The fundamental idea behind the implementation of the

case statement was to use the deferred evaluation and late

binding facilities inherent in Smalltalk contexts, a.k.a. blocks,

to leave the actual evaluation of the disct-iminant of a case

and the execution of the imperative of a case whose discrimi-

nrmt evaluates to true until it is truly required. The principle

is the same as the passing of blocks of code to the deteti and

seleti instance methods of the abstract class Colletion. In fact,

these very methods are what allow the detection or selection

of none, one, or many cases as per their discriminants into a

temporary collection of cases whose imperatives have to be

evaluated.

66
There are times when,, ,only a single

case need be invoked, and there are

times when all of the conditions should

be evaluated and all suitable cases

need to be invoked,
99

The case statement can be made without any parameters.

This means that the block evaluating the case must be en-

tirely dependent on external data with either a single parame-

ter to the block (which means that the case can be based on

the object itselfl or with two parameters (which means that

the case can be based on an object for the evaluation of the

case while being based on another object for the evaluation of

the result).

The sad part is that I can’t for the life of me remember what

could have possibly led me to write the methods with two pa-

rameters. There was a very good reason at the time but it is lost

in the mists of time and in some old client’s /V PM code.

JUST IN CASE

As Listing 1 reveals, the code for both case and b.ses is simple.

h consists of the polymorphic implementation of the single

method: “,”. (Of course this begs the question, “Is the method

really a single method if it needs to be in two places at once?”)

The test of the code presented is concerned with usability.

The other methods are broken down into three groups:

s Unde5nedObjec0> cas=, which is included for ease of use

● Context> >case, which will either build a single case or

cause a case statement to be evaluated, and

Context>>bloclc&gumentCount, which will supply the num-

ber of arguments for a particular case evaluation block
● Object methods, which will cause any object to be used as

the point of origin during the evaluation of a case state-

ment. T’he methods are divided into two types:

● case methods that will only look until the first suc-

cessful evaluation

● cases methods that will execute the actions of all

conditions that evaluate to true

The statements are also divided into three flavors:

. without parameters-the evaluation of the conditional

block will determine the truth of the assertion

s with a single parameter—the evaluation of the condi-

tional block on the object itself will determine the truth of

the assertion

● with two parameters

THE CASE FOR THE PROSECUTION

Listing 2 is a “quick and dirty” method for printing numbers

filtered through a format. The idea behind this method was to

provide something similar to the PRINTUSING()statement

found in BASIC. It is a simple way to format numbers in a re-

port using a print line layout “painted” by a CASE tool.

The method inverts the format string and pastes the value

of the receiver one digit at a time. That part is standard. What

is different is the scanning of the format string to look for

somewhere to paste in the digit. This routine relies on a loop

to examine each character of the format string and uses a case:

statement to decide what to do with the character.

The routine is not very sophisticated and doesn’t handle

format string overflow. However, it will put plus or minus

signs, parentheses, or debit/credit annotations depending on

the sign of the number. The format selected as its space, dollar

sign, or zero tills the number and handles leading commas, It is

heavily dependent on the intelligence of the programmer and

does not check if the formatted string makes any kind of

sense. (This is actually an advantage as the routine can be

used for nonstandard formatting needs.)

The heat-t of the routine is a loop that sweeps the format

string, character by character, and relies on a case statement

to act according to the state of the character. The state of the

receiver (remember the number being formatted?) is totally ir-

relevant to the formatting process.

The code uses Digitalk’s Smalltalk/V Mac 1.2 and System

7.0 on a Macintosh Hcx.U

Now based in Ottowa, Canada, Charks-A. Rowim Iussbeen inwoked

with data processing since 1975 and with SmaUtaLkand other object-

oriented wchnol.ogiessince 1987. His CompuServe ID is

[71230, 12171. He’u ~mit to some unw~[hwrq infl~nces SUChu
Dough Adams, Terry Pratcktt, and D. H, lame-me. Also,

Kierkegard, but why bring him up?
THE SMALLTALKREPORT

Thephases
application

of an object-oriented

Rebecca Wi@-Brock
here is never enough time to get it absolutely, perfectly right.

TI was lured to computer science by the fact that I could spend

hours and hours working on elegant solutions to fairly simple

problems. Often, when my code became too difficult to follow, 1

could find a simpler design if I had the courage to backup and

rethink my almost workable solution. Things actually got better

if I relaxed and did not try so hard to force my program to work.

After I got my degree and an engineering job, I found that not

only did my code have to work, I had to provide a detailed plan

for my work and estimate the completion date of each major

task. A@nments no longer could be easily completed within a

week. As a consequence, I learned how to subdivide a large

problem into smaller, more manageable activities. I also learned

to pad my estimates (to account for the unaccounmble) and to

reassess my plan whenever I achieved a subgoal.

Object-oriented technology can add complexity to the

software development puzzle. Object-oriented design tech-

niques and programming languages provide good tools for

handling abstractions and developing potentially reusable

software. Yet, what is the additional cost of developing

reusable code? h is hard enough to plan and deliver software

on time, within budget, and meeting customer expectations

with traditional development methods. Designing and imple-

menting for reuse presents a totally new set of challenges.

A class that has been designed and implemented to be used

in more than one application probably requires more effort

than a class designed to work within a single application.

However, shouldn’t all classes be designed to be understood

and usable by other programmers, regardless of their general

utility? Certainly, not all classes are worth equal time and at-

tention. Since time is limited, what is an appropriate way to

divide the time spent developing various parts of an applica-

tion? The challenge is to know when and where to apply extm

effort. It’s also important to know when to stop tweaking code

for the sake of “making it better” when returns will be meager.

TYTICAL APPLICATION STRUCTURE

An object-oriented application of even moderate complexity

is naturally decomposed into several major subsystems. Each

subsystem consists of objects from classes that share the over-

all workload of the subsystem and collaborate to get the sub-

system’s tasks accomplished. In a well-factored design, objects

within each subsystem primarily collaborate with each other.

9.

VOL.1,No. 5: FEBRUARY1992
Certain key objects handle requests from other objects outside

the subsystem. In general, however, few objects within a sub-

system are visible outside the subsystem.

In many designs, there also area number of general utility

classes. Smalltalk environments provide a comprehensive set

of container, graphics, and user interface classes. In addition

to this valuable class library, many applications add their own

specific utility classes. Rather than having each subsystem de-

sign consist of its unique but perhaps only slightly different

classes, a common class library is developed and used through-

out the entire application. These classes serve to enforce com-

mon error handling policies, support default behaviors, or

encapsulate information passed between subsystems.

66
It is hard enough to plan and deliver

software on time, within budget, . . . [etc.].

Designing and implementing

for reuse presents a totally new

set of challenges.
99

A DEVELOPMENT TIME LINE

The overall development process can be roughly divided into

distinct phases. The first stage of any design consists of explor-

ing possible alternatives. Major subsystem partitioning strate-

gies are determined. An initial model of the key design objects

is proposed. Once this initial model has been developed, ef-

forts shift into a detailing phase where precision is added to

initial decisions. Subsystems and the classes within them are

sufficiently elaborated and then implemented.

Each subsystem will progress at a different pace due to vari-

ations in complexity and according to the abilities and experi-

ences of its designers. However, any subsystem will pass

through most of these steps:

1. Specification. During this stage, a rough idea of the pur-

pose of the subsystem and the services it will provide is

H OBJECT-ORIENTED DESIGN

In
lU.
proposed. An estimate of the subsystem’s complexity can

be made. This estimate may include a list of key classes

(perhaps including their names and a brief description) and

some measure of their complexity and projected general

utility as well as an estimate for the time required to com-

plete an exploratory design.

2. Exploratory design. During this stage, key objects and

their interactions are modeled. An initial pass is made at

defining each key class’ role and responsibilities. Several

additional layers of each subsystem design can be elabo-

rated. Services available to objects outside the subsystem

are specified in greater detail. Assumptions about services

provided by other objects and subsystems are proposed.

These assumptions will need review and refinement in the

context of the overall application architecture.

3. Detailed modeling. Elaboration of the initial exploratory

design means extensive review and refinement of the

initial model. Classes are scrutinized for appropriate fac-

toring of responsibilities. A lot of time can be spent

making slight readjustments of object roles and respon-

sibilities to minimize interobject dependencies and sim-

plify the design. New supporting classes may be created

to fimther reduce coupling between classes. Permissible

patterns of collaboration between objects can be formal-

ized through contracts that spell out services used by

specific clients. Finally, class inheritance hierarchies

can be developed. Common responsibilities can be

found, and superclasses can be created that generalize

behavior common among several classes.

4. Implementation. Whether one calls finalizing internal de-

tails of each class the last step in detailed modeling or the

first task of implementation isn’t important. However, at

this point a number of design issues that have been de-

ferred must now be decided. Decisions must be made

about the representation of each class’ attributes or char-

acteristic properties. The choices are to derive an attribute

from other information or to store it as an instance vari-

able. New classes may be constructed to model attributes

if existing classes aren’t appropriate. Operations must be

decomposed into reasonable substeps and implemented.

Careful attention must be paid to ensure consistent, clear

message protocols. The fine details of abstract classes must

be developed and will be proven by the ease with which

their subclasses can be implemented.

5. Integration. bother crucial point in any large application

comes when subsystems developed in relative isolation (af-

ter agreeing upon basic intersubsystem interactions and

publicly available services) are made to work together.

Test stub methods and objects are replaced by their appli-

cation stand-ins. It is at this sutge that hidden assumptions

about services provided and/or expected patterns of usage

are uncovered and, once again, might need readjusting.
6. Validation. Once parts of the application are functioning,

the operation of classes and subsystems can undergo ex-

tensive validation. It is reasonable to test a class in isola-

tion (by developing test methods, adjusting its encapsu-

lated state, and testing how it responds). It is also

necessary to validate the overall behavior of major subsys-

tems in the actual working environment.

7. Clesnup- Once a subsystem has been implemented and

validated, it often merits further attention. A relatively

minor sweep through the classes and working code can

provide dramatic improvements in performance, code

clarity, and robustness. The goal of this phase “isto provide

for better use and improved maintenance.

8. Generalization for broader utility. Once a subsystem is

implemented and works well, its general utility can some-

times be improved. This activity needs to be carefully

planned. Not all subsystems are significant enough or have

enough potential utility to merit this extra effofi.

There is a separate time line for each subsystem under de-

velopment. Several major integration points can add subsys-

tem functionality in varying stages of maturity. Figure 1 shows

a time line for a hypothetical object-oriented application. The

time line for utility class development is intentionally missing.

In an ideal situation, utility classes would be developed along

with the subsystems that use them. They would need refining

throughout the project. In this hypothetical application, de-

velopers of one subsystem skipped over detailed modeling and

launched right into implementation. This might have been

due to an overeager implementation team or because the sub-

system was simple enough to not warrant much detailing.

Many subsystems were modeled in detail and passed through

most steps. However, only one subsystem is shown being gen-

eralized for even broader utility. Most subsystems (at least dur-

ing this time line) never were generalized.

Subeystanls

Spec. Exp. Detail Impl. Validate

b

Spae.hp. Detail Impl. Validate Cleanup

Spec. Enp. Impl Validate

Spec.hp. Mail In@. Vsliieta ClasnupGeneralize

Spat hp. Detail ImplementVslidate

integrateintegrale inlagrale

Time

FIEura 1. Time Ilne for hypothetical obJemt-orlerrtedapplication.
THE SMALLTALKREPORT

“... tbia ia n potent rapid application development tool
which should he included in any SmahdkN developer’s
environment. ”

- Jim SabnOIW,The Smalkalk Report, September 1991

The key to a good application is its user interf~ce, and
the key to good interfaces is a powerful user interface
development tool.

For Smalltalk, that tool iu WindowBuilder.

Instead of tediously hand coding window definitions and
rummagiug through manuals, you’U simply “draw” your

windows, and WindowBuilder will generate the code for
you. Don’t worry — you won’t he locked into that first,
inevitably less-than-perfect design; WindowBuilder
allows you to revise your windows incrementally. Nor
will you be forced to learn a new paradigm;
WindowBudder generates standard Smrdltalk code, and
fits as seamlessly into the Smalltalk environment as the

class hierarchy browser or the debugger.

Until March 31st, WmdowBuilder/V PM will be available
at an introductory price of $295, $100 off the list price of

$395. WindowBuilderN Windows sells for $149.95. Both
include an uncond~tional 60 day guarantee.

For a free brochure, caU us at (415) 855-9036, or send m a
fax at (415) 855-9856. You’ll be glad you did!

Cwm .% Pmns, INC. (FOEMEnLfACUMEN *WAM 2602 EL GAONO REAL SLITE 609 PALO ALTO. CAUWnNIA 94306 FWNE 415 855 9036 FU 415 B55 9856 COMPUSERVE71571,407
WHERE TO SPEND TIME AND EFFORT

Obviously, all classes are not of equal value or worth,. and

many classes in object-oriented applications are developed for

use, not reuse. But, to be used (by anyone other than the orig-

inal author) or enhanced in future maintenance releases,

classes still need to be engineered and implemented with care.

If art inadequate amount of time is spent in detailed modeling,

implementation and maintenance costs can skyrocket.

One reasonable estimate I’ve applied to scheduling is that

detailed modeling can take roughly twice as much time as ini-

tial exploration. This estimate was based on the assumption

that the designers had a good working knowledge of the prob-

lem area and weren’t trying to learn about the application re-

quirements as well as object technology. If the team has been

fairly disciplined about detailing the design model, then im-

plementation time can be shortened.

If the design team is relatively new to both the applica-

tion and object technology, it may be tempting to move

directly from an exploratory model right into implementa-

tion. This may be a reasonable strate~ to get the team

thinking and implementing in objects. However, resist the

urge to bolt directly to implementation. Spend some time
VOL.1,No.5:FEBRUARY1992
66
Perhaps only 20% of the application

classes are worth spending 80%

of the total time devoted to reuse

improvements.
99

reviewing the initial model. Try to assess high-leverage ar-

eas that are worth extra design time as well as areas where

the design still seems unclear, Given an inexperienced

team, the initial implementation may well turn out to be a

prototype. The application will more than likely need to be

redesigned and reimplemented following a more disciplined

approach once the basic model and application objectives
are understood.

Clearly state goals for the overall qualiry level expected

for each class and subsystem. Establish targets for each sub-

11.

H OBJEm-ORIENTED DESIGN

12.
system for the amount of refinement and generalization war-

ranted. Perhaps only 20%of the application classes are

worth spending 80% of the total time devoted to reuse im-

provements. As work progresses on each subsystem, stop

and reassess progress shortly before and after each major

miles tone, Examine the flaws and issues that have been un-

covered. Glossing over serious gaps in design or implementa-

tion will only delay later consequences when rhe cost of back-

tracking and fixing are higher.

It requires discipline on the part of management and the

design team to pause to measure progress and quality and to

plan for the next phase. Object-oriented software develop-

ment should not be an excuse for throwing out proven devel-

opment practices, even if the tools and techniques are a big

improvement. Here are some characteristics of a reasonably

well-thought-out design:

● Classes have been factored to do one thing well. Each

class has a singular, clearly stated purpose and the imple-

mentation follows the design intent. The alternative is

fewer classes that do several more things adequately.

● Public interfaces to classes are straightforward and simple

to understand. In general, messages don’t have lots of ar-

guments, It’s even better if using an object doesn’t require

understanding complex modes, switches, or a complicated

internal state machine.

. Methods have been decomposed into a several discrete

steps. These steps are implemented by sending messages to

the receiver (self) or delegating tasks to objects referenced

through instance variables. The alternative is lengthy,

long-winded methods.

● There are a number of classes having roles of manager, co-

ordinator, or information repository. They provide gener-

ally useful set-vices that are straightforward and readily un-

derstood. These classes provide useful mechanisms,

infrastructures, and the “glue” for the rest of the system,

reducing the overall complexity of many other classes.

● Class inheritance hierarchies may have been developed.

There may be abstract classes at the root of these hierar-

chies. The purpose of developing class hierarchies with ab-

stract classes is to abstractly specify behavior common to a

number of existing subclasses. The alternative is rather flat

inheritance hierarchies with little or no commonly shared

behavior, Future additions, extensions, and modifications

will be easier to make if time has been spent building

clean, understandable class hierarchies.

ENHANCING REUSE AND REDUCING

MAINTENANCE COSTS

Refining classes for reuse is analogous to optimizing code

for improved performance; neither happen by chance, but

well-planned and executed improvements can be quite dra-
matic. Here are some ways to improve existing classes and

subsystems:

. Isolate replaceable features and decompose algorithms into

subparts (which can be overridden by new subclasses).

. Encapsulate instance variables. Rewrite class code to call

accessing methods. This allows subclasses to change and/or

augment inherited instance variables without having to

rewrite superclass code.

. Spend time streamlining collaborations between subsys-

tems. Reduce the number of classes that are visible outside

the subsystem.

● Augment classes that worked adequately for one applica-

tion to increase their utility. Rework class hierarchies and

create both abstract classes to represent usefhl generaliza-

tions and new subclasses that represent useful specializa-

tions.

● Improve the legibility and understandability of existing

classes. Simplify message protocols and make them more

consistent. Augment class and subsystem documentation

with discussions on intended usage, sample code, and call-

ing sequences. Add typical calling sequences to existing

code as comments.

No matter how great the Smalltalk development environ-

ment, it isn’t a replacement for planning, designing, and some

amount of discipline. Developing an object-oriented applica-

tion involves new ways of thinking and structuring solutions.

The biggest payoff comes when sound engineering practices

are added to the development picture. ❑

SUGGESTED READING

1. Moore, J. M., and S-C. Bailin. Domain analysis: framework for
reuse, in Domain Analysis and Software SystemsMod.ding, Ruben
Prieto-Diaz and Guillerrno Arango, eds., IEEE Computer Society

Press, 1991, pp. 179-203.

2. Witfs.Brock, A., and B. Wilkerson. Variables limit reusability,
]ounud of Object-Orknted Programming 2(1):34 -40, 1990.

Rebecca Wi~s-Brock is tke Director of Object Technology Services at

Insmntitions and coauthor of Designing Object-Oriented Software.

She is the program chair for 00PSLA ’92. She has sixteen years ofex-

prience designing, im@ernenting, and managing software products.

During the b seven years she hQSfocused on object-oriented so@are.

She managed the development of Tektronix Color .%ud.Mk and has

been immersed in developing, teaching, and lecturing on object-tinted

software. Comments, further insights, or wild speculations are greatly

appreciated by the author, who can be reached via end at rebecca@in-
stmwe.com or by mail at hantiations, 92 J S. W. Washington, SK.

312, Portland, OR 97205.
THE SMALLTALKREPORT

ETTING REAL Juunita Ewing

How to use classvariables and class
instance variables
13.
I n last month’s column, we discussed how classes that use

Iclass variables can be made easily reusable with a few

coding conventions that make it easier to create sub-

classes. However, class variables are shared by a class and

its subclasses. Often, this is inappropriate, and a subclass

needs to override inherited data. A better implementation

choice for a particular problem is often a class instance

variable rather than a class variable.

WHAT ARE CLASS INSTANCE VARIABLES?

Class instance variables are those that belong to a class.

Smalltalk systems rely on this facility. For example, each

class stores its name in a class instance variable. Just as

each instance has its own values for instance variables,

each class has its own values for class instance variables.

Unlike class variables, these variables are not shared by all

instances of a class.

Only class methods can reference class instance variables.

Direct references to these variables are not allowed from in-

stance methods. Instance methods that need the information

stored in a class instance variable must send a message to a

class method, which can return the requested information.

Class instance variables, but not their values, are inherited.

Since each class has its own values for class instance variables,

there is no sharing between a class and its subclasses.

In last month’s issue, we discussed how the convention

of using get and set methods for class variables, rather than

‘-F ‘“
claas variablaa

LlctMenu aMenu

subclaas
1

Flgurs 1. Coding conventions Increase the reusability of
clasmesImplemented with class vsrlablee.
VOL,1,No. 5:]ANUARY 1992
direct references, made it easier to create subclasses by

minimizing the number of methods that must be over-

ridden. For example, in Figure 1 this made the class

htinterface more reusable.

66
A common mistake is to use class

variables in places where sharing

between a class and its subclasses

is inappropriate.
99

However, a problem remained with the class ListInter-

face. Another class variable was created to provide a differ-

ent menu resulting in CalculatedLisffnteri%ce having two

class variables, one of which (Listlfenu) is not used. The

problem is that class variables share the data between sub-

class and superclass. However, we can avoid the sharing of

the class variable ListMenu through the use of class instance

variables.

This version of ListInterface, illustrated in Figure 2,

defines its menu with a class instance variable. The class

subclasa

Flgurs 2. Subclasses hsve their own copy of class Instance variables.

■ GEITING REAL

14.
methods in Lisffnterface directly reference the class in-

stance variable. Instance methods cannot directly reference

&tMenu, but instead send messages to the class to access

the value of listMenu:

ListInterface class
initialize

“Create a menu.”

listMenu:= Menu labels: #(’add’ ‘remove’)

menu
“Return the menu.”

‘listMenu

ListInterface
hasMenu

“Return true if a menu is detined.”

“self class menu notttil

perfmnkientity
“Perform the mouse-based acfivity for my view.”

self hasMenu
ifllue: [“self class menu startUp].

Now let’s create a version of CalculatedListInteri%ce that

has a different menu. What does the developer need to do?

The developer does not need to define a new variable. Each

class has its own copy of the class instance variable IiStMenu.
Class methods in CalcuLatedListInten%ce simply need to as-

sign the appropriate menu to the class instance variable.

How many methods need to be overridden? Only one:

CalculatedL.i.stlnterfaceclass
initialize

. “Create a menu for calculated lists.”

IistMenu := Menu labels: #(’add’ ‘remove’‘print’)

CalculatedListInterface has its own copy of the menu

stored in the class instance variable listMenu. All methods

that access this class instance variable work properly in

subclasses because they reference the menu stored in their

own class. This version of CalculatedListInterface contains

only one method and uses all its defined variables, unlike

the previous version that contained a class variable from

the superclass.

Most classes, especially those created as stand-alone ab-

stract ions, should use class instance variables so that new

subclasses can be created with minimal effort. A common

mistake is to use class variables in places where sharing be-

tween a class and its subclasses is inappropriate.

WHICH VERSION OF ListInterFace IS

MORE REUSABLE?

The version of the class ListInterface that implements the

menu with a class instance variable is more reusable than

the version that uses a class variable. Fewer methods need

to be overridden to create a subclass with a different menu.

The version implemented with class variables requires a

new class variable, while the version implemented with

class instance variables does not.

Class instance variables are an important part of

Smalltalk because they provide an important mechanism

by which more reusable classes are created. All Smalltalk

dialects have class variables, but only Smalltalk-80-derived

dialects contain class instance variable support as deliv-

ered by the vendor. However, Smalltalk/V can be ex-

tended to support user-defined class instance variables

with just a handful of methods.

Whenever possible, serious developers of reusable

Smalltalk code should use the coding conventions discussed

in this article and class instance variables. Class variables

should be used only when there is an explicit need for shared

variables because they limit the reusability of classes. H

Juanita Ewing is a senior stiff merrdm oj Irutantiatiom, Im., a soft-

ware engineering and consulting ji-rrr that specializes in developing and

applying object-orien~d software ~ojects, and is an expert in tfwdesign

and im@.ementationof object-oriented applications, frameworks, and

systems. In her prewiouspoJition at Tektronix Inc., she was responsible

for the deud.opment of class libraries forthefirst commercial-quQf@

Smalltalk40 system. Her professirrrud activities include Workshop and

Panel Chairs for dw OOPSL.A conference.
THE SWTALK REPORT

Greg Hendlqand Eric Smith

ObjectworkslSmalltalk Release 4:
the graphics model
objectwork\Smalltalk Release 4 (R4) by ParcPlace systems

provides a platform-independent virtual image that pro-

motes complete portability of %nalltalk applications be-

tween various host systems. This level of portability is ob-

tained by isolating the virtual image from any information

about how input is gathered from, or output sent to, the host

system. In our last column, we explained how this trick is ac.

complished on the input side of the coin. In this column, we’ll

take a look at how the output side is handled.

PRIMARY CLASSES

There are two primary classes used in displaying information

in R4: DisplaySurface and GraphicsContext. It takes an instance

of each to conduct any sort of display operation. GraphicsCon-

teat is the active component. Instances of this class are sent

messages to draw lines, set colors, fill rectangles, display text,

and so forth.

DisplaySurface is an abstract class representing an object

that can be drawn on. An instance of one of its subclasses,

ScheduledWindow, for example, is required to conduct any

drawing operations with a GraphicsContext. The DisplaySurface

is a passive partner in these operations, simply providing in-

formation to the GraphicsContext so that it may conduct the

operation properly.

This arrangement provides a clean interface between the

virtual image and the host windowing system’s drawing primi-

tives. There is a single point of contact, GraphicsContart, re-

gardless of the number and type of Disph@tices used. This

division of labor is like that seen in Digitalk’s Smalltal~ for

Presentation Manager and Windows. In Smalltalk/V, the

GraphicsMedium and GraphicsTool are the passive and active ob-

jects in V. At least in this respect, the two main varieties of

Smalltalk are moving closer together.

DISPLAYSURFACES

Displayhfaces are of three basic types: Windows, Pixmaps, and

Masks. Instances of all of these classes represent entities that

are external to Smalltalk. For example, examining the class

Window, we see that it holds very little information. Instances

of this class merely front for an entity within the world of the

host windowing system. his this host windowing system ob-

ject that contains most of the real knowledge about what it

means to be a window under that system. All that the
VOL.1,No. 5:FEBRUARY1992
Smalltalk object needs to know is how to identify the host

windowing system object so that it may be queried and manip-

ulated when necessary.

Under MS-Windows 3.0, this identification is easily ac-

complished by having instances of DisplaySurface maintain a

copy of the windows handle of the host windowing system ob-

ject that they represent. An instance of ScheduledWindow has

an instance variable that contains a Smalkalk representation

of the host window’s handle.

It is this host windowing system object

that contains most of the real knowledge

about what it means to be a window

under that system.
99

GRAPHICSCONTEXTS

Displ@ufaces know how to create GraphicsCont~s on them-

selves. The resulting object is an instance of GraphicsContext

that knows the medium, a DisplaySurface, on which it is to

draw. The two objects necessary to conduct display operations

now exist.

Display messages may then be sent to the GraphicsContext

to either present information to the user or record it on a

Pixmap. The great advantage provided by R4 is that, no mat-

ter what system you are running on, XWindow System, MS-

Windows 3.0, Macintosh, etc., the protocol for displaying is

the same.

Tlis is accomplished simply and elegantly with a relatively

small set of primitives that implement all of the operations done

to a GraphicsContexL Each of these pnmitiv= is implemented in

the virtual machine to call the necessaq graphics functions to

accomplish the behavior detined for that primitive. Some of

these primitives are quite simple: merely converting parameters

and passing the call along to a single host windowing system

graphics call. Others, on some systems, will be quite complex:

performing a number of calculations to convert R4’s idea of how

a particular operation is done into several calls to host window-

15.

■ GUIS

16.

Voss
Virtual Object Storage System for

SmalltalklV
Seamtess persistent objectmanagement with update transaction

control directly in tk Smalh!alklanguage

● Transparent a- to %naIltalkobjectson d~k
● Transactioncommit/rulMrack
. Access to individual elements of virtual collections and

dictionaries
● Multi-keyand multi-value virtuaf didionaries with query by

key range and set intersedi.

_ Claaamtrwture editor forrenamkg barrrt addingor
mm k- variables attowa in—tat application
development

● Shared acceastonarned virtual ob@tspaces

● Source ccrde supplisd

SMnsMrmrumtsSOshmrsrecsiwdaboutVoss:
“...clem . ..etegant. Works like a charm”

-Hal Hifdebrand,Arsrametlaboratories

‘Works absolutely kutifully; emetlesrt performance and
appfidilfty.”

-Rnul Ourmr, Micro@cs Instruments

k)gic gFtiEEZ?.%ZZ%%1E)$F2A,

KR T S _~2~=-~?~d:,E==y
TSL +44223212392 FAX: +44 ZZ3zmn
ing system ti.rnctions. Since all of this is done in the virtual ma-

chine, the %nalltalk programmer never has to see it.

THE MECHANICS

What actually happens when a graphic operation on a Graphics-

Context disappears into a primitive? Let’s look at the case under

MS-Windows; the story on other systems is likely to be analo-

gous. First, it seems safe to assume that the %nalltalk operation

is eventually broken down into one or more calls to the graphics

and windowing fi-snctions in the MS-Windows libraries.

Those familiar with MS-Windows will realize that no

graphics operations can be done without having a handle

for a device context (HDC). The HDC identifies, within

MS-Windows, a complete graphics state for drawing on a

particular display medium, such as a printer or a window.

Naturally, the first task for the primitive that implements a

particular operation for GraphicsContext is to obtain an HDC

for the medium of that GraphicsContext. An HDC can be

created by using the handle stored in the GraphicsContext’s

medium.

If the HDC had to be created from scratch, as opposed to

cached, it would then have to be programmed with the parts

of the state of the GraphicsContext that are relevant to the cur-

rent drawing operation. If the operation involves drawing

lines, then the line width of the HDC must match that of the

GraphicsContext. After the HDC is brought into compliance

with the GraphicsContext, the MS-Windows calls that do the

actual drawing would be called.
A CLEAN SEPARATION

In our last column, we explained the separation between the

host system-specific aspects of input handling and the virtual

image. Like the handling of information display covered

above, by the time input gets to code in the virtual image, it

has been normalized to a standard representation that is the

same no matter what platform Smalltalk is running on. With

the separation between the Smalltalk developer and the host

windowing system’s display mechanisms, the independence of

the virtual image from the host environment is complete.

This model allows the Smalltalk developer to work in the

same image no matter what system he or she is working on. h

also allows a particular virtual image to be moved from one

kind of machine to another and to run without modification.

This would be enough to satisfi the goals of most develop-

ers. However, the lean design of the relationship between the

virtual image and the host windowing system provides even

more options. As mentioned above, the main point of contact

between the virtual image and the host’s display mechanisms

is the class GraphicsContext. In the last issue, we saw that on

the input side, the primary point of contact is the hputitate.

Yet, suppose we wanted to display information on a device not

supported by R4 or by the host windowing system. All that is

required is to provide a subclass of GraphicsContext that knows

how to draw on that device. The rest of the code in the image

will then be able to use that device. If input must be drawn

from an alternate source, such as a serial port, then a veraion

of InputState could be created that maps the serial input into

the input event structures used by Smalltalk. Beyond that

translation, no other classes need know that the input is not

coming from the usual source.

In a recent experiment, subclasses of InputState and Graph-

icscontext were created to allow the Smalltalk user interface

to be accessed through standard ASCII terminals. Once the

differences in input and output models were hidden in these

subclasses, the rest of the Smalltalk environment proved

quite robust; very little other code was necessary to get win-

dows up and running on an ASCII terminal. That most of

the code in the interface framework works well in such a rad-

ically different environment, with most of the effort involved

in changing only two classes, is a testament to the elegant de-

sign of Release 4. ❑

Greg Hendfey is a member of the technical smffat Knowledge Sys-

tems Corp. His 00P experience is in SrMUtd/V (DOS),

SmaUdk-80 2.5, Objectworks\StnaUtalk Rekuse 4, and

Srmdl@V PM.

Eric Smith is a member of the technical swflat Knowledge Systems

Crmp. His specia[ty is cumm graphical use~ in~aces using %ud.kdk

(various didects) and C.

Tky maybe contacted at Knowledge Systems Corp., 114 MocKenan

Dr., Cary, NC 27511 or by@oneat (919) 4814000.
THE SMALLTALKREPORT

Reviewed by Martin Osborne and Ann Cotton

CONCEPTSOF OBJECT-ORIENTED
PROGRAMMING

byDavidN. Smith
McGraw4-lil~,New Ymk, 1991
.-
H
ave you been hearing a lot of hype about object-oriented

programming (OOP) and now you want to see what all

the fuss is about? Or are you fairly new to object-oriented

programming and wondering if you have the concepts

straight? Or are you an object-oriented programming expert

tired of trying to explain it to your friends over a cup of coffee?

If you answered yes to any of these questions, then Concepts of

Object-Oriented Programming, by David N. Smith, maybe the

book for you. Here, the basic ideas and terminology of object-

oriented programming are explained and illustrated in a clear,

concise, and imaginative reamer to the reader who is familiar

with the basic concepts of procedural programming. There are

a number of concepts associated with object-oriented pro-

gramming that the book does not discuss. Among these are

graphical user interfaces, sophisticated programming environ-

ments, object-oriented analysis, and object-oriented design.

The book also does not discuss advanced 00P concepts such

as delegation, double dispatching, and multiple inheritance.

Mr. Smith is highly qualified to write about 00P. He is a se-

nior programmer and researcher at IBMs Thomas J. Watson Re.

search Center and has been active in 00P since 1983. He is a

founding member of the organization that sponsors 00PSLA,

the major yearly conference on 00P. Mr. Smith credits the

book’s origins to a challenge from a t%end-ive a one foil presen-

tation of 00P. He has never managed to do it, but he has given

day-long tutorials on OOP at several major ACM conferences,

with this book as the eventual outcome. The slow evolution has

allowed Mr. Smith to perfect his presenmtion of the subject.

In the paragraphs that follow, we will try to give an

overview of the book. Brevity will sometimes lead to oversim-

plification. We will give our opinions at the end.

Mr. Smith writes, “There are many books on object-

oriented programming for the professional programmer or de-

signer who wants in-depth knowledge... [but]. .-there are no

books on object-oriented programming for those that simply

want to know what it is all abou~ that just cover the impor-

mnt ideas without trying to make the reader into a program-

mer or designer of object-oriented systems.”

Object-oriented programming has to be understood as a

new way of d-iinking about programming, and its methods are

radically different from those of procedural programming. Pro-

cedural programming began at a time when small programs

resided in core-processed data on cards, and the resulting dis-
VOL. 1, No.5: FEBRUARY1992
tinction between data and code remains a part of today’s most

popular programming languages. Be warned, object-oriented

has become a fad term that vendors use freely “to stir some

spice into otherwise ordinary products.”

Object-oriented programming systems have four inter-

related characteristics: encapsulation, inheritance, polymor-

phism, and typeless variables. In simpler language data hid-

ing, a hierarchy of object definition, multiple routines with

the same name, and any variable can hold anything. (If your

favorite object-oriented programming language does not have

all of these features, you might enjoy arguing about the defini-

tion.) Throughout the book, the language Smalltalk is used to

illustrate the concepts of obj ect-oriented programming. Even

people who eventually intend to use a hybrid language such as

C++ should start with Smalltalk. However, the intention of

the book is to introduce the concepts of 00P, not to train

programmers.

Chairs are familiar objects, and defining one in Smalltalk

introduces the notions of instance variables and methods. In-

stance variables are data, and methods are code; together they

combine to form objects. However, code in Smalltalk differs

greatly from code in languages such as C and Pascal. A simple

sort procedure written in Pascal is only good for sorting one

kind of thing, say an array of integers. Sorting an array of real

numbers would require another procedure. In Smalltalk, a

method implementing the same algorithm is much more pow-

erful. It can sort any collection of things, provided that the

things can be compared one to another.

Objects are organized in a hierarchy of classes. Because of

this hierarchy, they can inherit instance variables and meth-

ods from each other. Inheritance can be used in simple ways

or in ways that are subtle and complex (consider inheritance

with super and self), all of which are illustrated with concise

examples and diagrams, The concept of inheritance is ex-

tended “to include abstract classes which are never intended

to produce real objects but are used to provide characteristics

to be inherited.”

The design and implementation of three applications illus-

trates the real point of 00P. Although small and simple, the

applications incorporate a number of the techniques used in
designing a good hierarchy of classes and will be of interest to

experienced 00P programmers as well as beginners. Design

and implementation are seen as being iterative and consist of

1/.

H BOOK REVIEW

18.

w~ Smalltalldv users: the too]
< for maximum productivity llB

“Put relatedclasses and methods into a single task-
oriented obJect called application.

o Browse what the application sees, yet easily move code
between it and ememal environment

0 Automatically document code via modifuble templates
0 ~wak~~f previous versions; re.mre them with

o Mew Ck?S hi(XSrChY as graphor list.
0 Print applications, classes, and methods in a formatted

0RlR!XWW~”WXR3~erge*em together.
0Applications are unakted by compress log change
and many other features..

,Cletut ~--.--.--.-.....-...-.—.-....
: DeletedChaees

\uffl~ +–~fifi&ti&--fifig] ~~d ~0~

CodeIMAGERm V286, VIWc $129.95
&“JWJWJido)m4&2#19: -y

Diskettmn 3,. 05;

❑
SixGraphm Computing Ltd.
formerly ZUNIQ DATA Corp.
2035 C6te de Liessq suite 201

ontreel, Que. Cenede H4N 2M5
~ti &~fi332-1331, Fstsc (514 956-1032

6- 4bnm&hd*OfS”
SmdkaWVblmk ~ r#Dt@k.

~~
defining the hierarchy, protocol, and state of the classes. It is

fine to “do what you know how to do... [andsee.see if what you

just did suggests additional things to do.”

Readers who might have been wondering why message and

class were not listed as fundamental 00P concepts are told

that “the idea of message sending...is a result of other ideas...

[and that] ...classes are just one way to implement hierarchies.”

The beneftts of objeet-oriented programming are code reuse,

localization of change, design assistance, extensibility, and

faster development. For readers who want to pursue 00P fur-

ther, there is a guide to a few good books, publications, con-

ferences, and software packages.

A reviewer’s opinion of a book is bound to depend on her/his

background and interesw. With this in mind, you are about to

reeeive two sets of opinions. This book is Arm’s first exposure to

00P. She has worked as a programmerlanalyst on university in-

formation systems since 1981 and is currently a database admin-

ismator. Martin has been involved with 00P for two years. He

teaches computer science, includlng courses on 00P.

In Ann’s opinion, the Imok iswell mganked, but the writing is

awkwardattimes- Alltheconceprsafe dmmndable, although

sometimeanotwithcut repeated read@ Early bomcfihebookare
willingnessm wrestlewiththe materialare requiredShe feels hat

- fJfWW~h providedherwirha good
m&stad@ of OOP. However, iAe subtlety and complexity cfwme

of the examples raise concern that considerable e.xp-ierue with ~P

k~tibkmeatihmo~-timdmy~mm

gccd object-oriented designs and mmageable cock This leadshet to

question tiheclaii of increased productivity. Ske@sm aside, Ann

&liev=bt~Ph@@Ah_hwAem&d

vaniageofit inherenvimnmem

Martin wishes that this had been the first book he had read

about 00P. If it were, he would have avoided a lot of his ini-

tial confusion about 00P. He teaches a class on Smalltalk to

students who have had a year of programming experience and

he thinks the book provides an excellent checklist of the con-

cepts the class should cover with good examples of how to

cover them. He feels that the book overemphasizes the sub-

tleties and complexities of 00P and thus misleads a new-

comer into overestimating its difilculties. While all the con-

cepts illustrated are important, they usually do not occur in

such density in typical systems, The benefits of O(3P stated by

the author are ones that most people would agree with and

perhaps would add some of their own to. Martin enjoyed Ap-

pendix B, which discussed the problems of procedural pro-

gramming languages. While some might argue that not all the

problems related would apply to Ada or Modula, or even other

languages when used with thought and care, the list of prob-

lems is enough to make one wonder why we continue to pro-

gram in these languages. But perhaps the current state of af-

fairs is only temporary, and soon most of the major languages

will be object oriented or, at least, object enhanced.

We wonder if Mr. Smith found it difficult to decide what

to include and exclude, and some readers are bound to wish

for a little more of this or a little less of that. However, all in

all, the book is excellent and receives two enthusiastic

thumbs up. E

Ann Cotmn, after retuiing Mr. Smith’x book, has been introduced to

object-tiented programming. Currently, she is the Dadm.se Adminis-

trator at Western Washington University, Bellingham, Washing-ton.

Her interesfi include relational databuse technology and computer ser-

uices. Sk can be wackd at (206) 676-3826 or uis. uucpi !ann@kn-

son.cc. wwu.edu,

Martin Osborne has been inwolwedwith object-oriented programming

and %udhdk since f 989. He works in tk Depaninent of Computer

Science at Western Washington University, Beflingham, Washington,

where k teacks cfawes on object-tien~d programming, in&tnation

systems, and software engineering. His interests include object-oriented

programming, wisualprogramming, and software deuelc@rnent aids. He

can be reackd a (206) 676-3798 or martin@cs. wwu.edu
TlfESWTALK REPORT

Product Announcements are not reuiews. Tky are abstracted jkm przss releases provided by vendom, and no endorsement is implied.

Vendors interested in being included in thisfeature should send press releases to our ed.h-itd of)ices, Product Announcements Dept.,
91 Second Ave., Ottawa, Ormmio KIS 2H4, Canada.

Dome SoftWere Corp. has announced the formation of the
Smalltalk Metrics Project. The project’s goal is to establish a body
of quantitative information about design and development in
Smalltalk and to create a better understanding of how it is used in
production applications.

Dome has defined a varie~ of ways to meesure programmer
activity, program complexity, and component reuse, It has cre-
ated a Smalltalk program that can compute these measures for a
specific system. The program also collects information from the
system’s developer, including the size and background of the de-
velopment team, the level of experience of i~ members, and the
methodology used to develop the system.

The company is enlisting the cooperation of other firms by
asking them to use Dome’s metric program to analyze their own
Smalltalk-based systems and report the results to Dome. By
gathering data for a wide varie~ of Smalltalk systems, the com-
pany hopes to distill a much clearer picture of how Smalltalk is
being used. Companies using Smalltalk to develop production
systems are invited to request an information packet from Mr.
Wilmes at Dome.

For more information,contact Dome Software Corp., 655 W. Carmel Dr.,
Carmel, IN 46032; (317) 573-8100

ArchiText, the language-driven document constructor designed
to write and maintain structured documents, is now also available
for Smalltalk and C/C++.

Developed by Interactive Software Engineering, ArchiText is
one of the first produ- ever constructed using purely object-
oriented programming techniques and is written entirely in the
Eiffel object-oriented language.

ArchiText is a powerful high-level tool for manipulating and
viewing structured documents, such as programs, specifications,
and technical or administrative reports. It was designed to relieve
computer users from the need to worry about language structures.

A unique feature of ArchiText is its ease of adaptation to any
context-free language. To build an ArchiText editor for a specific
language (programming language, design language, or even the
description of the structure of standardized technical documents),
it suffices to describe the language’s grammar in a simple nota-
tion called Language Description Language (LDL). The standard
delivery of ArchiText includes basic LDL grammars for Eiffel, Ada,
Pascal, C/C++, and Smalltalk.

ArchiText features a graphical user interface based on the Mo-
tif GUI standard that makes it quick and easy to manipulate com-
plex structures,

For more information, contact Burghardt Tenderich, Interactive Software
Engineering, Inc., 270 Storke Rd., Ste. 7, Goleta, CA 931 17; (805) 685-
1006; fax (805) 685-6869.

ParcPlace Systems announced that it will support Information
Builders’ (IBI) Enterprise Data Access/SQL product family.

EDA/SQL provides direct access to information in corporate
databases including IBM’s DB2 and IMS, Sybase, Oracle, Informix,
and IBI. ParcPlace Systems intends to extend its suite of Object-
worksKmalltalk Portable Objects (object-oriented class library) to
provide a common interface for applications that use IBI’s
EDA/SQL product.

ParcPlace Systems also announced that the FACETS\4GL
fourth generation language (4GL) application development tool
for Objectworks\Smalltalk now includes an interface builder.
FACETS\4GL 2.0 enhances the capabilities of traditional 4GLs
with a graphical user interface (GUI) builder and provides a migra-
tion path from 4Gk to object-oriented technology. FACETS\4GL
is developed by Reusable Solutions and marketed by ParcPlace
Systems.

For further information, contact ParcPlace Systems, 1550 Plymouth St.,
Mountain View, CA 94043; (415) 691-6700.

Tigre Object Systems, Inc. announced a new agreement with
ParcPlace Systems. Tigre now bundles the Tigre Programming
Environment with ParcPlace’s Objectworks\Smalltalk object-
oriented language. The Tigre Programming Environment, which
uses ObjectworksKmalltalk as i~ scripting language, lets devel-
opers create state-of-the-art graphical user interface (GUI)
programs that run, without porting, on Macintosh 11,Microsoft
Windows 3.0, and all popular UNIX workstations.

For further information, contact Tigre Object Systems, Inc., 3004 Mission
St., Santa Cruz, CA 95060;(408)427-4900.

Synergistic Solutions, Inc. announced additional platform support
for Smalltalk\SQL, the portable database interface for Smalltalk.
The product works in conjunction with ParcPlace Systems Object-
works\Smalltalk to enable graphical user interface (GUI) applica-
tions to access information stored in relational databases. Direct
database suppoti is currently available for the Sybase and Oracle
databases. DB2, Informix, Ingres, Rdb, and other databases may
be accessed through a variety of gateway products.

For further information, contact Synergistic Solutions,Inc., 63 Joyner Dr.,
Lewrenceville, NJ 08648; (908) 855-7634.

InfoWare Version 1.0 is a database connectivity package that pro-
vides an object-oriented interface to relational databases for ap-
plications written in ParcPlace Systems’ Objectworks\Smalltalk.
Applications built with InfoWare are able to access relational data
in the form of objects. The applications are written entirely in
Smalltalk, instead of the embedded SQL of the host server, pro-
viding the developer with a uniform object-oriented interface and
portability across a variety of RDBMS servers.

For further information,contact Ensemble Software Systems, Inc., 555
BryantSt., Ste. 347, PaloAlto, CA 94301; (415) 325-2773.

19.
VOL. 1, No. 5: FEBRUARY1992

1ALu .
Excerpts from industry publications
...As far as object-oriented technology goes, [Bob] Libutti [pro-
gramming systems director of market strategy with IBM] said
that IBM was considering using Sapiens tools internally in sev-
eral industry areas. And prior to its discussions with Sapiens it
has been talking to DigiTalk. Indeed, SmallTalk is used exten-
sively in lBM-it was used to build the new Cross System Prod-
uct, CSP, and was also used by Intersolv Inc. to build its prod-
uct line for 0S/2. Libutti said that IBM is making a major
investment in object-oriented technology. This is all well and
good except that IBM’s Repository is based on the Enti~-Rela-
tionship model and not the object-oriented model. However,
Libutti says that IBM is extending the Repository to cope with
object types, although when pressed said he didn’t know when
these extensions will appear...

IBM sets the record straight on misperceptions of
systems application architecture, Unigranr X, 11/7 W91

...Many people hear the term object-oriented and immediately
think of a programming language like Smalltalk, C++, or Eiffel.
These languages all provide language-level abstractions to cre-
ate and manage hierarchies of communicating objects that
serve as the implementation of user requirements. Some very
powerful programming environment= have been developed
that support these languages by producing special-purpose
editors, browsers, and debuggers. These make it easy to deal
with complex collections of code. They’re bad because they
tend to focus on implementation of language issues at the ex-
pense of higher-level design or requiremen~ issues...

Languages like C++ and Eiffel suppoti aggregation and in-
heritance, and consequently are considered true object-ori-
ented languages. Ada supports aggregation, but not inheri-
tance, leading object-oriented purists to call it an object-based
language. Still, it’s possible to build object-oriented systems
with Ada...

Dasign applications: building a case for object-oriented
technology, Read Fleming and Lou Mazzucchelli,

Electronic Design, 17/7/91

...Requirement viewa, context specification, event-object parti-
tioning, environment modeling, design templates, method hier-
archies, and a rapid system development strategy are all part of
a comprehensive object-oriented approach to system develop
ment. All these elements evolved from structured techniques
into a significant number of today’s 00 methods. These meth-
ods in various forms have been used and written about exten-
sively for the last ten years. Other concepts required by object-
oriented development are readily available from entity-
relationship analysis, Jackson’s data-structure oriented ap
preaches, and the Smalltalk language. These sources for object-
oriented methods have been around for a long time as well. As
with elements of the structured techniques, method developers
have been incorporating those ideas into what are now known
as 00 methods. This is not to say that every last issue in object-
oriented development methods has been resolved, but the evm
Iution to revolution question is rendered moot given that the
structured techniques have already spawned 00 methods.
Instead of revolution, the real issue is revelation. For a variety of
reasons, many in both the object and the structured world have
slept through the evolution of 00 methods. For all of them, I
hope this article is a wak-up call.

Debate: evolution vs revolution: should structured methods be
objectified?, John Palmer, Object Magazine, 71-12/91

...ln pure 00P systems, such as Smalltalk, memory allocation
and deallocation [are] handled by the language. In C++, as in
C, the programmer is responsible for memory management,
This complex task is a common source of bugs in C programs.

Techview: strengths and weaknesses of C++,
Larry Seltzer, PC Week, 12/2/91

...When I learned about objed-oriented programming using
Smalltalk, I was preoccupied by the picayune details of the lan-
guage. 1spent the first six months understanding the subtleties
of the syntax, learning the class libraries, studying the language
semantics and implementations, and mastering the program-
ming environment. At the end of that first half year, I had a
solid grasp on all the little issues of an object language, but I
still knew nothing about obje~. I had been reimmersing my-
self in issues familiar to me from my days as a procedural pro-
grammer. I focused on the non-object-oriented aspe~ of my
object-oriented language to avoid the uncomfortable feeling
that 1didn’t know what was going on. By clinging to my old
ways of thinking, like a nervous swimmer to the side of the
pool, I was preventing myself from reinventing my perspective.
It was only through patient and expert tutelage that I was able
to break free of my old habits and begin to make use of the
power in objects. I now know that learning objects needn’t be
frightening or confusing...lf you’re willing to trust yourself to
learn the syntax and programming environment later (after all,
you’ve probably learned several of each already), you can be
doing objects in a few hours, too...

Think like an object, Kent Beck, UNIX Review, 70/91

...Traditional or “classical” object-oriented languages have cho-
sen a funny spot in the spectrum of possible object-oriented
languages. On the one hand, they have taken the model of au-
tonomous objects too far-we could justify calling languages
like Smalltalk object-obsessed languages. On the other hand,
the designers of object-oriented languages typically have not
taken the object-oriented model seriously, and so CLOS is one
of the few languages defined as an object-oriented program...

fvfetaobject protocol: generic functions and methods,
Nick Bourbaki, Al Expert, 70/91

,..The Eiffel language is small compared to others, allowing a
user to understand and use the entire language instead of a
subset. At first glance, it looks like a hybrid between Smalltalk
and C. That is not to say the language is a combination of
these, but simply that the code will look like a conglomeration
of those language’s styles and commands. Programming in Eif-
fel requires an excellent grasp of classes. The terminology used
THE SMALLTALKREPORT

in Eiffel is a collection of terms from other object-oriented lan-
guages, which may lead to some confusion. Classes are defined
rigorously using the Eiffel language.,. Learning Eiffel is a little
unnerving at first. Experience with other OOP languages will
certainly help, but a fair amount of learning is still
involved ...The difficulty is not the language itself, but the cor-
rect use of it. Eiffel is well-defined and, once the concepts are
understood, is quite logical. However, a new user can antici-
pate many days of work before feeling comfortable with it.
Once mastered, though, it is easy to remain abreast of the lan-
guage due to its small size and logical layout...

Off the shelf: OOP languages, Tim Parker, UNIX Review, 10/91

...Embedded systems development using .Smalltalk is no longer
a research curiosity. Real systems are being shipped today
which have used the technology described...As microproces-
sors continue to improve and memory becomes even cheaper,
the complexity of embedded applications will undoubtedly in-
crease. AS this happens, the abili~ to meet customers’ expec-
tations and management’s deadlines with traditional tools and
methods will decline. Using Smalltalk to develop embedded
systems is not a panacea. Developing complex systems will
never be easy. But developers who use object-oriented pro-
gramming systems such as Smalltalk will be engineering high-

quality solutions faster and cheaper than their competitors.

Smalltalk and embedded systems, John Duimovich and

Mike Milinkovich, Dr. Dobb’s Journal, 10/91
AM/STTM
AM/ST, developed by the SoftPert
Systems Divisionof Coopers&
Lybrand, embles the developer to

manage large, complex, object+rient-
ed applications, The AM/ST Appli-
cation Browser provides multiple
views of a developer’sapplication.

AM/ST define; Sma~~rdk/V applica-
tions as logical groupings of classes and
methods which can be managed in source
files independent of the Smalltalk/V
image, An application can he locked and
modified by one developer, enabling other
developers to browse the source code. The
source code control system manages multi-
ple revisions easily. J.-. ., ,:, < .;

:’ ““ ‘“””“W*’
,~wM@w$5m

Allmdernak aretk pmpty of th+rresp=tiveOWIII%Im@ofL Inc.,2HwenAvenue.Po

VOL. 1, No. 5: FEBRUARY 1992
...[BT North America’s Mike] Roberk says: “C++ combines the
expressive power of object-oriented languages like Smalltalk
with the eficiency and low-level control of C. lts wide dynamic
range lets you think of objects at abstract levels, then shove
bits around when you need to. That’s a very attractive combi-
nation... Smalltalk was tempting...l like its support of rapid pro-
totyping and hypertext.” But the hypertext editor will stand or
fall on the basis of its user interface, and Roberts discovered he
couldn’t live with Smalltalk’s. “The object hierarchy that comes
with Smalltalk includes a complete graphical user interface,] .. .
which is very convenient if that’s the interface you want. But I’m
fussy and Smalltalk’s fussy, and our fussiness didn’t overlap. I
found that to make the changes I wanted to make, I had to
dive into the object hierarchy and rewrite code at a very low
level. If you’re doing that, you might as well be using C++. You
aren’t enjoying the benefits of Smalltalk’s reusable, extensible
classes anymore’’ ...C++ is an important tool, Roberts says, but
it isn’t a panacea. “It is naive to expect that C++ subclass reso-
lution will be useful for all message-routing [in a message-
based system]...lt is not sufficient for generalized dispatching.”
Roberts has had to invest significant effort in writing message
decoding and dispatching functions for his project...

Pushing the envelope, J.D. Hildebrand, UNIX Review, 10/91

. ..At the higher layers, the object orientation of the system is
paramount. Designing a PenPoint application is similar to creat-
ing one for the Smalltalk environment, in that you instantiate
, .

*.: ‘, .,:,:,:”..,, ..
iP?@Mk.,, .,, i,- ;., -.,,:

The original and still premier
application manager for

SmalltalklkW

ChangeBrowser, As an additionrd
tool available for Smalltrdk/V PM

and Smalltalk/V Windows, Change-

Bmwser supports browsing of the

Smalltalk/V change log file or any

file in Smalhalk/V chunk format.

The addition of AM/STto the
ImageSoft Family of software develop-
ment tools enhances and solidifies
ImageSoft’s position as —

m

,.

“The World’s Leading Publisher . :
of Object-Oriented Softwa2E
Development Tools,” $%%%%%

1-800/245-8840
ImageS@ft‘nEWd’aL&4@Pubhsberof lkvelopnent TIM%

rtWAingon, NY 11050 5 16/767-2233: Fax 5 16/767-9057: UUCP address: mcdhup!image!inro

21.

■ WHAT THEY’RE SAYING ABOUT SMALLTALK

22.
and/or subclass the components of your app from existing
classes in the application framework..,

A technical overview of PenPoint, R.V., Dr. Dobb’s Journal, 11/91

...[Robert Carr, cofounder of GO]:” What we mean when we
say that PenPoint is object-oriented is that the programming
interfaces are implemented as a sequence of objects that you
can send messages to, and that these objects are instances of
classes, and classes can be subclasses, thereby modifying
their behavior, and of course the objects tend to encapsulate
information and behavior and hide the actual data represen-
tation from the folks who want to communicate with them. So
I think anybody who has studied what I’d call “true object ori-
entation” in the Smalltalk sense will find that when we talk
about object orientations that’s what we mean..,

A conversation with Robert Carr, part 1,
Michael .Swaine, Dr. Dobb’s Journal, 11/91

...How should analysis and design be used with object technol-
ogy? The answer is: incrementally, in conjunction with actual
development, using separate techniques for each layer of a lay-
ered system architecture....lnstead of designing an entire
monolithic system on paper before beginning implementation,
sketch out a skeleton system to get you started, then code that
much and see how it works. What you learn from the imple-
mentation is bound to improve the design, Then take that im-
proved design, sketch out an incremental set of functionality,
Don’t Delay! Become a C
I

Sampling of articiea to appean

■ introducing Smalitaik into Your Organization

■ Designing and Managing Smalltalk Ciass Libraries

■ Effectively Managing Multiprogrammer Smalltalk Projects

■ Metrics for Measuring Smailtaik Systems

■ Organizing Your Smalitalk Development Team

1-------- ------ ------ ------ ---------------- ------

~~ YeSj enter my Charter Subscription at the term indi-

~cated. This is risk-free offer. I can cancel at any time and get
I
I a refund of the unused portion of my subscription.
I
1
1
1
I
1

:
I
1
1
1
1
1
I
1
1
1
I
I
1
I
I
I

i
1

I year (9 issues) 2 yeara (i 8 issues)

D $65 Domestic Q$120
cl $90 Foreign (includes air service) Q $170

D Check enciosed Cl Bill Me

El Charge my Ci Visa D MasterCard

Card # Exp. Date

Signature

For faster service, call 212.274.0640 or fax 212.274,0646.

Make checks payabletome 8~ldh ~ti inUSdollarsdtawnona
USbank.Pleasallow4-6 week for delivery.

~---
and roll that into the code. The malleability of object technol-
ogy makes this incremental approach to development far more
feasible that it was with conventional technology. In addition,
tons of paperwork can be reduced to mere pounds, the prod-
uct rolls out faster, and the overall design is usually superior be-
cause it is proven in the field and enhanced in stages rather
that being thrust upon end users in the conventional “big
bang” fashion...

Easing into objects: redefining analysis & design,

David A. Taylor, Object Magazine, 11-72/91

. . .“[object-oriented programming is] the difference between
building a castle out of sand and building a castle with Legos,”
says Roger Heinen, Apple’s vice president of Macintosh Soft-
ware Architecture,..

Software industry is “object-oriented, ” Rory J. O’Connor,
Huntsville Times, 17/70/91

...Developers using object CASE tools without the prerequisite
training, practice, and a fundamental understanding of objed
will face the same failure as the inexperienced doctor operating
on patients using state of the art equipment. Tools alone can-
not save the patient!

PointiCounterpoint: using CASE took without the methodology,
the developer’s perspective, Kathleen Meyer,

Object Magazine, 11-12/91
harter Subscriber Today!

■ Fletaievel Programming

■ Smalitalk in the MIS World

■ Smalltalk as a Vehicle for Real-Time and Embedded Systems

9 Teaching Smalltaik to COBOL Programmers

■ Interfacing Smalitalk to an SQL Database

■ Realizing Reusability

------ ------ ------------------- ------ ---- -i
i
I

Name
I
1
I
I

Title 1
1
I

Company
1

i

Address
I
1
1
1

city State zip I
I
1

Phone
I

i
I

The Smamalkneport
I

Return to: I
I

Subscriber Services, Department SML ~

PO Box 3000 I
I

Denviile, N] 07834
i

D2BG :
I

---------J

THE SMALLTALKREPORT

-— -- ~----. :==. + AD/Cysle’-
.—— - ---
%

b -i”
/l, v 74

wINDowsANDos/2:
PRm EN)DELIVERY
NowmG.InWindows and 0S/2, you need prototypes You have to get a sense

for what an application is going to look like, and feel like, before you can write

it. And you can’t affcml to throw the prototype away when you’re done.

With SmaUtalk/~ you don’t.

Start with the prototype, There’s no development system you can buy

that lets you get a working model working faster than Smalltalk/TZ

Then, incrementally, grow the prototype into a finished applica-

tion. %-yout new ideas. Get input from your users. Make more changes.

Be cmtive.

SmalltalltNgives you the freedom to experiment without risk. It’s

made for trial. And error. You make changes, and test them, one at a time.

Safely, You get immediate feedback when you make a change. And you can’t

make changes that break the system. It’s that safe.
And when you’re done, whether you’re writing applications for

Windows or 0S/2, you’ll have a standalone application that runs on both.

Smalltalk/V code is portable between the Windows and the 0S/2 versions.

And the resulting application carries no runtime charges. All for just

$499.95,
So mkea look at

Smalltalk/V today, It’s time to make

that prototyping time productive.
smalhawv

SmafItalfl is a registered h-ademark of Digitafk, Inc. Other product narn= are trademarks or registered

uademarfa of their-respective holders -

Digitslk, [IX, 9S41 Airport Blvd., Los Angeles, CA 90045
(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO’S TALKING

HEWLETT-PACKARD NCR
HP bas &.ve.Iopeda network trouble- NCR bm an integrated test program develop-

sbooting tool wfled tbe Network Advisoz ment environment for digital, analog and

The Network Adufior ojfer~ a compreben- mixed moab printed citwit board testing.

sive Jet of tools including an expert ~y~tem,
stu!i~tics,andjnutoco[a%codes to ~peed MIDLAND BANK
probhm isohtion. The NA user intedace is MidIand Bank buili a Windowed Tecbnicai
bdt on a windowing syshm which ahws Tmding Environment for currency, futurm

multiph afiplicatiom to be executed and ~tock !m&rs u~ing .%s.alhlk V

JirnultaneousIy.

m mms

■ Worlds leading, award-timing object-
Oriented programming system

H Complete prototype-to-delivery system

■ Zero-cost runtime

■ Simplified application deliveq for
mating standalone executable (,EXE)
applications

■ Code m-tabilitv between SmaUtalk/V
Wind&vs and Smalkal.k/V PM

■ Wrappers for all Windows and 0S/2
controls

■ Support for new CUA ’91 controls for
0S/2, inchding drag and tip, booktab,
contahq value set, slider and more

■ Tiaqarent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

■ Fully integrated programming environ-
ment, including interactive debuggeq
source code browsers (all source code
included), world’s most extensive Win-
dows and 0S/2 class libraries, tutorial
(printed and on disk), extensive samples

H Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

■ Bread base of third-party SUppCtlt,

including add-on Smalltti products,

consulting services, books, user groups

This SmalltsfWV Windnwsapplication
CS@UA the PC Week Shootout award-and
it was completedin 6 hours.

SmafItafk/V PM applications are used to
kelop stateof-the-srt CLJA-complisnt
applications —and they’repm-tableto
SmatftalkfV Windows.

	By Article Title
	A case in point
	A proposal for change management in Smalltalk
	Concepts of Object-Oriented Programming
	How to use class variables and class instance variables
	Objectworks\Smalltalk Release 4: The graphics model
	The phases of an object-oriented application

	By Author Name
	Cotton, Ann
	Ewing, Juanita
	Hendley, Greg
	Osborne, Martin
	McKenna, Jeff
	Rovira, Charles A.
	Smith, Eric
	Wirfs-Brock, Rebecca

	By Topic
	Book Review
	Getting Real
	GUIs
	Object-Oriented Design

