
The International Newsletter for SmalItalk Programmers

November/December 1991 Volume 1 Number 3

R

F

C

D

{

1

/

2

ESPONSIBIUTY-
—.

DRIVEN

DESIGN

By Rebecca WIrfs-Brock

Contents:

eetu#Hcles
I Responaibil&driven design

by Rebecca W-k

I I Smalldk comes to the rnaintiame, part I

by Glenn]. Reid

olumns

6 Getting M Should classes be initialized?

byjuonti Ewing

9 GUIS:O~eccWorkaKmalltalk Release 4

for MS-Wirsdows 3.0a look at the lower

levels by Greg Hendley and Eric Smfi

epartsnenta

5 Cosr~nce Repom Di@mlk’s SmallralW

Developers Conference’9 I

by Paul White

7 bb Repom Using and swdying Smalltalk

in the User Intafice Institute

by Mary RechROSSIM

19 Wfrat 7hey’re S~”ng About Sma//tolk

0 Pmduet Annwncemerrts

Paul White

[

elcome again! Well, we’ve finally convinced you that The .%mdkdk Report is for real. It

has been gratifying to see the terrific response we have received to the first two issues.

Meeting many of you at 00PSLA and the Digitalk Developers Conference has allowed

us to get your feedback directly. Most of it has been positive — the only comment ut-

tered enough times to warrant a response from us has been the charge that what is being

stated by some of our columnists is, to paraphrase, “not the right way Smalkalk should be

used.” To that comment, we say “Let’s hear your rebuttal!” Our role as editors is not to

decide what is “right” and “wrong” — only to ensure that arguments get presented in a

professional and informative manner. We welcome your responses — either in the form

of an article ot through our Meseages: soapbox. Along these lines, one worthwhile sug-

gestion received was to solicit two members of the Smalltalk community to debate a

topic of current interest. We would be delighted to offer such a feature, However, as

usual, pinning people down to contribute is never easy. Any suggestions you may have

for suitable candidates and topics for such a feature would be welcome.

in this issue, we welcome Rebecca Wirfs-Brock as a new columnist to the The .$mdhalk

Report. As author and speaker, Rebecca’s opinions are widely respected within the

Smalltalk community. Her approach to object-oriented design is well known and is well

suited to the Smalltalk community. In upcoming issues, Rebecca promises to go beyond

her current writings to provide greater detail and insight into the issues of object-ori-

ented design. In this issue, she begins by reviewing the responsibility-driven approach to

design. Also in this issue, Glenn Reid discusses the Smalltalk/370 project — an ongoing

effort to bring Small talk to the world of mainframes.

Two of our regular columns are again featured in this issue. Greg Handley and Eric

Smith continue their look at GUIS by describing the low-level interactions occurring in

ParcPlace’s Release 4, while Juanita Ewing continues her Getting Real column by dis-

cussing a problem well known to Smalltalkers — how to systematically arrange for the

initialization of class variables. Finally, in our Lab Report section, Mary Beth Rosson

describes the considerable amount of Smalltalk research taking place at the IBM

T-J, Watson Research Laboratories.

Listening to the debates at the Digitalk Developers Conference or looking around the

exhibits floor at 00PSLA, it was hard to come to any conclusion other than that inter-

est and development in Smalltalk is thriving as never before. Moreover, real examples of

the use of %nalltalk in commercial projects are now plentiful. We hope to report on

some of these “success stories” in upcoming issues. To begin this process, we present an

overview of the activities of the Digitalk Developers Conference.

‘IlmSIIU41dkFlqcm(ES+ 1056-7976)i, p.hlkhd9 rims. year.wmymonth exccp hmthe Mar/Apr,].ly/A.K and Nov/llc cumlmnedisuws.
F’uhlishedby CCMJT, 1..., a mcmherof ,hc SIIGS P.ldicatmm Group 5S4 Moadway,N.w York, NY lCOIZ (217.)274-WC. @ C@yrighr 1591 hy
OX)T, 1... All nghmre=weti Reproduction03rhu materialhy =Iecrn,nicmmmnimm, fin>. or anyAm nwh,ml WII[‘m tread w a willfil viola.
rum of the US Copytihr raw and k flatly pruhihiwd. Material rn.y k rcprcdu-d with c.pmw penni=icm(mm the Puhlfih.rs Mailed FirmCI.S.
S.lxa-ipci.n rate. 1 }tar, (9 iss.cs)Amwsric.$65, Forew” andCan+ $90, S@ WY price,$8.03. F’OSTMASTF.R:.ScmlAdrew clm.s.A andsub.
scripritmIX&m tm THE 5MALLTAM 3WCRT, S.hmiher %-vices, Lkpt.SML P.O. Son WOO,Owwillc, N] 07834. Submitarticlm to rhe Sdit,m ar 91

-r Scc..d Avenue, Ortawa, Ontario KIS zH4. Canmb.

L.

Ed-
John Pugh and Paul White
CerletonUn”mrsiSy& TheObjscr People

SIGS Fuauamcms
Advkory ward
Tom Atwood, ObjacsTeehndogy

Gredy Booeh, IMOIMI
George 130ewoRh, Oig”dk
BrA ti~ InformationAge Consulting

Chuck Duff, TheWhkeweterGroup
Adele Goldberg, PercPlarn Systems

Tom Love, cansultmt

Bertrand h4eyer, IsE
Meilir PegaJones, wsylmd sptwna
Shese Pratap, CenterLine Software
P, Mlchaal Seaehols, %rsans
Bjarne %w@iFFJ, AT&T Bdl Labs
DSW fiomae, Dbject Techologj

THE%AUTALK REPORT

Editorial Board
Jlm Andaraom Dlghelk
Adede Goldberg,ParCPIn. SyareIIM

Readl%ikpe,KmwledgeSystemCorp.
MJke Taylor, htantis

Dave Thomas, O@ciTechnatq Intemtii

Colurnrtiats
Juanita Ewing, lrrstmtiatiem

Greg t+endtey. fiowkdge SFMIS Corp.
Ed Klirnas
Suzanne Skublii, tiject Technology
Erii Smwr, KndedgO Sy$telnsCorp.
AllenWirfg-Brock, hrsimtierhmti
Rabeaa WIrfe-Brock, Tektronix

SIGsPubbiha GrQup, k

Rklrerc! P. Friedmen
GreupPuMdler

ArUPmdUcbO “n
Elisa Varierr, ProductIonManeger
Wee31 Cumgen, Craeave OlredOI
KristJnR. Jube, Produdm Editw

Cere41POlnar, DesktopOssigner

admh
DianaBedwey,GrcuhenRuinesmNbrmger
Kathiesm Canning, Fd6Um0mMsnegw
John Schralber, CuKUlstiOn&4tent

Martr@ir@Advertialng
Jemes Ke~ AA@dng criieetor
Diane Morencia, krxnt &—mtiw
GareHneSrJle6m#d+wWng%le5A&r241

Aclmh&mtbn
David ChathWIl, ACCOUnting
SuzimnaW.Dhws&in, Ca&fenm Manega
Jenr& Fischer, Aseist@ tn the Publiiher
Laura Lee Taylor, fdninistmtive &aktsnt

Merghahi R.Monck
GeneralManager

~ssIcGs
PubMend JolJmalafobJect4wmed
Pmgt’ammhg, obJecr Afllgesbw, Hekfineon
~& Twfmo&w, %c++&
pwt, Thflsm#tssk Repoft,Thskltem.
rionalGOP Dlre&ry, and T3mXJOurmL

THESMALLTALKREPORT

Unleash
the

TruePower
of

Client/Server
Computing...

ENFIN/2 offers a unique integration of 4GL
visuaf development toofs within an object
oriented development environment which
enables appltcatlon developem to achieve a
quantum leap Ill productivhy.

Gr@hicaf lherI@?tj&tw

■ All CUAdisplay objects predefine
■ U###e SUppOrtfor pid$ (@j and drop

■ Addltlonal display objects such as business
grsphlcs, tables, bitmaps and more

■ Portability of source code between Windows
and 0S/2 PM

CYientSemrArchiA@ure:
1 Point and click firddng of SQL tables and

querh to display objscts and report objects
■ Support for most popular SQLengines aad

DBsse
■ Support for cursors, scroflsble cursors, and

embedded SQL

@nArchitWure:
■ APPCLU6.2and EHLAPPIhost cmnmurtica-

tions
■ DDE,DDL’s,ChpbOSI’d and OLB

ObjlwtOlimk?d~E~
■ Etd3n’sSmaUtalk object oriented program-

ming language
■ ObJ# odented development and &bugglng

■ Extensive Itbrary of reusable and expendable
classes

■ Run ‘Nine Generator includes unlimited ~
tribudon ficense

4GL Vkrkda?lk?kpmt?atlbo&-
H Graphtcaf User Intdace Butlder
■ Graphical Report Buil&r
■ Data Entry Dehnidon Tool
■ SQLworkbench
■ Finandsl modellng facdlty

Point md ctirb sirnplijb lhe S@porkpich, drag and dmp

math OJSQL gaen”es fo supporl raarkplace applicailom.

diert@m4r architecture. t f

hrcludes apmfkiaaal sef of

FE-7 “’”= “obJectwkn&d development teak ~~ :: ,W

T sum :1—.

1

JJ !1 +
C.mn.,d. ❑p,r.lm O.q Vi.rually develop

SELECT IF 4 SUICT “ 1,
m. pl, +- w.. .

IMer inter-aces.

.

❑m....

111.1.@w.
WhK- AGE(=?5 MD SEX=*

,~, -

.kl.llu.1+.
,-.,.

Hid Smur-x ci.ihnn,d. S..dmfd Dcwl.p”,” mm

,(bd I.tilzeal.m, d: ,,1 r, >
SEII h.. k r,,lz,d. 1.10,. 10,.I, EE ,, ,b,, can b. ,-lz,d w
If: Ik,lwFmrm h, El,=m,, .s,,, (km, , k

ENFIN/2 is being used by the world’s biggest ~
companies in Windows and/or 0S/2 PM
Merce&s Benz, Deutache Ban@ DuPont, IBM,
Southern California IWaon, Bayer, Security
Paclflc Bank, Ceiba Geigy, Bosch, Southern
California Gas, and many more.

Ludwig von Reiche, IBMGennaoy

I

ENFIN
50 FTWAFf–-C-

---.-
CO RPO RATIO?:

1(800) 9224372 U.S.
1(800) 7224372 CA
6920 Miramar Road, Suite 307

San Diego, California 92121

(619) 54946o6 ■ FAX549-6798

■ RESPONSIBILITY-DRIVEN DESIGN

4.
Cmindj+mnpge 1...

RESPONSIBILITIES AND COLLABORATIONS

To start, object-oriented design typically is quite exploratory

and iterative. Unless designers are building (or rebuilding)

an application with which they are intimately familiar, a

clear vision of the key classes does not exist. Creating a

model requires understanding system requiremen~ as well as

skill in identifying and creating objects. Building consensus

and developing a common vocabulary among team members

is important. Initially, designers look for classes of key ob-

jects, trying out a variety of schemes to discover the most

natural and reasonable way to abstract the system into

objects.

Responsibility-driven design focuses on what octions must

get accomplished and which objects will accomplish them.

How each action is accomplished is deferred. A good starting

point for defining an object is describing its role and purpose

in the application. Details of internal structure and specific

algorithms can be worked out once roles and responsibilities

are better understood.

A responsibility is a cohesive subset of the behavior

defined by an object. An object’s responsibilities are high-

level statements about both the knowledge it maintains and

the operations it supports. An analogy between designing

objects and writing a report can clarifi the intent of listing

each object’s responsibilities. An obj ect’s responsibilities are

analogous to major topic headings in an outline for a report.

The purpose of developing an outline (and then a detailed

outline) before writing a report is to map out the topics to be

covered in the report and their order of presentation. Simi-

larly, the purpose of outlining an object’s responsibilities is

to understand its role in the application before fleshing out

the details. A good way to determine an object’s responsibil-

ities is to answer these questions: What does this object need

to know to accomplish each goal it is involved with? What

steps toward accomplishing each goal should this object be

responsible for?

Objects do not exist in isolation. Object-oriented appli-

cations of even moderate size can consist of hundreds if not

thousands of cooperating objects. A collaboration is a request

made by one object to another. An object will fulfill some

responsibilities itself. Fulfilling other responsibilities likely

requires collaboration with a number of other objects. Ob-

ject collaborations can be determined by examining each re-

sponsibility and answering the questions: What other objects

need this result or knowledge? Is this object capable of

fulfilling this responsibility itself? If not, from what other ob-

jects can or should it acquire what it needs?

THE CLIENT/SERNER MODEL

Collaborations can be modeled as client/server interactions.

A client makes a request of a server to perform operations or

acquire knowledge. A server provides information or per-

forms an operation upon request. Clients and servers are
roles objects assume during a collaboration. Modeling

client/server interactions can help to reinforce information

hiding. A client shouldn’t care how a server performs its du-

ties, only that it responds appropriately. On the other hand,

a server is obligated to respond appropriately to any such

request.

The relationship between client and server can be formal-

ized in a contract. A contract is a set of related responsibili-

ties defined by a class. It also describes the ways in which a

given client can interact with a server. It lists requests that a

client can make of a server. Both client and server must up-

hold the terms of their contract. The client fulfills its obliga-

tion by only making those requests specified in the contract,

The server must respond appropriately to rhose requests.

Later, with a more complete understanding of our design, we

can fill in the fine print of each contract. This can involve

specifying details of client requests (including message

names and arguments, preconditions that must be met before

making a request, and postccrnditions that will be true after

the server has performed the requested operation3), In early

stages of design, however, it is enough to understand con-

tracts stated in general terms.

The design process outlined thus far consists of finding

key objects, defining their roles and responsibilities, and un-

derstanding their patterns of collaborations. Responsibility-

driven design initially focuses on what should be accom-

plished, not how. Using a client/server model of object

collaboration, we identify each object’s public interfaces by

answering: What actions is each object responsible for per-

forming? What information is each object responsible for

providing?

A SIMPLE TOOL

Given an initial set of key objects, the designer can evaluate

object responsibilities and collaborations by testing how the

model responds to a variety of requests, Scenarios that the

application must handle can be described, and requests or
events can be fed into the model. Patterns of collaboration

required to handle each situation can be traced. Running

through a number of typical scenarios rapidly points out gaps

in understanding. It is not uncommon to find new key ob-

jects and discard ill-conceived ones, to evaluate and reassign

responsibilities, or to fabricate new mechanisms as part of

this process. It is also a time when missing or conflicting sys-

tem requirements surface and require clarification before

completing the initial model.

Kent Beck and Ward Cunninghanf initially developed

the concept of using index cards to teach object-oriented

concepts. The idea behind CRC cards (for class-responsibil-

ity-collaboration) was to provide a quick, effective way to

capture the initial design of an object (see Figure 1),

The name of each class is written on an index card. Each

identified responsibility is succinctly written on the left side

of the card. If collaborations are required to fulfill a responsi-
THESMALLTALKREPORT

....
Voss

Viftual Object Storage Syetem for

SmalltalldV
Seamlesspersistent objectmanagement with update transaction

control directly in the Smalltalk language

● Transparent access to %rafltalk objects on disk

● Transaction commit/rollback

● Access to individual elements of virtual collections and
dictionaries

● Multi-key and multi-value virtual dictiomri- with query by
key range and set intersection

● CIaaa restructure editor for renaming ctaaaea and adding or
removing instance variables allows incremental application
development

● Shared access to mmed virtual object spacea

● Source code supplied

Somecomments cm harm rereived afmut VOSS:

“... clean . . elegant. Worka like a charm.”
–Hal Hildcbrand, Anamet Lafronstoties

“Works absolutely beautifully; excellent performance and
applimbility.”

-Raul Durarr, Microgenics Instruments

‘Ofl& ~Iea=5,ate~i,~tirquti.VtiMstefidandE*Kadacqt~.

Avaitable now for Smalltalk/V2S6 $149 + $15 shipping.
nwdltalk VI Windows version under development,

~R T S L@. h Ltd. 75 Henringford R~d, Cambridge, England, CB1 3BY
TEL +44 223212392 FAX +44 223245171
Class Drawing

Superclasses: none

Subclasses: none

Know the elements of which it is composed..”

i=::=::=~:=-

Maintain the ordering between elements
Change lh~ti~ring of efemenls

Responsibilities /’/ Collaborations /

Figure 1. IExsmple CRC csrd.

bility, the name of each class that provides necessary services

is recorded to the right of that responsibility. Services

defined by a class of objects include those listed on its index

card, plus responsibilities inherited from its superclasses.

Subclass-superclass relationships and common responsibili-

ties defined by superclasses can also be recorded on index

cards. In fact, the beauty of index cards lies in their simplic-

ity and the ease with which their contents can be modified.

They can be easily arranged on a tabletop, and a reason-

able number of them can be viewed at the same time. They

can be picked up, reorganized, and laid out in a new arrange-

ment to amplify a fresh insight. They are great for hand sim-

ulating collaborations to test the model. It is fairly easy to

shuffle and manipulate a couple dozen cards. A couple hun-

dred cards is obviously impractical. But following the de-

tailed interactions of a couple hundred objects is beyond

comprehension, no matter what the medium,

Index cards are effective because they are compact, easy

to manipulate, and easy to modify or discard. A designer

doesn’t feel that there’s a lot invested if the design is merely

recorded on thirty or forty index cards. There is a mysterious

phenomena that occurs once a design is entered into the

computer. It often takes on a life of its own. Because it has

been recorded, it becomes much harder to consider alterna-

tive objects, roles, and assignment of responsibilities. It isn’t

long before designs need to be entered into the computer to

communicate and review ideas with a larger audience or

even to develop more detail. Index cards are no substitute

for detailed modeling, but they are a great place to start.

The responsibility-driven design approach stresses focus-

ing on modeling object behavior and identifying patterns of

communication between objects through client/semer rela-

tionships. Once a preliminary design model has been con-

structed, it typically needs extensive refinement before the. . .
reusability and extensibility benefits touted by proponents of

object technology can be achieved. This is where the major

portion of the design time can be well spent. In future

columns, I’ll present guidelines for determining object roles
VOL. 1, No. 3: IVOVEMBERIDECEMBER 1991
and responsibilities and discuss techniques for developing in-

heritance hierarchies and abstract classes.

REFERENCES

[1] Wirfs-Brock, R. and B. Wilkerson. Object-oriented desigtr:a
responsibility-drivenapproach,00PSLA ’89 Conference
Proceedings,New Orleans, LA, SIGPLAN Notices,24(10),
October, 1989, pp. 71-76.

[2] Wirfs.Brock, R., B. Wilkerson, and L. Wiener. DesigningObject-
OrientedSoftware,Prentice Hall, EnglewoodCliffs,NJ, 1990.

[3] Meyer, B. Programmingas contracting, In&mctiueSoftware Engi-
neaing, hrc. Technicaf Report, 1988.

[4] Beck, K. and W. Cunningham. A laboratoryfor teaching object
oriented thinking, 00PSLA ’89 Conference Proceedings,New
Orleans,LA, SIGPLAN Notices,24(10), October, 1989,
pp. 1-6.

Rebecca Wi+Brock is theDirector of Object Technolo~ Services

atInsmntiations and coauthor of Designing Object-Oriented Soft-

ware. She is the program chair for 00PSLA ’92. She km sixteen

years 0/experience designing, impfernenting,and managing software

products. During dw lastseven years she has focused on object-

orientedsoftware. She managed the development of Tektronix Color

SrmdMk and has been immersed in developing,teaching, and lecturi-

ng on object-oriented software.

5.

6.
ETTING REAL Juanita Ewing

How should classes be initialized?
[

lass initialization should be systematic and predictable.

Have you ever sent messages to a class and received strange

errors related to uninitialized class data? Uninitialized class

data is a result of Smalltalk programming conventions and

lack of support by the programming environment. Some mi-

nor changes in the Smalltalk programming environment

could greatly improve this situation.

WHAT NEEDS TO BE INITIALIZED?

Smalltalk classes have two or three different kinds of class

data that must be initialized:

● class variables

● class instance variables

c pool dictionaries

Smalltalk-80 derived dialects have class instance variables,

but Smalltalk/V dialects do not. Each kind of class data has

semantic differences.

Classes can have class variables, which are shared between

all instances and the class. Class variables can be referenced

from both instance and class methods simply by referring to

the name of the class variable.

Class instance variables are storage for the class and can be

referenced only from class methods. Instance methods that

need the information stored in a class instance variable must

As instance
methods

/

F.

#
a class

A variable B
-.

\ --

\
\\

\
\’

subclass \\

\ \\
\\

\ \nB
\ \
I B’e instance

methods

=
t I

\
\

Figure 1. Class variables.

A’eclass
methode

I

t

B’sclaee
mathode

‘R
send a message to a class method, which can return the re-

quested information.

Pool dictionaries are shared between several classes. The

keys in a pool dictionary can be directly referenced from both

instance and class methods.

WHICH OF THESE IS INHERITED?

All Smalltalk programmers are familiar with the inheritance

semantics of instance variables. The variable is inherited, but

not its value.

Unlike instance variables, a class variable and iu value are

inherited, That means that the value of a class variable is

shared with subclasses and all of their instances, The diagram

in Figure 1 shows a class variable defined by class A. The sub-

class B inherits the class variable. Instance methods from the

subclass and superclass are able to reference class variables.

Class instance variables are much like the instance vari-

ables we use all the time in Smalltalk programming, except

that class instance variables are instance variables for a class

instead of for instances of a class. The semantics of class in-

stance variables are similar to those of instance variables. The

variable is inherited, but not its value. Each class must fill in

its own value. These kind of variables are handy because sub-

classes can easily override values defined in a superclass.

In Figure 2, class A defines a class instance variable, i. Sub-

class B inherits the class instance variable i and defines an-

other class instance variable. Only class methods can refer to

class instance variables. The receiver of the message deter-

=3
A --

class instance 4 - - - _ _
variable I 4 ---

subclass

B

A’sclass
methods

R

_-
--

B’sclass
methods

, ,

1- 1

Rclass inalanca
-==’-=variable I 4 - ~ - -

claes in.slarrca ~ - -
variable j

Figura 2. Class instance variables.
THESMALLTALKREPORT

E3
Editor Enhancements for Smalltalk/V

Windows and Smalltalk/V 286
Multi-function editing for SrnalltaUdV, compatible
with the standard editor and adding over 200 user

accessible commands, including:

● Text Statua Pane ● Easy-to-use Search
● Online Help and Replace

● Key Customization
● Case Alteration

● Command
● Text Fill and Margin

Lookup/Completion Settings

● Enhanced Cut/Paste
● Abbreviation Facility

(with multiple co ies . Non-printing
rviewable in place Character insertion

● Copy Ring and value report

Processing ● Programming
● Place Marking Support

● Macro Facility
● User Preferences

● Text Transposition
● Mkcellaneous

Goodies

E3/w:$so.oo E3 13436:$75.00
(plus $10.00shipping/handling per item).
Refundif not satistll VISA/ Mastercard Accepted.

Object Orchard Ltd.
9 Fettes Row, Edinburgh, Scotland, UK.

PHONE: +4431 5581815 FAX: +44 315562718
/

A’s inalanca
marhods

0 H

—. --— --

A’sclass
mathoda

, ,

t 1

I 1 1 I
Flgura 3. Pool dictlonarias.

mines which storage slot will be referenced. For example, sup-

pose the method initialize references the class instance vari-

able i. If the receiver of the message initialize is A, then the

storage slot in class A will be referenced. If the receiver is B,

then the storage slot in class B will be referenced.

Pool dictionaries are similar to class variables. Pool dictio-

mries and their values are inherited by subclasses. In Figure 3,

class A defines a pool dictionary. Both class and instance

methods can reference keys in the pool dictionary. Subclass B

inherits the pool dictionary, including its values. Instance and

class methods from subclass B can reference keys in the pool

dictionary.

Let’s examine the inheritance consequences.

WHAT HAPPENS IF CLASS METHODS ARE USED TO

INITIALIZE?

Class data needs to be initialized. The most common practice

is to use a class method called initihze. This method typically

is used to initialize all class data, no matter what kind of class

data it is.

Assume an initialization method initializes a class vari-

able. The clam that defines the class variable needs to exe-

cute the initialization method. Since the value of a class vari-

able is inherited, subclasses don’t need to execute this

method. In fact, it may be an error to do so because some

valuable data may have accumulated in a class variable. Sub-

classes inherit the initialize method, but should not execute

this method. This situation is a violation of good object-ori-

ented programming.

Assume the initialize method initializes a class instance

variable. The value of this variable is not inherited, so sub-

classes must execute the initialize method to initialize the

variable. Either an inherited method or a local initialization
VOL. 1, No. 3: NOVEMBERIDECEMBER 1991
method can be used. The initialization method must be exe-

cuted by each class.

Pool dictionaries are shared between several classes. The

current Smalltalk convention is for one of the classes to pro-

vide an initialization method. Should [he initialization

method be executed by subclasses? No. h may wipe out valu-

able accumulated data, This case is analogous to the situation

with class variables.

DOES SMALLTALK HAVE INITIALIZATION

CONVENTIONS?

Smalltalk has a convention for the initialization of instances:

it is to invoke the superclasses’ initialization method if sub-

classes must override it. The convention arose because the su-

perclass can initialize variables. Subclasses avoid duplicating

the inherited cede.

Initialization methods typically look like this:

*e
‘!Invokethe receivez’sirdwritedmethod.InWize myvariableto the

integer 2.
superinWisa.
my%riable:=2

CAN WE APPLY THIS CONVENTION TO CLASS

IN1TIALIZATION?

The super initialize convention doesn’t work well with class

initialization methods. A Smalltalk programmer can’t tell if

the initialization method should be executed without examin-

7.

■ GEITING REAL

Qu.
ing the code. If only class instance variables are initialized,

this convention works. If class variables or pool dictionaries

are initialized, then this convention doesn’t work since the

values of these variables are inherited.

Smalltalk programmers don’t restrict their initialization

methods. They use initialize methods for all kinds of class

data. Therefore, the existence of an initialize method in a hi-

erarchy is not a good indication of initialization requirements.

66
The super initialize convention

doesn’t work well with class

initialization methods.
99

DO CLASS INITIALIZATION METHODS WORK?

Even if you ignore the iriheritance issues and the super initial-

ize convention problems, there are still flaws in class initializa-

tions contained in class methods. Execution of the initialize

method is an action that is separate from the compilation of

the initialize method. This separation leads to another prob-

lem. How many times have you edited an initialize method

but forgotten to execute it?

If you file in someone else’s class, it mayor may not have

a do-it to perform an initialize, Dialects of Smalltalk-80 try

to get around this problem by automatically filing out an

initialize do-it when a class containing an initialize method

is filed out. When the class is filed back in, the do-it is exe-

cuted. This heuristic fails in two common cases. When a de-

veloper creates a method for initialization and calls it some-

thing other than initialize, such as initializeVariables, then

the programming environment fails to detect the purpose of

the method and does not treat it specially. Because this

heuristic only examines behavior in a single class, it also

fails when an inherited initialization method needs to be

executed by a subclass.

SHOULD INHERITED METHODS EXECUTE WITHOUT

ERROR?

Any inherited method should be able to execute without

error. Dialects of Smalltalk-80 override inappropriate inher-

ited methods with an implementation consisting of self

shouldNotlmplement. High. quality class hierarchies should

never allow users to execute methods that create errors. High-

quality programming environments should not encourage the

construction of code that creates these errors. Unfortunately,

Smalltalk class initialization conventions promote the inheri-

tance of inappropriate methods.

The Smalltalk programming environment has a quality

problem.
SHOULD CLASS INITIALIZATION BE INHERITED?

No. Since it is impossible to tell if a class initialization method

should be inherited without examining the code, class initial-

ization methods should never be inherited. Initialization meth-

ods too frequently contain references to inherited class variables

and pool dictionaries. It is too easy to make a mistake and exe-

cute an inherited initialization method that is imppropriate,

The code that performs class initialization should be com-

piled in the scope of the class to reference class data, but it

doesn’t have to be a class initialization method. The Smalltalk

programming language has enough power and flexibility to

provide another mechanism in the programming environment

for class initialization.

HOW SHOULD CLASSES BE INITIALIZED?

Class initialization should not be a class method. Instead, classes

should have a separate component that contains the class ini-

tialization code, We will call this the clam initialization.

The class initialization should be bundled with the class

and supported by the programming environment as a part of

the class. The code that performs the initialization should be

able to reference all class data: class variables, class instance

variables, and pool dictionaries. The initialization code should

be executed so that self is bound to the class, These character-

istics are also characteristics of class methods, so programmers

don’t have to change the way they write initialization code.

They just have to designate it as class initialization code.

Separate class initialization code is beneficial in several

ways. Inheritance of inappropriate class methods avoids costly

errors. Functionality can be added to the programming envi-

ronment to improve productivity. When the code to initialize

a class is identified, the programming environment can take

special action to support its intended functionality. For exam-

ple, when the class initialization is redefined, it could be auto.

matically executed by the environment. The class initializa-

tion could automatically be filed out when a class is filed out

and executed when the class is filed back in, If just these ac-

tions are supported by the programming environment, then

much time would be saved by Smalltalk programmers.

All of this can easily be implemented in a Smalltalk pro-

gramming environment. The result is separate class initializa-

tion whose purpose is known by the programming environ-

ment. This kind of class initialization is not inherited and thus

avoids errors. A class initialization can send messages to the

class and, in doing so, may execute class methods. •l

Juanita Ewing is a seniorstaflrnember ofhmmtiations, Inc., a mft-

wme engineering and consulting jirm that specializesin &vel.opingand
applyingobject-orienwdsoftwarejwojecrs,and is an expert in thede-

signand implementationof object-orinerdapplications, frameworks,

and systems. In her previouspositionat Tektronix Inc., she wus re-

sponsibk for the devefoprnent of elms libraries fm the first commercial

quality SrmzlMk-80 system. Her pofessiomd activities include Work-

shop and PanelCharLSfor theOOPSLA conference.
THE SMALLTALKREPORT

Greg Hemfley and Eric Smith

ObjectWorks\Smalltalk Release 4 for
MS-Windows 3.0: a look at the lower levels
N
ot having had a chance to look over ParcPlace’s new ver-

sion of Smalltalk since Version 2.5, it was with some inter-

est that we pulled open the package containing ParcPlace’s

most recent effort, Release 4 (R4). Previous versions of Parc-

Place’s Smalltalk would either take over the display or provide

the entire Smalltalk environment within a single host win-

dow. The present version departs somewhat from this mold.

Now each tool, such as a browser, workspace, file list, etc.,

opens up in its own host window. The %nalltalk windows now

coexist on the screen with other host windowing programs

such as word processors, file managers, games, etc.

None of this sounds particularly new of coutse. The twist is

that Release 4 does all this with a virtual image that is the

same on all of in platforms. The base image shipped with the

release looks the same whether you are on X, MS-Windows,

or Mac. This column is the result of several days of concerted

digging to find out how they do it.

TERMINOLOGY

But first! Discussing windows in the context of a system called

Windows using an environment with a class named Window

without first agreeing on some terms is a quick path to confu-

sion. So, we’ll agree on the following. When referring to the

host windowing environment, we’ll use “Windows,” When

discussing a particular Windows window, we’ll say “window,”

In the case of a Smalltalk object that represents a window, an

expression like “Smalltalk Window” will be used to note the

fact that it is a Smalltalk object and that it is of class Window.

Smalltalk objects representing visual areas within a Smalltalk

Window that are not themselves associated with a window

will be called views.

WINDOWS, WINDOWS, AND VIEWS

When a browser is opened in R4, what you see is the usual

type of window for whatever environment you might happen

to be using — in this case Windows, which contains a bunch

of panes. Only the outermost window, with its resize borders,

title bar, and menu bar, etc., is a Windows window. The rest

of the contents are represented by Smalltalk views. They are

drawn according to instructions in the virtual image and so

will look the same regardless of which environment you run

Release 4 in.

Inside Smalltalk, there are three basic kinds of things that

are fronting for the things you see on the display: Windows,
VOL. 1, No. 3: NOVEMBERIDECEMBER1991
Wrappers, and Views. A Smalltalk Window holds everything. .
else. This is the Smalkalk object that fronts for the actual

window. Wrappers can hold views and provide things like

bordering and scroll bars. Last are the views that display infor-

mation like text and graphics.

For those familiar with the old model-view-controller

paradigm, the comforting news is that it is still here but with a

cleaner implementation, Each of the views and Smalltalk

Windows have their own controller. Here we will be primarily

concerned with ScheduledWindow and its controller. This

will most often be an instance of StandardSystemController.

HANDLING EVENTS

At least two things must happen to allow Smalltalk to work

with Windows. First, Windows messages must make it into

Smalhalk so input maybe handled and display requests routed

to the method that knows how to display. Second, graphics

operations performed using the Release 4 portable graphics

model must be converted to Windows calls. In this column,

we’ll look at what happens to Windows messages that get sent

to a Smalltalk window. At a later date, we can look at the

equally interesting process of mapping the portable graphics

operations to calls to the host graphics environments.

In Windows, messages are sent to windows for many rea-

sons. Some inform the window of input such as mouse move-

ment or keyboard activity. Others make requests of the win-

dow such as redisplaying a damaged area. Release 4 treats each

of these categories of message a bit differently, but the two

major categories of interest are messages pertaining to input

and messages requesting display.

INPUT EVENTS

When a key is pressed, an input message is sent to a window, a

WM_CHAR message for example. It begins a long and wind-

ing road at the end of which the appropriate Sensor and Con-

troller objects will become aware that an input event has oc-

curred. A fair amount of what happens during this process

happens in the virtual machine (VM), out of sight of the

Smalltalk programmer, so what follows is partially surmise.

The first step is for the WndProc of the window receiving

the input to handle the Wlv_CHAR message. The handler for

this message will package the information about the event into

a sixteen-byte event structure. With the exception of the part

of the structure that identifies the window that received the

9,

■ GUIS
message, these sixteen bytes will contain the same data under

any host windowing system given an equivalent event. That is

to say, an “A” typed in Windows will yield the same sixteen

bytes as an “A” typed in X, with the exception of the window

identifier that necessarily varies in each instance. This is the

point, very early on, where we stop talking Windows and start

talking Smalkalk. Before we get the information to the virtual

image, it is already in a system-independent format. This is one

way Release 4 maintains its extreme portability.

After the event structure is filled in, the VM presumably

arranges for the InputSemaphore, a class variable of Input-

State, to receive the message *ignal. The details of just how

exactly the VM calls GetMessage() and returns from message

handlers is unclear. One would assume that ParcPlace has im-

plemented their own light-weight processes in the VM.

Meanwhile, there is a process that has been waiting on the

InputSemaphore in the method Input.%ate>>run. This pro-

cess wakes up and reads the sixteen-byte event into an Array

via a primitive. The event is then passed on to InputState> >

process. Here, the Smalltalk Window with the handle

identified in the event structure is located. This will most of-

ten be an instance of ScheduledWindow. Input events are

then translated into messages, like #eventButtonPress:, that

are sent to the W indowSensor of the Smalltalk W indow.

The WindowSensor will pass along any critical inforrna.

tion, such as it’s time to become active, to its Smalltalk Win-

dow. Any important mouse and keyboard state information is

now maintained in the InputState, of which there is usually

only one global instance. Keystrokes will be queued up in the

WindowSensots of the Smalltalk Windows to whom they

were sent. The Controllers will be able to get at this informa-

tion by polling their Sensors in the time-honored fashion.

When a Smalltalk Window becomes active, it tells its con-

troller to startup a control loop very similar to that used in

Smalltalk-80’s past. The control loop of the %nalltalk Win-

dow will notice the fact that a keyboard event has been left in

its Sensor’s queue. The event is then handled as usual, for ex-

ample, with a #keyboardActivity message.

DISPLAY EVENTS

The steps for processing display messages such as

WM_PAINT are the same up to the point where they. get to

InputState>>process:. Thk method will translate the paint

message into a %nalltalk message such as #eventDamage:.

Then, as with input events, this message is passed along to the

Smalkalk Window’s WindowSensor. The fact that the Win-

dow has been damaged is recorded, along with what part of

the Smalltalk Window needs repair, in the WindowSensor.

The global list ScheduledControllers is also informed that a

Smalltalk Window has been damaged.

ScheduledControllers having been duly informed of the

need for a redisplay, the ControlManager, in its next pass

through its control loop, will notice the fact and ask all sched-

uledControllers to check for events. These Controllers then
in turn ask their views to do the same. In the case of a

WM_PAINT, eventually some Smalltalk ScheduledWindow,

for example, will notice that it has a pending damage event

and process it. This resulw in a #displayOn: message being

sent to the Smalltalk Window with the end result being that

only the damaged areas are redisplayed.

OVERALL

This is quite a lot of work to go through to take a Windows

message and convert it into something Smalltalk can under-

stand. One reason things are this complicated is that, in addi-

tion to converting Windows messages to Smalltalk me~ages,

the input handler is also converting an event-driven system

into a polling system, The Controller objects in Smalltalk still

poll their Sensors just as they always have. The fact that the

world outside is now event driven is hidden from them,

The upside to this is that at least part of the input-output

model of the new release is familiar to developers. There are

several aspects to the downside. First, tks whole process is im-

plemented by fairly complex code that is distributed among

several classes. It is not to be casually modified. Second, either

it’s not fast enough or gets out of sync sometimes. On occasion,

events, such as quick mouse clicks, may get lost in the shuffle.

When dealing with display even~, the programmer must real-

ize that the redisplay is not processed immediately upon receipt

of the WM_PAINT message as it is in most Windows applica-

tions. The request for redisplay is effectively queued and per-

formed when the relevant Controller gets around to it. In most

cases, this is not a problem but, if the author of a new Con-

troller is not careful how he requests and handles redisplays,

there may be a perceptible delay in the screen update.

In any case, Release 4 provides the expected ParcPlace

level of cross-platform portability along with a whole new

level of integration with the host environment. No easy task.

Those working with Release 4 might want to start looking

around down at this level of the system. An interesting exer-

cise would be to eliminate the conversion to a polling inter-

face and keep the event-driven nature of the system all the

way to the Controller-s. This can be done without sacrificing

portability since the events are normalized before they even

see Smalltalk. Some folks around the office have done this

and are reported to be happy with the results. There are sev-

eral other interesting ideas to try. Release 4 provides a whole

new world of Smalltalk to explore. ❑

Greg Hendfey is a mernbm of the technicalsmffat KnowledgeSystenu
Corporation.His 00P e@wience is in SmaUtdk/V(Df3S),

SmaUtalk-80 2.5, Objectwark/Srmdkalk Rel.euse4, and

Smallmlk/V PM.

Eric Smith is a rnendzr of the technid stizffatKnowledge Systerm

Corpmation. His specialty is custum graphical useTinterfaces using

Stndkdk (Wmkmdidectd d c.
They may be contmted ~ Knowledge Symnns Corporation, f 14

MacKenan Dr.,Cary,NC27511, or by phone at (919) 4814000.
THE SMALLTALK REPORT

SMALLTALK

COMES TO THE

MAINFRAME,

PART I

GknnJ. Reid

QD
ecently, our consulting firm has created an imple-

mentation of Smalltalk on a new platform. Our

version of Smalltalk, syntactically equivalent to

the PC versions, was implemented on an IBM

Systern/370 mainframe. Throughout this document, we shall

refer to our Smalltalk implementation as Smalltalk/370.

The development of Smalltalk/370 is the second phase in

our ongoing effort to introduce object-oriented (00) technol-

ogy in a mainframe environment. Implementing a mainframe

version of Smalltalk has been a challenging task, where the

nature of the environment has presented special problems. In

part 1 of this article, we present a description of some of those

challenges with our own solutions, a discussion of some of the

important aspects of the Smalltalk language, and our plans for

future enhancement of this environment. In part 2, we will

elaborate on those future plans, with a more technical discus-

sion of our proposal to introduce variable typing within

Smalltalk/370,

HISTORICAL BACKGROUND

Prior to beginning the Smalkalk/370 project, we implemented

several mainframe applications using a primitive form of 00

technology, employing data abstraction and code encapsula-

tion without the benefit of an 00 programming language, In-

heritance was not available, and programming and debugging

tools often associated with 00 languages were, of course, ab-

sent. Although, in each of these cases, the projects were con-

sidered successful (meaning that they were within budget and,

in some cases, under budget), it was apparent that we would

certainly not achieve order of magnitude reductions in deliv-

ery of software using this approach.

Reuse of code, for instance, was not achieved easily, al-

though some small gains were made in this area. We felt that
VOL. 1, No. 3: NOVEMBERIDECEMBER1991
to further improve productivity an 00 language was required,

At the time (and still to our knowledge), no 00 languages

were available for our environment. Some research pointed

out that, while there were several 00 languages in existence

(for the PC), some had gained in popularity more than others.

C++ was a candidate, as was Smalltalk. We noted that the

Smalltalk syntax had been chosen as a base for at least one

commercial object database management system (ODBMS)

called GemStone by its creators at Servio Corp. Smalltalk

seemed to offer a more “pure” 00 environment, whereas C++

allowed the programmer to get “outside” the 00 environment

and program in the traditional manner. While some consider

this a benefit of C++ (mainly for performance reasons that

will be discussed later), the author feels that this type of activ-

ity should be allowed only under conditions strictly governed

by the system, and as little as possible, For these reasons, and

others, we felt that Smalltalk was the language of choice for

our environment.

In the next section, we discuss some of the implementation

aspects ofSmalltalk/370 as well as some of the more imPor-

tant features of Smalltalk. Throughout, an attempt will be

made to highlight areas that concern the larger system envi-

ronment. To begin, some discussion is included on object per-

sistence, which, while not included in the current version

of Smalltalk/3 70, deserves some special mention due to its

importance.

OBJECT PERSISTENCE

Object persistence may be loosely defined as taking place

when an object is still in existence, accessible as an object, or

after a transaction or unit of work has been completed. The

key phrase “accessible as an object; means that the object ex-

hibits its normal behavior, reacting to messages and so on.

Persistent objects reside on disk (although at times they may

be in main memory), giving the user the appearance of an

infinite virtual memory. A programmer no longer has to go

outside the 00 paradigm to use long-term data, meaning that

the benefits of behavior captured with data are retained.

Equally important, is the concept of concurrency, where the

integrity of an object’s data is maintained under simultaneous

access by several users.

While the concepts and power of the Smalltalk language

are immediately impressive, they do not currently extend into

the realm of database management. Smalltalk comes down

near (but not quite) to the level of a traditional programming

language when it comes to dealing with file 1/0. To preserve

the behavioral aspects of data, it is required that data be stored

in the Smalltalk “image” (i.e., a copy of RAM). Obviously,

this approach is limited when the volume of data is too large.

However, interfacing to traditional databases requires that ob-

jects be taken out of the 00 environment. Such objects not

only lose their behavioral aspect, they are also not directly ac-

cessible by an 00 programming language. Objects are refer-

enced in memory essentially by address, and to move an ob-

■ SMALLTALK COMES TO THE MAINFRAME

12.
ject to disk and still treat it as an object is not a simple task.

The object becomes a persistent object, something object

database management systems (ODBMS) revolve around.

Current ODBMSS accomplish object persistence in two

different ways:

1. Superimpose an object management layer over a tradi-

tional (e.g., relational) DBMS, The object management

layer can automatically export/import objects through

the underlying DBMS, making it appear to the user that

objects are still in virtual memory.

2. Read/write the object intact using some new access

method that accesses objects stored on disk in a format

fiat supports 00 behavior.

Both approaches can preserve the behavior of objects, as well

as concurrent access by multiple users.

Both approaches require a significant effort to implement.

Several ODBMSS are in existence today and these have been

well documented elsewhere.

Building an ODBMS is certainly beyond the scope of our

current efforts. We make mention of this technology here be-

cause we feel very strongly that persistent objects will be re-

quired in the future to fully exploit the potential of 00 tech-

nology. This is holds doubly true in the mainframe

environment, where databases often occupy gigabytes of disk

space. Our inability to deal with this data as objects, unless us-

ing expensive and complex import/export processes, will place

a limit on the gains we can make over traditional technology.

h will probably be several years (at least) before ODBMS

technology is proven reliable and performs well enough for

large mainstream applications. For now, we have dealt with

file 1/0 in a simple manner, supplying classes and methods to

deal with traditional databases. Obviously, the less often ob-

jects have to be exported from the image, the better. It should

be mentioned that recent mainframe operating system offer-

ings such as IBM’s MVS/ESA offer [he potential for very large

images. While this does not remove the necessity for an

ODBMS, it may help to minimize the number of times objects

have to be exported out of the 00 environment.

METHODS

In the PC version of Smalltalk, methods reside in the image

with application data. Recognizing that we had to deal with a

potentially large number of methods, without the benefit of an

ODBMS, we opted to store our methods in a disk libm-y out-

side of the image. An instance of the CompiledMethod class

keeps track of the location of the method, including whether

the method is loaded or on disk. At first reference, a method is

loaded and kept in storage. In this way, only the methods ac-

tually used by an application are loaded, and we have virtually

no limit on the number of methods we can create, Pointers to

all loaded methods are flushed when the image is saved to pre-

vent an application from loading an image in a subsequent

session that contains an invalid method pointer,
INTERPRETATION VS. COMPILATION

The PC version of Smalltalk is interpretive in nature, the

“compiler” producing intermediate byte codes that are read in

by a virtual machine at nrntime resulting in execution of code

in the virtual machine. While this process has been optimized

to the point where it performs in an acceptable manner on a

dedicated processor such as a PC, we felt that the virtual ma-

chine overhead might be too much in a mainframe where a

large number of time-sharing applications are using a single

processor.

66
It will probably be several years

(at least) before ODBMS technology is

proven reliable and pet-forms well

enough for large mainstream

applications.
99

We have chosen to compile our Smalltalk code eliminat-

ing any overhead of a virtual machine. Note that some mean-

ings of “compiled” in the 00 world imply static binding of

methods to messages. This is not the case with Smalltalk/370,

as is discussed in the next section.

DYNAMIC BINDING AND TYPING

If any area of 00 technology should cause concern regarding

performance, it is dynamic or late binding. Very simply, dy-

namic binding associates a method with a message at runtime,

whereas static binding associates a method with a message at

compile time. For illustration purposes, let us use the familiar

example:

Snoopy bark

where Snoopy is an instance of class SmallDog, a subclass of

Dog. Assume that class Dog contains the method bark, while

class SmallDogcontains a different implementation of the same
method.

At compile time, static binding would change the message

Snoopybark to the equivalent of a direct function call to the
bark method in class SmallDog.

Dynamic binding would route the message bark to the class

SmallDogat nmtime and select the bark method to be per-
formed. The runtime difference between the two approaches is

the processor time it takes to route the message, that is, find

the correct method to be performed. This performance differ-
THE SWTALK REPORT

ence can sometimes be significant. It is interesting to note that

in some critical cases, such as iteration (e.g., while’hue:), condi-

tional expressions (e.g., ifhue:), and others, Smalltalk uses a

fistpath static binding approach which does not, in fact, exe-

cute the published source code that is sent with the product.

If the bark method in the Snoopybark example was removed

from the system, static binding would require that the method

referencing it be recompiled as it now contains an invalid ref-

erence. Dynamic binding would require no such re-compila-

tion, for at runtime the method would simply be inherited

from class Dog. Change management systems are required to

deal with the dependencies introduced by static binding.

Static binding can only occur if the compiler “knows” what

class an object belongs to at compilation time. Smalltalk is a

“typeless” language, meaning that in traditional Smalltalk,

such associations of object to class are not possible at compile

time. Recognizing that there are times when dynamic binding

may produce unacceptable performance in a production sys-

tem, we intend to explore extending Smalltalk with the con-

cept of constraints on types (this extension would be part of a

future version). We have confined ourselves at this time to in-

vestigating typing of named variables, excluding such things

as intermediate results generated during expression evalua-

tion. Potential candidates “for typing are

c dictionary variables (i.e., class, pool, and global variables)

. instance variables

● arguments

● named temporaries

● receivers

In all cases, the affected variable would be constrained to

belong to a particular class or one of its subclasses (i,e., the

variable has been “typed”). As was mentioned earlier, an in-

depth discussion of our implementation of typing will be de-

ferred to part 2 of this article.

Dynamic binding would remain the primary and preferted

way of associating messages with methods. Typing would be

used in situations that caused performance degradation or as a

data validation tool, Intuitively, the best use of typing applies

in high-use areas where typed languages can typically produce

very efficient code. Coincidentally, these areas correspond to

fimctions in Smalltalk that undergo few changes since they

are integral to the basic functioning of the system. Some ex-

ample preliminary candidates for typing might be kays,

which are frequently used in the at and atput messages, and

array indices that participate in Integer operations. In some

actual program samples we have studied, up to 40% of message

routing would be removed by typing these examples.

OBJECT IDENTITY

Object identity refers to the faculty of the system to distin-

guish between two physically distinct objects whose contents

are the same. Conversely, the system can also detetmine if two
VOL. 1, No. 3: NOVEMBERIDECEMBER1991
objects, called by different names, are in fact the same object.

This parallels our view of the world, in which physically dis-

tinct objects with identical characteristics are recognized as

separate entities. Similarly, calling a real world object by two

different names does not alter the fact that it is the same ob-

ject. As this form of object identity is supported by Smalltalk,

it is included in our implemental ion. In Small talk, object

identity is supported by methods such as ==, which returns

true if two references point to the same object.

A desirable extension of the concept of object identity is

the ability to recognize an object after it has undergone some

change in its attributes. As an example, a child grown to

adulthood should be recognized as the same object with some

different attributes and behavior, not an entirely different ob-

ject. This type of recognition is made possible through the use

of vetsions. A versionable object may have more than one

copy of itself, each copy with different attributes and/or differ-

ent behavior, Different versions of an object may be kept in a

“version set” to maintain the relationship between them.

66
A desirable extension of the

concept of object identity is the ability

to recognize an object after

it has undergone some change

in its attributes.
99

Simple version control might allow creation of multiple

vets ions of attributes (i.e., of class and instance variables) as

well as creation of multiple versions of behavior (i. e,, meth-

ods). Under this scheme, an object would be linked to the

version of the class under which it was created and would be-

have accordingly, This would allow the programmer to ex-

plore “what it” scenarios to explore alternative approaches to

problem solving in a more controlled manner.

A considerably more complex version control might allow

instances of an old version to be used as if they were instances

of a new version and vice versa. This would require object be-

havior to simulate presence/absence of variables, etc.

It is our intent to introduce a simple version control mech-

anism in Smalltalk/370 that will allow the creation of multi-

ple versions of classes and methods. This will serve to further

enhance the exploratory nature of programming within the

Smalltalk environment. One way this might be effected would

be to store each class in its own kay of n elements, where

each element would point to a different version of the class (a

13.

~ SMALLTALK COMES TO THE MAtNFRAME

14.
version set). CompiledMethods would be contained in a version

set pointed to by a MethodDitionasy. Conventions could be set

up such that the last element of a version set is the current

version, the first element is the production version, etc.

The idea of version sets for classes and methods would al-
low the programmer to experiment with code implementa-

tions without using the unwieldy process of saving/restrsring

the image and overwriting good code simply co test out an

idea. Additionally, the promotion process, where code is

moved from a test level to a production level, might be sim-

plified. Code could be moved from one level up to the next by

adding a new version. Combined with some change manage-

ment procedural this might make the process of “backing

out” a change simpler, if required.

In the mainframe environment,

files are potentially accessible

to all users of the system.
99

ENVIRONMENT

Smalltak/370 is currently implemented on an IBM 3090

mainframe running IBM’s MVS/ESA operating system.

Smalltal~370 runs in two modes: under the control of

IBMs time sharing option (TSO) and interactive system pro-

ductivity facility (ISPF) using text-based monochrome IBM

3270 terminals or in batch mode without connection to a ter-

minal. When connected to a terminal, cutsor keys and tab

keys are used to position the cursor.

ISPF is used as the terminal communications interface.

Window (or panel) formats may be prepared in two ways: us-

ing an ISPF window definition facility (not in Smalltalk/370)

that creates fixed format windows which Smalltalk/370 can

interface with or through the use of ISPF dynamic areas where

window fotrnat is dynamic and under control of

Smalltalk/370. The second mode of window control is still

under development. In either mode, windows can contain

multiple panes that operate independently (scrolling, selec-

tion, etc.) as in the PC environment.

Editing of methods maybe performed in two ways, both

available through our online browser. The first is our own

editing facility, with limited functionality at this timq the

second, the editing facility of ISPF. Similarly, disk files are

browsed or edited through a Smalltallr/370 browser that in

turn uses ISPF edit or browse.

Smalltallr/370 is placed in batch or interactive mode by an

application start-up message, which is passed to it when it is

loaded. In both environments, it operates as a single-user ma-
chine. Intercommunication between users is probably possible

through the operating system, but is currently not in place.

As mentioned earlier, file access is performed through sup-

plied classes and methods that deal with the access protocol of

each file system. Currently supported f-de access methods are

queued sequential access method (QSAM) and virtual storage

access method (VSAM), to supply both sequential and keyed

file mechanisms, respectively. In the mainframe environment,

files are potentially accessible to all users of the system. Access

is controlled by the operating system (and other subsystems).

Normally, users (i.e., programs) request access to files through

the use of an external language call job control language

(JCL). In the Smalltalk/370 environment, file access is per-

formed through Smalltalk code, removing the requirement for

coding JCL.

SUMMARY
Smalk.alk/370 appears to be a viable programming environ-

ment. We have not yet encountered any unacceptable imple-

mentation concerns or design flaws during testing of the prod-

uct. However, more work needs to be done before it can be

turned over to the general programming population. Cur-

rently, Smalltal~370 is deficient in interactive debugging

tools and some other environment support applications.

As was mentioned at the outset of this document,

Smalltalk/370 is phase 2 of a larger effort. Later phases neces-

sarily will include work in the areas of training, integration

into the existing production environment, and performance

measurements. We hope that this experience will provide

some insight into the integration of this important new tech-

nology in a corporate environment. ❑

Glenn J. Reid is president and founder of QSYS Systems Consrdtmm

Inc., a consulting and software dewelopnentcompanywhosemain

area of exp-tise is in the application of object-orienwd technology.

Architect of Srrudkalk/370, Mr. Reid is ctwrent[yinvolvedin thedeueL

o@t and applicationof a compfeteprojectlife cycle approach to &-

uefoping object-m”ented systems in a mainframeenvironment.
THE SMALLTALKREPORT

ONFERENCE REPORT

Digitak’s Smalka
Conference ’91

WV

Pad White

opers
D
igitalk held their inaugural Smalltalk/V developers confer-

ence at Universal Studios in Los Angeles on September

10th through 12th. The conference itinerary was packed

with information concerning Digitalk’s plans for the various

dialects of Smalltalk, panel sessions, announcements, demon-

strations, and interesting “sidelines” (thanks to Jim Anderson

for the glasses, my kids loved them). Trying to keep things

running on schedule proved to be a real problem. Each session

seemed to have so much information to provide — no one

would leave one session to make way for the next. This report

presents an overview of many of these activities.

In all, the conference had over 203 attendees over the two

md one-half days. T’he conference included sessions on Dig-

italk strategies, Smalltalk internals, and future directions of

Smalltalk. There were sessions on topics such as front ending

mainframe environments, changes required in methodologies,

the use of CRC cards, and “Smalltalk and multimedia.” There

were also panels on ttaining and education, team programming,

and persistent objects. The keynote address was given by Dan

Ingalls, who gave a superb talk on the history of Smalkalk.

There were also (brief) time slots for product exhibitions, with a

dozen or so companies demonstrating their wares.

DIGITALK NAMED IBM PARTNER IN AD/CYCLE

T’he biggest piece of news (apart, of course, ftom the debut of

The Sm&dk Re@rt) actually occurred in New York on the

opening day of the conference when IBM announced that

Digitalk was the latest corporation to join the family of com-

panies in the AD/Cycle partnership. It was never made clear

whether the timing of this announcement was planned or

whether Digitalk was just incredibly lucky. In any event, it did

have a significant impact on the conference as it will, I’m sure,

on Digitalk’s (and Smalltalk’s) future. One had to wonder,

however, what effect this enhanced partnership will have on

the relationship between Digitalk and its smaller customers.

IBM had a definite presence at the conference, with two

sessions having IBM people describing the place Smalltalk has

in IBMs future plans. For example, it was made clear that

Smalltalk is “the language of choice” for development for

0S/2 2.0. In fact, Digitalk stated their intention to release

their version of V PM 2.0 almost immediately after IBM’s re-

lease of 2.0. There was some discussion throughout the confer-

ence of whether Digitalk should wait until they can handle

multiple process threads or leave this facility for version 2.1.
VOL. 1, No. 3: NOVEMBER/DECEMBER1991
Also, Smalltalk/V PM 1.3 will be fully compliant with IBMs

CUA ’91 architecture.

THE LAFKIT

Although the IBM AD/Cycle announcement was billed as

the most significant development of the conference, the

event that generated the most excitement by far was the

demonstration of Digitalk’s forthcoming LAFKit (Look and

Feel Kit). This is Digitalk’s first foray into the end user com-

puting marketplace and is being positioned as a competitor to

the Visual Basic and ObjectVision products. It was inspired

by such sysrems as Interface Builder on the NeXT machine,

the Fabrik system by Dan Ingalls, David Smith’s InterCons,

and Apple’s HyperCard. Although it is possible to use

Smalltalk as a scripting language, LAFKit applications are in-

tended to be constructed with no knowledge of Smalltalk and

no traditional programming skills. LAFKit offers a paradigm

for describing computation based on connecting high-level

“components” together using “wires.” Components, such as a

mail server or database interface, for example, are “black box”

type objects that have a well-defined public protocol. The

wires connecting them together represent the messages being

sent. Unlike data flow diagrams, what is being described is

truly the message flow between objects, not simply data flow

within a program.

Digitalk has been successful in seamlessly integrating dis-

playable components, such as windows and panes, with

nondisplayable components, such as sorters and mailets. New

applications developed using the LAFKit can be packaged as

new components to be subsequently reused in other applica-

tions, can be packaged as an application, or can be converted

to a dynamic link library (DLL). In fact, Digitalk touts that

the LAFKit will allow integration with components developed

using other languages, although no demonstration of this was

given. There are few written references for the LAFKit — see

the Byte article 1 for a brief introduction.

The demo given had Dan Goldman and Mike Teng each

developing online their own vetsion of a personalized mail

system, using the existing “mailer” component to service all

the low-level mail functions. In a matter of minutes, both

were able to construct (almost) fully functional mail systems

that had features such as send, receive, and edit messages and

management of their own mailing lists. Although this was ex-

tremely impressive, it was made possible because the necessary

15.

■ CONFERENCE REPORT

16.
components for its construction already existed. It is not clear

exactly how much work is involved in developing new com-

ponents, but one can only conjecture that to get them right

can’t be easy. It is like generating code to be reused in ways

never thought of before — it’s a nice idea, but it comes only

through sweat and trial and error!

Despite the obvious excitement, and there was much of it

(Dan Shafer, for one, could hardly contain himself), many im-

portant questions remained unanswered. The most obvious

was the availability of the LAFKit. Digiralk made no commit-

ment as to its release date, but it seems clear that it won’t be

within “the next short while.” Also, this new computational

metaphor will undoubtedly require a new mechanism for de-

bugging. It doesn’t seem appropriate to get a walkback stack

when you’re in the middle of programming using an iconic vi-

sual tool. Digitalk gave no indication how they plan to address

this issue. Finally, as Digitalk acknowledged, the success of

LAFKit depends on the availability of good components. It is

unclear at this stage what the base “palette,” or library of com-

ponents, will be. Presumably, there will be opportunities for

third parties to supply new components.

WINDOWS VS. PM VS. UNIX VS. MAC

It seemed Digitalk received a bit of a surprise from the

makeup of the attendees. As it turned out, the majority were

V PM users rather than the expected V Windows users. This

proved interesting as Digitalk seemed to be prepared to

demonstrate that much of their new development, such as

the LAFKit, is being done for V Windows first. When they

pointed this out, they received howls from the audience. An-

other occurrence, which probably was not such a surprise, was

the complaints from the small, but very vocal, V Mac com-

munity about the lack of effort being put into improving V

Mac. In fact, when Digitalk took a straw vote as to whether

users would prefer Digitalk to focus on adding more features

to V Windows and V PM or to focus on compatibility across

a greater range of platforms, including the Mac and UNIX,

the vote was significantly in favor of the latter. This seemed

to take the Digitalk people completely by surprise. My guess

is that you can expect to see Digitalk giving greater priority

to the UNIX world (the IBM RS-6000 and SPARCStation

are the expected first target platforms) at the expense of V

Mac users. Barbara Noparstak promised to let attendees know

about any decisions Digitalk makes as a result of this vote

through their own Scoop newsletter.

PLUGGABLE OBJECT LIBRARIES

In versions of Smalltalk prior to Smalltalk/V Windows and V

PM, the Smalltalk image consisted of one large monolithic

file. In Windows and PM, the image was split into runtime

and development libraries with a user’s application residing in

an executable file. Small applications resulted in very small

executable. V PM version 1.2 extended this idea to the no-

tion of pluggable object libraries for packaging specific func-
tionality and provided tools for building them. Digitalk an-

nounced that they would introduce a hardware-independent

representation of code in their 32-bit implementations that

would allow pluggable object libraries to be portable across

platforms. They also claimed their 32-bit architecture would

offer performance improvements, where, for example, V PM

2.0 will operate more than twice as fast as V PM 1.3, while re-

quiring significantly less space.

MOMENTA DEMONSTRATION

Momenta Corporation gave a surprise demonstration of their

new “pen-based” computer. Without going into too much de.

tail here, the box is a completely new design. Based on the

386SX chip, the machine offers a sleek design that uses a pen

as its primary input device (although it does have a detach-

able keyboard). The machine is billed as the executive’s note-

book computer and contains such features as built-in fax func-

tionality and power technology that allows the machine to

operate for up to six hours at a time,

Why is Momenta of interest to the Smalltalk community?

The application development environment is Smalltalk

V/286 enhanced with Object Technology International’s

Envy/Developer and Acumen’s Widgets/286 products. Inde-

pendent software vendors wishing to develop applications

for Momenta can purchase a developers package that in-

cludes software and training for a reasonable price, which is

actually below the cost of the machine itself. Their inten-

tion seems to be to encourage as many developers to enter

the market as possible.

Smalltalkers will also be interested in the enhanced object

metaphor used throughout all applications. The idea is that

instead of having behavior available only wirhin a particular

application (through the menus presented for the applica-
tion), behavior is maintained by the objects generated by the

application. For example, consider what happens when you

move a section of data from your spreadsheet application to

your word processor. Typically, the functionality of the

spreadsheet is lost once it is pasted into the new application

— it simply becomes an inert piece of your document. In

Momenta, each object retains its own functionality, wherever

it is located, So, in this example, selecting the spreadsheet

within the word processor would give you access to all of the

behavior applicable to spreadsheet objects. Developers of new

software components will be expected to maintain this same

functionality.

A NOTABLE EVENT

The most amazing feat of the entire conference actually had

nothing to do with Digitalk and occurred at the strangest

time. Everything had been running smoothly at the ccmfer-

ence until Tim Andrews from Ontos Corporation, during the

persistent objects session, stood up and began a sentence with

“What’s so much better about C++ rather than Smalltalk is

mti.wdon~e 18...
THE SMALLTALKREPORT

mAB REPORT

Using and studying
Interface Institute

Mary Beth Rosson

Smalltalk in the User
17.
I Re~orts of current work in Smalltalk I
taking place in leading university and

research laboratories.

M
e have been using Digitalk’s Smalltal~ in the User In-

terface Institute of the IBM T-J. Watson Research Center

for a number of years. It has become our standard envi-

ronment for prototyping user interface techniques and for the

iterative development of applications. At the same time,

Smalltalk has been an object of study several researchers are

examining different approaches to %nalltalk instructio~ oth-

ers are developing and testing tools intended to support ex-

perts’ design and implementarion of Smalltalk applications.

APPLICATION AND USER INTERFACE

PROTOTYPING

Our efforts in this area have focussed on two sorts of projects,

the building and testing of a variety of user interface compo-

nents in Smalltalk and the exemplification of these compo-

nents in realistic applications.

So, for example, several researchers have created multiple

versions of possible extensions to IBMs Common User Access

(CUA), the specification of software look and feel for the

Systems Application Architecture (contact is John Richards,

jtr@watson.ibm.tom). Through iterative evaluation and refine-

ment, these researchers have explored how to support pervasive

direct manipulation acroas a number of application types.

Addressing a more specific user interface arena, the

Interactive Media Project (contact is Mark Laff,

mrl@watson.ibm.tom) is conducting research in tools, appli-

cations, and usability of object-oriented multimedia technol-

ogy. Their ImpBuilder tool presents a graphical, direct-manip-

ulation interface to interactive multimedia presentations.

Media objects such as video, audio, graphics, animation, and

text can be easily arranged in both space and time without re-

quiring programming. Using ImpBuilder, these researched

have created several applications, including a biographical

“scrapbook” and an informational “electronic magazine.”

Studies have investigated issues in design and navigation of

such interactive multimedia applications.

SM.ALLTALK INSTRUCTION

Smalltalk, although recognized as a good platform for rapid

prototyping and software reuse, is widely regarded as difficult
VOL. 1, No.3: NOVEMBERIDECEMBER1991
to learn. Unlike learning a procedural language like Pascal or

C, learning Smalltalk is dominated by browsing and code

comprehension. Learners of Smalltalk typically experience a

long, slow start-up phase in which they become familiar with

the class hierarchy and object-oriented computational model

but do little meaningful work (our colleague Dave Smith calls

this “climbing the Smalltalk mountain”).

The Minimalist Tutorial and Tool Set project (MiTTS;

contact is Mary Beth Rosson, rosson@watson.ibm.tom) fo-

cusses on users’ earliest experiences with Smalltalk. The pro-

ject’s goal is to provide a short (four- to six-hour) introduction

to Smalltall@l that offers programmers experienced with

other languages a taste of what programming Smalltalk appli-

cations is all about, hopefully leaving them motivated and

confident enough to begin climbing the mountain. A short

manual guides new users through explorations and

modifications of a simple example application (a blackjack

game). The learning activities are supported by a Bittitalk

Browser (which filters out classes not relevant to the applica-

tion) and by a View Matcher (which coordinates multiple

views of the example application, views containing informa-

tion normally accessed through independent tools).

The Molehill project (contact is Kevin Singley, sin-

gley@watson.ibm.tom) combines elements of intelligent

tutoring technology with hypermedia and key word

searches to create an ins tractional environment more

structured than exploratory learning, yet less constraining

than traditional tutoring. The goal of Molehill is to provide

learners with online tutoring support through a semistruc-

tured curriculum of simple but meaningful projects. Mole-

hill supports code comprehension and browsing as well as

code generation, something that has not been attempted in

other programming tutors. Because Smalltalk learners are

often experienced procedural programmers, the Molehill

project also addresses the transfer from procedural to ob-

ject-oriented programming, exploiting learner’s prior

knowledge where appropriate while at the same time high-

lighting differences.

SMALLTALK TOOLS

We have added tools to the environment to make our pro-

gramming activities more effective. As researchers, we have

been also been experimenting with new ways of working with

the Smalltalk language and environment.

■ LAB REPORT

18.
cti”nwdfrum~e 16,..

that...” He didn’t get to finish it — it literally set the fire

alarms in the hotel ringing. Amazing, these Smalltalk people

can pull anything off?

SUMMARY

This article provided just a sampling of the information that

was shared at the developers conference. Almost all of the ses-

sions were recorded on audio cassette, although I am not sure

whether or not they are being made available to the general

public. If you would like more information concerning the
Universal Database
OBJECT BRIDGE m

This developer’s tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DB2, RDB, RDBCDD,

dBASEIII, Lotus, and Excel.

ntelligentSystems, Inc.

I 503N. Sfote 3tmet. Ann Arbor. Ml 4S1W (313) 9%d23S (313) W6d241 fmi

_

conference, I suggest you contact Digitalk directly (electroni-

cally or by phone) or watch for information in their Scoop

newsletter.

Overall, the feeling with which I think most people left

the conference was a sense that Smalltalk is moving forward

and that Digitalk has a reasonably good sense of where it

would like to go. They have the problem of being pulled in

many directions and of trying to manage their growth to meet

those demands. For a first attempt at a developers conference,

I think Digitalk has much of which to be proud! ❑

REFERENCES
[1]Ullrnan,E. 00P madevisual:Digitalk’sLAFKit, By&
Magazine,vol. 168 August 1991.

Paul Whiwisan EditorofThe Smalltalk Report. Cur-

rently, he is a professorof computerscienceat Carleton Uni-

versity. He is ako a fotmding me-mk of The ObjectPeople,

a b s@+dtiw in object-orientedtechnology.He can be
reachedon CompuServe at70524,3613& commen~.
The Change Manager (contact is Jerry Archibald,

arch@watson. ibm.tom) is intended to make our Smalltalk de-

velopment work more efficient and reliable. The tool’s main

interface is a browser that can be used in conjunction with or

in place of a class hierarchy browser. The programmer creates

and then chooses among “change groups<’ these groupings

correspond to code development categories. Any work accom-

plished while a change group is active is associated with that

group and can be manipulated (e.g., filed out) as a unit. The

level of granularity is the individual Smalltalk method, which

means that a single class can be associated with multiple

change groups, with only the relevant methods included. This

has proven to be especially useful when development work in-

cludes additions to preexisting classes (e.g., collections,

magnitudes).

Another project is developing and testing an example-

based reuse documentation tool, the reuse View Matcher

(contact is Mary Beth Rosson). This tool coordinates different

views of an example application that uses a target class being

considered for reuse. These views include a concrete depiction

of the class’ usage protocol, organized by typical usage episodes

(e.g., starting up the application); the associated code browser

is a “senders” browser, so that programmed are immediately

directed to an example usage of a method defined for the tar-
get class, rather than the method’s implementation. Another

view of the example application is an “object map” that

schematizes instance variable relationships among the impor-

tant objects in the example application.

The work on the Portia environment (contact is Eric Gold,

egold@watson. ibm.tom) focusses on facilitating” instance-

centered” (as contrasted with code-centered) approaches to

application design and development. The hope is to make the

creation, location, examination, manipulation, and reuse of

instances a more common and natural component of

Smalltalk development activities. Support for this consists of

broad-based modifications to existing system tools (e.g., the

workspace, the class hierarchy browser) as well the provision

of new tools (e.g., object repository, an object locator). ❑

Mary BethRosson is a research swffmernber at IBM’s T.J. Watson

Research Center in YorktownHeights, NY, where she has been since

1982. Her cur-rent researchcermzrson thecognitiveprocessesunderly-

ing .dwdesignand implementationof software,especiallythe conse-

quences of the object-miented programming paradigm for these activi-

ties. She can be reachedat the User Interface Instituk, IBM Thmnas

-1.War-sonResearch Cenwr, P.O. Box 704, YorktownHeights,NY

10598, (914) 784-7738, rosson@tuatson.ibm.com.
THE SMALLTALKREPORT

Excerpts from industry publications

. . . Wfih respect to ,.. the inclusion of system-defined types —

Smalltelk, C++, and CLOS nearly run the entire gamut. In

Smalltalk types and classes are identfied There is no semantic

difference between those supplied by the system and those

defined by the user. In C++, the only methodical value types —

those for which the user can declare methods — are user-

deflned classes. In CLOS, ~s and classes are separate con-

cepts; every class corresponds to a unique type, but not every

type has a clas behind it. However, in order to cover all system-
defined data types, CLOS defines a set of classes which span the
preexisting Common Lisp types. One set of types spans a second
set of types if every object in the second set is a member of at
least one type in the spanning set. This set is large enough to en-
compass most representational distind-ons within Common bsp
implementations, but small enough that each Systemdefined
data type is directly covered by a single spanning type. This al-
lows implementors to retain their historic, low4evel optimizations
based on representational types . . .

. . . Wtih respect to...extensibilii for new representational types
— neither Smalltal~ C++, nor Lisp allows the user to define repre-
sentational types. For Wp, there is a defined way to recognize a
representational type .. .

. . . Wfih respect to . . . the use of declarative types — C++ uses
strong, static typing es much as possible, and Smalltalk uses only
runtime typing. Common Lisp has a rich, extensible, but optional
declaration syntax. Although implementations are not required to
do any static type-checking based on a program’s use of type dec-
larations, a number of compilers take full advantage of this feature,

especially for optimization .. .
. . . Smalltelk — which supports only single inheritance — signals

an error if the same-named instance variable is specified in a sub-
class Wtih disjoint unions, there areas many copies of the conflict-
ing item as there are superclasses W-ithan item by that name. C++
uses this mechanism for member dab elements. Only some of the
named elements are visible in the C++ der”wed class, be-use
C++ supports name en=psulation between subclasses and super
clases. CLOS creates a single compm-te description for a slot
from all the inherited slob of the same name . . .

. . . Different languages provide a variety of tools positioned
along a spectrum for aiding software development. At one end of
tie spectrum are languages like C++, in which the only tools are
external development environments. In the middle are languages
like Smalltalk that provide residential development environments
having access to every part of the language and its implementa-
tion. At the other end of the spectrum are languages like CLOS
that provide linguistic mechanisms to support development . . .

LISP,John K Foderaro, Communimtions of the ACM, 9/91

. . . The Momenta [pen-based operating environment] will be
bundled with a generous selection of MSE starter appli=tions,
including an address book, appointment calendar and fax man-
ager. The MSE starter applications are state-of-the-art programs.
They are obje~-oriented, which simplifies sharing of information
by several applications, and allow you to create compound docu-

ments that contain a variety of embedded data objects. How-
ever, the MSE applications can only be created on Momenta’s
proprietary development system, which is an advanced deriva-
tive of the Smalltalk programming language. Although the Mo-
menta development sptem provides an innovative and ad-
vanced language for objed-oriented programming, it is
considered an idiosyncratic tongue by some of the third-party
soflware developers tiat have been approached by Momenta.
Considering the heavy lobbying by Go and Microsoft, Momenta
may find it tough to lure enough developers. Without sufkient
third-party applications, it could be forced to rely on selling hard-
ware — which, ironically, might be used primarily with pen-
based operating systems developed by its rivals.

Momenta poised to pen~ate pen computer market,
Frederic E. Davis, PC Week 9/2/91

.,. From their demonstrations, I have no doubt that the proprietary

VWmdows development offerings such es Realizer, GFA Basic, VZ

Programmer, and, to a lesser degree, Actor and the two
Smalltallq can do great things in the hands of their developers
and those who invest heavily in learning and understanding the
progtams’ various strengths and weaknesses. However, I didn’t
find myself as instantly hooked by any of them as I was by Vsual
Basic and QuickC for Windows . . .

Windows developers finally have the right tools for the job,
Steve Gibson, InfoWorld, 9/1 6/91

,.. Improved access to standard software development and mod-
eling tools should be a major by-product of Semetech’s move to
open CIM. Because the first approach relied on proprie~ty data
structures and programming interfaces, it would have required de-
velopment tools dedi=ted to the Sematech CIM architecture. Se-
matech would have had to create such tools itself or convince 1!3/s
to do so. Since it uses more standard, open interfaces, the new Se-
matech CIM architecture will be able to use less expensive, com-
mercially available sofhvare development tools. In fact, a major
piece of the new architecture is an expended, object-oriented
modeling and computer-aided software engineering component.
Based on commercial tools including the Smalltalk object-oriented
development language and the Object Management Group’s
evolving object services, the Sematech CIM development architec-
ture should make it easier for users to model, prototype, code and
make changes to CIM systems. Sematech officials admit their deci-
sion to go to open CIM carries some risks. For one thing, neither
the OSF Difi-buted Computing Environment nor the Object Man-
agement Group object infrastructure is complete. Also, the deci-
sion to base the architecture exclusively on OSF/DCE necessarily
excludes members’ existing proprietary-based CIM architectures.
Although existing applications built on the proprietary architec-
tures can be included in the objed-oriented models of the new ar-
chitecture, they won’t share interfaces or date structures . . .

Sematech crafts an open CIM strategy,
Jeff Mead, Datamation, 9/1/91

10
L7.

VOL. 1, No.3: NOVEMBERIDECEMBER1991

20.
ProductAnnouncements are not reviews. Tky are abstractedj%rn pressreleasesprovided ~ vendors, and no endorsement is implied.Vendors
interestedin beinginch&din this feature shouldsendpressreleasestnour editoria[ofies, Product AnnouncementsDept., 91 SecondAve.,

Ottwa, OrwmioK] S 2H4, Canada.
Instantiation introduces a team development envi-

ronment for Smalltalk

Instantiation has announced its new Convergence/Team Engineer-

ing Environment, the first multiuser, multirepositoty team program-

ming environment for Smalltalk. Convergence/Team enables pro-

gramming teams to effectively develop commercial and industrial

applications using parcPlace Systems’ ObjectworksMmalltalk,
Convergence/Team combines the productivity of Smalkelk with

a powerful team development environment, giving groups of pro

grammers the power to create large-scale, production-quality

Smalkelk applications.

Convergence/Team’s innovative shared repository environment

allows team members on different types of computers to simulta-

neously create, browse, access, and share code. The size and num-

ber of repositories is limited only by available disk space.

Instentiations has also announced Convergence/Team Services,

a full range of support services designed to rapidly move develop

ment teams up the learning curve and to accelerate the design and

implementation of commercial and industrial applications using

Convergence and Smalltalk.

For more information, contact Instintiations, Inc., 9215. W. Washington,

Ste. 312,Portland, OR 97205, (503) 242-0725.

Smalltalk bundled with Tigre

At OOPSLA ’91, Tigre Object Systems, Inc., of Santa Cruz, CA an-

nounced a new agreement with ParcPlace Systems of Mountain

View, CA. Tigre now bundles the Tigre Programming Environment

with ParcPlace’s ObjectworksVmalltalk object-oriented language,

making it easier and less expensive for new users to get started

with object-oriented technology. The Tigre Programming Environ-

ment, which uses ObjectworksWmalltalk as its scripting language,

lets developers create state-of-the-art graphical user interface (GUI)

programs that run, without parting, on Macintosh 11,Microsoft Win-

dows 3.0, and all popular UNIX workstations. With Tigre, GUI cre

ation is significantly faster than with only Smalkalk or C++.

For more information, contact Tigre Object Systems, 3004 Mission St.,
Santa Cruz, CA 95060, (408) 427-4900, or fax (408) 457-1015.

Servio announced GeODE—the first code-free devel-

opment environment for building object database

applications

Servio Corporation has announced the GemStone Object Database

Development Environment, GeODE, a suite of development tools

for visually and graphically designing and building ODBMS applica-

tions. GeODE is a code-free environment targeted at commercial

application developers building systems such as order entry, invem
tory control, and general ledgers as well as more complex systems

such as biomedical, financial analysis, and manufacturing.

GeODE is platform- and GUl-independent, allowing developers
to build applications that run on any platform and native window-
ing system.

GeODE was designed for the applications developer whose ex-
perience is based on traditional programming methods and lan-

guages. GeODE provides a tightly integrated set of tools that al-

lows the developer to visually create screens, graphically direct ap-

plication flow, and customize the application through graphical

point-and-click interaction. Other GeODE tools include debuggers,

cross-reference tools, and graphical browsers. Since GeODE is an

interactive, graphical environment, it gives developers immediate

feedback on application design and implementation decisions.

For mora information, contact Servio Corporation, 1420 Harbor Bay Pkwy.,

Alameda, CA 94501, (415) 748-621Xl, or fax (415) 748-6227.

Momenta chooses SmalltalkN language for its new

pentop computer

Momenta International has announced that its pentop computer

uses Digitalk Corporation’s SmalltalbV language as the operating

environment for its pen-based interface.

Momenta’s pentop systems offer a comprehensive set of inte-

grated applications which were developed in Smalltalk/V. Mo-

menta’s development environment allows for independent soft-

ware developera to easily develop applications for the pentop
system that are consistent with the look and feel of Momenta’s ap
placations. This integrated approach to program development pro-
vides Momenta computer users with consistent applications based
on a common graphical user interface, dramatically decreasing
learning time.

The new computer will be shipped with a number of essential
programs, among them a spreadsheet, memo maker, presentation

maker, appointment calendar, faxer, personal journal, chart maker,

and hand printing recognition trainer. All the programs are pen-op-

timized (completely controlled by the pen) and take full advantage

of the Momenta user interface. Momenta offers a special ISV pro-

gram to encourage future development on its system, and ISVS have

already begun developing other Smalltelk/Vbased applications.

For mora information, contact Digitalk, Inc., 9841 Airport Blvd., Los Ange-
les, CA 90045, (213) 645-1082, or fax (213) 645-1306.

Synergistic Solutions enhances Smalltalk\SQL

Synergistic Solutions Inc. has announced additional platform sup

port for Smalltalk\SQL, the portable database interface for

Smalltalk. The product works in conjunction with ParcPlace Systems

ObjectworkslSmallteIk to enable graphical user interface (GUI) ap

placations to access information stored in relational databases. Cor-

porations can now leverage their existing data with the benefits of

object-oriented development.

Direct database support is currently available for the Sybase

and Oracle databases. DB2, Informix, Ingres, Rdb, and other

databases may be accessed through a variety of gateway products.

Several other direct interfaces will be announced later this year.

The combination of direct and gateway support for popular

databases provides flexibility for developers. Organizations can

now rapidly develop portable object-oriented GUI applications and

access data in both relational and object-oriented databases.

Smalltalk\SQL is a set of portable classes that encapsulate
THE SMALLT.-UKREPORT

Bring your large, complex object-oriented applications under control

Ull!l

.,,

with AM/ST, the Application Manager for Smalltalk/V. The AM/ST
Application Browser helps both individuals and development teams to -
create, integrate, maintain, document, and manage Smalltalk/V ,..
application projects.

,..................-..4
A,.I!cuO.” s“-,, ,(
,..S”-V-*I.NS”M
din., v.nnu.f+a.m..
,.c40,*na,m ,,

.

HEW
----- .

Flcym,

gwc ,.Bmd
..-

1“.1.11

1.0.,1 1...........
“Yiiinati ““” ““” “! l-d

~dhhhcnd, ~.
‘.- hdd WI1l’.ll,m

pllld Pme
Hd

Price List

DOS V $150

DOS VL2B6 $395
Macintosh V/Mac $3S5
0S/2 VIPM $475
Site Licanaes CALL

New Productivity Tools I

Windows 3.0
Vrwindowe $475

Change Browser” $195

SOUrCeCOt’Itml*”PMwW*
first copy $1,595

----.44 ~,,heuiia”, Ccnc
JaJl =U”aq”.a ,. v---

I!!n; Coo ers
&Ly~ran(

SoftPert Systems Divisi
One Main Street
Cambridge, MA 02142
(617) 6213670 or (617) 6213671 Fax

ion

.-

... .
database access through an object-oriented metiphor called SQL
Agent. Developers simply “plug in” the appropriate agent for their
target database. There are no modifications necessary to applic=
tions using ANSI SQL. Pluggable SQL agents are capable of instan-
tiating objecte based on arbitrary queries including relational joins.
Smalltalk\SQL allows organizations to quickly develop object-ori-
ented applications using their existing database investment and
provides a migration path toward object-oriented databases. The

resulting applications are flexible enough to respond to the rapidly

changing business environment and competitive pressures.

For more information, contact Synergetic Solutions Inc., 63 Joyner Dr.,

Lawrenceville, NJ 08648, (908) 855-7634.

ParcPlace Systems announces FACETS\4GL 2.0

ParcPlace Systems has announced that the FACEK\4GL fourth gen-

eration language (4GLI application development tooI for Object-

works\Smalltalk now includes an interface builder. FACHS\4GL 2.0

enhances the capabilities of traditional 4G k with a graphical user

interface (GUI) builder and provides a migration path from 4GLs to

object-oriented technology. FACi3S\4GL is developed by Reuseble

Solutions and marketed by ParcPlace Systems.

The new FACEE3VlGL interface builder includes several styles

of event-driven buttons, default styles to easily change the look

and feel of an application, a choice of fonts, and a color palette.

With the FACEP5 interface builder, applications can be en-

hanced easily with different kinds of buttons, including bordered,

shadowed rectangular, transparent, opaque, raised, rounded, shad-

owed rounded, radio, and check box. And event-driven architecture

ensures that actions and scripts are attached to the buttons. In addi-

tion, color selection has been simplified so users can point and click

to select from a color palette. Users can also change the default

styles to alter the look and feel of an entire application in one step.

For more information, contact PsrcPlsce Systems, 1550 Plymouth St., Moun-
tsin Mew, CA 94042, (415) 691-6700, or fm (415) 691-6715.
VOL. 1, No. 3: IVOVEMBERIDECEMBER1991
Object Migrator for Smalltalk/V Wn and SmalltalkN PM

Hierarchical Applications Limited has announced the availability

of i= Object Migrator product for Smalltal10/ Windows and PM.

Object Migrator allows the Smalltalk developer to segregate

modified classes from the base or unmodified methods. It aids

the developer in identifying those methods that have been

changed since the last Smalltalk release or since the last time a

Smalltalk image was modified.

Object Migrator also aids the Smalltalk developer in migrating

modified claeses from one Smalltalk release to another or from one

Smalltelk image to another. It allows Smalltalk developers to share

classes more freely since Smalltalk can be made to FILE-OUT either

all modified classes or only selected classes from the hierarchy of

modified classes.

The modified class hierarchy is maintained in a completely

transparent manner which frees the Smalltalk/V developer to con-

centrate on the software problem at hand rather than on the main-

tenance of the Smalltalk clas5 hierarchy across Smalltalk releases.

For more information, mntsct Hierarchical Applications Limited, 7491 N.
Federsl F@., Ste. 277C5, Boca Raton, FL 33487, (512) 838-1234.

Digitalk announces SmalltalkN PM 1.3 and V PM

Database Interface

Digitalk announced Smalltalk/V PM Release 1.3 and the Database
Interface for Smalkell@/ PM. Smalltalk/V PM Release 1.3 fully SUP
ports the new CUA architecture, known as CUA ’91, which includes

the new advanced controls IBM intends to ship with 0S/2 2.0. The

Database Interface provides simplified access to IBM’s 0S/2 Ex-

tended Edition Database Manager and the Microsoft SQL Server.

For more information, contact Digitdr, Inc., 9841 Airport Blvd., Los Ange-

les, CA %7045, (213) 645- 10S2, or (800) 922-8255.
21.

You’veheardallthebuzzwords
mounding objectdatabases...

inheritance

versioning
enatpsuktion

methods
messages

LetGemStone”introduceyou
to a fewmore...

avaikzblktodby
stable releases
mission critical

depenckiblesupport

After introducing the first commercial object data- WIth our second generation release, GemStone sets
base in 1987, Sewio has continually set the stan- the new standard for performance in multi-user,
dard for stability and reliability. Our object data- rnission critical environments. Only GemStone
base system, GemStone, has undergone years of supports both C++ and Srnalltak the most popu-
refinement by incorporating the feedback of the Iar object programming languages. In addition,

world’s largest installed base of object database GemStone offers integration of corporate inforrna-
customers. tion via gateways into SQLdatabase systems such

as Sybase as well as non-SQL database systems.

Ml Ho to fid out more about
theliat.estbuzzvvordsm object databases.

(800)243-9369

@

SERWO
Servio Corporation

1420 Harbor Bay Parkway, Alameda, CA 94501, (415)748-6200, Fax (415)748-6227

Copyrlghr 1991, Servio Corporation. GemStone is a registered trademark of Servio Corporation.
AU other product and mmpany names maybe trademarks of the respnive mmpanies with which they are associated.

1980 Smalltalk Leaves The Lab. We were there.

1984 First Commercial Version Of Smalltalk. We were there.
1985 First Industrial Quality Smalltalk Training Course. We were there.
1987 First Fully Integrated Color Smalltalk System. We were there.
1988 Responsibility-Driven Design Approach Developed. We were there.
1991 Smalltalk Mainstreamed in Fortune 100 Applications. WE ARE THERE.
NEW! First multi-repository, group programming environment. NEW!

Smalltalk Technology Adoption Services
Technology Fit Assessment
Expett Technical Consulting
Object-Oriented System Design/Review
Proof-of-Concept Prototypes
Custom Engineering Services & Support

Smalltalk Training & Team Building
Smalltalk Programming Classes:

ObjectWorks Smalltalk Release 4
Smalltalk V/Windows V/PM V/Mac

Buildin Applications Using Smalltalk
%Object-Oriente Design Classes:

Designing Object-Oriented Software: An Introduction
Designing Object-Oriented Systems Using Smalltaik

Mentoring:

Project-focused team and individual learning experiences.

Smalltalk Development Tools
NEW! Convergenc#TeamEngineeringEnvironmentTM

Muki+Jser/sharedrepsitory development environment for teamscreating produ~”ompality Small&lk applications.

Convergence/Application Organizer PlusTM

Version management, development tools, and improved code modularity for individual Smalltalk developers.

mInstantiations, Inc.
1.800.888.6892

wNDowsANDos/2:
PMIWYPENIDEWERY

NowmG.
In Windows and 0S/2, YOUneed Prototypes.you be to get a sense

for what an application is going to look like, and feel like, before you can write

it. And you can’t afford to throw the prototype away when you’redone.

With Srnalltalk/V you don’t.
Start with the prototype.There’sno development system you can buy

that lets you get a working model working faster than SmalltaWV

Then, incmrnentally,grow the prototype into a finished applica-
tion. %-yout new ideas. Get input from your users. Make mom changes.
Be creative,

SmrdltakfV givesyou the freedom to experiment without risk. It’s
made for trial. And error. You make changes, and test them, one at a time.
Safely.You get immediate feedback when you make a change. And you can’t
make changes that break the system. It’sthat safe.

And when you’redone, whether you’rewriting applications for
Win&m or OS/2, you’ll have a standalone application that runs on both.

Smalltalk/V code is portable between the Windows and the 0S/2 versions.
And the resulting application carries no runtime charges. All for just
$499.95.

%takealookat

Srnalltalk/V today. It’s time to make smantalklv
that pmtotyping time productive.

SIMUWV is a m?istmtxl trademark of Digitalk, Inc. Other product names are trademarks or registend

trademarks of their-rqemive hol&rs.

Digitalk, Inc., 9641 Airport Blvd., h An@s, CA W1345
(800) 922-8255; (2B) 645-1082; F~ (213) 645-1306

LOOK WHO’S TALKING
HEWLETT-PACKARD NCR

HP baf &ve@ed a natworktroubie- NCR h an z%tegmtid kst pmgmm &velap-

xbooting tooI died the Network Adviioz ment enwimnme.ntfor digital,aaulog and

Tbe Netwark Aduiror offir~a compmben- mtied moakprinted circuilbaardtesting.

sim set oftoofs inclua%gan.z@ertJyJ.G2m,
stittitics,amipratocolnhoah to xpeed MIDLAND BANK

pmbkm isohtion. Tbe NA user intarface is MkMmd Bank built a Windowed ZMmical

buifton a windowingsptt?m wbicb dews T&g Envimntnentfar ctirren~ fulums

multipleapplicationsto be executed andstock tradersWinK Smalltalk V

Simultanaoa.sl’

m mms
■ M&lds leading, award-wifmin g object-

orieoted programming system

■ Complete prototype-todelivery system

■ Zero-cost runtirne

■ Simplifiedapplicationdeliveryfor
creating studalone executable (.EXE)
applications

■ Code Dortabilitv between Srnalltalk/V
Win&ws and Srnallkdk/V PM

■ Wrappers for all Windows and 0S/2

controls

■ Support for new CUA 71 controls for
0S/2, including dmg and drop, booktab,
cent.airq value set, slider and more

H Emsparent support for Dynamic Data
Exchange (DDE) and @KUliChk

Library (DLL) Cdk

■ Fully integratedprogrammingenviron-
ment, includinginteractivedebu~,
sourcecodebrowsers (all sounx code
included), worlds most extensive Win-

dows and 0S/2 class libraries, tutorial
(printml and on disk), intensive samples

■ Extensive developer support, including
technical support, training, electronic
developer forums, fnx user newsktter

■ Broad base of third-party suppxt,
including add-on Smalltalk/V products,
consulting services, books, user groups

ThisSmaUtalk/VWindowsapplimtion

~@ ~ PC T%k Sk@out award-and
it was completed in 6 hours

%ldl~v PM zIp@3tiMlS m d tO

develop .smeof-thw CUA-compliant
applications—andthey’reportableto
SmallmWVWlndou%

	By Article Title
	Digitalk's Smalltalk/V Developers Conference '91
	How should classes be initialized?
	Lab Report: Using and studying Smalltalk in the User Interface Institute
	ObjectWorks\Smalltalk Release 4 for MS-Windows3.0: a look at the lower levels
	Responsibility-driven design
	Smalltalk comes to the mainframe, part1

	By Author Name
	Ewing, Juanita
	Hendley, Greg
	Reid, Glenn J.
	Rosson, Mary Beth
	Smith, Eric
	White, Paul
	Wirfs-Brock, Rebecca

	By Topic
	Getting Real
	GUIs

