The Smalltalk Report

The International Newsletter for Smalltalk Programmers

November/December 1991

Volume 1 Number 3

RESPONSIBILITY-
DRIVEN
DESIGN

By Rebecca Wirfs-Brock

Contents:

Features/Articles
! Responsibility-driven design
by Rebecca Wirfs-Brock
Il Smalialk comes to the mainframe, part |
by Glenn J. Reid
Columns
6 Getting Reat Should classes be initalized?
by Juanita Ewing

9 GUIs: ObjectWorks\Smalltalk Release 4
for MS-Windows 3.0: a look at the lower
levels by Greg Hendley and Eric Smith

Departments

15 Conference Report: Digitalk's Smalleali/V
Developers Conference '91
by Paul White

/7 Lab Report: Using and studying Smalltalk
in the User Interface Instituce
by Mary Beth Rosson

*19 What They're Saying About Smalitalk

20 Product Announcements

hject-oriented design is a process that creates a model of interacring ob-
jects. Models leave out trivial details and focus on the essential aspects of
the thing they represent. A model isn't supposed to be an exact replica of

the original!

Simply using an object-oriented programming language or environment does nor, in
itself, guarantee miraculous results. Like any human endeavor, software design requires
discipline, hard work, inspiration, and sound technique. Some people have touted ob-
ject-oriented desipn as the next great revolution in software simply because it allows a
designer to caprure “real world” objects and, with just a little bit of transformation, cre-
ate a working program. It isn't that easy. There's a lot of judgement, abstraction skills,
and lessons learned from previous experiences that po into creating an object-oriented
model. And the approach raken to define and describe objects will have profound im-
pacts on the resulring design.

This article describes an object-oriented modeling technique called responsibility-
driven design!* This approach draws upon the experiences of a number of very success-
ful and productive Smallealk designers. The concepts and motivarions behind responsi-
hility-driven design were initially formulared when Brian Wilkerson, myself, and others
developed and taught a course on object-oriented concepts and desipn to Tekeronix en-
gineers. These engineers were working on object-oriented projects that would be imple-
mented in Smallralk and C++, as well as conventional languages.

GOALS FOR THE DESIGN PROCESS

We had several goals for presenting an objecr-oriented desipn method. Firse, we wanted
to encourage exploration of alternarives early in the design, yet provide criteria and a
structure for analyzing and improving upon initial design decisions. We wanted design-
ers to first develop the “big picture” of how key objects in their application interact be-
fore filling out precise details of individual classes. It is far, far easier to consider, refine,
and even discard ideas up front before major investments of time and moncey have been
made. Decisions made abourt the internal structure and algorithmic details of an ohject
hefore there is o clear understanding of its role and purpose are often flawed. These deci-
sions, if made too early, can require major revision. We wanted to present a process that
helped designers avoid some costly rework. No process can ever eliminate it. Design, by
nature, is an incremental journey of discovery and refinement. With each new refine-
ment, comes further insighrs and changes. It is important, however, not to force design
decisions before there is enough knowledge to make intelligent tradeoffs.

We wanted desipners to inirially focus on building a model of interacting objects. Each
object’s role or purpose as well as its interactions with other objects is important to un-
derstand. Finally, we wanted to present modeling techniques and guidelines that were
language independent. Principles and design practices followed by experienced
Smallralk developers are applicable to other object-oriented designs. Given these funda-
mental ohjectives, let’s examine the process of responsibilicy-driven design.

comtinued on page 4.

EDITORS’
CORNER

John Pugh

Paul White

elcome again! Well, we've finally convinced you that The Smalltalk Report is for real. It
has been gratifying to see the terrific response we have received to the first two issues.
Meeting many of you at OOPSLA and the Digitalk Developers Conference has allowed
us to get your feedback directly. Most of it has been positive — the only comment ut-
tered enough times to warrant a response from us has been the charge that what is being
stated by some of our columnists is, to paraphrase, “not the right way Smalltalk should be
used.” To that comment, we say “Let’s hear your rebuttal!” Our role as editors is not to
decide what is “right” and "wrong” — only to ensure that arguments get presented in a
professional and informative manner. We welcome your responses — either in the form
of an article or through our Messages: soapbox. Along these lines, one worthwhile sug-
gestion received was to solicit two members of the Smalltalk community to debate a
topic of current interest. We would be delighted to offer such a feature. However, as
usual, pinning people down to contribute is never easy. Any suggestions you may have
for suitable candidates and topics for such a feature would be welcome.

In this issue, we welcome Rebecca Wirfs-Brock as a new columnist to the The Smalltalk
Report. As author and speaker, Rebecca’s opinions are widely respected within the
Smalltalk community. Her approach to object-oriented design is well known and is well
suited to the Smalltalk community. In upcoming issues, Rebecca promises to go beyond
her cutrent writings to provide greater detail and insight into the issues of object-ori-
ented design. In this issue, she begins by reviewing the responsibility-driven approach to
design. Also in this issue, Glenn Reid discusses the Smalltalk/370 project — an ongoing
effort to bring Smalltalk to the world of mainframes.

Two of our regular columns are again featured in this issue. Greg Handley and Eric
Smith continue their look at GUIs by describing the low-level interactions occurring in
ParcPlace’s Release 4, while Juanita Ewing continues her Getting Real column by dis-
cussing a problem well known to Smalltalkers — how to systematically arrange for the
initialization of class variables. Finally, in our Lab Report section, Mary Beth Rosson
describes the considerable amount of Smalltalk research taking place at the IBM

T. J. Watson Research Laboratories.

Listening to the debates at the Digitalk Developers Conference or looking around the
exhibits floor at OOPSLA, it was hard to come to any conclusion other than that inter-
est and development in Smalltalk is thriving as never before. Moreover, real examples of
the use of Smalltalk in commercial projects are now plentiful. We hope to report on
some of these “success stories” in upcoming issues. To begin this process, we present an
overview of the activities of the Digitalk Developers Conference.

AN R:)i“ Q NG

The Smallcalk Report (ISSN+ 1056-7976) is published 9 times a year, every month excepe for the Mar/Apr, July/Aug, and Nov/Dec combined issues.,
Published by COOT, Inc., a member of the SIGS Publications Grup, 588 Braadway, New York, NY 10012 (212)274-064C. © Copyright 1991 hy
OOOT, Inc. All rights reserved. Reproduction of this material by elecrronic transmission, Xerox or any other methal will he treatad as a willful viola-
tion of the US Copyright Law and is flatly prohibited. Marterial may be reprovucad with express permission from the publishers. Mailed First Class.
Subscription rates 1 year, (9 issues) domestic, $65, Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and sub-
scription orders to: THE SMALLTALK REPORT, Suhscriber Services, Dept. SML, P.O. Bon 3000, Denville, NJ 07834. Submit articles to the Editors ar 91
Second Avenue, Ortawa, Ontario K1S 2H4, Canada.

The Smalitalk Report

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS PUBLICATIONS

Advisory Board

Tom Atwood, Object Technology
Grady Booch, Rational

George Bosworth, Digitalk

Brad Cox, Information Age Consulting
Chuck Duff, The Whitewater Group
Adele Goldberg, ParcPlace Systems
Tom Love, Consukant

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems
Shesa Pratap, Centerline Software
P. Michael Seashols, Versant

Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Dbject Technology

THE SMALLTALK REPORT

Editorial Board

Jim Anderson, Digialk

Addele Goldberg, ParcPlace Systems

Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Instantiations

Dave Thomas, Object Technology Intemationat

Columnists

Juanita Ewing, Instantiations

Greg Hendley, Knowladge Systems Corp.
Ed Klimas

Suzanne Skublics, Object Tachnology
Eric Smith, Knowledge Systams Comp.
Allen Wirfs-Brock, instantiations
Rebecca Wirfs-Brock, Tektronix

SIGS Publications Group, Inc.
Richard P. Friedman

Group Publisher

Art/Production

Elisa Varian, Production Manager

Susan Culligan, Crestive Diractor

Kristin R. Juba, Praduction Editor

Caren Polner, Dasktop Designer
Circulation

Diane Badway, Circulation Businass Manag
Kathleen Canning, Fulfifiment Maneger
John Schreiber, Circulation Assistant
Marketing/Advertising

James Kavetas, Advertising Director
Diane Morancie, Account Executive
Gerakiine Schafran, Advertising Sales Assistart
Administration

David Chatterpaul, Accounting

Suzanne W.Dinnerstein, Conference Manager
Jennifer Fischer, Assistant to the Publisher
Laura Lea Taylor, Administrative Assistant

Margherita R. Monck
General Manager

WSIGS

PUBLICATIONS

Publishers of Journal of Object-Oriented
Programming, Object Magazine, Hotline on
Object-Criented Technology, The C++ Re-
port, The Smaiftelk Report, The interna-
tional OOP Directory, end The X Journal.

THE SMALLTALK REPORT

Unleash
the
True Power
of
Client/Server
Computing...

ENFIN/2 offers a unique Integration of 4GL
visua] development tools within an object
oriented development environment which
enables application developers to achieve a
quantum leap in productivity.

Graphical User Interfaces:

M All CUA display objects predefined

M Workplace support for pick, drag and drop
of icons

W Additonal display objects such as business
graphics, tables, bitmaps and more

M Portabllity of source code between Windows
and 0S/2 PM

Client Server Archilecture:

M Point and click linking of SQL tables and
queries to display objects and report objects

I Support for most popular SQL engines and
DBase

@ Support for cursors, scrollable cursors, and
embedded SQL

Open Archileclure:

B APPC LU6.2 and EHLAPPI host communica-
tions

B DDE, DDL's, clipboard and OLE

Object Oriented Development Environment:

M Enfin's Smalltalk object orlented program-
ming language

@l Object orlented development and debugging
tools

M Extensive library of reusable and extendable
classes

B Run Time Generator includes unlimited dis-
tribution license

4GL Visual Development Tools:

8 Graphical User Interface Builder
M Graphical Report Builder

M Data Entry Definition Tool

W SQL workbench

M Financial modeling facility

Point and click simplifles the
creation of SQL queries lo support
client/server architeclure.

Includes a professional set of
object-oriented de ¢ tools.

b
541 FS 1] L4
s Operators

o
<
=
2
>
AN

Clasnen
‘Externallatabane ¢Brma
ExlernallatsbascCar{windos

Tedd

+ *Dialoghat
-+ Mews,

-+ - a1 Dl ! ngBon
- -BubFore

-
of L
Methnd Suurce:

mx(bod foraSizeChan
1 sell has

" iew
i meedRedisplay

IR

Stanard Development

T
heen re aform formltcun un they can be resized or .
if: [AcilveForma hasElcment: nelf] then: | ;

for: llams do: [L =l NAME AGE SEX__ cry
] each | :
I1: [IsVisible: esch) then: Tumer 40 mols Sestds
] ol Jones 14 emsle Portiand
¥ J e Smith 21 male Chicaga
Detral

Supporls pick, drag and drop
workplace applications.

Visually develop
user inlerfaces.

mm

BALARY ST:
1

25600 o .
15000 .
11800
4umoe
Wl e .]

.

L
@ Bar Chot
O Pic Chart

ENFIN/2 is being used by the world's biggest
companies in Windows and/or 0S/2 PM:

Mercedes Benz, Deutsche Bank, DuPont, IBM,
Southern California Edison, Bayer, Security
Pacific Bank, Ceiba Geigy, Bosch, Southern

ENFI

California Gas, and many more.

"We have decided to market ENFIN/2 because of
the unique and rich 05/2 support for Corporate

S O FTWATRE
CORPORATIO®

ppilcation development. Some o our Largest 1(800) 9224372 US.
b obfct oienid 0372 Prsentaion Mnager 1(800) 7224372 CA

support of the 0S/2 Database Manager and its
APPC LU6.2 host communications support.”

Ludwig von Reiche, IBM Germany

6920 Miramar Road, Suite 307
San Diego, California 92121

(619) 5496606 ™ FAX:549-6798

B RESPONSIBILITY-DRIVEN DESIGN

continued from page | ...

RESPONSIBILITIES AND COLLABORATIONS

To start, object-oriented design typically is quite exploratory
and iterative. Unless designers are building (or rebuilding)
an application with which they are intimately familiar, a
clear vision of the key classes does not exist. Creating a
model requires undetstanding system requirements as well as
skill in identifying and creating objects. Building consensus
and developing a common vocabulary among team members
is important. Initially, designers look for classes of key ob-
jects, trying out a variety of schemes to discover the most
natural and reasonable way to abstract the system into
objects.

Responsibility-driven design focuses on what actions must
get accomplished and which objects will accomplish them.
How each action is accomplished is deferred. A good starting
point for defining an object is describing its role and purpose
in the application. Details of internal structure and specific
algorithms can be wotked out once roles and responsibilities
are better understood.

A responsibility is a cohesive subset of the behavior
defined by an object. An object’s responsibilities are high-
level statements about both the knowledge it maintains and
the operations it supports. An analogy between designing
objects and writing a report can clarify the intent of listing
each object’s responsibilities. An object’s responsibilities are
analogous to major topic headings in an outline for a report.
The purpose of developing an outline (and then a detailed
outline) before writing a report is to map out the topics to be
covered in the report and their order of presentation. Simi-
larly, the purpose of outlining an object’s responsibilities is
to understand its role in the application before fleshing out
the details. A good way to determine an object's responsibil-
ities is to answer these questions: What does this object need
to know to accomplish each goal it is involved with? What
steps toward accomplishing each goal should this object be
responsible for?

Objects do not exist in isolation. Object-oriented appli-
cations of even moderate size can consist of hundreds if not
thousands of cooperating objects. A collaboration is a request
made by one object to another. An object will fulfill some
responsibilities itself. Fulfilling other responsibilities likely
requites collaboration with a number of other objects. Ob-
ject collaborations can be determined by examining each re-
sponsibility and answering the questions: What other objects
need this result or knowledge? Is this object capable of
fulfilling this responsibility itself? If not, from what other ob-
jects can or should it acquire what it needs?

THE CLIENT/SERVER MODEL

Collaborations can be modeled as client/server interactions.
A client makes a request of a server to perform operations or
acquire knowledge. A server provides information or per-
forms an operation upon request. Clients and servers are

roles objects assume during a collaboration. Modeling
client/server interactions can help to reinforce information
hiding. A client shouldn't care how a server performs its du-
ties, only that it responds appropriately. On the other hand,
a server is obligated to respond appropriately to any such
request.

The relationship between client and server can be formal-
ized in a contract. A contract is a set of related responsibili-
ties defined by a class. It also describes the ways in which a
given client can interact with a server. It lists requests that a
client can make of a server. Both client and server must up-
hold the terms of their contract. The client fulfills its obliga-
tion by only making those requests specified in the contract.
The server must respond appropriately to those requests.
Later, with a more complete understanding of our design, we
can fill in the fine print of each contract. This can involve
specifying details of client requests (including message
names and arguments, preconditions that must be met before
making a request, and postconditions that will be true after
the server has performed the requested operation?). In early
stages of design, however, it is enough to understand con-
tracts stated in general terms.

The design process outlined thus far consists of finding
key objects, defining their roles and responsibilities, and un-
derstanding their patterns of collaborations. Responsibility-
driven design initially focuses on what should be accom-
plished, not how. Using a client/server model of object
collaboration, we identify each object’s public interfaces by
answering: What actions is each object responsible for per-
forming? What information is each object responsible for
providing!?

A SIMPLE TOOL

Given an initial set of key objects, the designer can evaluate
object responsibilities and collaborations by testing how the
model responds to a vatiety of requests. Scenarios that the
application must handle can be described, and requests or
events can be fed into the model. Patterns of collaboration
required to handle each situation can be traced. Running
through a number of typical scenarios rapidly points out gaps
in understanding. It is not uncommon to find new key ob-
jects and discard ill-conceived ones, to evaluate and reassign
responsibilities, or to fabricate new mechanisms as part of
this process. It is also a time when missing or conflicting sys-
tem requirements surface and require clarification before
completing the initial model.

Kent Beck and Ward Cunninghant initially developed
the concept of using index cards to teach object-oriented
concepts. The idea behind CRC cards (for class-responsibil-
ity-collaboration) was to provide a quick, effective way to
capture the initial design of an object (see Figure 1).

The name of each class is written on an index card. Each
identified responsibility is succinctly written on the left side
of the card. If collaborations are required to fulfill a responsi-

THE SMALLTALK REPORT

Class: Drawing

Superclasses: none

Subclasses; none

Know the elements of which it is composed
Maintain the ordering between elements
Change the ordering of elements
Know how to display its elements Drawing Elemenl
Store on, and reslore from, a file Flle
J

Responsibilities —/Collaborations -/

Figure 1. Example CRC card.

bility, the name of each class that provides necessary services
is recorded to the right of that responsibility. Services
defined by a class of objects include those listed on its index
card, plus responsibilities inherited from its superclasses.
Subclass-superclass relationships and common responsibili-
ties defined by superclasses can also be recorded on index
cards. In fact, the beauty of index cards lies in their simplic-
ity and the ease with which their contents can be modified.

They can be easily arranged on a tabletop, and a reason-
able number of them can be viewed at the same time. They
can be picked up, reorganized, and laid out in a new arrange-
ment to amplify a fresh insight. They are great for hand sim-
ulating collaborations to test the model. It is faitly easy to
shuffle and manipulate a couple dozen cards. A couple hun-
dred cards is obviously impractical. But following the de-
tailed interactions of a couple hundred objects is beyond
comprehension, no matter what the medium.

Index cards are effective because they are compact, easy
to manipulate, and easy to modify or discard. A designer
doesn’t feel that there’s a lot invested if the design is merely
recorded on thirty or forty index cards. There is a mysterious
phenomena that occuts once a design is entered into the
computer. [t often takes on a life of its own. Because it has
been recorded, it becomes much harder to consider alterna-
tive objects, roles, and assignment of responsibilities. It isn't
long before designs need to be entered into the computer to
communicate and review ideas with a larger audience or
even to develop more detail. Index cards are no substitute
for detailed modeling, but they are a great place to start.

The responsibility-driven design approach stresses focus-
ing on modeling object behavior and identifying patterns of
communication between objects through client/server rela-
tionships. Once a preliminary design model has been con-
structed, it typically needs extensive refinement before the
reusability and extensibility benefits touted by proponents of
object technology can be achieved. This is where the major
portion of the design time can be well spent. In future
columns, I'll present guidelines for determining object roles

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management with update transaction
control directly in the Smalltalk language

® Transparent access to Smalltalk objects on disk

Transaction commit/rollback

® Access to individual elements of virtual collections and
dictionaries

® Multi-key and multi-value virtual dictionaries with query by
key range and set intersection

® (Class restructure editor for renaming classes and adding or
removing instance variables allows incremental application
development

® Shared access to named virtual object spaces

® Source code supplied

Some comments we have received about VOSS:

“...clean ...elegant. Works like a charm.”
—Hal Hildebrand, Anamet Laboratories

“Works absolutely beautifully; excellent performance and
applicability.”
-Raul Duran, Microgenics Instruments

Available now for Smalltalk/ V286 $149 + $15 shipping.

Smalltalk V/Windows version under development.

Pl tate disk size required. Visa, MasterCard and EuroCard accepted.
Logic Arts Ltd. 75 Hemingford Road, Cambridge, England, CB1 3BY
TEL: +44 223 212392 FAX: +44 223 245171

logic

ARTS

and responsibilities and discuss techniques for developing in-
heritance hierarchies and abstract classes.

REFERENCES

[1] Wirfs-Brock, R- and B. Wilkerson. Object-oriented design: a
responsibility-driven approach, OOPSLA ‘89 Conference
Proceedings, New Orleans, LA, SIGPLAN Notices, 24(10),
October, 1989, pp- 71-76.

[2] Wirfs-Brock, R., B. Wilkerson, and L. Wiener. Designing Object-
Oriented Software, Prentice Hall, Englewood Cliffs, NJ, 1990.

[3] Meyer, B. Programming as contracting, Interactive Software Engi-
neering, Inc. Technical Report, 1988.

[4] Beck, K. and W. Cunningham. A laboratory for teaching object
oriented thinking, OOPSLA ‘89 Conference Proceedings, New
Orleans, LA, SIGPLAN Notices, 24(10), October, 1989,

pp- 1-6.

Rebecca Wirfs-Brock is the Director of Object Technology Services
at Instantiations and coauthor of Designing Object-Oriented Soft-
ware. She is the program chair for OOPSLA '92. She has sixteen
years of experience designing, implementing, and managing software
products. During the last seven years she has focused on object-
oriented software. She managed the development of Tektronix Color
Smalltalk and has been immersed in developing, teaching, and lectur-
ing on object-oriented software.

VoL. I, No. 3: NovEMBER/DECEMBER 1991

ETTING REAL

Juanita Ewing

How should classes be initialized?

lass initialization should be systematic and predictable.

Have you ever sent messages to a class and received strange

errors related to uninitialized class data? Uninitialized class
data is a result of Smalltalk programming conventions and
lack of support by the programming environment. Some mi-
nor changes in the Smalltalk programming environment
could greatly improve this situation.

WHAT NEEDS TO BE INITIALIZED?
Smalltalk classes have two or three different kinds of class
data that must be initialized:

® class variables
e class instance variables
® pool dictionaries

Smalltalk-80 derived dialects have class instance variables,
but Smalltalk/V dialects do not. Each kind of class data has
semantic differences.

Classes can have class variables, which are shared between
all instances and the class. Class variables can be referenced
from both instance and class methods simply by referring to
the name of the class variable.

Class instance variables are storage for the class and can be
referenced only from class methods. Instance methods that
need the information stored in a class instance variable must

A's instance
methods
4 A's class
L mathods
a class
A variable F ~
LN ~~<FE
VoY
W
subclass \ N N
\ N o
\ N
\ N B's class
\ W methods
B i W
\ B'sinstance NS
methods N
T

Figure 1. Class variables.

send a message to a class method, which can retumn the re-
quested information.

Pool dictionaries are shared between several classes. The
keys in a pool dictionary can be directly referenced from both
instance and class methods.

WHICH OF THESE IS INHERITED?

All Smalltalk programmers are familiar with the inheritance
semantics of instance variables. The variable is inherited, but
not its value.

Unlike instance variables, a class variable and its value are
inherited. That means that the value of a class variable is
shared with subclasses and all of theit instances. The diagram
in Figure 1 shows a class variable defined by class A. The sub-
class B inherits the class variable. Instance methods from the
subclass and superclass are able to reference class variables.

Class instance variables are much like the instance vari-
ables we use all the time in Smalltalk programming, except
that class instance variables are instance variables for a class
instead of for instances of a class. The semantics of class in-
stance variables are similar to those of instance variables. The
variable is inherited, but not its value. Each class must fill in
its own value. These kind of variables are handy because sub-
classes can easily override values defined in a superclass.

In Figure 2, class A defines a class instance variable, i. Sub-
class B inherits the class instance variable i and defines an-
other class instance variable. Only class methods can refer to
class instance variables. The receiver of the message deter-

A's class
methods
A
classinstance «|— — = _ _ _[=
variable | - —
subclass
B's class
methods
B
-
-
Classinslance « — ~ _ . — =L~
. e -
variable 1 - P
class inslance -
variable |

Figure 2. Class instance variables.

THE SMALLTALK REPORT

A’s instance

methods
A A's class
” methods
a pool Pd
dictionary | ~ — - - - 1=
L‘ \\ ~
\ \ ~ ~
subclass NE S
iy B's class
A RN methods
A\ ~ N
\ \ B'sinsiance NI
\ y methods
\
B A}

Figure 3. Pool dictionaries.

mines which storage slot will be referenced. For example, sup-
pose the method initialize references the class instance vari-
able i. If the receiver of the message initialize is A, then the
storage slot in class A will be referenced. If the receiver is B,
then the storage slot in class B will be referenced.

Pool dictionaries are similar to class variables. Pool dictio-
naries and their values are inherited by subclasses. In Figure 3,
class A defines a pool dictionary. Both class and instance
methods can reference keys in the pool dictionary. Subclass B
inherits the pool dictionary, including its values. Instance and
class methods from subclass B can reference keys in the pool
dictionary.

Let's examine the inheritance consequences.

WHAT HAPPENS IF CLASS METHODS ARE USED TO
INITIALIZE?

Class data needs to be initialized. The most common practice
is to use a class method called initialize. This method typically
is used to initialize all class data, no matter what kind of class
data it is.

Assume an initialization method initializes a class vari-
able. The class that defines the class variable needs to exe-
cute the initialization method. Since the value of a class vari-
able is inherited, subclasses don’t need to execute this
method. In fact, it may be an error to do so because some
valuable data may have accumulated in a class variable. Sub-
classes inherit the initialize method, but should not execute
this method. This situation is a violation of goad object-ori-
ented programming.

Assume the initialize method initializes a class instance
variable. The value of this variable is not inherited, so sub-
classes must execute the initialize method to initialize the
variable. Either an inherited method or a local initialization

E3

Editor Enhancements for Smalltalk/V
Windows and Smalltalk/V 286

Multi-function editing for SmalltalkV, compatible
with the standard editor and adding over 200 user
accessible commands, including :

® Text Status Pane ® Easy-to-use Search
® Online Help and Replace
® Key Customization ¢ Case Alteration
® Command ® Text Fill and Margin
Lookup/Completion Settings
e Enhanced Cut/Paste ® Abbreviation Facility
(with multiple copies ® Non-printing
viewable in places, Character insertion
® Copy Ring and value report
Processing ® Programming
Place Marking Support
® Macro Facility ® User Preferences
i Miscellaneous
Text Transposition Goodies
E3/ W : $80.00 E3/286 : $75.00
(plus $10.00 shipping / handling per item).
Refund if not satisfied. VISA/MasterCard Accepted.
Object Orchard Ltd.

9 Fettes Row, Edinburgh, Scotland, UK.
PHONE: +44 31 558 1815 FAX: +44 31 556 2718

method can be used. The initialization method must be exe-
cuted by each class.

Pool dictionaries are shared between several classes. The
current Smalltalk convention is for one of the classes to pro-
vide an initialization method. Should the initialization
method be executed by subclasses? No. It may wipe out valu-
able accumulated data. This case is analogous to the situation
with class variables.

DOES SMALLTALK HAVE INITIALIZATION
CONVENTIONS?
Smalltalk has a convention for the initialization of instances:
it is to invoke the superclasses’ initialization method if sub-
classes must override it. The convention arose because the su-
perclass can initialize variables. Subclasses avoid duplicating
the inherited code.

Initialization methods typically look like this:

initialize
"Invoke the receiver's inherited method. Initialize my variable to the
integer 2.
super initialize.
myVariable = 2

CAN WE APPLY THIS CONVENTION TO CLASS
INITIALIZATION?

The super initialize convention doesn’t work well with class
initialization methods. A Smalltalk programmer can't tell if
the initialization method should be executed without examin-

VoL. I, No. 3: NoveMBER/DECEMBER 1991

B GETTING REAL

ing the code. If only class instance variables are initialized,
this convention works. If class variables or pool dictionaries
are initialized, then this convention doesn't wotk since the
values of these variables are inherited.

Smalltalk programmers don’t restrict their initialization
methods. They use initialize methods for all kinds of class
data. Therefore, the existence of an initialize method in a hi-
erarchy is not a good indication of initialization requirements.

66

The super initialize convention
doesn’t work well with class
initialization methods.

b

DO CLASS INITIALIZATION METHODS WORK?
Even if you ignore the inheritance issues and the super initial-
ize convention problems, there are still flaws in class initializa-
tions contained in class methods. Execution of the initialize
method is an action that is separate from the compilation of
the initialize method. This separation leads to another prob-
lem. How many times have you edited an initialize method
but fotgotten to execute it?

If you file in someone else’s class, it may or may not have
a do-it to perform an initialize. Dialects of Smalltalk-80 try
to get around this problem by automatically filing out an
initialize do-it when a class containing an initialize method
is filed out. When the class is filed back in, the do-it is exe-
cuted. This heuristic fails in two common cases. When a de-
veloper creates a method for initialization and calls it some-
thing other than initialize, such as initializeVariables, then
the programming environment fails to detect the purpose of
the method and does not treat it specially. Because this
heuristic only examines behavior in a single class, it also
fails when an inherited initialization method needs to be
executed by a subclass.

SHOULD INHERITED METHODS EXECUTE WITHOUT
ERROR?
Any inherited method should be able to execute without
error. Dialects of Smalltalk-80 override inappropriate inher-
ited methods with an implementation consisting of self
shouldNetImplement. High-quality class hierarchies should
never allow users to execute methods that create errors. High-
quality programming environments should not encaurage the
construction of code that creates these errors. Unfortunately,
Smallealk class initialization conventions promote the inheri-
tance of inappropriate methods.

The Smalltalk programming environment has a quality
problem.

SHOULD CLASS INITIALIZATION BE INHERITED?
No. Since it is impossible to tell if a class initialization method
should be inherited without examining the code, class initial-
ization methods should never be inherited. Initialization meth-
ods too frequently contain references to inherited class variables
and pool dictionaries. It is too easy to make a mistake and exe-
cute an inherited initialization method that is inappropriate.

The code that petforms class initialization should be com-
piled in the scope of the class to reference class data, but it
doesn't have to be a class initialization method. The Smalltalk
programming language has enough power and flexibility to
provide another mechanism in the programming environment
for class initialization.

HOW SHOULD CLASSES BE INITIALIZED?

Class initialization should not be a class method. Instead, classes
should have a separate component that contains the class ini-
tialization code. We will call this the class initialization.

The class initialization should be bundled with the class
and supported by the programming environment as a part of
the class. The code that performs the initialization should be
able to reference all class data: class variables, class instance
variables, and pool dictionaries. The initialization code should
be executed so that self is bound to the class. These character-
istics are also characteristics of class methods, so programmers
don't have to change the way they write initialization code.
They just have to designate it as class initialization code.

Separate class initialization code is beneficial in several
ways. Inheritance of inappropriate class methods avoids costly
errors. Functionality can be added to the programming envi-
ronment to improve productivity. When the code to initialize
a class is identified, the programming envitonment can take
special action to support its intended functionality. For exam-
ple, when the class initialization is redefined, it could be auto-
matically executed by the environment. The class initializa-
tion could automatically be filed out when a class is filed out
and executed when the class is filed back in. If just these ac-
tions are supported by the programming environment, then
much time would be saved by Smalltalk programmers.

All of this can easily be implemented in a Smalltalk pro-
gramming environment. The result is separate class initializa-
tion whose purpose is known by the programming environ-
ment. This kind of class initialization is not inherited and thus
avoids errors. A class initialization can send messages to the
class and, in doing so, may execute class methods.

Juanita Ewing is a senior staff member of Instantiations, Inc., a soft-
ware engineering and consulting firm that specializes in developing and
applying object-oriented software projects, and is an expert in the de-
sign and implementation of object-orinetd applications, frameworks,
and systems. In her previous position at Tekeronix Inc., she was re-
sponsible for the development of class libraries for the first commercial
quality Smalltalk-80 system. Her professional activities include Work-
shop and Panel Charis for the OOPSLA conference.

THE SMALLTALK REPORT

Uls

Greg Hendley and Eric Smith

ObjectWorks\Smalltalk Release 4 for
MS-Windows 3.0: a look at the lower levels

sion of Smalltalk since Version 2.5, it was with some intet-

est that we pulled open the package containing ParcPlace’s
most recent effort, Release 4 (R4). Previous versions of Parc-
Place’s Smalltalk would either take over the display or provide
the entire Smalltalk environment within a single host win-
dow. The present version departs somewhat from this mold.
Now each tool, such as a browser, workspace, file list, etc.,
opens up in its own host window. The Smalltalk windows now
coexist on the screen with other host windowing programs
such as word processors, file managets, games, etc.

None of this sounds particularly new of course. The twist is
that Release 4 does all this with a virtual image that is the
same on all of its platforms. The base image shipped with the
release looks the same whether you are on X, MS-Windows,
or Mac. This column is the result of several days of concerted
digging to find out how they do it.

Hot having had a chance to look over ParcPlace’s new ver-

TERMINOLOGY

But first! Discussing windows in the context of a system called
Windows using an envitonment with a class named Window
without first agreeing on some terms is a quick path to confu-
sion. So, we’ll agree on the following. When referring to the
host windowing environment, we'll use “Windows.” When
discussing a particular Windows window, we’ll say “window.”
In the case of a Smalltalk object that represents a window, an
expression like “Smallralk Window™ will be used to note the
fact that it is a Smalltalk object and that it is of class Window.
Smalltalk objects representing visual areas within a Smalltalk
Window that are not themselves associated with a window
will be called views.

WINDOWS, WINDOWS, AND VIEWS
When a browser is opened in R4, what you see is the usual
type of window for whatever environment you might happen
to be using — in this case Windows, which contains a bunch
of panes. Only the outermost window, with its resize borders,
title bar, and menu bar, etc., is a Windows window. The rest
of the contents are represented by Smalltalk views. They are
drawn according to instructions in the virtual image and so
will look the same regardless of which environment you run
Release 4 in.

Inside Smallealk, there are three basic kinds of things that
are fronting for the things you see on the display: Windows,

Wrappers, and Views. A Smalltalk Window holds everything
else. This is the Smalltalk object that fronts for the actual
window. Wrappers can hold views and provide things like
bordering and scroll bars. Last are the views that display infor-
mation like text and graphics.

For those familiar with the old model-view-controller
paradigm, the comforting news is that it is still here but with a
cleaner implementation. Each of the views and Smalltallk
Windows have their own controller. Here we will be primarily
concemned with ScheduledWindow and its controller. This
will most often be an instance of StandardSystemController.

HANDLING EVENTS

At least two things must happen to allow Smalltalk to work
with Windows. First, Windows messages must make it into
Smallealk so input may be handled and display requests routed
to the method that knows how to display. Second, graphics
operations performed using the Release 4 portable graphics
model must be converted to Windows calls. In this column,
we’ll look at what happens to Windows messages that get sent
to a Smalltalk window. At a later date, we can look at the
equally interesting process of mapping the portable graphics
operations to calls to the host graphics environments.

In Windows, messages are sent to windows for many rea-
sons. Some inform the window of input such as mouse move-
ment or keyboard activity. Others make requests of the win-
dow such as redisplaying a damaged area. Release 4 treats each
of these categories of message a bit differently, but the two
major categories of interest are messages pertaining to input
and messages requesting display.

INPUT EVENTS
When a key is pressed, an input message is sent to a window, a
WM_CHAR message for example. It begins a long and wind-
ing road at the end of which the appropriate Sensor and Con-
troller objects will become awate that an input event has oc-
curred. A fair amount of what happens during this process
happens in the virtual machine (VM), out of sight of the
Smalltalk programmer, so what follows is partially surmise.
The first step is for the WndProc of the window receiving
the input to handle the WM_CHAR message. The handler for
this message will package the information about the event into
a sixteen-byte event structure. With the exception of the part
of the structure that identifies the window that received the

VoL. 1, No. 3: NovEMBER/DECEMBER 1991

10.

B GUIs

message, these sixteen bytes will contain the same data under
any host windowing system given an equivalent event. That is
to say, an “A” typed in Windows will yield the same sixteen
bytes as an “A” typed in X, with the exception of the window
identifier that necessarily varies in each instance. This is the
point, very early on, where we stop talking Windows and start
talking Smalltalk. Before we get the information to the virtual
image, it is already in a system-independent format. This is one
way Release 4 maintains its extreme portability.

After the event structure is filled in, the VM presumably
arranges for the InputSemaphore, a class variable of Input-
State, to receive the message #signal. The details of just how
exactly the VM calls GetMessage() and returns from message
handlers is unclear. One would assume that ParcPlace has im-
plemented their own light-weight processes in the VM.

Meanwhile, there is a process that has been waiting on the
InputSemaphore in the method InputState>>run. This pro-
cess wakes up and reads the sixteen-byte event into an Array
via a primitive. The event is then passed on to InputState>>
process:. Here, the Smalltalk Window with the handle
identified in the event structure is located. This will most of-
ten be an instance of ScheduledWindow. Input events are
then translated into messages, like #eventButtonPress:, that
are sent to the WindowSensor of the Smalltalk Window.

The WindowSensor will pass along any critical informa-
tion, such as it’s time to become active, to its Smalltalk Win-
dow. Any important mouse and keyboard state information is
now maintained in the InputState, of which there is usually
only one global instance. Keystrokes will be queued up in the
WindowSensors of the Smalltalk Windows to whom they
were sent. The Controllers will be able to get at this informa-
tion by polling their Sensors in the time-honored fashion.

When a Smallealk Window becomes active, it tells its con-
troller to start up a control loop very similar to that used in
Smalltalk-80's past. The control loop of the Smalltalk Win-
dow will notice the fact that a keyboard event has been left in
its Sensor's queue. The event is then handled as usual, for ex-
ample, with a #keyboard Activity message.

DISPLAY EVENTS

The steps for processing display messages such as
WM_PAINT are the same up to the point where they get to
InputState>>process:. This method will translate the paint
message into a Smalltalk message such as #eventDamage:.
Then, as with input events, this message is passed along to the
Smalltalk Window's WindowSensot. The fact that the Win-
dow has been damaged is recorded, along with what part of
the Smallralk Window needs repair, in the WindowSensor.
The global list ScheduledControllers is also informed that a
Smalltalk Window has been damaged.

ScheduledControllers having been duly informed of the
need for a redisplay, the ControlManager, in its next pass
through its control loop, will notice the fact and ask all sched-
uledControllers to check for events. These Controllers then

in turn ask their views to do the same. In the case of a
WM_PAINT, eventually some Smalltalk ScheduledWindow,
for example, will notice that it has a pending damage event
and process it. This results in a #displayOn: message being
sent to the Smalltalk Window with the end result being that
only the damaged areas are redisplayed.

OVERALL

This is quite a lot of work to go through to take a Windows
message and convert it into something Smalltalk can under-
stand. One reason things are this complicated is that, in addi-
tion to converting Windows messages to Smalltalk messages,
the input handler is also converting an event-driven system
into a polling system. The Controller objects in Smalltalk still
poll their Sensors just as they always have. The fact that the
world outside is now event driven is hidden from them.

The upside to this is that at least part of the input-output
model of the new release is familiar to developers. There are
several aspects to the downside. First, this whole process is im-
plemented by fairly complex code that is distributed among
several classes. It is not to be casually modified. Second, either
it’s not fast enough or gets out of sync sometimes. On occasion,
events, such as quick mouse clicks, may get lost in the shuffle.
When dealing with display events, the programmer must real-
ize that the redisplay is not processed immediately upon receipt
of the WM_PAINT message as it is in most Windows applica-
tions. The request for redisplay is effectively queued and per-
formed when the relevant Controller gets around to it. In most
cases, this is not a problem but, if the author of a new Con-
troller is not careful how he requests and handles redisplays,
there may be a perceptible delay in the screen update.

In any case, Release 4 provides the expected ParcPlace
level of cross-platform portability along with a whole new
level of integration with the host environment. No easy task.
Those working with Release 4 might want to start looking
around down at this level of the system. An interesting exer-
cise would be to eliminate the conversion to a polling inter-
face and keep the event-driven nature of the system all the
way to the Controllets. This can be done without sacrificing
pottability since the events are normalized before they even
see Smalltalk. Some folks around the office have done this
and are reported to be happy with the results. There are sev-
eral other interesting ideas to try. Release 4 provides a whole
new world of Smalltalk to explore. @

Greg Hendley is a member of the technical staff at Knowledge Systems
Corporation. His OOP experience is in Smalltalk/V(DOS),
Smalltalk-80 2.5, Objectworks/Smalltalk Release 4, and

Smalltalk/V PM.

Eric Smith is a member of the technical staff at Knowledge Systems
Corporation. His specialty is custom graphical user interfaces using
Smalltalk (various dialects) and C.

They may be contacted at Knowledge Systems Corporation, 114
MacKenan Dr., Cary, NC 27511, or by phone at (919) 481-4000.

THE SMALLTALK REPORT

SMALLTALK

COMES TO THE

MAINFRAME,

PART |
Glenn]. Reid

ecently, our consulting firm has created an imple-
mentation of Smalltalk on a new platform. Our
version of Smalltalk, syntactically equivalent to
the PC versions, was implemented on an IBM
System/370 mainframe. Throughout this document, we shall
refer to our Smalltalk implementation as Smallralk/370.

The development of Smalltalk/370 is the second phase in
our ongoing effort to introduce object-oriented (OO) technol-
ogy in a mainframe environment. Implementing a mainframe
version of Smalltalk has been a challenging task, where the
nature of the environment has presented special problems. In
part 1 of this article, we present a description of some of those
challenges with our own solutions, a discussion of some of the
important aspects of the Smalltalk language, and our plans for
future enhancement of this environment. In part 2, we will
elaborate on those future plans, with a more technical discus-
sion of out proposal to introduce variable typing within

Smalltalk/370.

HISTORICAL BACKGROUND
Prior to beginning the Smalltalk/370 project, we implemented
several mainframe applications using a primitive form of OO
technology, employing data abstraction and code encapsula-
tion without the benefit of an OO programming language. In-
heritance was not available, and programming and debugging
tools often associated with OO languages were, of course, ab-
sent. Although, in each of these cases, the projects were con-
sidered successful (meaning that they were within budget and,
in some cases, under budget), it was apparent that we would
certainly not achieve order of magnitude reductions in deliv-
ery of software using this approach.

Reuse of code, for instance, was not achieved easily, al-
though some small gains were made in this area. We felt that

to further improve productivity an OO language was required.
At the time (and still to our knowledge), no OO languages
were available for our environment. Some research pointed
out that, while there were several OO languages in existence
(for the PC), some had gained in popularity more than others.
C++ was a candidate, as was Smalltalk. We noted that the
Smalltalk syntax had been chosen as a base for at least one
commercial object database management system (ODBMS)
called GemStone by its creators at Servio Corp. Smalltalk
seemed to offer a more “pure” OO environment, whereas C++
allowed the programmer to get “outside” the OO environment
and program in the traditional manner. While some consider
this a benefit of C++ (mainly for performance reasons that
will be discussed later), the author feels thar this type of activ-
ity should be allowed only under conditions strictly governed
by the system, and as little as possible. For these reasons, and
others, we felt that Smalltalk was the language of choice for
our environment.

In the next section, we discuss some of the implementation
aspects of Smalltalk/370 as well as some of the more impor-
tant features of Smalltalk. Throughout, an attempt will be
made to highlight areas that concern the larger system envi-
ronment. To begin, some discussion is included on object per-
sistence, which, while not included in the cutrent version
of Smalltalk/370, deserves some special mention due to its
importance.

OBJECT PERSISTENCE

Object persistence may be loosely defined as taking place
when an object is still in existence, accessible as an object, or
after a transaction or unit of work has been completed. The
key phrase “accessible as an object;” means that the object ex-
hibits its normal behavior, reacting to messages and so on.
Persistent objects reside on disk (although at times they may
be in main memory), giving the user the appearance of an
infinite virtual memory. A programmer no longer has to go
outside the OO paradigm to use long-term data, meaning that
the benefits of behavior captured with data are retained.
Equally important, is the concept of concurrency, where the
integrity of an object’s data is maintained under simultaneous
access by several users.

While the concepts and power of the Smalltalk language
are immediately impressive, they do not currently extend into
the realm of database management. Smalltalk comes down
near (but not quite) to the level of a traditional programming
language when it comes to dealing with file [/O. To preserve
the behavioral aspects of data, it is required that data be stored
in the Smalltalk “image” (i.e., a copy of RAM). Obviously,
this approach is limited when the volume of data is too large.
However, intetfacing to traditional databases requires that ob-
jects be taken out of the OO environment. Such objects not
only lose their behavioral aspect, they are also not directly ac-
cessible by an OO programming language. Objects are refer-
enced in memory essentially by address, and to move an ob-

VoL. 1, No. 3: NovEMBER/DECEMBER 1991

11.

12.

B SMALLTALK COMES TO THE MAINFRAME

ject to disk and still treat it as an object is not a simple task.
The object becomes a persistent object, something object
database management systems (ODBMS) revolve around.

Current ODBMSs accomplish object persistence in two
different ways:

1. Superimpose an object management layer over a tradi-
tional (e.g., relational) DBMS. The object management
layer can automatically export/import objects through
the underlying DBMS, making it appear to the user that
objects are still in virtual memory.

2. Read/write the object intact using some new access
method that accesses objects stored on disk in a format
that supports OO behavior.

Both approaches can preserve the behavior of objects, as well
as concurrent access by multiple users.

Both approaches require a significant effort to implement.
Several ODBMSs are in existence today and these have been
well documented elsewhere.

Building an ODBMS is certainly beyond the scope of our
current efforts. We make mention of this technology here be-
cause we feel very strongly that persistent objects will be re-
quired in the future to fully exploit the potential of OO tech-
nology. This is holds doubly true in the mainframe
environment, where databases often occupy gigabytes of disk
space. Our inability to deal with this data as objects, unless us-
ing expensive and complex importfexport processes, will place
a limit on the gains we can make over traditional technology.
[t will probably be several years (at least) before ODBMS
technology is proven reliable and performs well enough for
large mainstream applications. For now, we have dealt with
file I/O in a simple manner, supplying classes and methods to
deal with traditional databases. Obviously, the less often ob-
jects have to be exported from the image, the better. It should
be mentioned that recent mainframe operating system offet-
ings such as IBM’s MVS/ESA offer the potential for very large
images. While this does not remove the necessity for an
ODBMS, it may help to minimize the number of times objects
have to be exported out of the OO environment.

METHODS

In the PC vetsion of Smalltalk, methods reside in the image
with application data. Recognizing that we had to deal with a
potentially large number of methods, without the benefit of an
ODBMS, we opted to store our methads in a disk library out-
side of the image. An instance of the CompiledMethod class
keeps track of the location of the method, including whether
the method is loaded or on disk. At first reference, a method is
loaded and kept in storage. In this way, only the methods ac-
tually used by an application are loaded, and we have virtually
no limit on the number of methods we can create. Pointers to
all loaded methods are flushed when the image is saved to pre-
vent an application from loading an image in a subsequent
session that contains an invalid method pointer.

INTERPRETATION VS. COMPILATION

The PC version of Smallealk is intetpretive in nature, the
“compiler” producing intermediate byte codes that are read in
by a virtual machine at runtime resulting in execution of code
in the virtual machine. While this process has been optimized
to the point where it performs in an acceptable manner on a
dedicated processor such as a PC, we felt that the virtual ma-
chine overhead might be too much in a mainframe where a
large number of time-sharing applications are using a single
processor.

66

It will probably be several years
(at least) before ODBMS technology is
proven reliable and performs well
enough for large mainstream
applications.

b

We have chosen to compile our Smalltalk code eliminat-
ing any overhead of a virtual machine. Note that some mean-
ings of “compiled” in the OO wotld imply static binding of
methods to messages. This is not the case with Smalltalk/370,
as is discussed in the next section.

DYNAMIC BINDING AND TYPING

If any area of OO technology should cause concern regarding
performance, it is dynamic or late binding. Very simply, dy-
namic binding associates a method with a message at runtime,
whereas static binding associates a method with a message at
compile time. For illustration purposes, let us use the familiar
example:

Snoopy bark

where Snoopy is an instance of class SmallDog, a subclass of
Dog. Assume that class Dog contains the method bark, while
class SmallDog conrains a different implementation of the same
method.

At compile time, static binding would change the message
Snoopy batk to the equivalent of a direct function call to the
bark method in class SmallDog.

Dynamic binding would route the message bark to the class
SmallDog at runtime and select the bark method to be per-
formed. The runtime difference between the two approaches is
the processor time it takes to route the message, that is, find
the correct method to be performed. This performance differ-

THE SMALLTALK REPORT

ence can sometimes be significant. It is interesting to note that
in some critical cases, such as iteration (e.g., whileTrue:), condi-
tional expressions (e.g., ifTrue:), and others, Smalltalk uses a
fastpath static binding approach which does not, in fact, exe-
cute the published source code that is sent with the product.

If the bark method in the Snoopybark example was removed
from the system, static binding would require that the method
referencing it be recompiled as it now contains an invalid ref-
erence. Dynamic binding would require no such re-compila-
tion, for at runtime the method would simply be inherited
from class Dog. Change management systems are required to
deal with the dependencies introduced by static binding.

Static binding can only occur if the compiler “knows” what
class an object belongs to at compilation time. Smalltalk is a
“typeless” language, meaning that in traditional Smalltalk,
such associations of object to class are not possible at compile
time. Recognizing that there are times when dynamic binding
may produce unacceptable performance in a production sys-
tem, we intend to explore extending Smalltalk with the con-
cept of constraints on types (this extension would be patt of a
future version). We have confined ourselves at this time to in-
vestigating typing of named variables, excluding such things
as intermediate results generated during expression evalua-
tion. Potential candidates for typing are:

® dictionary variables (i.e., class, pool, and global variables)
® instance variables

® arguments

® named temporaries

® receivers

In all cases, the affected variable would be constrained to
belong to a particular class or one of its subclasses (i.e., the
variable has been “typed”). As was mentioned earlier, an in-
depth discussion of our implementation of typing will be de-
ferred to part 2 of this article.

Dynamic binding would remain the primary and preferred
way of associating messages with methods. Typing would be
used in situations that caused performance degradation or as a
data validation tool. Intuitively, the best use of typing applies
in high-use areas where typed languages can typically produce
very efficient code. Coincidentally, these areas correspond to
functions in Smalltalk that undergo few changes since they
are integral to the basic functioning of the system. Some ex-
ample preliminary candidates for typing might be Arrays,
which are frequently used in the at and atput messages, and
array indices that participate in Integer operations. In some
actual program samples we have studied, up to 40% of message
routing would be removed by typing these examples.

OBJECT IDENTITY

Object identity refers to the faculty of the system to distin-
guish between two physically distinct objects whose contents
are the same. Conversely, the system can also determine if two

objects, called by different names, are in fact the same object.
This parallels our view of the world, in which physically dis-
tinct objects with identical characteristics are recognized as
separate entities. Similatly, calling a real world object by two
different names does not alter the fact that it is the same ob-
ject. As this form of object identity is supported by Smalltalk,
it is included in our implementation. In Smalltalk, object
identity is supported by methods such as ==, which returns
true if two references point to the same object.

A desirable extension of the concept of object identity is
the ability to recognize an object after it has undergone some
change in its attributes. As an example, a child grown to
adulthood should be recognized as the same object with some
different attributes and behavior, not an entirely different ob-
ject. This type of recognition is made possible through the use
of vetsions. A versionable object may have more than one
copy of itself, each copy with different attributes and/or differ-
ent behavior. Different versions of an object may be kept in a
“version set” to maintain the relationship between them.

66

A desirable extension of the
concept of object identity is the ability
to recognize an object after
it has undergone some change
in its attributes.

*

Simple version control might allow creation of multiple
versions of attributes (i.e., of class and instance variables) as
well as creation of multiple versions of behavior (i.e., meth-
ods). Under this scheme, an object would be linked to the
version of the class under which it was created and would be-
have accordingly. This would allow the programmer to ex-
plore “what if” scenarios to explore alternative approaches to
problem solving in a more controlled manner.

A considerably more complex version control might allow
instances of an old version to be used as if they were instances
of a new version and vice versa. This would require object be-
havior to simulate presence/absence of variables, etc.

It is our intent to introduce a simple version control mech-
anism in Smalltalk/370 that will allow the creation of multi-
ple versions of classes and methods. This will serve to further
enhance the exploratory nature of programming within the
Smalltalk environment. One way this might be effected would
be to store each class in its own Amray of n elements, where
each element would point to a different version of the class (a

VoL. 1, No. 3: NovEMBER/DECEMBER 1991

13.

14.

B SMALLTALK COMES TO THE MAINFRAME

version set). CompiledMethods would be contained in a version
set pointed to by a MethodDictionary. Conventions could be set
up such that the last element of a version set is the current
vetsion, the first element is the production version, etc.

The idea of version sets for classes and methods would al-
low the programmer to experiment with code implementa-
tions without using the unwieldy process of saving/restoring
the image and overwriting good code simply to test out an
idea. Additionally, the promation process, where code is
moved from a test level to a production level, might be sim-
plified. Code could be moved from one level up to the next by
adding a new version. Combined with some change manage-
ment procedutes, this might malke the process of “backing
out” a change simpler, if required.

66

In the mainframe environment,
files are potentially accessible
to all users of the system.

b

ENVIRONMENT
Smallealk/370 is cutrently implemented on an IBM 3090
mainframe running IBM’s MVS/ESA operating system.

Smalltalk/370 runs in two modes: under the control of
IBM’s time sharing option (TSO) and interactive system pro-
ductivity facility (ISPF) using text-based monochrome IBM
3270 terminals or in batch mode without connection to a ter-
minal. When connected to a terminal, cursor keys and tab
keys are used to position the cursor.

ISPF is used as the terminal communications intetface.
Window (or panel) formats may be prepared in two ways: us-
ing an ISPF window definition facility (not in Smalltalk/370)
that creates fixed format windows which Smallralk/370 can
interface with or through the use of ISPF dynamic areas where
window format is dynamic and under control of
Smalltalk/370. The second mode of window control is still
under development. In either mode, windows can contain
multiple panes that operate independently (scrolling, selec-
tion, etc.) as in the PC environment.

Editing of methods may be petformed in two ways, both
available through our online browser. The first is our own
editing facility, with limited functionality at this time; the
second, the editing facility of ISPF. Similarly, disk files are
browsed or edited through a Smalltalk/370 browser that in
turn uses ISPF edit or browse.

Smallealk/370 is placed in batch or interactive mode by an
application start-up message, which is passed to it when it is
loaded. In both environments, it operates as a single-user ma-

chine. Intercommunication between users is probably possible
through the operating system, but is currently not in place.

As mentioned earlier, file access is performed through sup-
plied classes and methods that deal with the access protocol of
each file system. Currently supported file access methods are
queued sequential access method (QSAM) and virtual storage
access method (VSAM), to supply both sequential and keyed
file mechanisms, respectively. In the mainframe environment,
files are potentially accessible to all users of the system. Access
is controlled by the operating system (and other subsystems).
Normally, users (i.e., programs) request access to files through
the use of an external language call job control language
(JCL). In the Smalltalk/370 environment, file access is per-
formed through Smalltalk code, removing the requirement for

coding JCL.

SUMMARY

Smalltalk/370 appears to be a viable programming environ-
ment. We have not yet encountered any unacceptable imple-
mentation concems or design flaws during testing of the prod-
uct. However, more work needs to be done before it can be
turned over to the general programming population. Cur-
rently, Smalltalk/370 is deficient in interactive debugging
tools and some other environment support applications.

As was mentioned at the outset of this document,
Smalltalk/370 is phase 2 of a larger effort. Later phases neces-
sarily will include work in the areas of training, integration
into the existing production environment, and performance
measurements. We hope that this experience will provide
some insight into the integration of this important new tech-
nology in a corporate environment. &

Glenn J. Reid is president and founder of QSYS Systems Consultants
Inc., a consulting and software development company whose main
area of expertise is in the application of object-oriented technology.
Architect of Smalltallf/370, Mr. Reid is currently involved in the devel-
opment and application of a complete project life cycle approach to de-

veloping object-oriented systems in a mainframe environment.

THE SMALLTALK REPORT

ONFERENCE REPORT

Paul White

Digitalk’s Smalltalk/V Developers

Conference '91

ence at Universal Studios in Los Angeles on September

10th through 12th. The conference itinerary was packed
with information concerning Digitalk's plans for the various
dialects of Smalltalk, panel sessions, announcements, demon-
strations, and interesting “sidelines” (thanks to Jim Anderson
for the glasses, my kids loved them). Trying to keep things
running on schedule proved to be a real problem. Each session
seemed to have so much information to provide — no one
would leave one session to make way for the next. This report
presents an overview of many of these activities.

In all, the conference had over 200 attendees over the two
and one-half days. The conference included sessions on Dig-
italk strategies, Smalltalk internals, and future directions of
Smalltalk. There were sessions on topics such as front ending
mainframe environments, changes required in methodologies,
the use of CRC cards, and “Smalltalk and multimedia.” There
were also panels on training and education, team programming,
and persistent objects. The keynote address was given by Dan
Ingalls, who gave a superb talk on the history of Smalltalk.
There were also (brief) time slots for product exhibitions, with a
dozen or so companies demonstrating their wares.

ﬂigitalk held their inaugural Smalltalk/V developers confer-

DIGITALK NAMED IBM PARTNER IN AD/CYCLE
The biggest piece of news (apart, of course, from the debut of
The Smalltalk Report) actually occurred in New York on the
opening day of the conference when IBM announced that
Digitalk was the latest corporation to join the family of com-
panies in the AD/Cycle partnership. It was never made clear
whether the timing of this announcement was planned or
whether Digitalk was just incredibly lucky. In any event, it did
have a significant impact on the conference as it will, I'm sure,
on Digitalle’s (and Smalltalk’s) future. One had to wonder,
however, what effect this enhanced partnership will have on
the relationship between Digitalk and its smaller customers.
IBM had a definite presence at the conference, with two
sessions having IBM people describing the place Smalltalk has
in IBM’s future plans. For example, it was made clear that
Smalltalk is “the language of choice” for development for
0S/2 2.0. In fact, Digitalk stated their intention to release
their version of V PM 2.0 almost immediately after IBM'’s re-
lease of 2.0. There was some discussion throughout the confer-
ence of whether Digitalk should wait until they can handle
multiple process threads or leave this facility for version 2.1.

Also, Smallealk/V PM 1.3 will be fully compliant with IBM’s
CUA ‘91 architecture.

THE LAFKIT

Although the IBM AD/Cycle announcement was billed as
the most significant development of the conference, the
event that generated the most excitement by far was the
demonstration of Digitalk’s forthcoming LAFKit (Look and
Feel Kit). This is Digitalk’s fitst foray into the end user com-
puting marketplace and is being positioned as a competitor to
the Visual Basic and ObjectVision products. It was inspired
by such systems as Intetface Builder on the NeXT machine,
the Fabrik system by Dan Ingalls, David Smith’s InterCons,
and Apple’s HyperCard. Although it is possible to use
Smalltalk as a scripting language, LAFKit applications are in-
tended to be constructed with no knowledge of Smalltalk and
no traditional programming skills. LAFKit offers a paradigm
for describing computation based on connecting high-level
“components” together using “wires.” Components, such as a
mail server or database intetface, for example, are “black box”
type objects that have a well-defined public protocol. The
wires connecting them together represent the messages being
sent. Unlike data flow diagrams, what is being described is
truly the message flow between objects, not simply data flow
within a program.

Digitalk has been successful in seamlessly integrating dis-
playable components, such as windows and panes, with
nondisplayable components, such as sortets and mailers. New
applications developed using the LAFKit can be packaged as
new components to be subsequently reused in other applica-
tions, can be packaged as an application, or can be converted
to a dynamic link library (DLL). In fact, Digitalk touts that
the LAFKit will allow integration with components developed
using other languages, although no demonstration of this was
given. There are few written references for the LAFKit — see
the Byte article! for a brief introduction.

The demo given had Dan Goldman and Mike Teng each
developing online their own version of a personalized mail
system, using the existing “mailer” component to service all
the low-level mail functions. In a matter of minutes, both
were able to construct (almost) fully functional mail systems
that had features such as send, receive, and edit messages and
management of their own mailing lists. Although this was ex-
tremely impressive, it was made possible because the necessary

VoL. 1, No. 3: NoveMBER/DECEMBER 1991

15.

16.

B CONFERENCE REPORT

components for its construction already existed. It is not clear
exactly how much work is involved in developing new com-
ponents, but one can only conjecture that to get them right
can’t be easy. It is like generating code to be reused in ways
never thought of before — it’s a nice idea, but it comes only
through sweat and trial and error!

Despite the obvious excitement, and there was much of it
(Dan Shafer, for one, could hardly contain himself), many im-
portant questions remained unanswered. The most obvious
was the availability of the LAFKit. Digitalk made no commit-
ment as to its release date, but it seems clear that it won’t be
within “the next short while.” Also, this new computational
metaphor will undoubtedly require a new mechanism for de-
bugging. It doesn’t seem appropriate to get a walkback stack
when you're in the middle of programming using an iconic vi-
sual tool. Digitalk gave no indication how they plan to address
this issue. Finally, as Digitalk acknowledged, the success of
LAFKit depends on the availability of good components. It is
unclear at this stage what the base “palette,” or library of com-
ponents, will be. Presumably, there will be opportunities for
third parties to supply new components.

WINDOWS VS. PM VS. UNIX VS. MAC

It seemed Digitalk received a bit of a surprise from the
makeup of the attendees. As it turned out, the majority were
V PM users rather than the expected V Windows users. This
proved interesting as Digitalk seemed to be prepared to
demonstrate that much of their new development, such as
the LAFKit, is being done for V Windows first. When they
pointed this out, they received howls from the audience. An-
other occurrence, which probably was not such a surprise, was
the complaints from the small, but very vocal, V Mac com-
munity about the lack of effort being put into improving V
Mac. In fact, when Digitalk took a straw vote as to whether
users would prefer Digitalk to focus on adding more features
to V Windows and V PM or to focus on compatibility across
a greater range of platforms, including the Mac and UNIX,
the vote was significantly in favor of the latter. This seemed
to take the Digitalk people completely by surprise. My guess
is that you can expect to see Digitalk giving greater priority
to the UNIX world (the IBM RS-6000 and SPARCStation
are the expected first target platforms) at the expense of V
Mac users. Barbara Noparstak promised to let attendees know
about any decisions Digitalk makes as a result of this vote
through their own Scoop newsletter.

PLUGGABLE OBJECT LIBRARIES

In versions of Smalltalk prior to Smalltalk/V Windows and V
PM, the Smalltalk image consisted of one large monolithic
file. In Windows and PM, the image was split into runtime
and development libraries with a user’s application residing in
an executable file. Small applications resulted in very small
executables. V PM version 1.2 extended this idea to the no-
tion of pluggable object libraries for packaging specific func-

tionality and provided tools for building them. Digitalk an-
nounced that they would introduce a hardware-independent
representation of code in their 32-bit implementations that
would allow pluggable object libraries to be portable across
platforms. They also claimed their 32-bit architecture would
offer performance improvements, where, for example, V PM
2.0 will operate more than twice as fast as V PM 1.3, while re-
quiring significantly less space.

MOMENTA DEMONSTRATION

Momenta Corporation gave a surprise demonstration of their
new “pen-based” computer. Without going into too much de-
tail here, the box is a completely new design. Based on the
386SX chip, the machine offers a sleek design that uses a pen
as its primary input device (although it does have a detach-
able keyboard). The machine is billed as the executive's note-
book computer and contains such features as built-in fax func-
tionality and power technology that allows the machine to
operate for up to six hours at a time.

Why is Momenta of interest to the Smallralk community?
The application development envitonment is Smalltalk
V/286 enhanced with Object Technology International's
Envy/Developer and Acumen'’s Widgets/286 products. Inde-
pendent software vendors wishing to develop applications
for Momenta can purchase a developers package that in-
cludes software and training for a reasonable price, which is
actually below the cost of the machine itself. Their inten-
tion seems to be to encourage as many developers to enter
the market as possible.

Smalltalkers will also be interested in the enhanced object
metaphor used throughout all applications. The idea is that
instead of having behavior available only within a particular
application (through the menus presented for the applica-
tion), behavior is maintained by the objects generated by the
application. For example, consider what happens when you
move a section of data from your spreadsheet application to
your word processor. Typically, the functionality of the
spreadsheet is lost once it is pasted into the new application
— it simply becomes an inert piece of your document. In
Momenta, each object retains its own functionality, wherever
it is locared. So, in this example, selecting the spreadsheet
within the word processor would give you access to all of the
behavior applicable to spreadsheet objects. Developers of new
software components will be expected to maintain this same
functionality.

A NOTABLE EVENT

The most amazing feat of the entire conference actually had
nothing to do with Digiralk and occurred at the strangest
time. Everything had been running smoothly at the confer-
ence until Tim Andrews from Ontos Cotporation, during the
persistent objects session, stood up and began a sentence with
“What's so much better about C++ rather than Smallealk is

continued on page 18...

THE SMALLTALK REPORT

AB REPORT

Mary Beth Rosson

Using and studying Smalltalk in the User

Interface Institute

Reports of current work in Smalltalk
taking place in leading university and
research laboratories.

terface Institute of the IBM T.]J. Watson Research Center

for a number of years. It has become our standard envi-
ronment for prototyping user interface techniques and for the
iterative development of applications. At the same time,
Smalltalk has been an object of study: several tesearchers are
examining different approaches to Smalltalk instruction; oth-
ers are developing and testing tools intended to support ex-
perts’ design and implementation of Smalltalk applications.

me have been using Digitalk’s Smalltalk/V in the User In-

APPLICATION AND USER INTERFACE
PROTOTYPING

Our efforts in this area have focussed on two sorts of projects,
the building and testing of a variety of user interface compo-
nents in Smalltalk and the exemplification of these compo-
nents in realistic applications.

So, for example, several researchers have created multiple
versions of possible extensions to IBM’s Common User Access
(CUA), the specification of software look and feel for the
Systems Application Architecture (contact is John Richards,
jtrt@watson.ibm.com). Through iterative evaluation and refine-
ment, these researchers have explored how to support pervasive
direct manipulation across a number of application types.

Addressing a more specific user interface arena, the
Interactive Media Project (contact is Mark Laff,
m1l@watson.ibm.com) is conducting research in tools, appli-
cations, and usability of object-oriented multimedia technol-
ogy- Their ImpBuilder tool presents a graphical, ditect-manip-
ulation interface to interactive multimedia presentations.
Media objects such as video, audio, graphics, animation, and
text can be easily arranged in both space and time without re-
quiring programming. Using ImpBuilder, these researchers
have created several applications, including a biographical
“scrapbook” and an informational “electronic magazine.”
Studies have investigated issues in design and navigation of
such interactive multimedia applications.

SMALLTALK INSTRUCTION
Smalltalk, although recognized as a good platform for rapid
prototyping and software reuse, is widely regarded as difficule

to leam. Unlike leaming a procedural language like Pascal or
C, learning Smalltalk is dominated by browsing and code
comprehension. Learners of Smalltalk typically experience a
long, slow start-up phase in which they become familiar with
the class hierarchy and object-oriented computational model
but do little meaningful work (our colleague Dave Smith calls
this “climbing the Smalltalk mountain”).

The Minimalist Tutorial and Tool Set project (MiTTS;
contact is Mary Beth Rosson, rosson@watson.ibm.com) fo-
cusses on users’ eatliest experiences with Smallealk. The pro-
ject’s goal is to provide a short (four- to six-hour) introduction
to Smalltalk/V that offers programmers experienced with
other languages a taste of what programming Smalltalk appli-
cations is all about, hopefully leaving them motivated and
confident enough to begin climbing the mountain. A short
manual guides new users through explorations and
modifications of a simple example application (a blackjack
game). The leamning activities are supported by a Birtitalk
Browser (which filters out classes not relevant to the applica-
tion) and by a View Matcher (which coordinates multiple
views of the example application, views containing informa-
tion normally accessed through independent tools).

The Molehill project {contact is Kevin Singley, sin-
gley@watson.ibm.com) combines elements of intelligent
tutoring technology with hypermedia and key word
searches to create an instructional environment more
structured than exploratory learning, yet less constraining
than traditional tutoring. The goal of Molehill is to provide
learners with online tutoring supportt through a semistruc-
tured curriculum of simple but meaningful projects. Mole-
hill supports code comprehension and browsing as well as
code generation, something that has not been attempted in
other programming tutors. Because Smalltalk learners are
often experienced procedural programmers, the Molehill
project also addresses the transfer from procedural to ob-
ject-oriented programming, exploiting leamer’s prior
knowledge where appropriate while at the same time high-
lighting differences.

SMALLTALK TOOLS

We have added tools to the environment to make our pro-
gramming activities more effective. As researchers, we have
been also been experimenting with new ways of working with
the Smalltalk language and environment.

VoL. 1, No.3: NoveMBER/DECEMBER [991

17.

18.

B LAB REPORT

The Change Manager (contact is Jerry Archibald,
arch@watson.ibm.com) is intended to make our Smalltalk de-
velopment work more efficient and teliable. The tool's main
interface is a browser that can be used in conjunction with or
in place of a class hierarchy browser. The programmer creates
and then chooses among “change groups;” these groupings
correspond to code development categories. Any work accom-
plished while a change group is active is associated with that
group and can be manipulated (e.g., filed out) as a unit. The
level of granularity is the individual Smalltalk method, which
means that a single class can be associated with multiple
change groups, with only the relevant methods included. This
has proven to be especially useful when development work in-
cludes addirions to preexisting classes {e.g., collections,
magnitudes).

Another project is developing and testing an example-
based reuse documentation tool, the reuse View Matcher
(contact is Mary Beth Rosson). This tool coordinates different
views of an example application that uses a target class being
considered for reuse. These views include a concrete depiction
of the class’ usage protocol, organized by typical usage episodes
(e.g., starting up the application); the associated code browser
is a “senders” browser, so that programmers are immediately
directed to an example usage of a method defined for the tar-

get class, rather than the method's implementation. Another
view of the example application is an “object map"” that
schematizes instance variable relationships among the impor-
tant objects in the example application.

The work on the Portia environment (contact is Eric Gold,
egold@watson.ibm.com) focusses on facilitating "instance-
centered” (as contrasted with code-centered) approaches to
application design and development. The hope is to make the
creation, location, examination, manipulation, and reuse of
instances a more common and natural component of
Smalltalk development activities. Suppott for this consists of
broad-based modifications to existing system tools (e.g., the
workspace, the class hierarchy browser) as well the provision
of new tools (e.g., object repository, an object locator). B

Mary Beth Rosson is a research staff member at IBM’s T.J. Watson
Research Center in Yorktoun Heights, NY, where she has been since
1982. Her current research centers on the cognitive processes underly-
ing the design and implementation of software, especially the conse-
quences of the object-oriented programming paradigm for these activi-
ties. She can be reached at the User Interface Institute, IBM Thomas
J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY
10598, (914) 784-7738, rosson@watson.ibm.com.

continued from page 16...

that...” He didn’t get to finish it — it literally set the fire
alarms in the hotel ringing. Amazing, these Smalltalk people
can pull anything off!

SUMMARY

This article provided just a sampling of the information that
was shared at the developers conference. Almost all of the ses-
sions were recorded on audio cassette, although I am not sure
whether or not they are being made available to the general
public. If you would like more information concemning the

conference, I suggest you contact Digitalk directly (electroni-
cally or by phone) or watch for information in their Scoop
newsletter.

Overall, the feeling with which I think most people left
the conference was a sense that Smalltalk is moving forward
and that Digitalk has a reasonably good sense of where it
would like to go. They have the problem of being pulled in
many directions and of trying to manage their growth to meet
those demands. For a first attempt at a developers conference,

1 think Digitalk has much of which to be proud! B

REFERENCES

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, 5QL/DS, DB2, RDB, RDBCDD,
dBASEIII, Lotus, and Excel.

‘ ntelligent Systems, Inc.

j 506 N. State Street, Ann Arbor, M 48104 (313) 996-4238 (313) 9964241 fax

[1] Ullman, E. OOP made visual: Digitalk’s LAFKit, Byte
Magazine, vol. 16:8 August 1991.

Paul White is an Editor of The Smalltalk Report. Cur-
rently, he is a professor of computer science at Carleton Uni-
versity. He is also a founding member of The Object People,
a firm specializing in object-oriented technology. He can be
reached on CompuServe at 70524,3613 for comments.

THE SMALLTALK REPORT

WHAT THEY'RE SAYING

ABOUT SMALLTALK

Excerpts from industry publications

..- With respect to ... the inclusion of system-defined types —
Smalltalk, C++, and CLOS nearly run the entire gamut. In
Smalltalk types and classes are identified: There is no semantic
difference between those supplied by the system and those
defined by the user. In C++, the only methodical value types —
those for which the user can declare methods — are user-
defined classes. In CLOS, types and classes are separate con-
cepts; every class corresponds to a unique type, but not every
type has a class behind it. However, in order to cover all system-
defined data types, CLOS defines a set of classes which span the
preexisting Common Lisp types. One set of types spans a second
set of types if every object in the second set is a member of at
least one type in the spanning set. This set is large enough to en-
compass most representational distinctions within Common Lisp
implementations, but small enough that each system-defined
data type is directly covered by a single spanning type. This al-
lows implementors to retain their historic, low-level optimizations
based on representational types ...

... With respect to...extensibility for new representational types
— neither Smalltalk, C++, nor Lisp allows the user to define repre-
sentational types. For Lisp, there is a defined way to recognize a
representational type ...

... With respect to ... the use of declarative types — C++ uses
strong, static typing as much as possible, and Smalltalk uses only
runtime typing. Common Lisp has a rich, extensible, but optional
declaration syntax. Although implementations are not required to
do any static type-checking based on a program’s use of type dec-
larations, a number of compilers take full advantage of this feature,
especially for optimization ...

... Smalltalk — which supports only single inheritance — signals
an error if the same-named instance variable is specified in a sub-
class. With disjoint unions, there are as many copies of the conflict-
ing item as there are superclasses with an item by that name. C++
uses this mechanism for member data elements. Only some of the
named elements are visible in the C++ derived class, because
C++ supports name encapsulation between subclasses and super
classes. CLOS creates a single composite description for a slot
from all the inherited slots of the same name ...

... Different languages provide a variety of tools positioned
along a spectrum for aiding software development. At one end of
the spectrum are languages like C++, in which the only tools are
external development environments. In the middle are languages
like Smalltalk that provide residential development environments
having access to every part of the language and its implementa-
tion. At the other end of the spectrum are languages like CLOS
that provide linguistic mechanisms to support development ...

LISP, John K. Foderaro, Communications of the ACM, 9/91

... The Momenta [pen-based operating environment] will be
bundled with a generous selection of MSE starter applications,
including an address book, appointment calendar and fax man-
ager. The MSE starter applications are state-of-the-art programs.
They are object-oriented, which simplifies sharing of information
by several applications, and allow you to create compound docu-

menits that contain a variety of embedded data objects. How-
ever, the MSE applications can only be created on Momenta's
proprietary development system, which is an advanced deriva-
tive of the Smalltalk programming language. Although the Mo-
menta development system provides an innovative and ad-
vanced language for object-oriented programming, it is
considered an idiosyncratic tongue by some of the third-party
software developers that have been approached by Momenta.
Considering the heavy lobbying by Go and Microsoft, Momenta
may find it tough to lure enough developers. Without sufficient
third-party applications, it could be forced to rely on selling hard-
ware — which, ironically, might be used primarily with pen-
based operating systems developed by its rivals.

Momenta poised to penetrate pen computer market,

Frederic E. Davis, PC Week, 9/2/91

... From their demonstrations, | have no doubt that the proprietary
Windows development offerings such as Realizer, GFA Basic, VZ
Programmer, and, to a lesser degree, Actor and the two
Smalltalks, can do great things in the hands of their developers
and those who invest heavily in learning and understanding the
programs’ various strengths and weaknesses. However, | didn’t
find myself as instantly hooked by any of them as | was by Visual
Basic and QuickC for Windows ...

Windows developers finally have the right tools for the job,
Steve Gibson, InfoWorld, 9/16/91

... Improved access to standard software development and mod-
eling tools should be a major by-product of Sermatech’s move to
open CIM. Because the first approach relied on proprietary data
structures and programming interfaces, it would have required de-
velopment tools dedicated to the Sematech CIM architecture. Se-
matech would have had to create such tools itself or convince I1SVs
to do so. Since it uses more standard, open interfaces, the new Se-
matech CIM architecture will be able to use less expensive, com-
mercially available software development tools. In fact, a major
piece of the new architecture is an expanded, object-oriented
modeling and computer-aided software engineering component.
Based on commercial tools including the Smalktalk object-oriented
development language and the Object Management Group’s
evolving object services, the Sematech CIM development architec-
ture should make it easier for users to model, prototype, code and
make changes to CIM systems. Sematech officials admit their deci-
sion to go to open CIM carries some risks. For one thing, neither
the OSF Distributed Computing Environment nor the Object Man-
agement Group object infrastructure is complete. Also, the deci-
sion to base the architecture exclusively on OSF/DCE necessarily
excludes members’ existing proprietary-based CIM architectures.
Although existing applications built on the proprietary architec-
tures can be included in the object-oriented models of the new ar-
chitecture, they won't share interfaces or data structures ...

Sematech crafis an open CIM strategy,
Jeff Moad, Datamation, 9/1/91

VoL. 1, No.3: NovEMBER/DECEMBER 1991

19.

20.

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors
interested in being included in this feature should send press releases to our editorial offices, Product Announcements Dept., 91 Second Ave.,
Ottawa, Ontario K1S 2H4, Canada.

Instantiations introduces a team development envi-
ronment for Smalltalk

Instantiations has announced its new Convergence/Team Engineer-
ing Environment, the first multiuser, multirepository team program-
ming environment for Smalltalk. Convergence/Team enables pro-
gramming teams to effectively develop commercial and industrial
applications using ParcPlace Systems’ Objectworks\Smalltalk.

Convergence/Team combines the productivity of Smalltalk with
a powerful team development environment, giving groups of pro-
grammers the power to create large-scale, production-quality
Smalltalk applications.

Convergence/Team’s innovative shared repository environment
allows team members on different types of computers to simulta-
neously create, browse, access, and share code. The size and num-
ber of repositories is limited only by available disk space.

Instantiations has also announced Convergence/Team Services,
a full range of support services designed to rapidly move develop-
ment teams up the learning curve and to accelerate the design and
implementation of commercial and industrial applications using
Convergence and Smalltalk.

For more information, contact Instantiations, Inc., 921 S.W. Washington,
Ste. 312, Portland, OR 97205, (503) 242-0725.

Smalltalk bundled with Tigre

At OOPSLA ‘91, Tigre Object Systems, Inc., of Santa Cruz, CA an-
nounced a new agreement with ParcPlace Systems of Mountain
View, CA. Tigre now bundles the Tigre Programming Environment
with ParcPlace’s Objectworks\Smalltalk object-oriented language,
making it easier and less expensive for new users to get started
with object-oriented technology. The Tigre Programming Environ-
ment, which uses Objectworks\Smalitalk as its scripting language,
lets developers create state-of-the-art graphical user interface (GUI)
programs that run, without parting, on Macintosh Il, Microsoft Win-
dows 3.0, and all popular UNIX workstations. With Tigre, GUI cre-
ation is significantly faster than with only Smalltalk or C++.

For more information, contact Tigre Object Systems, 3004 Mission St.,
Santa Cruz, CA 95060, (408) 427-4900, or fax (408) 457-1015.

Servio announced GeODE—the first code-free devel-
opment environment for building object database
applications

Servio Corporation has announced the GemStone Object Database
Development Environment, GeODE, a suite of development tools
for visually and graphically designing and building ODBMS applica-
tions. GeODE is a code-free environment targeted at commercial
application developers building systems such as order entry, inven-
tory control, and general ledgers as well as more complex systems
such as biomedical, financial analysis, and manufacturing.

GeODE is platform- and GUI-independent, allowing developers
to build applications that run on any platform and native window-
ing system.)

GeODE was designed for the applications developer whose ex-

perience is based on traditional programming methods and lan-
guages. GeODE provides a tightly integrated set of tools that al-
lows the developer to visually create screens, graphically direct ap-
plication flow, and customize the application through graphical
point-and-click interaction. Other GeODE tools include debuggers,
cross-reference tools, and graphical browsers. Since GeODE is an
interactive, graphical environment, it gives developers immediate
feedback on application design and implementation decisions.

For more information, eontact Servio Corporation, 1420 Harbor Bay Pkwy.,
Alameda, CA 94501, (415) 748-6200, or fax (415) 748-6227.

Momenta chooses Smalltalk/V language for its new
pentop computer

Momenta International has announced that its pentop computer
uses Digitalk Corporation's Smalltall/V language as the operating
environment for its pen-based interface.

Momenta'‘s pentop systems offer a comprehensive set of inte-
grated applications which were developed in Smalltalk/V. Mo-
menta's development environment allows for independent soft-
ware developers to easily develop applications for the pentop
system that are consistent with the look and feel of Momenta's ap-
plications. This integrated approach to program development pro-
vides Momenta computer users with consistent applications based
on a common graphical user interface, dramatically decreasing
learning time.

The new computer will be shipped with a number of essential
programs, among them a spreadsheet, memo maker, presentation
maker, appointment calendar, faxer, personal journal, chart maker,
and hand printing recognition trainer. All the programs are pen-op-
timized (completely controlled by the pen) and take full advantage
of the Momenta user interface. Momenta offers a special ISV pro-
gram to encourage future development on its system, and ISVs have
already begun developing other Smalltalk/V-based applications.

For more information, contact Digitalk, Inc., 9841 Airport Blvd., Los Ange-
les, CA 90045, (213) 645-1082, or fax (213) 645-1306.

Synergistic Solutions enhances Smalltalk\SQL

Synergistic Solutions Inc. has announced additional platform sup-
port for Smalltalk\SQL, the portable database interface for
Smalltalk. The product works in conjunction with ParcPlace Systems
Objectworks\Smalltalk to enable graphical user interface (GUI) ap-
plications to access information stored in relational databases. Cor-
porations can now leverage their existing data with the benefits of
object-oriented development.

Direct database support is currently available for the Sybase
and Oracle databases. DB2, Informix, Ingres, Rdb, and other
databases may be accessed through a variety of gateway products.
Several other direct interfaces will be announced later this year.
The combination of direct and gateway support for popular
databases provides flexibility for developers. Organizations can
now rapidly develop portable object-oriented GUI applications and
access data in both relational and object-oriented databases.

Smalltalk\SQL is a set of portable classes that encapsulate

THE SMALLTALK REPORT

Take Control of Your

application projects.
1 Price List

* posv
DOS V286

08/2 V/IPM
Site Licenses

Anplicabon subdmasy
instancaVanabisName
cimagVaneblzNamaa

pooiDickonaims

Windows 3.0
V/Windows

do spplicailon
e applic

first copy
subsequent

One Main Street
Cambridge, MA 02142

caL AR

“With AMAST. Smalitalk/V i

Bring your large, complex object-oriented applications under control
with AM/ST, the Application Manager for Smalltalk/VV. The AM/ST
Application Browser helps both individuals and development teams to
create, integrate, maintain, document, and manage Smalltalk/V

Macintosh V/Mac

New Productivity Tools |

Change Browser*
Source Control** PM or Windows

SoftPert Systems Division

(617) 621 3670 or (617) 621 3671 Fax

Applications with

= Applications Hierarchy
Every class has an owner.

Functional vigw.ag lasse
methods within classes.
Applications port easily across platform

Automatic Documentation
; Revision history for each method.
$150 Analysis and design reports.
$395 ; .
$395 Customizeable documentation templates.

$475

I - Source Control

Integrate work of several users.
*Save and browse multiple revisions easil
**Check-in, check-out, and lock source c¢od
Customize code templates.
$475 Develop in a LAN environment. o
$195 Deliver applications without AM/ST.)
$1§::: Static Analysis Tools
Application consistency reports.

Graphical views of hietarchies. =
Cross-reference of variable and method {isag
Up-to-date method index. B

» Dynamic Anal,sis Tools .

eader in serious multi-person development.”

David Ornstein. Sage Software

nd Analy

ve me a real edge i Des

Hal Hildebrand. Anamet Labs

database access through an object-oriented metaphor called SQL
Agent. Developers simply “plug in" the appropriate agent for their
target database. There are no modifications necessary to applica-
tions using ANSI SQL. Pluggable SQOL agents are capable of instan-
tiating objects based on arbitrary queries including relational joins.
Smalltalk\SQL allows organizations to quickly develop object-ori-
ented applications using their existing database investment and
provides a migration path toward object-oriented databases. The
resulting applications are flexible enough to respond to the rapidly
changing business environment and competitive pressures.

For more information, contact Synergistic Solutions Inc., 63 Joyner Dr.,
Lawrenceville, NJ 08648, (908) 855-7634.

ParcPlace Systems announces FACETS\4GL 2.0

ParcPlace Systems has announced that the FACETS\4GL fourth gen-
eration language (4GL) application development tool for Object-
works\Smalltalk now includes an interface builder. FACETS\AGL 2.0
enhances the capabilities of traditional 4GLs with a graphical user
interface (GUI) builder and provides a migration path from 4GLs to
object-oriented technology. FACETS\4GL is developed by Reusable
Solutions and marketed by ParcPlace Systems.

The new FACETSMGL interface builder includes several styles
of event-driven buttons, default styles to easily change the look
and feel of an application, a choice of fonts, and a color palette.

With the FACETS interface builder, applications can be en-
hanced easily with different kinds of buttons, including bordered,
shadowed rectangular, transparent, opaque, raised, rounded, shad-
owed rounded, radio, and check box. And event-driven architecture
ensures that actions and scripts are attached to the buttons. In addi-
tion, color selection has been simplified so users can point and click
to select from a color palette. Users can also change the default
styles to alter the look and feel of an entire application in one step.

For more information, contact ParcPlace Systems, 1550 Plymouth St., Moun-
tain View, CA 94042, (415) 691-6700, or fax (415) 691-6715.

Object Migrator for Smalltall/V Win and Smalltalk/V PM

Hierarchical Applications Limited has announced the availability
of its Object Migrator product for Smalltalk/V Windows and PM.
Object Migrator allows the Smalltalk developer to segregate
modified classes from the base or unmodified methods. It aids
the developer in identifying those methods that have been
changed since the last Smalltalk release or since the last time a
Smalltalk image was modified.

Object Migrator also aids the Smalltalk developer in migrating
modified classes from one Smalltalk release to another or from one
Smalltalk image to another. It allows Smalltalk developers to share
classes more freely since Smalltalk can be made to FILE-OUT either
all modified classes or only selected classes from the hierarchy of
modified classes.

The modified class hierarchy is maintained in a completely
transparent manner which frees the Smalltalk/V developer to con-
centrate on the software problem at hand rather than on the main-
tenance of the Smalltalk class hierarchy across Smalltalk releases.

For more information, contact Hierarchical Applications Limited, 7491 N.
Federal Hwy., Ste. 277C5, Boca Raton, FL 33487, (512) 838-1234.

Digitalk announces Smalltalk/V PM 1.3 and V PM
Database Interface

Digitalk announced Smalltalk/V PM Release 1.3 and the Database
Interface for Smalltall/V PM. Smalltalk/V PM Release 1.3 fully sup-
ports the new CUA architecture, known as CUA 91, which includes
the new advanced controls IBM intends to ship with OS/2 2.0. The
Database Interface provides simplified access to IBM’s OS/2 Ex-
tended Edition Database Manager and the Microsoft SQL Server.

For more information, contact Digitalk, Inc., 9841 Airport Bivd., Los Ange-
les, CA 90045, (213) 645-1082, or (800) 922-8255.

Vor. I, No. 3: NoveMBER/DECEMBER 1991

21.

You've heard all the buzzwords
surrounding object databases...

inheritance
versioning
encapsulation
methods
messages

Let GemStone*introduce you
to afewmore...

available today
stable releases
mission critical
dependable support

After introducing the first commercial object data- With our second generation release, GemStone sets
base in 1987, Servio has continually set the stan- the new standard for performance in multi-user,
dard for stability and reliability. Qur object data- mission critical environments. Only GemStone
base system, GemStone, has undergone years of supports both C++ and Smalltalk, the most popu-
refinement by incorporating the feedback of the lar object programming languages. In addition,
world’s largest installed base of object database GemStone offers integration of corporate informa-
customers. tion via gateways into SQL database systems such

as Sybase as well as non-SQL database systems.

Call Servio to find out more about
the latest buzzwords in object databases.

(800)243-9369

SERVIO

Servio Corporation
1420 Harbor Bay Parkway, Alameda, CA 94501, (415)748-6200, Fax (415)748-6227
Copyright 1991, Servio Corporation. GemStone is a regi d trad k of Servio Corporation.

All other product and company names may be rrademarks of the respeciive companies with which they are associared.

Putting Smalitalk To Work!

1980 Smalltalk Leaves The Lab.

1984 First Commercial Version Of Smalitalk.

1985 First Industrial Quality Smalitalk Training Course.
1987 First Fully Integrated Color Smalitalk System.

1988 Responsibility-Driven Design Approach Developed.

1991 Smalltalk Mainstreamed in Fortune 100 Applications.
NEW! First multi-repository, group programming environment.

Smalitalk Technology Adoption Services

Technology Fit Assessment
Expert Technical Consulting
Object-Oriented System Design/Review

Proof-of-Concept Prototypes
Custom Engineering Services & Support

Smalltalk Training & Team Building

Smalitalk Programming Classes:

Objectworks Smalitalk Release 4
Smalitalk V/Windows V/PM V/Mac

Building Applications Using Smalltalk
Object-Oriented Design Classes:

Designing Object-Oriented Software: An Introduction

Designing Object-Oriented Systems Using Smalltalk
Mentoring:

Project-focused team and individual learning experiences.

Smalltalk Development Tools
NEW! Convergence/Team Engineering Environment™

We were there.
We were there.
We were there.
We were there.
We were there.
WE ARE THERE.
NEW!

Mult-user/shared repository development environment for teams creating production-quality Smalltalk applications.

Convergence/Application Organizer Plus™

Version management, development tools, and improved code modularity for individual Smalltalk developers.

Instantiations, INc.
1.800.888.6892

SHOOT-OUT

WINDOWS AND 0/2:
PROTOTYPE TO DELIVERY.
NO WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V, you don't.

Start with the prototype. There’s no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion, Try out new ideas. Get input from your users. Make more changes.

Be creative,

Smalltalk/V gives you the freedom to experiment without risk. It’s
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just
$499.95.

So take a look at
Smalltalk/V today. It’s time to make

that prototyping time productive.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their respective holders.

Digitalk, Inc_, 9841 Airport Blvd., Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO'S TALKING
HEWLETT-PACKARD NCR
HP has developed a network trouble- NCR bas an integrated test program develop-
shooting tool called the Network Advisor. ment envir t for digital, analog and

The Network Advisor offers a compreben- mixed mode printed circuit board testing.
sive set of tools including an expert system,

statistics, and protocol decodes to speed MIDLAND BANK

problem isolation. The NA user interface is Midland Bank built a Windowed Technical
built on a windowing system which allows Trading Environment for currency, futures
multiple applications to be executed and stock traders using Smalltalk V.
simultaneousl.

KEY FEATURES

B World’s leading, award-winning object-
oriented programming system

I Complete prototype-to-delivery system

B Zero-cost runtime

M Simplified application delivery for
creating standalone executable (EXE)
applications

B Code portability between Smalltalk/V
Windows and Smalltalk/V PM

8 Wrappers for all Windows and OS/2
controls

B Support for new CUA "91 controls for
0S/2, including drag and drop, booktab,
container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

B Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive samples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

M Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

This Smalltalk/V Windows application
captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications— and they'e portable to
Smalltalk/V Windows.

	By Article Title
	Digitalk's Smalltalk/V Developers Conference '91
	How should classes be initialized?
	Lab Report: Using and studying Smalltalk in the User Interface Institute
	ObjectWorks\Smalltalk Release 4 for MS-Windows3.0: a look at the lower levels
	Responsibility-driven design
	Smalltalk comes to the mainframe, part1

	By Author Name
	Ewing, Juanita
	Hendley, Greg
	Reid, Glenn J.
	Rosson, Mary Beth
	Smith, Eric
	White, Paul
	Wirfs-Brock, Rebecca

	By Topic
	Getting Real
	GUIs

